+54 294 4445162      Bustillo km 9,5  Bariloche, RN, Argentina, R8402AGP
 

Es un referente mundial de la microscopía y durante su reciente paso por Bariloche el Área de Comunicación del Instituto Balseiro (CNEA-UNCuyo) le hizo esta entrevista. Ondrej Krivanek es un físico checoslovaco-británico y Doctor en Física por la Universidad de Cambridge que vive en los Estados Unidos. En esta nota, cuenta parte de la historia de estos aparatos que ayudan a conocer la materia en escalas pequeñísimas.

Fecha de publicación: 21/12/2017

El científico y tecnólogo Ondrej Krivanek es uno de los pioneros mundiales en el campo de la microscopía electrónica. Gracias a sus desarrollos, mejoró a mejorar la habilidad de analizar la materia a la escala atómica. Es co-fundador de la empresa Nion, compañía líder en instrumentos de microscopía. Y es uno de los científicos que desarrollaron la “corrección de la aberración”, un fenómeno que desveló a los microscopistas por más de medio siglo y que consistía en una especie de miopía de estas poderosas máquinas.

La Royal Society, en donde es fellow, destaca en su sitio web que los microscopios de Krivanek “ahora pueden mapear elementos químicos en muestras sólidas con resolución atómica y con una sensibilidad de un átomo individual”. En esta nota, realizada en el marco del “IV Congreso Argentino de Microscopía” realizado en el Centro Atómico Bariloche y en el Instituto Balseiro, el físico habla sobre la historia de la microscopía, sus aportes a este campo y para qué se utilizan los microscopios en la actualidad.

-¿Qué tanto ha avanzado la microscopía desde sus orígenes?

-El progreso ocurre en olas. El microscopio electrónico se inventó en la década de 1930 en Alemania. En los ‘50 comenzó a ser útil porque se pudo ver “dislocaciones”, es decir, se pudo ver cómo se deforman los materiales. Y en los ‘60 y ‘70, se empezó a resolver planos atómicos. El mundo está hecho en átomos, que están organizados usualmente en  arreglos ordenados. El metal de esta silla (N. de la R.: señala una silla en el aula donde transcurre la entrevista) está hecha de cristales organizados como soldados en un desfile. En los ‘70, se descubrió que un haz de electrones excitaba todo tipo de señales electromagnéticas. Se empezó a desarrollar los microscopios analíticos. Se empezó a ver qué tipo de átomos teníamos.

-¿Y luego?

-En la década del 2000 todo se puso mejor porque los microscopios tienen una visión imperfecta así que desarrollamos “anteojos” para estos microscopios. Hicimos lentes y la visión mejoró. Se realizó lo que llamamos “la corrección de aberración” hace unos 10 años. Otro desarrollo en el que estamos trabajando, y es algo muy reciente, es la espectroscopía vibracional en microscopios electrónicos. Mejoramos la resolución en un factor de 10. Eso nos da una nueva ventana para estudiar los materiales. Si golpeo esta mesa, resuena y eso es porque excité fonones y con esta técnica puedo ver los fonones vibrando. Es una técnica muy poderosa, sobre todo para analizar muestras biológicas. Es muy emocionante y es sólo el inicio.

-¿Cómo ayudó con su equipo en el trabajo de la “corrección de la aberracción”? O en otras palabras: ¿cómo ayudó a resolver la “miopía” de los microscopios?

-Esa es otra historia muy interesante. En 1937 un teórico alemán muy inteligente escribió un paper diciendo que los microscopios electrónicos siempre tendrían un problema con la aberración esférica. Fue como decir “inventamos este hermoso instrumento y no funcionará”. Por ese entonces el límite de lo que se podía ver no era malo pero eso era hace 80 años. En la década de 1950, la gente empezó a trabajar en la corrección de la aberración y no funcionó, tampoco en los ‘60 ni tampoco en los ‘70. En los ‘80, tampoco se veía una solución.

-¿Y qué pasó?

-Había dos equipos en el mundo, nosotros en Cambridge, Inglaterra, y otro en Heidelberg, Alemania, que dijimos: “Quizás esto funcione”. Intentamos y los dos equipos tuvimos éxito. Los alemanes desarrollaron un corrector del haz de los miscroscopios electrónicos y nosotros hicimos un corrector para los microscopios electrónicos de transmisión con barrido. Estos dispositivos cambiaron completamente el modo en el que se hace ahora microscopía. Pero cuando se realiza un primer desarrollo, pasa un tiempo hasta que alguien lo empieza a usar. Esto tardó diez años en nuestro caso. En 1997 tuvimos correctores que funcionaban; hacia 2001 o 2002, se empezó a usar en laboratorios de todo el mundo; y en 2010, ya había alrededor de 500 correctores de aberración en microscopios a nivel global. Así que la cosa despegó.

-¿Cómo se llaman las compañías?

-Hay una compañía que se llama CEOS (las siglas de Correct Electron Optical Systems) y la nuestra se llama NION.

-¿Hoy dónde están los microscopios más poderosos?

-Esa es una pregunta divertida porque es como preguntar cuál es el mejor auto en el mundo. Hay un mejor auto de carrera, uno familiar y así. Así que personas diferentes se especializan en cosas diferentes. En la microscopía biológica, el FBI está haciendo un muy buen trabajo. Por ejemplo, determinaron la estructura del virus Zika, que es algo muy importante. Pero la gente usa los microscopios para temas muy disímiles. Conocer la estructura de un virus ayuda a luchar contra el mismo. Si hablamos del campo de la ciencia de materiales nosotros, en NION, vamos a la cabeza de la espectroscopia de vibraciones. Y si hablamos de mapeos de elementos en una resolución espacial alta lo están haciendo muy bien en Japón. En el campo de la holografía, Hitachi es probablemente el mejor. Pero es como preguntar quién es el mejor cantante: hay alguien que canta mejor Barry Bachman, otro que canta mejor Puccini. Pero hay unas cuatro compañías que empujan la tecnología hacia el futuro.

-¿Son todas empresas privadas?

-Algunos de los desarrollos provienen de la cooperación con universidades. Pero cuando se necesita un gran financiamiento es cuando se tienden a convertir en empresas privadas.

-¿Qué es lo más chico que se puede ver en un microscopio?

-Átomos individuales. Pero no todos los átomos tienen el mismo tamaño. Por ahora no hemos logrado ver un átomo individual de hidrógeno porque es muy movedizo y cuando lo iluminamos con el haz  de electrones se escapa. Eso es algo que llamamos daño por radiación. Del hidrógeno podemos ver su señal vibracional pero es complicado. Creo que por ahora el átomo más chico ha sido el boro.

-¿Cuáles son los principales desafíos de la microscopía?

-Todo está evolucionando: es similar a la construcción de rascacielos, vas por más y más. Así que nuestro desafío actual en realidad consta de dos grandes desafíos. En espectroscopía vibracional, nos gustaría mejorar la resolución de energía. Hay cuestiones que no podemos resolver en la actualidad. Así que estamos trabajando en ello. Y el otro desafío es que, cuando empezás a agregar nuevos campos y empieza a haber todo un mundo de nuevos materiales, hay que trabajar en una atmósfera de gas o en un ambiente húmedo. Algunas de las muestras deben permanecer congeladas. Entonces hay que cambiar el manejo de las muestras en las facilidades de microscopios electrónicos. Hay muestras que deben verse en gases o en líquidos. Así que hay que hacer un nanolaboratorio en el microscopio y esto es un campo desafiante que precisa más flexibilidad y una mayor resolución.

-Para alguien que sabe poco o nada sobre microscopios, ¿podría explicar por qué son tan importantes y en qué campos se pueden utilizar?

-Tomemos como ejemplo tu teléfono celular. En su interior tiene microelectrónica y circuitos integrados. Y esos circuitos no funcionarían si la gente no trabajase con la microscopía electrónica. Todos los fabricantes de semiconductores, como Samsung e IBM, tienen un montón de microscopios electrónicos para que los bits en tu celular funcionen. Eso es nanotecnología, comprimir las cosas mucho y mucho más chicas. También se usan para entender la catálisis y cómo funcionan las baterías. Y si querés entender el modo fundamental en que la naturaleza ha hecho los materiales hay que examinarlos en niveles atómicos con microscopios con resolución atómica.

-Los microscopios también son fundamentales para el campo de la biología.

-Sí, se usan en el campo de la biología, ya mencioné el ejemplo de que con un microscopio se pudo ver la estructura del virus Zika, un problema muy urgente. Si no conocés cómo es el virus, no sabés cómo darle pelea.

-En el coloquio que dio en nuestro instituto, también mencionó que se usan para analizar material extraterrestre, ¿es así?

-Sí, materia del Sistema solar. La gente usa este tipo de cosas para entender cómo nació el universo. Es muy fácil mirar por un telescopio la materia de una estrella. Pero si ese material está flotando en el universo y podemos capturar pequeñas partículas podemos conocer detalles sobre el origen de nuestro universo y sobre cómo se formaron las primeras galaxias. Podemos conocer cómo se formó el sistema solar analizando esos fragmentos de materia. En este campo, los microscopios electrónicos son también muy poderosos.

-¿Qué características o cualidades debe tener alguien que quiera trabajar en microscopía?

-Curiosidad, querés saber de qué está hecho el mundo. Un niño que juega con robots será muy bueno en entender estos instrumentos que miran la materia en resoluciones espectaculares. Son un poco complejos pero es un poco de mecánica y mucho de software. Y si querés trabajar en este campo, podés estudiar ciencia informática, física, biología y tendrás un conocimiento básico. Pero la curiosidad es la clave.  Las personas que se interesan en cómo funcionan las cosas… Ese sentimiento de curiosidad ayuda.

-¿Por qué le gusta trabajar en el campo de la microscopía?

-Porque es divertido y estás aprendiendo cosas nuevas todo el tiempo. Eso por un lado. Y por el otro sentís que estás colaborando con algo. Eso que la ciencia aún no ha resuelto. No decimos “OK, la mecánica cuántica fue inventada en 1930 y no hay nada más que hacer”. Hay mucho por hacer. Lo podés ver. Cada nuevo teléfono celular es mejor que el anterior, incluso ahora hacen reconocimiento de voz. De hecho da un poco de miedo. No se sabe cuánto pasará hasta que las computadoras sean más inteligentes que los humanos. Pienso que falta un largo trecho y mientras tanto está el desafío de descubrir. En 1900 podías caminar por el Polo Sur y podías ser la primera persona en hacerlo. Todo eso ha sido realizado. Pero en la actualidad si hacés un espectro vibracional de un átomo, eso no ha sido hecho antes. Así que hay competencias donde se puede conseguir “ser el primero” y es algo divertido.

-Una última pregunta: ¿por qué la astronomía y los telescopios son más populares que la microscopía y los microscopios?

-Los telescopios son mucho más accesibles y producen imágenes hermosas. Y pienso que la comunidad de astrónomos ha hecho un muy buen trabajo en popularizar lo que están haciendo. Cada uno de nosotros, los científicos, ha comprado en algún momento de su vida un telescopio amateur. Las imágenes que produce el telescopio espacial Hubble son absolutamente espectaculares y en cierto modo es arte. Cualquier persona puede mirar el cielo nocturno con el telescopio y mirar qué pasa allí afuera. Los microscopios de todos modos son la misma cosa. Todos pueden mirar una uña con un microscopio electrónico y mirar cómo está hecha. Pero quizás no hemos hecho tan buen trabajo haciéndole publicidad. Aunque hay programas de puertas abiertas y gente que trabaja con niños que vienen de las escuelas para conocer los microscopios. Deberíamos hacer más de estas actividades. Pero nunca podremos decir que estamos mirando algo a 6 mil millones años luz de distancia (risas). En fin, nuestro universo es interesante en todas las escalas. A mí particularmente me fascinan los descubrimientos astronómicos. Y pienso que el microscopio es como un telescopio usado al revés. 

*Esta entrevista fue publicada dentro de un informe especial publicado originalmente en UNIDIVERSIDAD, y se puede leer en este link.

Links a subnotas:

 

 

 --

Por Laura García Oviedo, responsable del

Área de Comunicación Institucional-

Instituto Balseiro

San Carlos de Bariloche, 21/12/2017

En Facebook: www.facebook.com/InstitutoBalseiro

En Twitter: @IBalseiro / Contacto:  Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

Más noticias: http://www.ib.edu.ar/index.php/comunicacion-y-prensa/noticias.html

 

 

Es un referente mundial de la microscopía y durante su reciente paso por Bariloche el Área de Comunicación del Instituto Balseiro (CNEA-UNCuyo) le hizo esta entrevista. Ondrej Krivanek es un físico checoslovaco-británico y Doctor en Física por la Universidad de Cambridge que vive en los Estados Unidos. En esta nota, cuenta parte de la historia de estos aparatos que ayudan a conocer la materia en escalas pequeñísimas.*

Fecha de publicación: 21/12/2017

El científico y tecnólogo Ondrej Krivanek es uno de los pioneros mundiales en el campo de la microscopía electrónica. Gracias a sus desarrollos, mejoró a mejorar la habilidad de analizar la materia a la escala atómica. Es co-fundador de la empresa Nion, compañía líder en instrumentos de microscopía. Y es uno de los científicos que desarrollaron la “corrección de la aberración”, un fenómeno que desveló a los microscopistas por más de medio siglo y que consistía en una especie de miopía de estas poderosas máquinas.

La Royal Society, en donde es fellow, destaca en su sitio web que los microscopios de Krivanek “ahora pueden mapear elementos químicos en muestras sólidas con resolución atómica y con una sensibilidad de un átomo individual”. En esta nota, realizada en el marco del “IV Congreso Argentino de Microscopía” realizado en el Centro Atómico Bariloche y en el Instituto Balseiro, el físico habla sobre la historia de la microscopía, sus aportes a este campo y para qué se utilizan los microscopios en la actualidad.

-¿Qué tanto ha avanzado la microscopía desde sus orígenes?

-El progreso ocurre en olas. El microscopio electrónico se inventó en la década de 1930 en Alemania. En los ‘50 comenzó a ser útil porque se pudo ver “dislocaciones”, es decir, se pudo ver cómo se deforman los materiales. Y en los ‘60 y ‘70, se empezó a resolver planos atómicos. El mundo está hecho en átomos, que están organizados usualmente en  arreglos ordenados. El metal de esta silla (N. de la R.: señala una silla en el aula donde transcurre la entrevista) está hecha de cristales organizados como soldados en un desfile. En los ‘70, se descubrió que un haz de electrones excitaba todo tipo de señales electromagnéticas. Se empezó a desarrollar los microscopios analíticos. Se empezó a ver qué tipo de átomos teníamos.

-¿Y luego?

-En la década del 2000 todo se puso mejor porque los microscopios tienen una visión imperfecta así que desarrollamos “anteojos” para estos microscopios. Hicimos lentes y la visión mejoró. Se realizó lo que llamamos “la corrección de aberración” hace unos 10 años. Otro desarrollo en el que estamos trabajando, y es algo muy reciente, es la espectroscopía vibracional en microscopios electrónicos. Mejoramos la resolución en un factor de 10. Eso nos da una nueva ventana para estudiar los materiales. Si golpeo esta mesa, resuena y eso es porque excité fonones y con esta técnica puedo ver los fonones vibrando. Es una técnica muy poderosa, sobre todo para analizar muestras biológicas. Es muy emocionante y es sólo el inicio.

-¿Cómo ayudó con su equipo en el trabajo de la “corrección de la aberracción”? O en otras palabras: ¿cómo ayudó a resolver la “miopía” de los microscopios?

-Esa es otra historia muy interesante. En 1937 un teórico alemán muy inteligente escribió un paper diciendo que los microscopios electrónicos siempre tendrían un problema con la aberración esférica. Fue como decir “inventamos este hermoso instrumento y no funcionará”. Por ese entonces el límite de lo que se podía ver no era malo pero eso era hace 80 años. En la década de 1950, la gente empezó a trabajar en la corrección de la aberración y no funcionó, tampoco en los ‘60 ni tampoco en los ‘70. En los ‘80, tampoco se veía una solución.

-¿Y qué pasó?

-Había dos equipos en el mundo, nosotros en Cambridge, Inglaterra, y otro en Heidelberg, Alemania, que dijimos: “Quizás esto funcione”. Intentamos y los dos equipos tuvimos éxito. Los alemanes desarrollaron un corrector del haz de los miscroscopios electrónicos y nosotros hicimos un corrector para los microscopios electrónicos de transmisión con barrido. Estos dispositivos cambiaron completamente el modo en el que se hace ahora microscopía. Pero cuando se realiza un primer desarrollo, pasa un tiempo hasta que alguien lo empieza a usar. Esto tardó diez años en nuestro caso. En 1997 tuvimos correctores que funcionaban; hacia 2001 o 2002, se empezó a usar en laboratorios de todo el mundo; y en 2010, ya había alrededor de 500 correctores de aberración en microscopios a nivel global. Así que la cosa despegó.

-¿Cómo se llaman las compañías?

-Hay una compañía que se llama CEOS (las siglas de Correct Electron Optical Systems) y la nuestra se llama NION.

-¿Hoy dónde están los microscopios más poderosos?

-Esa es una pregunta divertida porque es como preguntar cuál es el mejor auto en el mundo. Hay un mejor auto de carrera, uno familiar y así. Así que personas diferentes se especializan en cosas diferentes. En la microscopía biológica, el FBI está haciendo un muy buen trabajo. Por ejemplo, determinaron la estructura del virus Zika, que es algo muy importante. Pero la gente usa los microscopios para temas muy disímiles. Conocer la estructura de un virus ayuda a luchar contra el mismo. Si hablamos del campo de la ciencia de materiales nosotros, en NION, vamos a la cabeza de la espectroscopia de vibraciones. Y si hablamos de mapeos de elementos en una resolución espacial alta lo están haciendo muy bien en Japón. En el campo de la holografía, Hitachi es probablemente el mejor. Pero es como preguntar quién es el mejor cantante: hay alguien que canta mejor Barry Bachman, otro que canta mejor Puccini. Pero hay unas cuatro compañías que empujan la tecnología hacia el futuro.

-¿Son todas empresas privadas?

-Algunos de los desarrollos provienen de la cooperación con universidades. Pero cuando se necesita un gran financiamiento es cuando se tienden a convertir en empresas privadas.

-¿Qué es lo más chico que se puede ver en un microscopio?

-Átomos individuales. Pero no todos los átomos tienen el mismo tamaño. Por ahora no hemos logrado ver un átomo individual de hidrógeno porque es muy movedizo y cuando lo iluminamos con el haz  de electrones se escapa. Eso es algo que llamamos daño por radiación. Del hidrógeno podemos ver su señal vibracional pero es complicado. Creo que por ahora el átomo más chico ha sido el boro.

-¿Cuáles son los principales desafíos de la microscopía?

-Todo está evolucionando: es similar a la construcción de rascacielos, vas por más y más. Así que nuestro desafío actual en realidad consta de dos grandes desafíos. En espectroscopía vibracional, nos gustaría mejorar la resolución de energía. Hay cuestiones que no podemos resolver en la actualidad. Así que estamos trabajando en ello. Y el otro desafío es que, cuando empezás a agregar nuevos campos y empieza a haber todo un mundo de nuevos materiales, hay que trabajar en una atmósfera de gas o en un ambiente húmedo. Algunas de las muestras deben permanecer congeladas. Entonces hay que cambiar el manejo de las muestras en las facilidades de microscopios electrónicos. Hay muestras que deben verse en gases o en líquidos. Así que hay que hacer un nanolaboratorio en el microscopio y esto es un campo desafiante que precisa más flexibilidad y una mayor resolución.

-Para alguien que sabe poco o nada sobre microscopios, ¿podría explicar por qué son tan importantes y en qué campos se pueden utilizar?

-Tomemos como ejemplo tu teléfono celular. En su interior tiene microelectrónica y circuitos integrados. Y esos circuitos no funcionarían si la gente no trabajase con la microscopía electrónica. Todos los fabricantes de semiconductores, como Samsung e IBM, tienen un montón de microscopios electrónicos para que los bits en tu celular funcionen. Eso es nanotecnología, comprimir las cosas mucho y mucho más chicas. También se usan para entender la catálisis y cómo funcionan las baterías. Y si querés entender el modo fundamental en que la naturaleza ha hecho los materiales hay que examinarlos en niveles atómicos con microscopios con resolución atómica.

-Los microscopios también son fundamentales para el campo de la biología.

-Sí, se usan en el campo de la biología, ya mencioné el ejemplo de que con un microscopio se pudo ver la estructura del virus Zika, un problema muy urgente. Si no conocés cómo es el virus, no sabés cómo darle pelea.

-En el coloquio que dio en nuestro instituto, también mencionó que se usan para analizar material extraterrestre, ¿es así?

-Sí, materia del Sistema solar. La gente usa este tipo de cosas para entender cómo nació el universo. Es muy fácil mirar por un telescopio la materia de una estrella. Pero si ese material está flotando en el universo y podemos capturar pequeñas partículas podemos conocer detalles sobre el origen de nuestro universo y sobre cómo se formaron las primeras galaxias. Podemos conocer cómo se formó el sistema solar analizando esos fragmentos de materia. En este campo, los microscopios electrónicos son también muy poderosos.

-¿Qué características o cualidades debe tener alguien que quiera trabajar en microscopía?

-Curiosidad, querés saber de qué está hecho el mundo. Un niño que juega con robots será muy bueno en entender estos instrumentos que miran la materia en resoluciones espectaculares. Son un poco complejos pero es un poco de mecánica y mucho de software. Y si querés trabajar en este campo, podés estudiar ciencia informática, física, biología y tendrás un conocimiento básico. Pero la curiosidad es la clave.  Las personas que se interesan en cómo funcionan las cosas… Ese sentimiento de curiosidad ayuda.

-¿Por qué le gusta trabajar en el campo de la microscopía?

-Porque es divertido y estás aprendiendo cosas nuevas todo el tiempo. Eso por un lado. Y por el otro sentís que estás colaborando con algo. Eso que la ciencia aún no ha resuelto. No decimos “OK, la mecánica cuántica fue inventada en 1930 y no hay nada más que hacer”. Hay mucho por hacer. Lo podés ver. Cada nuevo teléfono celular es mejor que el anterior, incluso ahora hacen reconocimiento de voz. De hecho da un poco de miedo. No se sabe cuánto pasará hasta que las computadoras sean más inteligentes que los humanos. Pienso que falta un largo trecho y mientras tanto está el desafío de descubrir. En 1900 podías caminar por el Polo Sur y podías ser la primera persona en hacerlo. Todo eso ha sido realizado. Pero en la actualidad si hacés un espectro vibracional de un átomo, eso no ha sido hecho antes. Así que hay competencias donde se puede conseguir “ser el primero” y es algo divertido.

-Una última pregunta: ¿por qué la astronomía y los telescopios son más populares que la microscopía y los microscopios?

-Los telescopios son mucho más accesibles y producen imágenes hermosas. Y pienso que la comunidad de astrónomos ha hecho un muy buen trabajo en popularizar lo que están haciendo. Cada uno de nosotros, los científicos, ha comprado en algún momento de su vida un telescopio amateur. Las imágenes que produce el telescopio espacial Hubble son absolutamente espectaculares y en cierto modo es arte. Cualquier persona puede mirar el cielo nocturno con el telescopio y mirar qué pasa allí afuera. Los microscopios de todos modos son la misma cosa. Todos pueden mirar una uña con un microscopio electrónico y mirar cómo está hecha. Pero quizás no hemos hecho tan buen trabajo haciéndole publicidad. Aunque hay programas de puertas abiertas y gente que trabaja con niños que vienen de las escuelas para conocer los microscopios. Deberíamos hacer más de estas actividades. Pero nunca podremos decir que estamos mirando algo a 6 mil millones años luz de distancia (risas). En fin, nuestro universo es interesante en todas las escalas. A mí particularmente me fascinan los descubrimientos astronómicos. Y pienso que el microscopio es como un telescopio usado al revés. 

*Esta entrevista fue publicada dentro de un informe especial publicado originalmente en UNIDIVERSIDAD, y se puede leer en este link.

Links a subnotas:

 

 --

Por Laura García Oviedo, responsable del

Área de Comunicación Institucional-

Instituto Balseiro

San Carlos de Bariloche, 21/12/2017

En Facebook: www.facebook.com/InstitutoBalseiro

En Twitter: @IBalseiro / Contacto:  Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

Más noticias: http://www.ib.edu.ar/index.php/comunicacion-y-prensa/noticias.html

 

 

Jueves, 21 Diciembre 2017 09:04

Los profesionales

¿Cómo se ve el ala de mariposa en un microscopio? ¿Y el polen de una flor? ¿Y las células del pulmón de un ratón? Durante el quinto congreso de la Asociación Argentina de Microscopía (Samic), científicos y microscopistas de distintas ciudades compartieron estas y más imágenes con detalles “micro” que ahora se pueden ver en este informe*.

Fecha de publicación: 21/12/2017

El Congreso Argentino de Microscopía se realiza cada dos años en diferentes ciudades del país y es organizado por la Samic desde 2009.  Su primera edición fue realizada en Rosario, luego en Buenos Aires (2012), en Mendoza (2014) y Bariloche (2016). En mayo de 2018 la sede será La Falda, provincia de Córdoba. Allí se reúnen los profesionales que trabajan en este campo

La Doctora en Física, investigadora del Conicet y docente del Instituto Balseiro Adriana Condó formó parte del comité organizador en el Cuarto Congreso realizado en el Instituto Balseiro y en el Centro Atómico Bariloche (CAB). La referente señaló que estos encuentros “fomentan la discusión de ideas en el área de la microscopía en general y favorecen el desarrollo de una comunidad de microscopistas argentinos cada vez mayor”. Allí también estuvo un referente mundial de la microscopía, Ondrej Krivanek

En estos congresos se presentan trabajos en los que se aplican diversas técnicas de microscopía y espectroscopías asociadas. Estas abarcan la microscopía electrónica, tanto de barrido como de transmisión; las microscopías de barrido de sondas –que incluyen a la microscopía de efecto túnel, la microscopía de fuerza atómica y la microscopía de fuerza magnética– y la microscopía óptica.

Adriana Serquis, también investigadora del Conicet en el Centro Atómico Bariloche, contó que a principios de 2017, la Comisión Nacional de Energía Atómica (CNEA) adquirió un microscopio electrónico de barrido de la firma holandesa FEI. Es un Inspect S50 modelo 2016 que se instaló en una sala del Departamento Caracterización de Materiales en el CAB y es el microscopio más moderno en su tipo que está operando en Argentina.

Serquis, quien además es la jefa del Departamento Caracterización de Materiales del CAB,  remarcó que “este microscopio permitió dar un salto de 30 años, ya que el equipo anterior funcionaba en este centro atómico desde el año 1987”. El equipo permite ver la superficie de una muestra con una resolución muy alta, ya que puede llegar al orden de las decenas de nanómetros.

La galería de imágenes se puede ver en este link.

Links a subnotas:

*Este informe especial fue publicado originalmente en UNIDIVERSIDAD, y se puede leer en este link.

 

 

 --

Por Victoria Posada, becaria del

Área de Comunicación Institucional-

Instituto Balseiro

San Carlos de Bariloche, 21/12/2017

En Facebook: www.facebook.com/InstitutoBalseiro

En Twitter: @IBalseiro / Contacto:  Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

Más noticias: http://www.ib.edu.ar/index.php/comunicacion-y-prensa/noticias.html

Jueves, 21 Diciembre 2017 09:59

Los microscopios

Para entender una imagen microscópica hay que tener en cuenta que lo que se ve no es el objeto propiamente dicho. Asimismo, es preciso considerar tres elementos para comprender el funcionamiento de un microscopio: básicamente se necesita un objeto, una fuente de iluminación y un sistema óptico. Para formar una imagen, se requiere que el objeto sea iluminado por algún tipo de radiación electromagnética y el microscopio electrónico permitirá producir la imagen aumentada, que puede ser copiada como una microfotografía.

La doctora en Física, investigadora del CONICET y docente del Instituto Balseiro Adriana Condó, especializada en microscopios electrónicos de transmisión (TEM), dijo que “esquemáticamente, un TEM funciona como un microscopio óptico, es decir, hay un haz, un objeto que es atravesado por el haz y un sistema de lentes que forman una imagen ampliada del objeto. Como el haz atraviesa la muestra, en la imagen se ve el interior del objeto como si fuera transparente”.

Es importante reseñar que la microscopíaofrece una información local, es decir que un buen análisis microscópico debe preocuparse de la representatividad de los resultados. “Un factor que requiere cuidado es la preparación de la muestra. Para que el haz la atraviese es necesario preparar una lámina delgada, de aproximadamente 100 nanómetros de espesor o menos. Eso requiere de un proceso que, en algunos casos, puede llevar varias horas de preparación y que no debe inducir cambios en el material”, señaló Condó.

En los sistemas ópticos, la lente es el instrumento principal para la formación de imágenes. Como sistemas ópticos podemos nombrar, entre otros, el ojo humano, la cámara de fotos, la lupa, el proyector, el microscopio y el telescopio. Los científicos coinciden en que el ojo, conjuntamente con el cerebro, es el sistema procesador de imágenes más eficiente disponible hasta la actualidad en lo que respecta a velocidad y resolución. En un microscopio, el aumento sólo no es suficiente, sino que la resolución –capacidad que tiene un sistema óptico de separar dos puntos que se encuentran muy próximos entre sí– determina lo que se verá.

Los progresos tecnológicos en el campo científico han permitido llegar a observar detalles del nivel de los átomos. La doctora en Física e investigadora de la Comisión Nacional de Energía Atómica (CNEA) Adriana Serquis señala que “los nanómetros (nm) son mil millones de veces más chiquitos que un metro; recién a esa distancia se pueden distinguir los átomos que nos rodean”.

Por último, para formar una imagen microscópica, se necesita una fuente de iluminación. Como dice Alberto Maiztegui en su clásico Introducción a la Física, “no basta con el aumento, la naturaleza ondulatoria de la luz también trae consecuencias”. Sin embargo, físicos e ingenieros buscan mejorar la resolución de estas imágenes.

Además de la luz solar y la luz producida por bombillas incandescentes, también se pueden usar otros tipos de radiaciones electromagnéticas, como la luz ultravioleta, los rayos láser o un haz de electrones. Estos últimos no son captados por la retina del ojo humano, pero sí por una placa fotográfica o una pantalla fluorescente. El haz de electrones se considera como un tipo de “iluminación”, ya que permite la formación de una imagen en la que se muestran detalles finos del objeto.

Adriana Condó explicó que “los microscopios de punta son los que poseen correctores de aberraciones de las lentes y filtros de energía para que el haz de electrones sea lo más chico e intenso posible. Cuanto más chica es la zona iluminada por el haz, mayor detalle se puede analizar”.

Para iluminar los objetos se pueden utilizar dos mecanismos: la transiluminación, en el que el rayo electromagnético (luz) debe atravesar el objeto; para esto es necesario un recorte de la muestra. En la microscopía electrónica se emplean cortes cuyo espesor está en el orden de los nanómetros porque los electrones tienen bajo poder de penetración.

Otro mecanismo es la epi-iluminación, en la que el rayo de luz incide de manera oblicua sobre la muestra. La observación puede hacerse sin necesidad de cortes tan finos de la muestra. La iluminación puede abarcar simultáneamente todo el campo de visión o, por el contrario, focalizarse en un punto determinado del objeto.

Fue, en gran medida, por los progresos en el campo de la óptica en el siglo XVII que la ciencia pudo adentrarse en el mundo microscópico. A su vez, implicó una profesionalización de ese campo interdisciplinarEn una publicación de la investigadora del Conicet Mariana Lanfranconi se recorre la evolución del microscopio como el pilar fundamental en el conocimiento de lo invisible.

Lafranconi contó en ese artículo que, aunque el poder de resolución del microscopio “aumentó a través del tiempo (con la mejora en la calidad de las lentes), su factor limitante fue la longitud de onda de la luz”. Y destaca que en 1930 el mundo submicroscópico se amplió con la aparición del microscopio electrónico que, en lugar de utilizar un haz de luz visible, utiliza un haz de electrones.

Links a subnotas:

*Este informe especial fue publicado originalmente en UNIDIVERSIDAD, y se puede leer en este link.

 

 --

Por Victoria Posada, becaria del

Área de Comunicación Institucional-

Instituto Balseiro

San Carlos de Bariloche, 21/12/2017

En Facebook: www.facebook.com/InstitutoBalseiro

En Twitter: @IBalseiro / Contacto:  Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

Más noticias: http://www.ib.edu.ar/index.php/comunicacion-y-prensa/noticias.html

Jueves, 21 Diciembre 2017 09:30

El universo diminuto

Se ha hablado mucho de los telescopios y de su gran aporte al conocimiento del universo. Aquí, en la Tierra, otra herramienta hace básicamente lo opuesto y de forma muy silenciosa. Se llama de forma genérica “microscopio”, aunque en realidad existen distintos tipos. Por ejemplo, el Nobel de Química 2017 fue otorgado al desarrollo de la criomicroscopía electrónica, que resuelve el problema de poder observar moléculas biológicas en su entorno natural.

Fecha de publicación: 21/12/2017

La microscopía es un campo multidisciplinar que desafía las capacidades humanas.A través de la misma se pueden “ver” objetos y muestras muy pequeñas con el objetivo de facilitar su estudio. El estado actual de la microscopía ha llegado a escalas que antes eran imposibles de imaginar.

Adriana Condó, docente del Instituto Balseiro (CNEA-UNCUYO), precisó que con esta tecnología actualmente “se pueden observar detalles del tamaño de las distancias entre átomos, que son –aproximadamente– una quinta parte de un nanómetro”. Estas dimensiones tan pequeñas como los nanómetros (nm) son difíciles de imaginar.

“Un nanómetro, comparado con una distancia de un metro, es como una “bolita” (12 mm) comparada con la Tierra (12 mil kilómetros)”, agregó la investigadora del Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet) en el Centro Atómico Bariloche (CAB).

La palabra microscopía significa “reproducción de micras”, siendo una micra equivalente a una milésima parte de un milímetro, y así fue en sus orígenes. En la actualidad, los especialistas opinan que se podría hablar de “nanoscopía”, teniendo en cuenta las escalas alcanzadas: se pueden analizar objetos que miden pocos nanómetros (un nanómetro equivale a una millonésima parte de un milímetro).

La microscopía electrónica nació en la década de 1930. A partir del hecho de que se puede obtener electrones con una longitud de onda mucho menor que la de la luz visible, se conoció la idea de que las partículas más pequeñas podrían ser observadas con un haz de electrones enfocados con lentes electromagnéticas. El primero, llamado microscopio electrónico “de transmisión” y conocido como TEM, fue creado en 1931 por los alemanes Max Knoll y Ernst Ruska.

El TEM

Condó, que es especialista en el estudio de sistemas metálicos o nanoestructurados por TEM, señala que “la principal característica que tienen los microscopios electrónicos de transmisión es que permiten ver el interior de los materiales con alta magnificación. Como el haz de electrones atraviesa la muestra, que debe ser muy fina y requiere una cuidadosa preparación, en la imagen se ve el interior del objeto como si fuera transparente”.

En Argentina, la Comisión Nacional de Energía Atómica (CNEA) ha sido la principal promotora de la microscopía electrónica de trasmisión en el área de ciencia de materiales. Desde la década del 70 ha incorporado microscopios TEM en diversos centros atómicos y ha ido renovando equipamiento cada 20 años.

“Esta continuidad ha brindado la posibilidad de generar un grupo bien establecido y consolidado con experiencia en TEM y en preparación de muestras del área de ciencia de materiales”, comentó Condó, que trabaja en la División de Física de Metales del CAB, uno de los tres centros atómicos de la CNEA y donde funciona el Instituto Balseiro (dependiente de la CNEA y de la UNCUYO).

“En la década de los 90 se han instalado microscopios TEM en la Universidad Nacional de Rosario y en Bahía Blanca, que están próximos a ser reemplazados por equipos más modernos. Más recientemente se han incorporado unos nuevos en Mar del Plata, en el Instituto de investigación en Ciencia y Tecnología de Materiales y en Y-TEC, que es la empresa de tecnología de YPF y Conicet”, informó Condó. Agregó que en el área de biología y medicina existen también grupos con larga tradición en TEM en Argentina.

EL SEM

Existe otro tipo básico de microscopía electrónica que fue creada en la misma época que el TEM, pero que tiene diferentes usos. Se trata del microscopio electrónico “de barrido”, conocido como SEM (por sus iniciales en inglés: scanning electron microscope). Es un equipo dotado con un haz de electrones que “barre” (es decir, analiza a través del paso de detectores) la superficie de una muestra. Como resultado, se forma una imagen.

La doctora en Física e investigadora de la CNEA Adriana Serquis explicó que “para funcionar, todos los SEM requieren que la muestra sea conductora eléctrica”. Por lo tanto, la muestra, salvo que ya sea conductora, está generalmente recubierta por una capa muy fina de oro o carbón para otorgarle las propiedades conductoras.

Los microscopios electrónicos de barrido o SEM tienen muchísimas aplicaciones: se utilizan en diversos campos, que van desde la biología a la ciencia de los materiales, pasando por la arqueología, la paleontología, el estudio de muestras forenses y la restauración de obras de arte, entre otros. Serquis, que es egresada del Doctorado en Física del Instituto Balseiro, comentó que “en la microscopía electrónica, la posibilidad de realizar reconstrucción de imágenes en 3D y el tratamiento de imágenes de modo avanzado abren nuevas oportunidades para reconocer importantes correlaciones con otras propiedades de estudio”.

Existen numerosas técnicas de microscopía, como señaló Serquis. “Muchas de ellas son complementarias y no sólo se utiliza un haz de electrones sino que también es posible explorar la materia con otras sondas más sofisticadas, como los iones, los neutrones o los Rayos X”, dijo la física, que recibió el Premio nacional L'Oréal-Unesco “Por las mujeres en la ciencia” 2014.

La informática está presente cada vez más en la microscopía. Adriana Condó comentó que al principio fue necesaria para procesar los resultados obtenidos de los detectores adosados a los microscopios, “como los detectores de rayos X y cámaras digitales”. “En la actualidad –agregó Condó–, la informática permite mantener los microscopios alineados y calibrados y, en algunos casos, se pueden operar en forma remota a través de internet”.

Existen muchos desafíos a futuro, como, por ejemplo, estudiar células vivas o “ver” átomos individuales en vivo y en directo, y hay equipos de científicos y tecnólogos trabajando en ellos. El jurado del Nobel de Química 2017 expresó que el premio otorgado a los inventores de la criomicroscopía “es como una revolución”. Esta tecnología resuelve el problema de poder observar moléculas biológicas en su entorno natural y sin usar tintes, congelando la muestra con un gas como el nitrógeno líquido o el propano. Habrá que ver qué nuevos inventos depara el futuro para conocer cada vez más el “universo diminuto”.

Links a subnotas:

Link al Grupo de Caracterización de Materiales del Centro Atómico Bariloche: www.cab.cnea.gov.ar/dcm/

*Este informe especial fue publicado originalmente en UNIDIVERSIDAD, y se puede leer en este link.

 

 --

Por Victoria Posada, becaria del

Área de Comunicación Institucional-

Instituto Balseiro

San Carlos de Bariloche, 21/12/2017

En Facebook: www.facebook.com/InstitutoBalseiro

En Twitter: @IBalseiro / Contacto:  Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

Más noticias: http://www.ib.edu.ar/index.php/comunicacion-y-prensa/noticias.html