Introducción a Partículas y Física Nuclear Guía 04

1er semestre 2014

Decaimiento radioactivo

- 1. Suponga que una muestra de $100\,\mathrm{g}$ de un mineral radioactivo posee $8,0\,\mathrm{g}$ de un isóbaro inestable con A=235 a los $2\,\mathrm{d}$ ías de haber sido recolectado, y esa cantidad disminuyó a $6,2\,\mathrm{g}$ después de $7,5\,\mathrm{d}$ ías de la recolección. Estime el fracción del isótopo radioactivo en el mineral al momento de la recolección, y el período de semidesintegración del isótopo. Luego, estime la actividad de la muestra a los $20\,\mathrm{d}$ ías de la recolección.
- 2. (*) Un nucleído inestable N_1 decae a otro N_2 con una constante de decaimiento λ_1 . N_2 a su vez decae con constante λ_2 en un nucleído N_3 , el que es estable. Plantee y resuelva las ecuaciones que dan la cantidad de cada nucleído en función del tiempo (suponga que todas las cantidades son grandes, de manera de poder aproximar por un proceso continuo). Grafique y estudie los casos:
 - a) $\lambda_1 = \lambda_2$.
 - b) $\lambda_1 < \lambda_2$.
 - c) $\lambda_1 << \lambda_2$.
 - d) $\lambda_1 > \lambda_2$.
 - e) $\lambda_1 >> \lambda_2$.
- 3. Una muestra de madera que contiene $10\,\mathrm{g}$ de carbono presenta una actividad de $1\,\mathrm{Bq}$. Suponiendo que toda la actividad proviene del $^{14}\mathrm{C}$ allí contenido, calcule la edad de la madera. Dato: en una muestra de $1\,\mathrm{g}$ de carbono en equilibrio con el ambiente, el $^{14}\mathrm{C}$ allí contenido genera unos $15\,\mathrm{decaimientos}$ por minuto.
- 4. En 1972 se descubrió en Oklo (Gabón) que allí funcionó, hace mucho tiempo, un reactor nuclear natural, en una zona rica en Uranio inundada con agua. Sabiendo que para que se pueda producir una reacción en cadena si los neutrones son moderados por agua común la proporción de $^{235}_{92}U$ en el Uranio natural debe ser al menos del 3 %, estimar el tiempo mínimo transcurrido desde que se pudo haber producido este fenómeno
- 5. (*) Método de la isócrona: Al solidificarse el magma se solidifican minerales, cada uno de los cuales tiene una cierta composición química. En el mineral hay inicialmente una cantidad del nucleído X (padre), que decae en Y₁ (hijo), y también se halla presente también otro isótopo Y₂, que no es producto de decaimento alguno. Debido a que los distintos isótopos de un mismo elemento tienen características químicas casi idénticas, la proporción Y₁/Y₂ en cada mineral será la misma, mientras que X/Y dependerá del mineral. Pasado el tiempo, parte de X se convertirá en Y₁, si se toman varios minerales de una misma muestra y se gráfica Y₁/Y₂ vs X/Y₂ para cada uno, estos puntos caerán sobre una curva. Hallar cuál es esta curva, y cómo se puede usar para determinar la edad de la muestra (a partir del momento en que se solidificó el magma).
- 6. De una roca se extraen varios cristales, y se miden las concentraciones de los isótopos 87 Rb, 87 Sr y 86 Sr. Se obtiene lo siguiente

Mineral	87 Sr $/^{86}$ Sr	$^{87}\mathrm{Rb}/^{86}\mathrm{Sr}$
А	4	0,8
В	11	1,0
C	14	1,1
D	42	1,85

Aplicar el método anterior para hallar la edad de formación de la roca(valores tomados del "granito rojo" del complejo Bushveld, rocas traídas de la Luna durante el proyecto Apolo).