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on mathematical statistics.) This infatuation tended to focus interest away from the
fact that, for real data, the normal distribution is often rather poorly realized, if it is
realized at all. We are often taught, rather casually, that, on average, measurements
will fall within ±σ of the true value 68 percent of the time, within ±2σ 95 percent
of the time, and within ±3σ 99.7 percent of the time. Extending this, one would
expect a measurement to be off by ±20σ only one time out of 2 × 10 88. We all
know that “glitches” are much more likely than that!

In some instances, the deviations from a normal distribution are easy to
understand and quantify. For example, in measurements obtained by counting
events, the measurement errors are usually distributed as a Poisson distribution,
whose cumulative probability function was already discussed in §6.2. When the
number of counts going into one data point is large, the Poisson distribution converges
towards a Gaussian. However, the convergence is not uniform when measured in
fractional accuracy. The more standard deviations out on the tail of the distribution,
the larger the number of counts must be before a value close to the Gaussian is
realized. The sign of the effect is always the same: The Gaussian predicts that “tail”
events are much less likely than they actually (by Poisson) are. This causes such
events, when they occur, to skew a least-squares fit much more than they ought.

Other times, the deviations from a normal distribution are not so easy to
understand in detail. Experimental points are occasionally just way off. Perhaps
the power flickered during a point’s measurement, or someone kicked the apparatus,
or someone wrote down a wrong number. Points like this are called outliers.
They can easily turn a least-squares fit on otherwise adequate data into nonsense.
Their probability of occurrence in the assumed Gaussian model is so small that the
maximum likelihood estimator is willing to distort the whole curve to try to bring
them, mistakenly, into line.

The subject of robust statistics deals with cases where the normal or Gaussian
model is a bad approximation, or cases where outliers are important. We will discuss
robust methods briefly in §15.7. All the sections between this one and that one
assume, one way or the other, a Gaussian model for the measurement errors in the
data. It it quite important that you keep the limitations of that model in mind, even
as you use the very useful methods that follow from assuming it.

Finally, note that our discussion of measurement errors has been limited to
statistical errors, the kind that will average away if we only take enough data.
Measurements are also susceptible to systematic errors that will not go away with
any amount of averaging. For example, the calibration of a metal meter stick might
depend on its temperature. If we take all our measurements at the same wrong
temperature, then no amount of averaging or numerical processing will correct for
this unrecognized systematic error.

Chi-Square Fitting

We considered the chi-square statistic once before, in §14.3. Here it arises
in a slightly different context.

If each data point (xi, yi) has its own, known standard deviation σi, then
equation (15.1.3) is modified only by putting a subscript i on the symbol σ. That
subscript also propagates docilely into (15.1.4), so that the maximum likelihood
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estimate of the model parameters is obtained by minimizing the quantity

χ2 ≡
N∑

i=1

(
yi − y(xi; a1 . . . aM )

σi

)2

(15.1.5)

called the “chi-square.”
To whatever extent the measurement errors actually are normally distributed, the

quantity χ2 is correspondingly a sum of N squares of normally distributed quantities,
each normalized to unit variance. Once we have adjusted the a 1 . . . aM to minimize
the value of χ2, the terms in the sum are not all statistically independent. For models
that are linear in the a’s, however, it turns out that the probability distribution for
different values of χ2 at its minimum can nevertheless be derived analytically, and
is the chi-square distribution for N − M degrees of freedom. We learned how to
compute this probability function using the incomplete gamma function gammq in
§6.2. In particular, equation (6.2.18) gives the probability Q that the chi-square
should exceed a particular value χ2 by chance, where ν = N − M is the number of
degrees of freedom. The quantity Q, or its complement P ≡ 1 − Q, is frequently
tabulated in appendices to statistics books, but we generally find it easier to use
gammq and compute our own values: Q = gammq (0.5ν, 0.5χ2). It is quite common,
and usually not too wrong, to assume that the chi-square distribution holds even for
models that are not strictly linear in the a’s.

This computed probability gives a quantitative measure for the goodness-of-fit
of the model. If Q is a very small probability for some particular data set, then the
apparent discrepancies are unlikely to be chance fluctuations. Much more probably
either (i) the model is wrong — can be statistically rejected, or (ii) someone has lied to
you about the size of the measurement errors σ i — they are really larger than stated.

It is an important point that the chi-square probability Q does not directly
measure the credibility of the assumption that the measurement errors are normally
distributed. It assumes they are. In most, but not all, cases, however, the effect of
nonnormal errors is to create an abundance of outlier points. These decrease the
probability Q, so that we can add another possible, though less definitive, conclusion
to the above list: (iii) the measurement errors may not be normally distributed.

Possibility (iii) is fairly common, and also fairly benign. It is for this reason
that reasonable experimenters are often rather tolerant of low probabilities Q. It is
not uncommon to deem acceptable on equal terms any models with, say, Q > 0.001.
This is not as sloppy as it sounds: Truly wrong models will often be rejected with
vastly smaller values of Q, 10−18, say. However, if day-in and day-out you find
yourself accepting models with Q ∼ 10−3, you really should track down the cause.

If you happen to know the actual distribution law of your measurement errors,
then you might wish to Monte Carlo simulate some data sets drawn from a particular
model, cf. §7.2–§7.3. You can then subject these synthetic data sets to your actual
fitting procedure, so as to determine both the probability distribution of the χ 2

statistic, and also the accuracy with which your model parameters are reproduced
by the fit. We discuss this further in §15.6. The technique is very general, but it
can also be very expensive.

At the opposite extreme, it sometimes happens that the probability Q is too large,
too near to 1, literally too good to be true! Nonnormal measurement errors cannot
in general produce this disease, since the normal distribution is about as “compact”
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as a distribution can be. Almost always, the cause of too good a chi-square fit
is that the experimenter, in a “fit” of conservativism, has overestimated his or her
measurement errors. Very rarely, too good a chi-square signals actual fraud, data
that has been “fudged” to fit the model.

A rule of thumb is that a “typical” value of χ2 for a “moderately” good fit is
χ2 ≈ ν. More precise is the statement that the χ2 statistic has a mean ν and a standard
deviation

√
2ν, and, asymptotically for large ν, becomes normally distributed.

In some cases the uncertainties associated with a set of measurements are not
known in advance, and considerations related to χ2 fitting are used to derive a value
for σ. If we assume that all measurements have the same standard deviation, σ i = σ,
and that the model does fit well, then we can proceed by first assigning an arbitrary
constant σ to all points, next fitting for the model parameters by minimizing χ 2,
and finally recomputing

σ2 =
N∑

i=1

[yi − y(xi)]2/(N − M) (15.1.6)

Obviously, this approach prohibits an independent assessment of goodness-of-fit, a
fact occasionally missed by its adherents. When, however, the measurement error
is not known, this approach at least allows some kind of error bar to be assigned
to the points.

If we take the derivative of equation (15.1.5) with respect to the parameters a k,
we obtain equations that must hold at the chi-square minimum,

0 =
N∑

i=1

(
yi − y(xi)

σ2
i

)(
∂y(xi; . . . ak . . .)

∂ak

)
k = 1, . . . , M (15.1.7)

Equation (15.1.7) is, in general, a set of M nonlinear equations for the M unknown
ak. Various of the procedures described subsequently in this chapter derive from
(15.1.7) and its specializations.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapters 1–4.

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), §VI.C. [1]

15.2 Fitting Data to a Straight Line

A concrete example will make the considerations of the previous section more
meaningful. We consider the problem of fitting a set of N data points (x i, yi) to
a straight-line model

y(x) = y(x; a, b) = a + bx (15.2.1)
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This problem is often called linear regression, a terminology that originated, long
ago, in the social sciences. We assume that the uncertainty σi associated with
each measurement yi is known, and that the xi’s (values of the dependent variable)
are known exactly.

To measure how well the model agrees with the data, we use the chi-square
merit function (15.1.5), which in this case is

χ2(a, b) =
N∑

i=1

(
yi − a − bxi

σi

)2

(15.2.2)

If the measurement errors are normally distributed, then this merit function will give
maximum likelihood parameter estimations of a and b; if the errors are not normally
distributed, then the estimations are not maximum likelihood, but may still be useful
in a practical sense. In §15.7, we will treat the case where outlier points are so
numerous as to render the χ2 merit function useless.

Equation (15.2.2) is minimized to determine a and b. At its minimum,
derivatives of χ2(a, b) with respect to a, b vanish.

0 =
∂χ2

∂a
= −2

N∑
i=1

yi − a − bxi

σ2
i

0 =
∂χ2

∂b
= −2

N∑
i=1

xi(yi − a − bxi)
σ2

i

(15.2.3)

These conditions can be rewritten in a convenient form if we define the following
sums:

S ≡
N∑

i=1

1
σ2

i

Sx ≡
N∑

i=1

xi

σ2
i

Sy ≡
N∑

i=1

yi

σ2
i

Sxx ≡
N∑

i=1

x2
i

σ2
i

Sxy ≡
N∑

i=1

xiyi

σ2
i

(15.2.4)

With these definitions (15.2.3) becomes

aS + bSx = Sy

aSx + bSxx = Sxy

(15.2.5)

The solution of these two equations in two unknowns is calculated as

∆ ≡ SSxx − (Sx)2

a =
SxxSy − SxSxy

∆

b =
SSxy − SxSy

∆

(15.2.6)

Equation (15.2.6) gives the solution for the best-fit model parameters a and b.
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We are not done, however. We must estimate the probable uncertainties in
the estimates of a and b, since obviously the measurement errors in the data must
introduce some uncertainty in the determination of those parameters. If the data
are independent, then each contributes its own bit of uncertainty to the parameters.
Consideration of propagation of errors shows that the variance σ 2

f in the value of
any function will be

σ2
f =

N∑
i=1

σ2
i

(
∂f

∂yi

)2

(15.2.7)

For the straight line, the derivatives of a and b with respect to y i can be directly
evaluated from the solution:

∂a

∂yi
=

Sxx − Sxxi

σ2
i ∆

∂b

∂yi
=

Sxi − Sx

σ2
i ∆

(15.2.8)

Summing over the points as in (15.2.7), we get

σ2
a = Sxx/∆

σ2
b = S/∆

(15.2.9)

which are the variances in the estimates of a and b, respectively. We will see in
§15.6 that an additional number is also needed to characterize properly the probable
uncertainty of the parameter estimation. That number is the covariance of a and b,
and (as we will see below) is given by

Cov(a, b) = −Sx/∆ (15.2.10)

The coefficient of correlation between the uncertainty in a and the uncertainty
in b, which is a number between −1 and 1, follows from (15.2.10) (compare
equation 14.5.1),

rab =
−Sx√
SSxx

(15.2.11)

A positive value of rab indicates that the errors in a and b are likely to have the
same sign, while a negative value indicates the errors are anticorrelated, likely to
have opposite signs.

We are still not done. We must estimate the goodness-of-fit of the data to the
model. Absent this estimate, we have not the slightest indication that the parameters
a and b in the model have any meaning at all! The probability Q that a value of
chi-square as poor as the value (15.2.2) should occur by chance is

Q = gammq

(
N − 2

2
,

χ2

2

)
(15.2.12)
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Here gammq is our routine for the incomplete gamma function Q(a, x), §6.2. If
Q is larger than, say, 0.1, then the goodness-of-fit is believable. If it is larger
than, say, 0.001, then the fit may be acceptable if the errors are nonnormal or have
been moderately underestimated. If Q is less than 0.001 then the model and/or
estimation procedure can rightly be called into question. In this latter case, turn
to §15.7 to proceed further.

If you do not know the individual measurement errors of the points σ i, and are
proceeding (dangerously) to use equation (15.1.6) for estimating these errors, then
here is the procedure for estimating the probable uncertainties of the parameters a
and b: Set σi ≡ 1 in all equations through (15.2.6), and multiply σa and σb, as
obtained from equation (15.2.9), by the additional factor

√
χ2/(N − 2), where χ2

is computed by (15.2.2) using the fitted parameters a and b. As discussed above,
this procedure is equivalent to assuming a good fit, so you get no independent
goodness-of-fit probability Q.

In §14.5 we promised a relation between the linear correlation coefficient
r (equation 14.5.1) and a goodness-of-fit measure, χ 2 (equation 15.2.2). For
unweighted data (all σi = 1), that relation is

χ2 = (1 − r2)NVar (y1 . . . yN ) (15.2.13)
where

NVar (y1 . . . yN) ≡
N∑

i=1

(yi − y)2 (15.2.14)

For data with varying weights σi, the above equations remain valid if the sums in
equation (14.5.1) are weighted by 1/σ 2

i .

The following function, fit, carries out exactly the operations that we have
discussed. When the weights σ are known in advance, the calculations exactly
correspond to the formulas above. However, when weights σ are unavailable,
the routine assumes equal values of σ for each point and assumes a good fit, as
discussed in §15.1.

The formulas (15.2.6) are susceptible to roundoff error. Accordingly, we
rewrite them as follows: Define

ti =
1
σi

(
xi − Sx

S

)
, i = 1, 2, . . . , N (15.2.15)

and

Stt =
N∑

i=1

t2i (15.2.16)

Then, as you can verify by direct substitution,

b =
1

Stt

N∑
i=1

tiyi

σi
(15.2.17)

a =
Sy − Sxb

S
(15.2.18)
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σ2
a =

1
S

(
1 +

S2
x

SStt

)
(15.2.19)

σ2
b =

1
Stt

(15.2.20)

Cov(a, b) = − Sx

SStt
(15.2.21)

rab =
Cov(a, b)

σaσb
(15.2.22)

#include <math.h>
#include "nrutil.h"

void fit(float x[], float y[], int ndata, float sig[], int mwt, float *a,
float *b, float *siga, float *sigb, float *chi2, float *q)

Given a set of data points x[1..ndata],y[1..ndata] with individual standard deviations
sig[1..ndata], fit them to a straight line y = a + bx by minimizing χ2. Returned are
a,b and their respective probable uncertainties siga and sigb, the chi-square chi2, and the
goodness-of-fit probability q (that the fit would have χ2 this large or larger). If mwt=0 on
input, then the standard deviations are assumed to be unavailable: q is returned as 1.0 and
the normalization of chi2 is to unit standard deviation on all points.
{

float gammq(float a, float x);
int i;
float wt,t,sxoss,sx=0.0,sy=0.0,st2=0.0,ss,sigdat;

*b=0.0;
if (mwt) { Accumulate sums ...

ss=0.0;
for (i=1;i<=ndata;i++) { ...with weights

wt=1.0/SQR(sig[i]);
ss += wt;
sx += x[i]*wt;
sy += y[i]*wt;

}
} else {

for (i=1;i<=ndata;i++) { ...or without weights.
sx += x[i];
sy += y[i];

}
ss=ndata;

}
sxoss=sx/ss;
if (mwt) {

for (i=1;i<=ndata;i++) {
t=(x[i]-sxoss)/sig[i];
st2 += t*t;
*b += t*y[i]/sig[i];

}
} else {

for (i=1;i<=ndata;i++) {
t=x[i]-sxoss;
st2 += t*t;
*b += t*y[i];

}
}
*b /= st2; Solve for a, b, σa, and σb.
*a=(sy-sx*(*b))/ss;
*siga=sqrt((1.0+sx*sx/(ss*st2))/ss);
*sigb=sqrt(1.0/st2);
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*chi2=0.0; Calculate χ2.
*q=1.0;
if (mwt == 0) {

for (i=1;i<=ndata;i++)
*chi2 += SQR(y[i]-(*a)-(*b)*x[i]);

sigdat=sqrt((*chi2)/(ndata-2)); For unweighted data evaluate typ-
ical sig using chi2, and ad-
just the standard deviations.

*siga *= sigdat;
*sigb *= sigdat;

} else {
for (i=1;i<=ndata;i++)

*chi2 += SQR((y[i]-(*a)-(*b)*x[i])/sig[i]);
if (ndata>2) *q=gammq(0.5*(ndata-2),0.5*(*chi2)); Equation (15.2.12).

}
}

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 6.

15.3 Straight-Line Data with Errors in Both
Coordinates

If experimental data are subject to measurement error not only in the yi’s, but also in
the xi’s, then the task of fitting a straight-line model

y(x) = a + bx (15.3.1)

is considerably harder. It is straightforward to write down the χ2 merit function for this case,

χ2(a, b) =

N∑
i=1

(yi − a − bxi)
2

σ2
y i + b2σ2

x i

(15.3.2)

where σx i and σy i are, respectively, the x and y standard deviations for the ith point. The
weighted sum of variances in the denominator of equation (15.3.2) can be understood both
as the variance in the direction of the smallest χ2 between each data point and the line with
slope b, and also as the variance of the linear combination yi − a − bxi of two random
variables xi and yi,

Var(yi − a − bxi) = Var(yi) + b2Var(xi) = σ2
y i + b2σ2

x i ≡ 1/wi (15.3.3)

The sum of the square of N random variables, each normalized by its variance, is thus
χ2-distributed.

We want to minimize equation (15.3.2) with respect to a and b. Unfortunately, the
occurrence of b in the denominator of equation (15.3.2) makes the resulting equation for
the slope ∂χ2/∂b = 0 nonlinear. However, the corresponding condition for the intercept,
∂χ2/∂a = 0, is still linear and yields

a =

[∑
i

wi(yi − bxi)

]/∑
i

wi (15.3.4)

where the wi’s are defined by equation (15.3.3). A reasonable strategy, now, is to use the
machinery of Chapter 10 (e.g., the routine brent) for minimizing a general one-dimensional
function to minimize with respect to b, while using equation (15.3.4) at each stage to ensure
that the minimum with respect to b is also minimized with respect to a.
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∆χ2 = 1

σa

A

B

σb

0

b

a

s

r

Figure 15.3.1. Standard errors for the parameters a and b. The point B can be found by varying the
slope b while simultaneously minimizing the intercept a. This gives the standard error σb, and also the
value s. The standard error σa can then be found by the geometric relation σ2a = s2 + r2.

Because of the finite error bars on the xi’s, the minimum χ2 as a function of b will
be finite, though usually large, when b equals infinity (line of infinite slope). The angle
θ ≡ arctan b is thus more suitable as a parametrization of slope than b itself. The value of χ2

will then be periodic in θ with period π (not 2π!). If any data points have very small σy ’s
but moderate or large σx ’s, then it is also possible to have a maximum in χ2 near zero slope,
θ ≈ 0. In that case, there can sometimes be two χ2 minima, one at positive slope and the
other at negative. Only one of these is the correct global minimum. It is therefore important
to have a good starting guess for b (or θ). Our strategy, implemented below, is to scale the
yi’s so as to have variance equal to the xi’s, then to do a conventional (as in §15.2) linear fit
with weights derived from the (scaled) sum σ2

y i + σ2
x i. This yields a good starting guess for

b if the data are even plausibly related to a straight-line model.
Finding the standard errors σa and σb on the parameters a and b is more complicated.

We will see in §15.6 that, in appropriate circumstances, the standard errors in a and b are the
respective projections onto the a and b axes of the “confidence region boundary” where χ2

takes on a value one greater than its minimum, ∆χ2 = 1. In the linear case of §15.2, these
projections follow from the Taylor series expansion

∆χ2 ≈ 1

2

[
∂2χ2

∂a2
(∆a)2 +

∂2χ2

∂b2
(∆b)2

]
+

∂2χ2

∂a∂b
∆a∆b (15.3.5)

Because of the present nonlinearity in b, however, analytic formulas for the second derivatives
are quite unwieldy; more important, the lowest-order term frequently gives a poor approxima-
tion to ∆χ2. Our strategy is therefore to find the roots of ∆χ2 = 1 numerically, by adjusting
the value of the slope b away from the minimum. In the program below the general root finder
zbrent is used. It may occur that there are no roots at all — for example, if all error bars are
so large that all the data points are compatible with each other. It is important, therefore, to
make some effort at bracketing a putative root before refining it (cf. §9.1).

Because a is minimized at each stage of varying b, successful numerical root-finding
leads to a value of ∆a that minimizes χ2 for the value of ∆b that gives ∆χ2 = 1. This (see
Figure 15.3.1) directly gives the tangent projection of the confidence region onto the b axis,
and thus σb. It does not, however, give the tangent projection of the confidence region onto
the a axis. In the figure, we have found the point labeled B; to find σa we need to find the
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point A. Geometry to the rescue: To the extent that the confidence region is approximated
by an ellipse, then you can prove (see figure) that σ2

a = r2 + s2. The value of s is known
from having found the point B. The value of r follows from equations (15.3.2) and (15.3.3)
applied at the χ2 minimum (point O in the figure), giving

r2 = 1

/∑
i

wi (15.3.6)

Actually, since b can go through infinity, this whole procedure makes more sense in
(a, θ) space than in (a, b) space. That is in fact how the following program works. Since
it is conventional, however, to return standard errors for a and b, not a and θ, we finally
use the relation

σb = σθ/ cos2 θ (15.3.7)

We caution that if b and its standard error are both large, so that the confidence region actually
includes infinite slope, then the standard error σb is not very meaningful. The function chixy
is normally called only by the routine fitexy. However, if you want, you can yourself explore
the confidence region by making repeated calls to chixy (whose argument is an angle θ, not
a slope b), after a single initializing call to fitexy.

A final caution, repeated from §15.0, is that if the goodness-of-fit is not acceptable
(returned probability is too small), the standard errors σa and σb are surely not believable. In
dire circumstances, you might try scaling all your x and y error bars by a constant factor until
the probability is acceptable (0.5, say), to get more plausible values for σa and σb.

#include <math.h>
#include "nrutil.h"
#define POTN 1.571000
#define BIG 1.0e30
#define PI 3.14159265
#define ACC 1.0e-3

int nn; Global variables communicate with
chixy.float *xx,*yy,*sx,*sy,*ww,aa,offs;

void fitexy(float x[], float y[], int ndat, float sigx[], float sigy[],
float *a, float *b, float *siga, float *sigb, float *chi2, float *q)

Straight-line fit to input data x[1..ndat] and y[1..ndat] with errors in both x and y, the re-
spective standard deviations being the input quantities sigx[1..ndat] and sigy[1..ndat].
Output quantities are a and b such that y = a + bx minimizes χ2, whose value is returned
as chi2. The χ2 probability is returned as q, a small value indicating a poor fit (sometimes
indicating underestimated errors). Standard errors on a and b are returned as siga and sigb.
These are not meaningful if either (i) the fit is poor, or (ii) b is so large that the data are
consistent with a vertical (infinite b) line. If siga and sigb are returned as BIG, then the data
are consistent with all values of b.
{

void avevar(float data[], unsigned long n, float *ave, float *var);
float brent(float ax, float bx, float cx,

float (*f)(float), float tol, float *xmin);
float chixy(float bang);
void fit(float x[], float y[], int ndata, float sig[], int mwt,

float *a, float *b, float *siga, float *sigb, float *chi2, float *q);
float gammq(float a, float x);
void mnbrak(float *ax, float *bx, float *cx, float *fa, float *fb,

float *fc, float (*func)(float));
float zbrent(float (*func)(float), float x1, float x2, float tol);
int j;
float swap,amx,amn,varx,vary,ang[7],ch[7],scale,bmn,bmx,d1,d2,r2,

dum1,dum2,dum3,dum4,dum5;

xx=vector(1,ndat);
yy=vector(1,ndat);
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sx=vector(1,ndat);
sy=vector(1,ndat);
ww=vector(1,ndat);
avevar(x,ndat,&dum1,&varx); Find the x and y variances, and scale

the data into the global variables
for communication with the func-
tion chixy.

avevar(y,ndat,&dum1,&vary);
scale=sqrt(varx/vary);
nn=ndat;
for (j=1;j<=ndat;j++) {

xx[j]=x[j];
yy[j]=y[j]*scale;
sx[j]=sigx[j];
sy[j]=sigy[j]*scale;
ww[j]=sqrt(SQR(sx[j])+SQR(sy[j])); Use both x and y weights in first

trial fit.}
fit(xx,yy,nn,ww,1,&dum1,b,&dum2,&dum3,&dum4,&dum5); Trial fit for b.
offs=ang[1]=0.0; Construct several angles for refer-

ence points, and make b an an-
gle.

ang[2]=atan(*b);
ang[4]=0.0;
ang[5]=ang[2];
ang[6]=POTN;
for (j=4;j<=6;j++) ch[j]=chixy(ang[j]);
mnbrak(&ang[1],&ang[2],&ang[3],&ch[1],&ch[2],&ch[3],chixy);
Bracket the χ2 minimum and then locate it with brent.
*chi2=brent(ang[1],ang[2],ang[3],chixy,ACC,b);
*chi2=chixy(*b);
*a=aa;
*q=gammq(0.5*(nn-2),*chi2*0.5); Compute χ2 probability.
for (r2=0.0,j=1;j<=nn;j++) r2 += ww[j]; Save the inverse sum of weights at

the minimum.r2=1.0/r2;
bmx=BIG; Now, find standard errors for b as

points where ∆χ2 = 1.bmn=BIG;
offs=(*chi2)+1.0;
for (j=1;j<=6;j++) { Go through saved values to bracket

the desired roots. Note period-
icity in slope angles.

if (ch[j] > offs) {
d1=fabs(ang[j]-(*b));
while (d1 >= PI) d1 -= PI;
d2=PI-d1;
if (ang[j] < *b) {

swap=d1;
d1=d2;
d2=swap;

}
if (d1 < bmx) bmx=d1;
if (d2 < bmn) bmn=d2;

}
}
if (bmx < BIG) { Call zbrent to find the roots.

bmx=zbrent(chixy,*b,*b+bmx,ACC)-(*b);
amx=aa-(*a);
bmn=zbrent(chixy,*b,*b-bmn,ACC)-(*b);
amn=aa-(*a);
*sigb=sqrt(0.5*(bmx*bmx+bmn*bmn))/(scale*SQR(cos(*b)));
*siga=sqrt(0.5*(amx*amx+amn*amn)+r2)/scale; Error in a has additional piece

r2.} else (*sigb)=(*siga)=BIG;
*a /= scale; Unscale the answers.
*b=tan(*b)/scale;
free_vector(ww,1,ndat);
free_vector(sy,1,ndat);
free_vector(sx,1,ndat);
free_vector(yy,1,ndat);
free_vector(xx,1,ndat);

}
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#include <math.h>
#include "nrutil.h"
#define BIG 1.0e30

extern int nn;
extern float *xx,*yy,*sx,*sy,*ww,aa,offs;

float chixy(float bang)
Captive function of fitexy, returns the value of (χ2 − offs) for the slope b=tan(bang).
Scaled data and offs are communicated via the global variables.
{

int j;
float ans,avex=0.0,avey=0.0,sumw=0.0,b;

b=tan(bang);
for (j=1;j<=nn;j++) {

ww[j] = SQR(b*sx[j])+SQR(sy[j]);
sumw += (ww[j] = (ww[j] < 1.0/BIG ? BIG : 1.0/ww[j]));
avex += ww[j]*xx[j];
avey += ww[j]*yy[j];

}
avex /= sumw;
avey /= sumw;
aa=avey-b*avex;
for (ans = -offs,j=1;j<=nn;j++)

ans += ww[j]*SQR(yy[j]-aa-b*xx[j]);
return ans;

}

Be aware that the literature on the seemingly straightforward subject of this section
is generally confusing and sometimes plain wrong. Deming’s [1] early treatment is sound,
but its reliance on Taylor expansions gives inaccurate error estimates. References [2-4] are
reliable, more recent, general treatments with critiques of earlier work. York [5] and Reed [6]
usefully discuss the simple case of a straight line as treated here, but the latter paper has
some errors, corrected in [7]. All this commotion has attracted the Bayesians [8-10], who
have still different points of view.
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