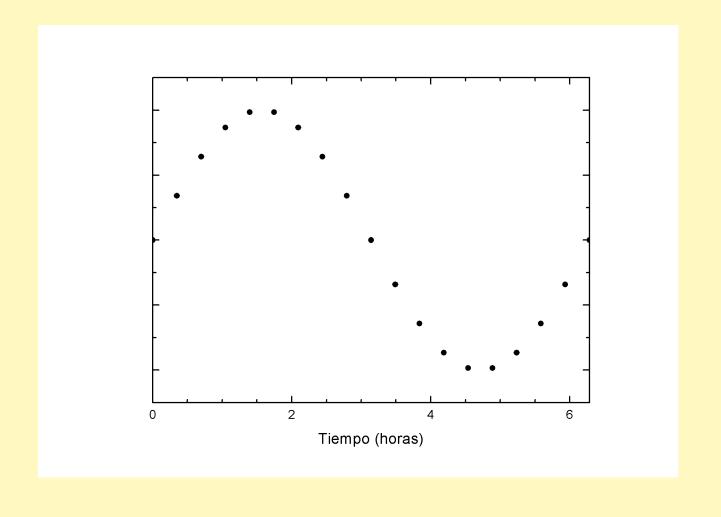
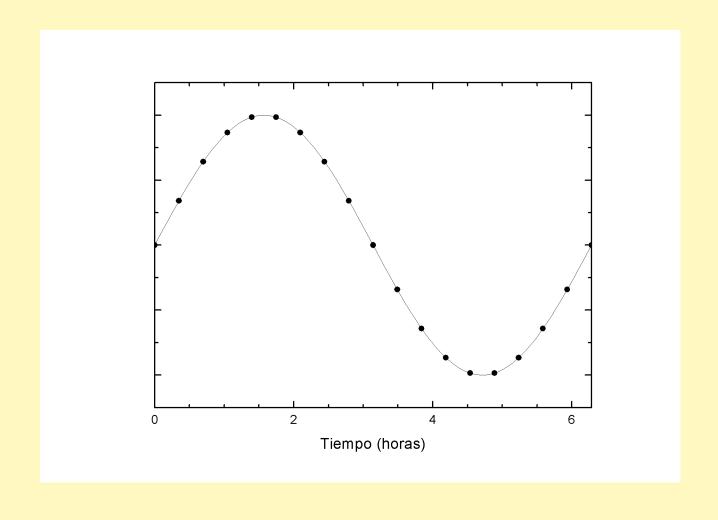
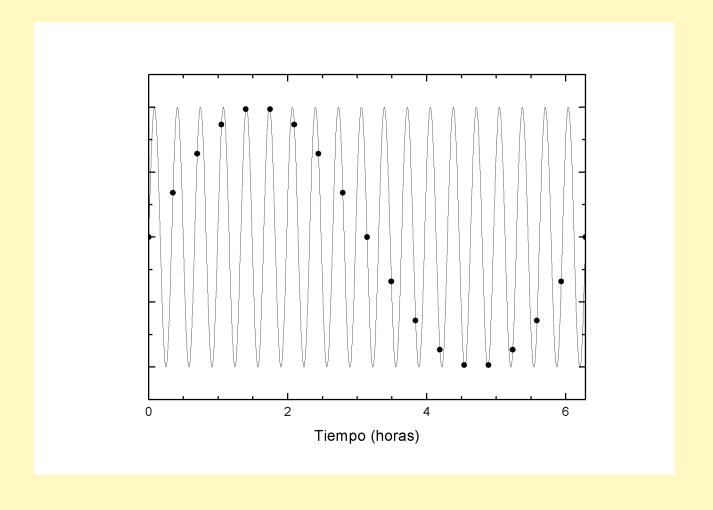
Supongamos que medimos un conjunto de datos cada tiempo Δ



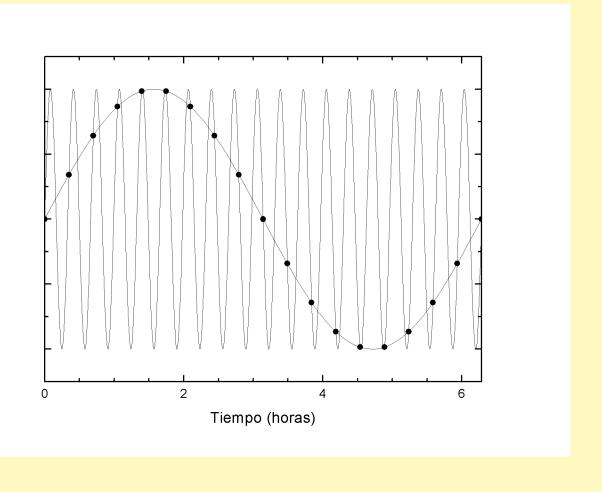
Estos datos están muy bien descriptos por una frecuencia *f*



Pero también por una frecuencia $f + \frac{1}{\Delta}$



Si la info que tenemos está medida cada Δ , no podemos distinguir entre las frecuencias f y $f+N\frac{1}{\Delta}$



Ejemplos de aliasing en video

Helicóptero (empezar en 1:28)

Hélice de avión

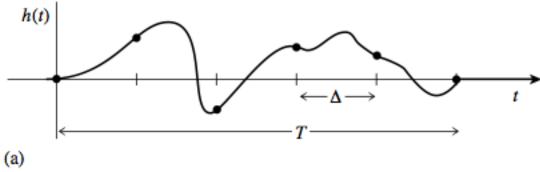
Frecuencia de Nyquist

Sea la frecuencia
$$f_{\rm N} = \frac{1}{2\Delta}$$

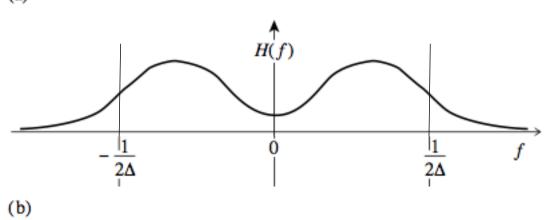
Teorema del muestreo (Sampling theorem): Si una función h(t) tiene un contenido espectral de ancho de banda menor a f_N , entonces al medirla con un muestreo Δ , se obtiene **"toda"** la información de la misma. La función está determinada por los valores medidos h_n a tiempos $N\Delta$, con $-\infty < N < \infty$

$$h(t) = \Delta \sum_{n=-\infty}^{+\infty} h_n \frac{\sin[2\pi f_c(t-n\Delta)]}{\pi(t-n\Delta)}$$

Que pasa si el ancho de banda de h(t) no está limitado por f_N ?



En este caso hay frecuencias por fuera de $-f_N < f < f_N$



y el aliasing nos vuelca las f altas adentro del rango $-f_N < f < f_N$

Transformada de Fourier discreta

Si se muestrean N valores de h(t), a tiempos $n\Delta$, con n = 0,..., N-1, podemos evaluar la transformada de Fourier, $H_n = H(f_n)$, discreta de la forma

$$H_n \equiv \sum_{k=0}^{N-1} h_k \ e^{2\pi i k n/N}$$

donde
$$h_k = h(k\Delta)$$
 y los valores de f_n son $f_n = \frac{n}{N\Delta}$ $-\frac{N}{2} < n \le \frac{N}{2}$

Es importante darse cuenta que el rango de frecuencias es $2f_N$, y que la ubicación es arbitraria. Podría haberse elegido $0 \le n \le N-1$

La transformada inversa es

$$h_k = \frac{1}{N} \sum_{n=0}^{N-1} H_n \ e^{-2\pi i k n/N}$$

Transformada de Fourier rápida (Fast Fourier Transform – FFT)

Reescribiendo

Esto tiene la pinta de una multiplicación matricial, con O(N²) multiplicaciones

FFT es un algoritmo para evaluar en forma rápida la transformada de Fourier discreta, que resulta ser O(N log₂N)

Si N = 10^6 entonces la diferencia es 10^{12} contra $2x10^7$!!!!!!

Transformada de Fourier rápida (Fast Fourier Transform – FFT)

Separemos la suma en los términos pares y los impares F es lo mismo que H

$$\begin{split} F_k &= \sum_{j=0}^{N-1} e^{2\pi i j k/N} f_j \\ &= \sum_{j=0}^{N/2-1} e^{2\pi i k(2j)/N} f_{2j} + \sum_{j=0}^{N/2-1} e^{2\pi i k(2j+1)/N} f_{2j+1} \\ &= \sum_{j=0}^{N/2-1} e^{2\pi i k j/(N/2)} f_{2j} + W^k \sum_{j=0}^{N/2-1} e^{2\pi i k j/(N/2)} f_{2j+1} \\ &= F_k^e + W^k F_k^o \end{split}$$

Transformada de Fourier rápida (Fast Fourier Transform – FFT)

$$F_{\mathrm{k}}\!=\!F_{\mathrm{k}}^{\mathrm{e}}\!+\!W^{\mathrm{k}}F_{\mathrm{k}}^{\mathrm{o}}$$

y seguimos separando cada F_k en la suma de los términos pares y los impares

$$F_{\mathrm{k}}\!=\!\left(F_{\mathrm{k}}^{\mathrm{ee}}\!+W^{\mathrm{k}}\,F_{\mathrm{k}}^{\mathrm{eo}}
ight)\!+\!W^{\mathrm{k}}\left(F_{\mathrm{k}}^{\mathrm{oe}}\!+W^{\mathrm{k}}\,F_{\mathrm{k}}^{\mathrm{oo}}
ight)$$

hasta que queda $F_{\rm k}$ eooeoo.....eoeee compuesta por un único $f_{\rm j}$, para el que $F_{\rm k}$ = $f_{\rm j}$

Cual j corresponde a una determinada combinación eooe.....eeooo?

Si asignamos e=0 y o=1, y escribimos la combinación revertida eooe.....eeooo = 0110......00111 → 11100......0110

... nos queda la representación binaria de j!!!!

El algoritmo consiste en:

- 1)Ordenar los f_i por orden binario invertido de j
- 2)Combinar los adjacentes con la formula $f_i + Wf_{i+1}$
- 3)Seguir hasta haber combinado todos

OJO!!! Sólo funciona si N=2^m