Pocketbook of Data for Nuclear Engineers

rev. 01 - February 2013

Contents

Fo	reword	iii
1	Physical constants and unit conversions	1
2	Some useful mathematical formulas and properties2.1Laplacian operator (∇^2) 2.2Taylor series expansion2.3Legendre polynomials	3 3 4 4
3	A useful triangle in relativity	5
4	Mass attenuation and mass energy absorption coefficients	7
5	Energy diagrams	17
6	X-ray and gamma standards	19
7	Beta decay 7.1 Energetics of beta decay	25 25
8	CSDA Range for protons	27
9	How to compute number densities	29
10	Ground and isomeric states properties	33
11	Properties of fissile nuclides	101
12	Parameters for some typical nuclear power plants.	107
13	Elemental Properties and Periodic Table 13.1 List of Elements by Z 13.2 Alphabetical List of Elements 13.3 Densities and Atomic Masses 13.4 Periodic Table	111 111 112 113 115

CONTENTS

Foreword

The *Pocketbook of Data for Nuclear Engineers* is a compilation of nuclear data available from different sources online (NIST, IAEA-NDS, evaluated data libraries). It was conceived as an extension of BNL *Nuclear Data Cards* to include other important nuclear data used in the Nuclear Physics course at Instituto Balseiro and other courses. The document is typeset in 10 pt font to be printed as a A5 or A6 booklet.

This compilation is supplied "as is" with no warranties implied. It is recommended that the data contained in this pocketbook be checked against the sources before used for any important application. If you think data should be corrected, added or removed from this compilation, please contact the author at: marquezj@cab.cnea.gov.ar

This pocketbook can be distributed freely, and the data should be used citing the original source.

The latest version of this pocketbook can be found at:

http://ib.cnea.gov.ar/~moderna/nuclear/pdne.html

Physical constants and unit conversions

Wave relationships:

I	$E=h u$, $p=h/\lambda$
Speed of light:	0.00702452 × 108 /-
Dlamal/a secondard	$c = \lambda \nu = 2.99792458 \times 10^{4} \text{ m/s}$
Planck's constant:	$h = 6.626069 \times 10^{-34} \text{ J s} = 4.135667 \times 10^{-15} \text{ eV s}$
	$\hbar c = 1.97326961 \times 10^{-11} \text{ MeV cm}$
Electron charge:	
	$e = 1.602176 \times 10^{-19} \text{ C}$
	$rac{e^2}{4\pi\epsilon_0} = 1.4399759 imes 10^{-13} \text{ MeV cm}$
Atomic mass unit:	
	$1 u = 931.494 \text{ MeV/c}^2$
Electron mass:	$m_e=0.511~{ m MeV/c}^2$
Boltzmann's constant:	
	$k_B = 8.617 \times 10^{-11} \text{ MeV/K}$
	$1 \text{ eV}/k_B = 1.1605 \times 10^4 \text{ K}$
Nuclear Radius:	

 $r\approx 1.3~{\rm fm}\times A^{1/3} = 1.3\times 10^{-15}~{\rm m}\times A^{1/3}$

Source: NIST CODATA (http://physics.nist.gov/cuu/Constants/index.html).

Some useful mathematical formulas and properties

2.1 Laplacian operator (∇^2)

• Cartesian coordinates:

(2.1)

(2.2)

• Cylindrical coordinates:

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial^2 \phi}$$
(2.3)

2.2 Taylor series expansion

$$f(x) = f(x_0) + f'(x_0) (x - x_0) + \frac{1}{2!} f''(x_0) (x - x_0)^2 + \dots$$
(2.4)

2.3 Legendre polynomials

• Defining equation:

$$(1 - x^2) f''(x) - 2xf'(x) + \ell(\ell + 1)f(x) = 0, \quad l = \text{integer}$$
(2.5)

• Rodrigues' formula:

$$P_{\ell}(x) = \frac{1}{2^{\ell}\ell!} \frac{d^{\ell}}{d^{\ell}} \left(x^2 - 1\right)^{\ell}$$
(2.6)

• First Legendre polynomials:

$$P_{0}(x) = 1 \qquad P_{4}(x) = \frac{1}{8} \left(35x^{4} - 30x^{2} + 3\right)$$

$$P_{1}(x) = x \qquad P_{5}(x) = \frac{1}{8} \left(63x^{5} - 70x^{3} + 15x\right)$$

$$P_{2}(x) = \frac{1}{2} \left(3x^{2} - 1\right) \qquad P_{6}(x) = \frac{1}{16} \left(231x^{6} - 315x^{4} + 105x^{2} - 5\right)$$

$$P_{3}(x) = \frac{1}{2} \left(5x^{3} - 3x\right) \qquad P_{7}(x) = \frac{1}{16} \left(429x^{7} - 693x^{5} + 315x^{3} - 35x\right)$$

• Orthogonality of Legendre polynomials:

$$\int_{-1}^{1} dx P_{\ell}(x) P_{\ell'}(x) = \frac{2}{2\ell + 1} \delta_{\ell\ell'}$$
(2.7)

• Recurrence formulas:

$$P'_{\ell+1}(x) - xP'_{\ell}(x) = (\ell+1)P_{\ell}(x)$$
(2.8)

$$(\ell+1) P_{\ell+1}(x) - (2\ell+1) x P_{\ell}(x) + \ell P_{\ell-1}(x) = 0$$
(2.9)

$$xP'_{\ell}(x) - P'_{\ell-1}(x) = \ell P_{\ell}(x)$$
(2.10)

Source: Spiegel, Lipschutz, Liu. Mathematical Handbook of Formulas and Tables. McGraw Hill.

Chapter 3 A useful triangle in relativity

Contributed by Abraham Kestelman

Disclaimer: What follows does not have the pretension to be a lecture on the special theory of relativity. Furthermore, we will not delve into the exact definition of terms like mass, rest mass, etc., and we will ignore the fact that strictly speaking, mass is considered to be an invariant in relativity, given by the expression: $mc^2 = \sqrt{E^2 - (pc)^2}$. On the contrary, we will be loosely speaking of mass as usually referring to the rest mass of the object, m0, which is the Newtonian mass as measured by an observer moving along with the object. We then take from the special theory of relativity the well known formula that gives the "variation of mass" with speed (supposedly known to "everybody"), and from there we deduce a relationship that allows us to draw the triangle mentioned in the title.

With the reservations expressed above, we start with the formula given by the special theory of relativity which relates the mass m of a body with its speed *v*:

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

where *c* is the speed of light.

Multiplying this last equation by c^2 , and taking into account that the linear momentum is given by p = mv, with some algebra we get:

$$m^2 c^4 = m_0^2 c^4 + p^2 c^2$$

that we can write as:

$$(mc^2)^2 = (m_0c^2)^2 + (pc)^2$$

This last expression is of the form: $a^2 = b^2 + c^2$ which defines a right triangle with a hypotenuse of length a. In our case the hypotenuse is mc^2 and the sides m_0c^2 and pc.

All this is shown in the following drawing, where we also show the kinetic energy, *T*, given by the difference between total energy and rest mass energy: $T = E - m_0 c^2$

When faced with the question: "to solve this problem, do I use classical mechanics or do I have to use relativistic mechanics?", the answer is given by the shape of the triangle. Considering extreme cases: if the hypotenuse is almost horizontal, that is, $T \ll m_0 c^2$, then the problem can be treated with classical mechanics; on the contrary, if the hypotenuse is almost vertical, $T \gg m_0 c^2$, the problem has to be treated with relativistic mechanics. In brief, and for in between cases:

$$T \ll m_0 c^2 \longrightarrow$$
 use classical mechanics
 $T \gtrsim m_0 c^2 \longrightarrow$ use relativistic mechanics

For instance, we will see that the mass of the electron (in units commonly used in atomic and nuclear physics) is $m_e = 511$ keV, and that the kinetic energy of, say an electron emitted in a β decay, is usually of the order of 1 or 2 MeV. Then, for treating most electrons we have to use relativistic mechanics (1 or $2 \gtrsim 0.511$). However, we can use classical mechanics for an electron typical of an atomic transition which usually have a kinetic energy in the order of a few eV (few eV $\ll 511000$ eV). On the other hand, using the same units, a proton has a mass of $938 \text{ Mev} (1836 m_e)$ and usually we are concerned with protons and neutrons with kinetic energies below, say, 50 MeV. Therefore, when treating protons and neutrons (a neutron has a mass approximately equal to that of a proton) we usually use ($50 \ll 938$).

Another example in the use of the triangle: We want to know the expression of the linear momentum *p*, as a function of the kinetic energy T in relativity. From the triangle above, and straightforward algebra:

$$(pc)^{2} = (T + m_{0}c^{2})^{2} - (m_{0}c^{2})^{2} = T^{2} + 2m_{0}c^{2}T = \left(1 + \frac{2m_{0}c^{2}}{T}\right)$$
$$\therefore \ p = \frac{T}{c}\sqrt{1 + \frac{2m_{0}c^{2}}{T}}$$

From the expression $m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$ we note that an object with mass cannot accelerate to the speed of light v = c. However,

a massless object, like a photon, always moves exactly at the speed of light: for a photon with linear momentum p_{γ} , energy E_{γ} and mass $m_0 = 0$ the triangle above reduces to:

Remembering the known expression for the energy of a gamma ray, $E_{\gamma} = h\nu$, and observing the drawing above, we can write:

$$E_{\gamma} = h\nu = p_{\gamma}c \therefore p_{\gamma}\frac{h\nu}{c} = \frac{h}{\lambda} \therefore \lambda = \frac{h}{p_{\lambda}}$$

Where *h* is Planck's constant and where we have used the known relationship: $\lambda = \frac{c}{\nu}$. In 1924 de Broglie postulated that the last expression, $\lambda = \frac{h}{p_{\gamma}}$, valid for an electromagnetic wave, is also valid for a massive particle. That is, that the wavelength associated with an electron, say, is given by the expression:

$$\lambda_e = \frac{h}{p_e}$$

(this is called the de Broglie wavelength).

This bold hypothesis of de Broglie postulating that particles could have wave-like properties, was confirmed through a famous experiment performed by Davisson and Germer in 1927. By firing electrons at a crystalline nickel target, they were able to show a diffraction pattern in the path of the electrons scattered by the atoms in the nickel surface.

The de Broglie hypothesis showed that wave particle duality was not merely the behavior of light, but rather was a fundamental principle exhibited by both radiation and matter. As such, it becomes possible to use wave equations to describe material behavior, so long as one properly applies the de Broglie wavelength.

Mass attenuation and mass energy absorption coefficients

In the following figures the total (μ/ρ) and partial mass attenuation coefficients are plotted for Hydrogen, Carbon, Nitrogen, Oxygen, Copper, Tin, Lead, and Uranium. Partial mass attenuation coefficients are plotted for photoelectric absorption, coherent and incoherent (Compton) scattering, and pair production. The mass absorption energy coefficient (μ_{en}/ρ) is also plotted for the same materials.

Sources:

NIST X-COM Database (http://www.nist.gov/pml/data/xcom/index.cfm/)

NIST X-Ray Mass Attenuation Coefficients (http://www.nist.gov/pml/data/xraycoef/index.cfm/) NIST also distributes a program (XCOM) to tabulate and plot mass attenuation coefficients.

Figure 4.2: Mass attenuation (μ/ρ) and mass energy absorption coefficients (μ_{en}/ρ) for Carbon, Z = 6.

Figure 4.6: Mass attenuation (μ/ρ) and mass energy absorption coefficients (μ_{en}/ρ) for Copper, Z = 29.

14

Figure 4.8: Mass attenuation (μ/ρ) and mass energy absorption coefficients (μ_{en}/ρ) for Lead, Z = 82.

Energy diagrams

Compound nucleus reaction can be understood as a three stage process on which an excited nucleus is formed by the absorption of the incident particle, followed by the decay of this nucleus.

Conservation of mass-energy in these processes can be visualized in the following diagram. Below the diagram, the *Q equation* for non-relativistic collisions is shown. This equation combines conservation of energy and linear momentum for collisions for a target that is at rest in the laboratory system.

Source: Meyerhof, W. Elements of Nuclear Physics. McGraw-Hill, 1967.

X-ray and gamma standards

The following table presents the recommended values of decay parameters of many common radionuclides routinely used for X-ray and gamma-ray detector calibration. For each radionuclide the following parameters are listed:

- Decay mode.
- Half life $(T_{1/2})$ in days.
- ID of the spectral line, in the case of X-rays.
- Energy of the γ or X-ray in keV.
- Emission probability (# of photons emitted per parent decay).

Source: X-ray and gamma-ray standards for detector calibration. IAEA-TECDOC-619 (1991).

(http://www-nds.iaea.org/publications/tecdocs/iaea-tecdoc-0619.pdf).

Note: it must be noted that for technical applications, the information contained in this chapter has been superseded by new IAEA-NDS X Ray and Gamma standards

(http://www-nds.iaea.org/xgamma_standards/)

Nuclide	Decay Mode	$T_{1/2}$	XR ID	E [keV]	Emission Prob.
22Na	EC	950.8(9) [major 511.033 anni	hiliation radiation]	1274.542(7)	0.99935(15)
24Na	β^{-}	0.62356(17)		1368.633(6) 2754.030(14)	0.999936(15) 0.99855(5)
26Sc	β^{-}	83.79(4)		889.277(3) 1120.545(4)	0.999844(16) 0.999874(11)
51Cr	EC	27.706(7)	VKa VKx VKβ	4.95 4.95 - 5.43 5.43 320.0842(9)	0.201(3) 0.228(3) 0.027(1) 0.0986(5)
54Mn	EC	312.3(4)	CrKa CrKx CrKβ	5.41 5.41 - 5.95 5.95 834.843(6)	0.226(7) 0.256(8) 0.030(1) 0.999758(24)
55Fe	EC	999(8)	MnKx MnKa MnK β	5.89 - 6.49 5.89 6.49	0.283(10) 0.249(9) 0.034(1)
56Co	EC	77.31(19)		846.764(6) 1037.884(4) 1175.099(8) 1238.287(6) 1360.206(6) 1771.350(15) 2015.179(11) 2034.759(11) 2598.460(10) 3201.954(14) 3253.417(14) 3272.998(14) 3451.154(13) 3548.27(10)	0.99933(7) 0.1413(5) 0.02239(11) 0.6607(19) 0.04256(15) 0.1549(5) 0.03029(13) 0.07771(27) 0.1696(6) 0.0313(9) 0.0762(24) 0.0178(6) 0.0093(4) 0.00178(9)
57Co	EC	271.79(9)	FeKa FeKx FeKβ	6.4 6.40 - 7.06 7.06 14.4127(4) 122.0614(3) 136.4743(5)	0.510(7) 0.579(8) 0.069(1) 0.0916(15) 0.8560(17) 0.1068(8)
58Co	EC	70.86(7)	FeKx FeKa FeK eta	6.40 - 7.06 6.4 7.06 810.775(9)	0.267(3) 0.235(3) 0.032(1) 0.9945(1)
60Co	β^{-}	1925.5(5)		1173.238(4)	0.99857(22)
					Commueu on next page

Table 6.1: X-ray and gamma standards.

Table 6.1 – Continued from previous page					
Nuclide	Decay Mode	$\mathbf{T_{1/2}}$	XR ID	E [keV]	Emission Prob.
				1332.502(5)	0.99983(6)
65Zn	EC	244.26(26)	CuKa	8.03 - 8.05	0.341(6)
			CuKx	8.03 - 8.91	0.387(6)
			CuKβ	8.91	0.046(1)
				1115.546(4)	0.5060(24)
75Se	EC	119.64(24)	AsKa	10.51 - 10.54	0.493(11)
	20	11)101(-1)	AsKx	10.51 - 11.95	0.568(13)
			AsKB	11 72 - 11 95	0.075(2)
			11010	96 7344(10)	0.0341(4)
				121.1171(14)	0.171(1)
				136.0008(6)	0.588(3)
				264.6580(17)	0.590(2)
				279.5431(22)	0.250(1)
				400.6593(13)	0.115(1)
9EC-	EC	$(A \otimes A \cap (A))$	DhVy	12 24 15 20	0 597(4)
835f	EC	04.049(4)	RUKX PhKa	13.34 - 13.29	0.367(4) 0.500(2)
			RDKa PbK B	13.34 - 13.40	0.300(3) 0.087(2)
			κυκρ	14.90 - 15.29 514.0076(22)	0.007(2) 0.984(4)
				514.0070(22)	0.904(4)
88Y	EC	106.63(25)	SrKx	14.10 - 16.19	0.616(7)
			SrKa	14.10 - 14.17	0.522(6)
			$SrK\beta$	15.83 - 16.19	0.094(2)
				898.042(4)	0.940(3)
				1836.063(13)	0.9936(3)
93mNb	IT	5890(50)	NbKx	16.52 - 19.07	0 1104(35)
<i>y</i> onn (<i>b</i>		0070(00)	NbKa	16.52 - 16.62	0.0925(30)
			NbKβ	18.62 - 19.07	0.0179(7)
94Nb	β^{-}	$7.3(9) \times 106$		702.645(6)	0.9979(5)
				871.119(4)	0.9986(5)
95Nb	β^{-}	34.975(7)		765.807(6)	0.9981(3)
109Cd	EC	462.6(7)	AgKa	21.99 - 22.16	0.821(9)
			AgKx	21.99 - 25.60	0.994(10)
			AgKβ	24.93 - 25.60	0.173(3)
			0 /	88.0341(11)	0.0363(2)
111ln	EC	2.8047(5)	CdKa	22.98 - 23.17	0.684(5)
			CdKx	22.98 - 26.80	0.830(5)
			Cakβ	26.09 - 26.80	0.146(3)
				$1/1.2\delta(3)$	0.9078(10)
				243.33(4)	0.9410(6)
113Sn	EC	115.09(4)	InKx	24.00 - 28.02	0.968(6)
			InKa	24.00 - 24.21	0.796(6)
			InKβ	27.27 - 28.02	0.172(3)

Continued on next page

Table 6.1 – Continued from previous page					
Nuclide	Decay Mode	$T_{1/2}$	XR ID	E [keV]	Emission Prob.
				391.702(4)	0.6489(13)
125Sb	β^{-}	1007.7(6)		176.313(1)	0.0685(7)
	,			380.452(8)	0.01518(16)
				427.875(6)	0.297(3)
				463.365(5)	0.1048(11)
				600.600(4)	0.1773(18)
				606.718(3)	0.0500(5)
				635.954(5)	0.1121(12)
125I	EC	59.43(6)	TeKa	27.20 - 27.47	1.135(21)
			TeKx	27.20 - 31.88	1.390(25)
			TeKβ	30.98 - 31.88	0.255(6)
			,	35.4919(5)	0.0658(8)
134Cs	β^{-}	754.28(22)		475.364(3)	0.0149(2)
	,			563.240(4)	0.0836(3)
				569.328(3)	0.1539(6)
				604.720(3)	0.9763(6)
				795.859(5)	0.854(3)
				801.948(5)	0.0869(3)
				1038.610(7)	0.00990(5)
				1167.968(5)	0.01792(7)
				1365.185(7)	0.03016(11)
137Cs	β^{-}	1.102(6) × 104	BaKa	31.82 - 32.19	0.0566(16)
	,		BaKx	31.82 - 37.45	0.0700(20)
			$BaK\beta$	36.36 - 37.45	0.0134(5)
			,	661.660(3)	0.851(2)
133Ba	EC	3862(15)	CsKa	30.63 - 30.97	0.980(14)
			CsKx	30.63 - 36.01	1.210(16)
			$CsK\beta$	34.97 - 36.01	0.230(5)
				80.998(5)	0.3411(28)
				276.398(1)	0.07147(30)
				302.853(1)	0.1830(6)
				356.017(2)	0.6194(14)
				383.851(3)	0.08905(29)
139Ce	EC	137.64(23)	LaKa	33.03 - 33.44	0.643(18)
			LaKx	33.03 - 38.93	0.797(22)
			$LaK\beta$	37.78 - 38.93	0.154(5)
				165.857(6)	0.7987(6)
152Eu	EC	4933(11)	SmKx	39.52 - 46.82	0.740(12)
			(Sm+Gd)Kx	39.52 - 50.21	0.748(12)
			SmKa	39.52 - 40.12	0.591(12)
			GdKa	42.31 - 43.00	0.00648(22)
			GdKx	42.31 - 50.21	0.00824(28)
			${\sf SmK}eta$	45.38 - 46.82	0.149(3)
			GdKeta	48.65 - 50.21	0.00176(18)
				121.7824(4)	0.2837(13)

Continued on next page

Table 6.1 – Continued from previous page					
Nuclide	Decay Mode	$T_{1/2}$	XR ID	E [keV]	Emission Prob.
				244.6989(10)	0.0753(4)
				344.2811(19)	0.2657(11)
				411.126(3)	0.02238(10)
				443.965(4)	0.03125(14)
				778.903(6)	0.1297(6)
				867.390(6)	0.04214(25)
				964.055(4)	0.1463(6)
				1085.842(4)	0.1013(5)
				1089.767(14)	0.01731(9)
				1112.087(6)	0.1354(6)
				1212.970(13)	0.01412(8)
				1299.152(9)	0.01626(11)
				1408.022(4)	0.2085(9)
154Eu	β^{-}	3136.8(29)	GdKx	42.31 - 50.21	0.256(6)
	,		GdKa	42.31 - 43.00	0.205(6)
			GdKβ	48.65 - 50.21	0.051(2)
			Curp	123.071(1)	0.412(5)
				247930(1)	0.0695(9)
				591 762(5)	0.0499(6)
				692 425(4)	0.0199(0) 0.0180(3)
				723 305(5)	0.0100(0)
				756 804(5)	0.202(2) 0.0458(6)
				872 100(5)	0.0430(0) 0.1224(15)
				006 262(6)	0.1224(13) 0.1048(12)
				996.262(6)	0.1040(13) 0.182(2)
				1004.723(7)	0.102(2) 0.250(4)
				12/4.436(6)	0.330(4)
				1494.048(9)	0.0071(2)
155Eu	β^{-}	1770(50)		1596.495(18)	0.0181(2)
108 4	0-	2 (042(8)	Halla		0.0290(10)
198Au	β	2.6943(8)	пукх	68.89 - 82.78	0.0280(10)
			пдка	68.89 - 70.82	0.0219(8)
			нgкр	80.12 - 82.78	0.0061(3)
				411.8044(11)	0.9557(47)
204Hg	β^{-}	46.595(13)	TlLx	8.95 - 14.40	0.060(12)
0	,		TlKa2	70.83 0.038(2)	
			TlKx	70.83 - 85.19	0.130(4)
			TlKa1	72.87 0.064(2)	
			ΤΙΚ β'1	82.43 0.022(1)	
			ΤΙΚ <i>β</i> ′2	85.19 0.0063(3)	
				279.1967(12)	0.8148(8)
207Bi	EC	$1.16(7) \times 104$	PhLx	9,19 - 14 91	0.325(13)
D1			PbKx	72 80 - 87 63	0.777(26)
			PhKa?	72.80 07.80	0.226(12)
			PhK 21	74.97	0.220(12) 0.382(20)
			PhK R'1	84 70	0.002(20) 0.130(10)
			$\mathbf{Phk} R'2$	87.63	0.130(10)
			ι υπρ Ζ	560 702(2)	0.039(3) 0.0774(2)
				1062 662(4)	0.7774(3) 0.745(3)
				1003.002(4)	0.743(2)

Continued on next page

Table 6.1 – Continued from previous page					
Nuclide	Decay Mode	$T_{1/2}$	XR ID	E [keV]	Emission Prob.
				1770.237(9)	0.0687(4)
					/- >
228Th	α	698.2(6)		84.373(3)	0.0122(2)
				238.632(2) *	0.435(4)
				240.987(6) *	0.0410(5)
				277.358(10) *	0.0230(3)
				300.094(10) *	0.0325(3)
				510.77(10) *	0.0818(10)
				583.191(2) *	0.306(2)
				727.330(9) *	0.0669(9)
				860.564(5) *	0.0450(4)
				1620.735(10) *	0.0149(5)
				2614.533(13) *	0.3586(6)
		* Indicates daughte	er in equilibrium with	the parent radionuclide	e
239Np	β^{-}	2.35(4)		106.123(2)	0.267(4)
				228.183(1)	0.1112(15)
				277.599(2)	0.1431(20)
241 A m	α	$1.5785(24) \times 105$	NpLl	11 871	0.0085(3)
2111 1111	u	1.07 00(21) / 100	NpLa	13 927	0.132(4)
			NpL ^β	17 611	0.102(1) 0.194(6)
			NpLh	-20 997	0.049(2)
			i i p Lii	26.345(1)	0.024(1)
				59537(1)	0.360(4)
				07.007(1)	0.000(1)
243Am	α	2.69(8) × 106		43.53(1)	0.0594(11)
		. ,		74.66(1)	0.674(10)

- 11 / 4	C 1	c		
Table 6.1 –	Continued	trom	previous	pag
		,	F	FO

Beta decay

Source: Meyerhof, W. Elements of Nuclear Physics. McGraw-Hill, 1967.

7.1 Energetics of beta decay

	β^- decay
	$(A,Z) \rightarrow (A,Z+1) + \beta^- + \bar{\nu}$
Atomic mass	$M_A(A, Z) = M_A(A, Z+1) + m_e + Q - m_e$
(Mass Excess Δ)	$Q = \Delta(A, Z) - \Delta(A, Z + 1)$

*

*

	β^+ decay
	$(A,Z) \rightarrow (A,Z-1) + \beta^+ + \nu$
Atomic mass	$M_A(A, Z) = M_A(A, Z - 1) + m_e + Q + m_e$
(Mass Excess Δ)	$Q = \Delta(A, Z) - \Delta(A, Z - 1) - 2m_e$

*

	EC decay
	$(A,Z) + e^- \to (A,Z-1) + \nu$
Atomic mass	$M_A(A, Z) + m_e = M_A(A, Z - 1) + Q + m_e$
(Mass Excess Δ)	$Q = \Delta(A, Z) - \Delta(A, Z - 1)$

Chapter 8 CSDA Range for protons

In the following figures range of protons in Carbon, Aluminum, Iron, Copper, Tin, Lead and Uranium. The range was computed using the *continuous slowing down approximation* (CSDA) which constitutes an upper bound of the real range.

The range for a different heavy charged particle *i* in the same materials can be approximated as:

$$R_i \simeq \left. \frac{M_i}{z_i^2 M_p} R_p^+ \right|_{E_{p^+} = \frac{M_p}{M} E_i} \tag{8.1}$$

Sources: NIST PSTAR Database (http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html)

28

How to compute number densities

Definitions:

 N_i : number density of the element (isotope or molecule) *i*. Units: molecules/cm³, atoms/cm³

 ρ_i : density of *i*. Units: grams/cm³

 n_i : number of moles of the molecule or atom i. Unit: mol.

 m_i : mass of *i*. Unit: grams.

M_i: atomic weight of *i*. Units: atomic mass unit (u) or grams/mol.

By definition, atomic weight is:

$$M_i \equiv \frac{m_i}{n_i}$$

then, the moles number of i is:

$$n_i = \frac{m_i}{M_i}$$

In one mole of matter there are $N_A = 6.0221 \cdot 10^{23}$ particles. Then, the atomic density of *i* is:

$$N_i = \frac{\rho_i N_A}{M_i} \tag{9.1}$$

For doing this we need to know the density of *i* and its average atomic weight. As we usually work with mixtures, compounds or solutions we will learn how to compute this.

The weight fraction of i is:

$$w_i \equiv \frac{m_i}{\sum_j m_j}$$
$$y_i \equiv \frac{n_i}{\sum_j n_j}$$

and the mole or atomic fraction:

In general, the isotopic abundance is commonly written as an atomic fraction, and the enrichment is written as mass weight fraction (wt%)

Using these definitions, we can now calculate the average atomic weight for mixtures or compounds.

$$\bar{M} = \frac{m_{\text{total}}}{n_{\text{total}}} = \frac{\sum_{j} n_{j} M_{j}}{n_{\text{total}}} = \frac{n_{\text{total}} \sum_{j} y_{j} M_{j}}{n_{\text{total}}} = \sum_{j} y_{j} M_{j}$$
(9.2)

or also:

$$\bar{M} = \frac{m_{\text{total}}}{n_{\text{total}}} = \frac{m_{\text{total}}}{\sum_j m_j / M_j} = \frac{m_{\text{total}}}{m_{\text{total}} \sum_j w_j / M_j} = \frac{1}{\sum_j w_j / M_j}$$
(9.3)

In the case we need to convert from weight fraction to atomic fraction or viceversa, we can do:

$$w_{i} = \frac{m_{i}}{m_{\text{total}}} = \frac{n_{i}M_{i}}{\sum_{j}n_{j}M_{j}} = \frac{n_{\text{total}}y_{i}M_{i}}{n_{\text{total}}\sum_{j}y_{j}M_{j}} = \frac{y_{i}M_{i}}{\sum_{j}y_{j}M_{j}} = \frac{y_{i}M_{i}}{\bar{M}}$$

$$y_{i} = \frac{n_{i}}{n_{\text{total}}} = \frac{m_{i}/M_{i}}{\sum_{j}m_{j}/M_{j}} = \frac{m_{\text{total}}w_{i}/M_{i}}{m_{\text{total}}\sum_{j}w_{j}/M_{j}} = \frac{w_{i}/M_{i}}{\sum_{j}w_{j}/M_{j}} = \frac{w_{i}\bar{M}}{M_{i}}$$
(9.4)

Example:

UO₂ with 3% enrichment, and $\rho = 10 \text{ g/cm}^3$.

We can calculate the isotopic masses of ²³⁵U and ²³⁸U using the mass delta from the Nuclear Wallet Card.

$$M_{i} = A + \Delta/931.5 \frac{\text{Mev/c}^{2}}{\text{g/mol}}$$
$$M_{235} = 235 \text{ g/mol} + \frac{40.914 \text{Mev/c}^{2}}{931.5 \frac{\text{Mev/c}^{2}}{\text{g/mol}}} = 235.0439 \text{ g/mol}$$
$$M_{238} = 238 \text{ g/mol} + \frac{47.304 \text{Mev/c}^{2}}{931.5 \frac{\text{Mev/c}^{2}}{\text{g/mol}}} = 238.0508 \text{ g/mol}$$

and the atomic weight for the oxygen is obtained from Nuclear Wallet Card, Appendix-I.

$$\begin{split} M_{\rm O} &= 15.9994 \ {\rm g/mol} \quad M_{235} = 235.0439 \ {\rm g/mol} \quad M_{238} = 238.0508 \ {\rm g/mol} \\ \bar{M}_{\rm U} &= \frac{1}{\varepsilon/M_{235} + (1-\varepsilon)/M_{238}} = \frac{1}{0.03/235.0439 \ {\rm g/mol} + 0.97/238.0508 \ {\rm g/mol}} = 237.9595 \ {\rm g/mol} \\ M_{\rm UO_2} &= M_{\rm U} + 2M_{\rm O} = 237.9595 \ {\rm g/mol} + 2 \cdot 15.999 \ {\rm g/mol} = 269.9583 \ {\rm g/mol} \end{split}$$

Here, the small fraction of 234 U present -if any- was neglected. For low enriched uranium this is appropriate, but it might be important to take it into account if the enrichment is high.

Now, the number density of molecules of UO_2 is:

$$N_{\rm UO_2} = \frac{10 \text{ g/cm}^3 \cdot 6.0221 \cdot 10^{23} \text{ 1/mol}}{269.9583 \text{ g/mol}} = 2.2308 \cdot 10^{22} \text{ 1/cm}^3$$

For each molecule of UO_2 there is one atom of uranium and two of oxygen, then

$$N_{\rm U} = N_{{\rm UO}_2} = 2.2308 \cdot 10^{22} \ 1/{\rm cm}^3$$

 $N_{\rm O} = 2N_{{\rm UO}_2} = 4.4615 \cdot 10^{22} \ 1/{\rm cm}^3$

Then, to calculate the amount of 235 U and 238 U we need the atomic fraction of 235 U:

$$y_{235} = \frac{\varepsilon M_U}{M_{235}} = \frac{0.03 \cdot 237.9595 \text{ g/mol}}{235.0439 \text{ g/mol}} = 3.04\%$$

and using that:

$$N_{235} = y_{235}N_{\rm U} = 3.04\% \cdot 2.2308 \cdot 10^{22} \ 1/{\rm cm}^3 = 6.7753 \cdot 10^{20} 1/{\rm cm}^3$$
$$N_{238} = (1 - y_{235})N_{\rm U} = (1 - 3.04\%) \cdot 2.2308 \cdot 10^{22} \ 1/{\rm cm}^3 = 2.1630 \cdot 10^{22} \ 1/{\rm cm}^3$$
Another way to solve it:

Because the enrichment is a weight fraction, we could convert everything to mass fraction. The atomic fraction of uranium and oxygen in the uranium dioxide are:

$$y_{\rm U} = \frac{1}{1+2} = \frac{1}{3}$$
$$y_{\rm O} = \frac{2}{1+2} = \frac{2}{3}$$

and, using (9.4):

$$w_{\rm U} = \frac{y_{\rm U} \cdot \bar{M}_{\rm U}}{y_{\rm U} \cdot \bar{M}_{\rm U} + y_{\rm O} \cdot \bar{M}_{\rm O}} = \frac{1/3 \cdot 237.9595 \text{ g/mol}}{1/3 \cdot 237.9595 \text{ g/mol} + 2/3 \cdot 15.9994 \text{ g/mol}} = 88.147\%$$

Then, the weight fraction of ²³⁵U respect to the total amount is:

$$w_{235} = \varepsilon \cdot w_{\mathrm{U}} = 2.644\%$$

for ²³⁸U:

$$w_{238} = (1 - \varepsilon) \cdot w_{\rm U} = 85.502\%$$

and for oxygen:

$$w_{\rm O} = 1 - w_{\rm U} = 11.853\%$$

finally we just do:

$$N_{235} = \frac{w_{235}\rho N_A}{M_{235}} = 6.7753 \cdot 10^{20} \text{ 1/cm}^3$$
$$N_{238} = \frac{w_{238}\rho N_A}{M_{238}} = 2.1630 \cdot 10^{22} \text{ 1/cm}^3$$
$$N_O = \frac{w_O\rho N_A}{M_O} = 4.4615 \cdot 10^{22} \text{ 1/cm}^3$$

Chapter 10

Ground and isomeric states properties

The properties of ground and isomeric states for all nuclides included in NuDat 2.6 are listed in the following table. For each state the following data is given:

- Atomic number (*Z*), chemical symbol and mass number (*A*).
- Spin and parity $(J\pi)$.
- Mass excess: $\Delta = M A$, where *M* is the mass a neutral atom. Mass excess is given in MeV; to convert to atomic mass units, the relationship 1 u = 931.494 MeV/c² can be used.
- Half life $(T_{1/2})$ or level width (Γ)
- Abundance (isotope atom fraction) of natural occurring nuclides.
- Decay modes, followed by emission probability in %:

```
\beta -: \beta - \text{decay.}
```

 ϵ : electron capture, β + decay, or $EC + \beta$ +.

IT: isomeric transition (γ emission or conversion electron).

 $n, p, \alpha, \ldots : n, p, \alpha, \ldots$ emission.

SF: spontaneous fission.

 $\beta - p, \beta - \alpha, \beta - n, \ldots$: delayed p, α, n, \ldots emission following β - decay.

 $\epsilon - p, \epsilon - \alpha, \epsilon - n, \ldots$: delayed p, α, n, \ldots emission following β + or EC decay.

 ^{12}C , ^{24}Ne , ...: ^{12}C , ^{24}Ne , ... nuclei emission.

Source: IAEA NuDat 2.6 http://www-nds.iaea.org/nudat2/.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	n	1	1/2+	8.0713 (5)	$10.183 \pm 0.017 \text{ m}$		β^- 100%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Η	1	1/2+	7.2889 (10)	stable	$99.9885\% \pm 0.007\%$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2	1+	13.1357 (15)	stable	$0.0115\%\pm 0.007\%$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3	1/2+	14.9498 (22)	$12.32\pm0.02~\mathrm{y}$		eta^- 100%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	He	3	1/2+	14.9312 (23)	stable	$0.000134\%\pm 3e-06\%$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4	0+	2.4249 (6)	stable	$99.999866\% \pm 3e-06\%$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			6	0+	17.5928 (4)	$801\pm10~\mathrm{ms}$		eta^- 100%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			8	0+	31.6096 (18)	$119.1\pm1.2~\mathrm{ms}$		eta^- 100%; $eta^- n$ 16%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	Li	6	1+	14.0868 (15)	stable	$7.59\% \pm 0.04\%$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			7	3/2-	14.907 (4)	stable	$92.41\%\pm 0.04\%$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			8	2+	20.9457 (5)	$839.9\pm0.9~\mathrm{ms}$		eta^- 100%; eta^-lpha 100%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			9	3/2-	24.9549 (9)	$178.3\pm0.4~\mathrm{ms}$		eta^- 100%; $eta^- n$ 50.8%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			11	3/2-	40.7284 (11)	$8.75\pm0.14~ms$		$egin{array}{lll} eta^-lpha, n \ 0.027\%; \ eta^- \ 100\%; \ eta^-n \ 83\%; \ eta^-2n \ 4.1\% \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	Be	7	3/2-	15.7689 (7)	$53.24\pm0.04~d$		ϵ 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			9	3/2-	11.3484 (8)	stable	100%	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			10	0+	12.6074 (8)	$1.387E+6 \pm 0.012E+6 \text{ y}$		β^- 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			11	1/2+	20.1771 (24)	$13.81\pm0.08~{\rm s}$		eta^- 100; eta^-lpha 3.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			12	0+	25.077 (4)	$21.49\pm0.03~ms$		eta^- 100; $eta^- n \leq 1.00$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			14	0+	39.95 (13)	$4.35\pm0.17~\mathrm{ms}$		eta^- 100; eta^-n 81; eta^-2n 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	В	8	2+	22.9215 (10)	$770 \pm 3 \text{ ms}$		ϵ 100; $\epsilon \alpha$ 100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			10	3+	12.0507 (4)	stable	$19.9\% \pm 0.7\%$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			11	3/2-	8.6679 (4)	stable	$80.1\% \pm 0.7\%$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			12	1+	13.3688 (14)	$20.20\pm0.02~ms$		β^- 100; $\beta^- 3\alpha$ 1.58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			13	3/2-	16.5621 (11)	$17.33\pm0.17~\mathrm{ms}$		β^- 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			14	2-	23.664 (21)	$12.5\pm0.5~\mathrm{ms}$		β^- 100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			15	0	28.964 (22)	$9.93\pm0.07~\mathrm{ms}$		$egin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			17	(3/2-)	43.77 (17)	$5.08\pm0.05~ms$		$eta^- 100; eta^- n 63; eta^- 2n 11; \ eta^- 3n 3.5; eta^- 4n 0.4$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			19	(3/2-)	58.8 (4)	$2.92\pm0.13~\mathrm{ms}$		eta^- 100; $eta^- n$ 72; $eta^- 2n$ 16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	С	9	(3/2-)	28.9094 (21)	$126.5\pm0.9~\mathrm{ms}$		ϵ 100; ϵp 61.6; $\epsilon \alpha$ 38.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			10	0+	15.6986 (4)	$19.308 \pm 0.004 \text{ s}$		$\epsilon 100$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			11	3/2-	10.6503 (10)	20.334 ± 0.024 m		$\epsilon 100$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			12	0+	0 ()	stable	$98.93\% \pm 0.08\%$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			13	1/2-	3.125 (21)	stable	$1.07\% \pm 0.08\%$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			14	0+	3.0198 (4)	$5700 \pm 30 \text{ y}$		β^{-} 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			15	1/2+	9.8731 (8)	$2.449 \pm 0.005 \text{ s}$		β^{-100}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			16	0+	13.694 (4)	$0.747 \pm 0.008 \text{ s}$		β 100; β n 99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1/	3/2+	21.032 (17)	$193 \pm 13 \text{ ms}$		β 100; β n 32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			18	0+	24.92 (3)	$92 \pm 2 \text{ ms}$		$\beta^{-}n$ 31.5; β^{-} 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			19	1/2+	32.41(10)	$49 \pm 4 \text{ ms}$		β ; β n 61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			20	0+	37.56 (24)	14 + 6-5 ms		$\beta = 100; \beta = n72$
7 N 12 1+ 17.338 (10) 11.000 \pm 0.016 ms ϵ 100 13 1/2- 5.3454 (3) 9.965 \pm 0.004 m ϵ 100 14 1+ 2.8634 (19) stable 99.636% \pm 0.02% 15 1/2- 0.1014 (6) stable 0.364% \pm 0.02% 16 2- 5.684 (3) 7.13 \pm 0.02 s β^- 100; $\beta^- \alpha$ 0.0012 17 1/2- 7.87 (15) 4.173 \pm 0.004 s β^- 100; $\beta^- n$ 95.1 18 1- 13.113 (19) 620 \pm 8 ms $\beta^- \alpha$ 12.2; $\beta^- n$ 7; β^- 100			22	0+	52.1 (5)	6.1 +1.4-1.2 ms		β 100; β <i>n</i> 61; β 2 <i>n</i> < 37.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	Ν	12	1+	17.338 (10)	$11.000 \pm 0.016 \text{ ms}$		ϵ 100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			13	1/2-	5.3454 (3)	9.965 ± 0.004 m		$\epsilon 100$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			14	1+	2.8634 (19)	stable	$99.636\% \pm 0.02\%$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			15	1/2-	0.1014 (6)	stable	$0.364\% \pm 0.02\%$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			16	2-	5.684 (3)	$7.13 \pm 0.02 \text{ s}$		β^{-} 100; $\beta^{-}\alpha$ 0.0012
$\frac{18 1- 13.113 (19) 620 \pm 8 \text{ ms}}{620 \pm 8 \text{ ms}} \qquad \frac{\beta^- \alpha 12.2; \beta^- n 7; \beta^- 100}{620 \pm 8 \text{ ms}}$			17	1/2-	7.87 (15)	$4.173 \pm 0.004 \text{ s}$		β^{-} 100; $\beta^{-}n$ 95.1
			18	1-	13.113 (19)	$620 \pm 8 \text{ ms}$		$\beta \alpha 12.2; \beta n 7; \beta 100$

Table 10.1: Ground and isomeric states properties (Adapted from IAEA NuDat 2.6).

				Table	10.1 – Continued from prev	vious page	
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	${f T_{1/2}}, {f \Gamma}$	Abundance	Decay Mode
		19	0	15.857 (16)	$336 \pm 3 \text{ ms}$		eta^- 100; eta^-n 41.8
		20	2-	21.77 (6)	$136 \pm 3 \text{ ms}$		eta^- 100; eta^-n 42.9
		21	(1/2-)	25.25 (10)	$83\pm8~\mathrm{ms}$		eta^- 100; $eta^- n$ 90.5
		22	(0-,1-)	32.04 (19)	$20\pm2~\mathrm{ms}$		eta^- 100; eta^-n 33; eta^-2n 12
		23	0	38.4 (3)	$14.5\pm1.4~\mathrm{ms}$		eta^- 100; $eta^- n$; $eta^- 2n$
8	0	13	(3/2-)	23.115 (10)	$8.58\pm0.05~\mathrm{ms}$		ϵ 100; ϵp 100
		14	0+	8.0074 (11)	$70.620 \pm 0.015 \text{ s}$		$\epsilon \ 100$
		15	1/2-	2.8556 (5)	$122.24\pm0.16~\mathrm{s}$		$\epsilon \ 100$
		16	0+	-4.737 (16)	stable	$99.757\% \pm 0.016\%$	
		17	5/2+	-0.8087 (6)	stable	$0.038\% \pm 0.001\%$	
		18	0+	-0.7828 (7)	stable	$0.205\%\pm 0.014\%$	
		19	5/2+	3.334 (3)	$26.88\pm0.05~\mathrm{s}$		β^- 100
		20	0+	3.7961 (9)	$13.51\pm0.05~\mathrm{s}$		β^- 100
		21	(5/2+)	8.062 (12)	$3.42\pm0.1~{ m s}$		eta^- 100
		22	0+	9.28 (6)	$2.25 \pm 0.09 \text{ s}$		eta^- 100; eta^-n < 22.00
		23	1/2+	14.62 (9)	$97 \pm 8 \text{ ms}$		eta^- 100; eta^-n 7
-	_	24	0+	18.5 (11)	$65 \pm 5 \text{ ms}$		$eta^- n$ 58; eta^- 100
9	F	17	5/2+	1.9517 (25)	$64.49\pm0.16~{\rm s}$		$\epsilon \ 100$
		18	1+	0.8/31 (5)	$109.77 \pm 0.05 \text{ m}$	1000/	$\epsilon \ 100$
		19	1/2+	-1.4874 (9)	stable	100%	
		20	2+	-0.0174 (3)	$11.07 \pm 0.06 \text{ s}$		β^- 100
		21	5/2+	-0.0476 (18)	$4.158 \pm 0.02 \text{ s}$		β^{-} 100
		22	(4+)	2.793 (12)	$4.23 \pm 0.04 \text{ s}$		β^{-} 100; $\beta^{-}n < 11.00$
		23	5/2+	3.31 (10)	$2.23 \pm 0.14 \text{ s}$		β^{-} 100
		24	(1,2,3)+	7.56 (7)	$390 \pm 70 \text{ ms}$		β^{-} 100; β^{-} $n < 5.90$
		25	5/2+	11.36 (8)	$80 \pm 9 \mathrm{ms}$		β^{-} 100; $\beta^{-}n$ 23.1
		26	(1+)	18.67 (8)	$9.7 \pm 0.7 \text{ ms}$		$\beta n 11; \beta 100$
		27	(5/2+)	24.63 (19)	$5.0 \pm 0.2 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 77
10	ът	29	(5/2+)	40 (6)	$2.5 \pm 0.3 \text{ ms}$		β 100; β n 100
10	Ne	17	1/2-	16.5004(4)	$109.2 \pm 0.6 \text{ ms}$		$\epsilon p \ 100; \epsilon \alpha ; \epsilon \ 100$
		10	0+	5.3176(4)	1.6670 ± 0.0017 s		ε 100 100
		19	1/2+	1.752(16)	17.22 ± 0.02 S	$00.490/ \pm 0.020/$	ϵ 100
		20	0+	-7.0419(10)	stable	$90.40\% \pm 0.05\%$	
		21	3/2+	-3.7317 (4)	stable	$0.27\% \pm 0.01\%$	
		22	0+ 5 /2 -	-6.0247(10)	27.24 ± 0.12	9.25 % ± 0.05 %	<i>Q</i> = 100
		23	3/2+	-5.154 (10)	37.24 ± 0.12 S		β 100 β^{-} 100
		24 25	0+ 1/2	-3.9510(3)	5.58 ± 0.02 m		β 100 β^{-} 100
		25	1/2+ 0+	-2.00(4) 0.479(18)	102 ± 0 ms		β^{-} 100 β^{-} $n 0.13; \beta^{-}$ 100
		20 27	(3/2+)	7.04(7)	315 ± 13 ms		$\beta^{-} 100; \beta^{-} n 2$
		27	(3/21)	11 29 (10)	18.9 ± 0.4 ms		β^{-} 100; β^{-} n^{-} 2 β^{-} 100; β^{-} n^{-} 12; β^{-} 3.6
		20	(3/2+)	11.29(10) 18.4 (10)	14.8 ± 0.3 ms		β^{-} 100; β^{-} n 12; β^{-} 5.0 β^{-} 100; β^{-} n 28; β^{-} 2 n 4
		30	(3/21)	23(3)	73 ± 0.3 ms		β^{-} 100, β^{-} <i>n</i> 20, β^{-} 2 <i>n</i> 4 β^{-} <i>n</i> 13: β^{-} 8 9: β^{-} 100
		31	0	30.8 (16)	34 ± 0.8 ms		$\beta^{-} 100; \beta^{-} n$
		32	0+	37 (5)	3.1 ± 0.0 ms		β^{-} 100; $\beta^{-}n$ β^{-} 100: $\beta^{-}n$
11	Na	20	2+	6 8502 (10)	447.9 ± 2.3 ms		ϵ 100: $\epsilon \alpha$ 20.05
11	Itu	20	3/2+	-2 1846 (3)	22.49 ± 0.04 s		€ 100, cu 20.00
		22	3+	-5 1815 (17)	26027 ± 0.001 v		€ 100 € 100
		23	3/2+	-9.5298 (18)	stable	100%	(100
		24	4+	-8.4179 (4)	14.997 ± 0.012 h	10070	β^{-} 100
		24m	1+	-7.9457 (4)	20.18 ± 0.012 ms		T 99.95: $\beta^- \approx 0.05$
		25	5/2+	-9.3578 (12)	59.1 ± 0.6 s		β^- 100
		26	3+	-6.861 (4)	1.07128 + 2.5E-4 s		β^{-} 100
		-0	<i>U</i> .				

	Table 10.1 – Continued from previous page									
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode			
		27	5/2+	-5.518 (4)	$301 \pm 6 \text{ ms}$		$eta^- n$ 0.13; eta^- 100			
		28	1+	-0.988 (10)	$30.5\pm0.4~\mathrm{ms}$		eta^- 100; $eta^- n$ 0.58			
		29	3/2+	2.67 (12)	$44.9\pm1.2~\mathrm{ms}$		eta^- 100; eta^-n 21.5			
		30	2+	8.374 (23)	$48\pm2~\mathrm{ms}$		eta^- 100; eta^-n 30;			
							$\beta^- 2n$ 1.15; $\beta^- \alpha$ 5.5e-05			
		31	3/2(+)	12.54 (10)	$17.0\pm0.4~\mathrm{ms}$		eta^-n 37; eta^-2n 0.87;			
							$eta^- 3n <$ 0.05; eta^- 100			
		32	(3-,4-)	18.81 (12)	13.2 ± 0.4 ms		eta^- 100; eta^-n 24; eta^-2n 8			
		33	(3/2+)	24 (6)	8.0 ± 0.4 ms		β^{-} 100; $\beta^{-}n$ 47; $\beta^{-}2n$ 13			
		34	0	31.3 (5)	$5.5 \pm 1 \text{ ms}$		$\beta^{-}n \approx 15.00; \beta^{-} 100;$			
		25	0	27.9(6)	$1 \in 10 $ E m c		$\beta 2n \approx 50.00$			
10	M	35	0	57.0(0)	$1.5 \pm 0.5 \text{ ms}$		β 100; β n			
12	Nig	20	0+ 5/2+	17.30(3) 10.012(16)	90.8 ± 2.4 Ins		$\epsilon 100; \epsilon p \approx 27.00$			
		21	3/2+	10.913(10)	122 ± 3 IIIS 2 8755 ± 0.0012 a		$\epsilon \alpha < 0.50; \epsilon 100; \epsilon p 52.6$			
		22	0+	-0.3999 (3)	5.6755 ± 0.0012 S		e 100			
		23	57∠+ 0⊥	-3.4732(7)	11.517 ± 0.011 5	$78.99\% \pm 0.04\%$	ε 100			
		2 4 25	0+ 5/2+	-13 1927 (5)	stable	$10\% \pm 0.01\%$				
		25	0+	-16.1727(3)	stable	$10\% \pm 0.01\%$ $11.01\% \pm 0.03\%$				
		20	1/2+	-14 5866 (5)	9458 ± 0.012 m	11.01/0 ± 0.00/0	β^{-} 100			
		28	0+	-15,0186(20)	20.915 ± 0.009 h		β^{-} 100			
		<u>-</u> 0 29	3/2+	-10.603 (11)	1.30 ± 0.12 s		β^{-} 100			
		30	0+	-8.892 (13)	$335 \pm 17 \text{ ms}$		β^{-} 100			
		31	1/2(+)	-3.19 (17)	$232 \pm 15 \text{ ms}$		β^{-} 100: $\beta^{-}n$ 1.7			
		32	0+	-0.912 (18)	$86 \pm 5 \text{ ms}$		β^{-} 100: $\beta^{-}n$ 5.5			
		33	3/2-	4.947 (22)	$90.5\pm1.6~\mathrm{ms}$		β^- 100; β^-n 14			
		34	0+	8.56 (9)	$20\pm10~\mathrm{ms}$		β^- 100; $\beta^- n$			
		35	(7/2-)	15.64 (18)	$70\pm40~\mathrm{ms}$		$\beta^{-} 100; \beta^{-} n 52$			
		36	0+	20.4 (5)	$3.9\pm1.3~\mathrm{ms}$		$eta^- n$; eta^- 100			
13	Al	22	4+	18.2 (4)	$91.1\pm0.5~\mathrm{ms}$		$\epsilon 2p$ 1.1; $\epsilon \alpha$ 0.04; ϵ 100;			
							$\epsilon p \ 54.5$			
		23	5/2+	6.748 (3)	$446\pm 6~\mathrm{ms}$		ϵ 100; ϵp 1.22			
		24	4+	-0.0489 (10)	$2.053 \pm 0.004 \text{ s}$		ϵ 100; ϵp 0.0016; $\epsilon \alpha$ 0.04			
		24m	1+	0.3768 (10)	$130 \pm 3 \text{ ms}$		<i>IT</i> 82.5; ϵ 17.5; $\epsilon \alpha$ 0.03			
		25	5/2+	-8.9161 (5)	$7.183 \pm 0.012 \ { m s}$		$\epsilon \ 100$			
		26	5+	-12.2101 (6)	$7.17E+5 \pm 0.24E+5 y$		$\epsilon 100$			
		26m	0+	-11.9818 (6)	6.3464 ± 7.0 E-4 s	1000/	$\epsilon 100$			
		27	5/2+	-17.1967 (10)		100%	2- 102			
		28	3+ 5 / 2 ·	-16.8504 (12)	2.2414 ± 0.0012 m		β 100			
		29	5/2+	-18.2153(12)	6.56 ± 0.06 m		β 100 β = 100			
		30 21	3+	-13.072(14) 14.055(20)	5.62 ± 0.06 S		β 100 β^{-} 100			
		31	(3/2,3/2)+	-14.955(20)	044 ± 25 ms		β 100 β^{-} 100; β^{-} ≈ 0.7			
		32	$(5/2)_{\perp}$	-11.00(9) -8.44(7)	33.0 ± 0.2 ms		β^{-} 100, β^{-} n 0.7 β^{-} n 8.5: β^{-} 100			
		34	$(3/2)^+$	-3.05.(6)	41.7 ± 0.2 ms 42 ± 6 ms		$\beta^{-} 100; \beta^{-} n 27$			
		35	0	-0.22(7)	42 ± 0.08 ms		β^{-} 100; β^{-} $n 27$ β^{-} 100; β^{-} $n 38$			
		36	õ	5.95 (10)	90 + 40 ms		β^{-} 100; $\beta^{-}n < 31.00$			
		37	Ő	9.81 (12)	$10.7 \pm 1.3 \mathrm{ms}$		β^- 100			
		38	õ	16.21 (25)	$7.6 \pm 0.6 \mathrm{ms}$		$\beta^-:\beta^-n$			
		39	0	21 (6)	$7.6 \pm 1.6 \text{ ms}$		$\beta^- n : \beta^-$			
14	Si	22	0+	33 (4)	$29 \pm 2 \text{ ms}$		ϵ 100; ϵp 32			
		23	(5/2)+	23.1 (4)	$42.3\pm0.4~\mathrm{ms}$		ϵ 100; ϵp 71; $\epsilon 2p$ 3.6			
		24	0+	10.755 (19)	$140.5\pm1.5~\mathrm{ms}$		ϵ 100; ϵp 45			
		25	5/2+	3.827 (10)	$220\pm3\ ms$		ϵ 100; ϵp 35			

				Table 1	0.1 – Continued from prea	vious page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		26	0+	-7.1409 (11)	$2.229\pm0.003~\mathrm{s}$		ϵ 100
		27	5/2+	-12.3843 (14)	$4.15\pm0.04~{\rm s}$		$\epsilon \ 100$
		28	0+	-21.4927 (4)	stable	$92.223\% \pm 0.019\%$	
		29	1/2+	-21.895 (5)	stable	$4.685\% \pm 0.008\%$	
		30	0+	-24.4329 (22)	stable	$3.092\% \pm 0.011\%$	
		31	3/2+	-22.949 (4)	$157.3\pm0.3~\mathrm{m}$		eta^- 100
		32	0+	-24.0776 (3)	$153\pm19~\mathrm{y}$		eta^- 100
		33	3/2+	-20.5143 (7)	$6.11\pm0.21~{\rm s}$		eta^- 100
		34	0+	-19.957 (14)	$2.77\pm0.2~{\rm s}$		eta^- 100
		35	0	-14.36 (4)	$0.78\pm0.12~{\rm s}$		eta^- 100; $eta^- n < 5.00$
		36	0+	-12.42 (6)	$0.45\pm0.06~{\rm s}$		eta^- 100; $eta^-n <$ 10.00
		37	(7/2-)	-6.59 (8)	$90\pm60~\mathrm{ms}$		eta^- 100; eta^-n 17
		39	0	2.32 (9)	$47.5\pm2~\mathrm{ms}$		eta^- ; $eta^- n$
		40	0+	5.43 (23)	$33.0 \pm 1 \text{ ms}$		eta^- ; $eta^- n$
		41	0	12.1 (4)	$20.0\pm2.5~\mathrm{ms}$		eta^- ; $eta^- n$?
		42	0+	16.6 (5)	$12.5\pm3.5~\text{ms}$		eta^- 100; $eta^- n$
15	Р	26	(3+)	10.97 (20)	$43.7\pm0.6~\mathrm{ms}$		ϵ 100; ϵp
		27	1/2+	-0.72 (3)	$260\pm80~ms$		ϵp 0.07; ϵ 100
		28	3+	-7.149 (11)	$270.3\pm0.5~\mathrm{ms}$		ϵ 100; ϵp 0.0013;
							$\epsilon \alpha \ 0.00086$
		29	1/2+	-16.9526 (6)	$4.142\pm0.015~\mathrm{s}$		$\epsilon \ 100$
		30	1+	-20.2006 (3)	$2.498\pm0.004~\text{m}$		$\epsilon \ 100$
		31	1/2+	-24.4405 (7)	stable	100%	
		32	1+	-24.3048 (4)	$14.262 \pm 0.014 \text{ d}$		eta^- 100
		33	1/2+	-26.3373 (11)	$25.35 \pm 0.11 \text{ d}$		eta^- 100
		34	1+	-24.5486 (8)	$12.43\pm0.08~\mathrm{s}$		β^- 100
		35	1/2+	-24.8578 (19)	$47.3\pm0.7~{\rm s}$		eta^- 100
		36	4-	-20.251 (13)	$5.6\pm0.3~{ m s}$		eta^- 100
		37	0	-19 (4)	$2.31\pm0.13~{\rm s}$		eta^- 100
		38	(0-:4-)	-14.64 (7)	$0.64\pm0.14~{ m s}$		eta^- 100; eta^-n 12
		39	(1/2+)	-12.8 (8)	$0.28\pm0.04~\mathrm{s}$		eta^- 100; eta^-n 26
		40	(2-,3-)	-8.07 (11)	$125\pm25~\mathrm{ms}$		eta^- 100; eta^-n 15.8
		41	(1/2+)	-4.98 (8)	$100 \pm 5 \text{ ms}$		eta^- 100; $eta^- n$ 30
		42	0	1.01 (21)	$48.5\pm1.5~\mathrm{ms}$		eta^- 100; eta^-n 50
		43	(1/2+)	4.7 (4)	$36.5\pm1.5~\mathrm{ms}$		eta^- 100; eta^-n 100
		44	0	10.4 (8)	$18.5\pm2.5~\mathrm{ms}$		eta^- ; $eta^- n$
16	S	27	(5/2+)	17 (4)	$15.5\pm1.5~\mathrm{ms}$		$\epsilon p \; 2.3; \epsilon 2p \; 1.1; \epsilon \; 100$
		28	0+	4.07 (16)	$125\pm10~\mathrm{ms}$		ϵ 100; ϵp 20.7
		29	5/2+	-3.16 (5)	$187 \pm 4 \text{ ms}$		ϵ 100; ϵp 47
		30	0+	-14.062 (3)	$1.178 \pm 0.005 \text{ s}$		ϵ 100
		31	1/2+	-19.043 (10)	$2.572 \pm 0.013 \text{ s}$		ϵ 100
		32	0+	-26.0155 (13)	stable	$94.99\% \pm 0.26\%$	
		33	3/2+	-26.5858 (14)	stable	$0.75\% \pm 0.02\%$	
		34	0+	-29.9316 (6)	stable	$4.25\% \pm 0.24\%$	
		35	3/2+	-28.8461 (4)	$87.37 \pm 0.04 \text{ d}$		eta^- 100
		36	0+	-30.6641 (19)	stable	$0.01\% \pm 0.01\%$	
		37	7/2-	-26.8964 (20)	$5.05 \pm 0.02 \text{ m}$		β^- 100
		38	0+	-26.861 (7)	$170.3 \pm 0.7 \text{ m}$		β^- 100
		39	(7/2)-	-23.16 (5)	$11.5\pm0.5~\mathrm{s}$		β^- 100
		40	0+	-22.93 (11)	$8.8\pm2.2\mathrm{s}$		β^- 100
		41	(7/2-)	-19.09 (6)	$1.99 \pm 0.05 \text{ s}$		eta^- 100; $eta^- n$
		42	0+	-17.68 (12)	$1.03 \pm 0.03 \text{ s}$		β^- 100
		43	0	-12.07 (10)	$0.28 \pm 0.03 \text{ s}$		$\frac{\beta^- n 40; \beta^- 100}{2}$
							Continued on next page

	Table 10.1 – Continued from previous page								
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode		
		44	0+	-9.1 (14)	$100 \pm 1 \text{ ms}$		eta^- 100; eta^-n 18		
		45	0	-4 (7)	$68 \pm 2 \text{ ms}$		eta^- 100; eta^-n 54		
		46	0+	0 (AP)	$50 \pm 8 \text{ ms}$		β^- 100		
17	Cl	31	0	-7.07 (5)	$150\pm25~\mathrm{ms}$		ϵ 100; ϵp 0.7		
		32	1+	-13.3351 (9)	$298 \pm 1 \text{ ms}$		ϵ 100; $\epsilon \alpha$ 0.05; ϵp 0.03		
		33	3/2+	-21.0032 (4)	$2.511 \pm 0.004 \text{ s}$		$\epsilon 100$		
		34	0+	-24.44 (7)	$1.5264 \pm 0.0014 \mathrm{~s}$		$\epsilon 100$		
		34m	3+	-24.2936 (7)	32.00 ± 0.04 m		ϵ 55.4; IT 44.6		
		35	3/2+	-29.0135 (4)	stable	$75.76\% \pm 0.1\%$			
		36	2+	-29.5219 (4)	$3.01E+5 \pm 0.02E+5 y$		β^- 98.1; ϵ 1.9		
		37	3/2+	-31.7615 (5)	stable	$24.24\% \pm 0.1\%$			
		38	2-	-29.7981 (10)	$37.24 \pm 0.05 \text{ m}$		β^- 100		
		38m	5-	-29.1267 (10)	$715 \pm 3 \text{ ms}$		<i>IT</i> 100		
		39	3/2+	-29.8002 (17)	56.2 ± 0.6 m		β^- 100		
		40	2-	-27.56 (3)	1.35 ± 0.02 m		β^- 100		
		41	(1/2+)	-27.31 (7)	$38.4 \pm 0.8 \text{ s}$		β^- 100		
		42	0	-24.91 (14)	$6.8\pm0.3\mathrm{s}$		β^- 100		
		43	(1/2+)	-24.41 (21)	$3.13 \pm 0.09 \text{ s}$		β^{-} 100		
		44	(2-)	-20.61 (14)	$0.56 \pm 0.11 \text{ s}$		eta^- 100; $eta^- n < 8.00$		
		45	(1/2+)	-18.36 (10)	$413 \pm 25 \text{ ms}$		eta^- 100; eta^-n 24		
		46	0	-13.81 (16)	$232 \pm 2 \text{ ms}$		eta^- 100; eta^-n 60		
		47	0	-10.1 (8)	$101 \pm 6 \text{ ms}$		eta^- 100; $eta^-n > 0.00$		
18	Ar	31	5/2(+)	11.29 (21)	$14.4\pm0.6~\mathrm{ms}$		ϵ 100; ϵp 62; $\epsilon 2p$ 8.5		
		32	0+	-2.2003 (18)	$100.5\pm0.3~\mathrm{ms}$		ϵ 100; ϵp 35.6		
		33	1/2+	-9.3843 (4)	$173.0 \pm 2 \text{ ms}$		ϵ 100; ϵp 38.7		
		34	0+	-18.3773 (3)	$844.5 \pm 3.4 \text{ ms}$		$\epsilon 100$		
		35	3/2+	-23.0473 (7)	$1.7756 \pm 0.001 \text{ s}$		$\epsilon 100$		
		36	0+	-30.2315 (3)	stable	$0.3336\% \pm 0.0021\%$			
		37	3/2+	-30.9476 (21)	35.04 ± 0.04 d		$\epsilon \ 100$		
		38	0+	-34.7147 (25)	stable	$0.0629\% \pm 0.000\%$			
		39	7/2-	-33.242 (5)	$269 \pm 3 \text{ y}$		β^- 100		
		40	0+	-35.0398 (22)	stable	$99.6035\% \pm 0.0025\%$			
		41	7/2-	-33.0675 (3)	$109.61 \pm 0.04 \text{ m}$		β^- 100		
		42	0+	-34.423 (6)	$32.9 \pm 1.1 \text{ y}$		β^- 100		
		43	(5/2-)	-32.01 (5)	$5.37 \pm 0.06 \text{ m}$		β^- 100		
		44	0+	-32.6732 (16)	11.87 ± 0.05 m		β^- 100		
		45	5/2-,7/2-	-29.7707 (5)	$21.48 \pm 0.15 \text{ s}$		β^- 100		
		46	0+	-29.73 (4)	$8.4 \pm 0.6 \mathrm{s}$		$\beta^{-} 100$		
		47	(3/2)-	-25.21 (9)	$1.23 \pm 0.03 \text{ s}$		β^{-} 100; $\beta^{-}n < 0.20$		
		48	0+	-22.6 (7)	$475 \pm 40 \text{ ms}$		β^- 100		
		49	0	-16.8 (8)	$1/0 \pm 50 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 65		
4.0	• -	50	0+	-12.8 (9)	$85 \pm 30 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 35		
19	K	35	3/2+	-11.1729 (5)	$1/8 \pm 8 {\rm ms}$		ϵ 100; ϵp 0.37		
		36	2+	-17.4173 (3)	$342 \pm 2 \text{ ms}$		$\epsilon \ 100; \epsilon p \ 0.05; \epsilon \alpha \ 0.0034$		
		37	3/2+	-24.8001 (9)	1.226 ± 0.007 s		€ 100		
		38	3+	-28.8006 (25)	7.636 ± 0.018 m		€ 100		
		38m	0+	-28.6702 (25)	$924.3 \pm 0.3 \text{ ms}$		ϵ 99.97; IT 0.03		
		39	3/2+	-33.8071 (5)	stable	$93.2581\% \pm 0.0044\%$	2- 00 0 0 1 2 -		
		40	4-	-33.5354 (6)	$1.248E+9 \pm 0.003E+9 \text{ y}$	$0.0117\% \pm 0.0001\%$	β^{-} 89.28; ϵ 10.72		
		41	3/2+	-35.5595 (4)	stable	$6.7302\% \pm 0.0044\%$	2- 100		
		42	2-	-35.022 (11)	12.321 ± 0.025 h		$\beta^{-} 100$		
		43	3/2+	-36.5753 (4)	22.3 ± 0.1 h		$\beta^{-} 100$		
		44	2-	-35.7814 (4)	22.13 ± 0.19 m		β ⁻ 100		
							Continued on next page		

				Table	10.1 – Continued from previ	ous page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		45	3/2+	-36.6156 (5)	$17.81\pm0.61~\mathrm{m}$		β^- 100
		46	(2-)	-35.4139 (7)	$105\pm10~{ m s}$		eta^- 100
		47	1/2+	-35.709 (3)	$17.50\pm0.24~\mathrm{s}$		β^- 100
		48	(2-)	-32.2852 (23)	$6.8\pm0.2~\mathrm{s}$		eta^- 100; $eta^- n$ 1.14
		49	(1/2+,3/2	.+)-29.612 (3)	$1.26\pm0.05~\mathrm{s}$		eta^- 100; eta^-n 86
		50	(0-,1-,2-)	-25.736 (10)	$472\pm4~\mathrm{ms}$		eta^- 100; $eta^- n$ 29
		51	(1/2+,3/2	2+)-21.6 (6)	$365\pm5\mathrm{ms}$		$eta^- n$ 47; eta^- 100
		52	(2-)	-16 (7)	$118\pm 6~\mathrm{ms}$		eta^- 100; $eta^-npprox$ 73.00
		53	(3/2+)	-11.1 (7)	$30\pm5~\mathrm{ms}$		$\beta^{-} 100; \ \beta^{-}n \approx 75.00; \ \beta^{-}2n < 10$
		54	0	-4.3 (9)	$10\pm5~\mathrm{ms}$		β^{-} 100; $\beta^{-}n > 0.00$
20	Ca	35	0	4.79 (20)	$25.7\pm0.2~\mathrm{ms}$		ϵ 100; ϵp 95.9; $\epsilon 2p$ 4.1
		36	0+	-6.45 (4)	$102\pm2~\mathrm{ms}$		ϵ 100; ϵp 54.3
		37	3/2+	-13.1357 (8)	$181.1\pm1~\mathrm{ms}$		ϵ 100; ϵp 82.1
		38	0+	-22.0584 (3)	$440\pm12~\mathrm{ms}$		<i>ϵ</i> 100
		39	3/2+	-27.2827 (6)	$859.6\pm1.4~\mathrm{ms}$		ϵ 100
		40	0+	-34.8463 (21)	> 3.0E+21 y	$96.94\% \pm 0.16\%$	2ϵ
		41	7/2-	-35.1379 (14)	$1.02E+5 \pm 0.07E+5 \text{ y}$		ϵ 100
		42	0+	-38.5472 (15)	stable	$0.647\% \pm 0.023\%$	
		43	7/2-	-38.4089 (23)	stable	$0.135\% \pm 0.01\%$	
		44	0+	-41.4688 (3)	stable	$2.09\% \pm 0.11\%$	
		45	7/2-	-40.8123 (4)	$162.61 \pm 0.09 \text{ d}$		β^- 100
		46	0+	-43.1399 (22)	> 0.28E+16 y	$0.004\% \pm 0.003\%$	$2\beta^-$
		47	7/2-	-42.345 (22)	$4.536 \pm 0.003 \text{ d}$		β^- 100
		48	0+	-44.2234 (22)	> 5.8E22 y	$0.187\% \pm 0.021\%$	$2\beta^-$ 75
		49	3/2-	-41.2986 (22)	8.718 ± 0.006 m		β^- 100
		50	0+	-39.588 (3)	$13.9\pm0.6~\mathrm{s}$		β^- 100
		51	(3/2-)	-35.87 (9)	$10.0\pm0.8~{ m s}$		eta^- 100; $eta^- n$
		52	0+	-32.5 (7)	$4.6\pm0.3~{ m s}$		eta^- 100; $eta^-n \leq$ 2.00
		53	(3/2- ,5/2-)	-27.5 (5)	$90\pm15~\text{ms}$		eta^- 100; $eta^-n>$ 30.00
		54	0+	-23 (7)	$86\pm7~\mathrm{ms}$		β^- 100
		55	(5/2-)	-17 (8)	$22\pm2~ms$		eta^- 100; $eta^- n$
		56	0+	-12.4 (9)	$11\pm2~\mathrm{ms}$		eta^- ; $eta^- n$?
21	Sc	40	4-	-20.523 (3)	$182.3\pm0.7~\mathrm{ms}$		ϵ 100; ϵp 0.44; $\epsilon \alpha$ 0.02
		41	7/2-	-28.6424 (8)	$596.3\pm1.7~\mathrm{ms}$		ϵ 100
		42	0+	-32.1211 (17)	$681.3\pm0.7~\mathrm{ms}$		ϵ 100
		42m	(7)+	-31.5048 (17)	$61.7\pm0.4~\mathrm{s}$		ϵ 100
		43	7/2-	-36.1881 (19)	$3.891\pm0.012~h$		$\epsilon \ 100$
		44	2+	-37.8163 (18)	$3.97\pm0.04~h$		$\epsilon \ 100$
		44m	6+	-37.5453 (18)	$58.61\pm0.1~\mathrm{h}$		IT 98.8; ϵ 1.2
		45	7/2-	-41.0703 (6)	stable	100%	
		45m	3/2+	-41.0579 (6)	$318\pm7~\mathrm{ms}$		<i>IT</i> 100
		46	4+	-41.7596 (6)	$83.79 \pm 0.04 \text{ d}$		β^- 100
		46m	1-	-41.6171 (6)	$18.75\pm0.04~\mathrm{s}$		<i>IT</i> 100
		47	7/2-	-44.3367 (19)	$3.3492\pm6.0\text{E-}4\text{ d}$		eta^- 100
		48	6+	-44.503 (5)	$43.67\pm0.09~h$		eta^- 100
		49	7/2-	-46.56 (3)	$57.18\pm0.13~\mathrm{m}$		eta^- 100
		50	5+	-44.546 (15)	$102.5\pm0.5~s$		eta^- 100
		50m	2+,3+	-44.289 (15)	$0.35\pm0.04~{\rm s}$		$IT > 97.50; \beta^- < 2.50$
		51	(7/2)-	-43.227 (20)	$12.4\pm0.1~{\rm s}$		eta^- 100
		52	3(+)	-40.36 (19)	$8.2\pm0.2~{ m s}$		eta^- 100
		53	(7/2-)	-37.5 (3)	$2.4\pm0.6~{ m s}$		β^- 100; β^-n ?

Table 10.1 – Continued from previous page									
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode		
		54	(3)+	-33.7 (5)	$526\pm15~\mathrm{ms}$		$\beta^- 100$		
		55	(7/2)-	-29.6 (7)	$96\pm2~ms$		eta^- 100; $eta^- n$ 17		
		56	(1+)	-24.5 (7)	$26\pm 6~\mathrm{ms}$		eta^- 100; eta^-n ?; eta^- 100;		
							$\beta^- n > 14.00$		
		57	(7/2-)	-20.1 (7)	$22 \pm 2 \text{ ms}$		eta^- 100; $eta^- n$		
		58	0	-14.4 (8)	$12\pm5~\mathrm{ms}$		eta^- 100; $eta^- n$		
22	Ti	39	(3/2+)	2.2 (3)	31 +6-4 ms		ϵ 100; ϵp 100		
		40	0+	-8.85 (16)	$52.4\pm0.3~\mathrm{ms}$		ϵ ; ϵp 97.5		
		41	3/2+	-15.1 (4)	$80.4\pm0.9~\mathrm{ms}$		ϵ 100; ϵp 100		
		42	0+	-25.1046 (3)	$199\pm 6~\mathrm{ms}$		$\epsilon \ 100$		
		43	7/2-	-29.321 (7)	$509\pm5~\mathrm{ms}$		ϵ 100		
		44	0+	-37.5485 (7)	$60.0\pm1.1~{ m y}$		$\epsilon \ 100$		
		45	7/2-	-39.0083 (8)	184.8 ± 0.5 m		$\epsilon 100$		
		46	0+	-44.127 (3)	stable	$8.25\% \pm 0.03\%$			
		47	5/2-	-44.9364 (4)	stable	$7.44\% \pm 0.02\%$			
		48	0+	-48.4917 (4)	stable	$73.72\%\pm 0.03\%$			
		49	7/2-	-48.5628 (4)	stable	$5.41\% \pm 0.02\%$			
		50	0+	-51.4307 (4)	stable	$5.18\% \pm 0.02\%$			
		51	3/2-	-49.7318 (6)	5.76 ± 0.01 m		eta^- 100		
		52	0+	-49.469 (7)	1.7 ± 0.1 m		β^- 100		
		53	(3/2)-	-46.83 (10)	$32.7\pm0.9~\mathrm{s}$		eta^- 100		
		54	0+	-45.59 (12)	$1.5\pm0.4~{ m s}$		eta^- 100		
		55	(1/2)-	-41.67 (15)	$1.3\pm0.1~{ m s}$		eta^- 100		
		56	0+	-38.94 (20)	$0.200 \pm 0.005 \text{ s}$		$eta^- n$; eta^- 100		
		57	(5/2-)	-33.5 (5)	$98 \pm 5 \text{ ms}$		eta^- 100; $eta^- n$		
		58	0+	-30.7 (5)	$57 \pm 10 \text{ ms}$		eta^- 100; $eta^- n$		
		59	(5/2-)	-25 (5)	$27.5 \pm 2.5 \text{ ms}$		β^- 100		
		60	0+	-21.5 (6)	$22.4 \pm 2.5 \text{ ms}$		β^{-}		
		61	(1/2-)	-15.5 (7)	$15 \pm 4 \text{ ms}$		eta^- 100; $eta^- n$		
23	V	43	0	-18.02 (23)	$79.3 \pm 2.4 \text{ ms}$		$\epsilon 100$		
		44	(2+)	-24.12 (12)	$111 \pm 7 \text{ ms}$		$\epsilon 100; \epsilon \alpha; \epsilon 100$		
		45	7/2-	-31.88 (17)	$547 \pm 6 \text{ ms}$		$\epsilon 100$		
		46	0+	-37.0744 (3)	$422.50 \pm 0.11 \text{ ms}$		$\epsilon 100$		
		46m	3+	-36.2729 (3)	$1.02 \pm 0.07 \text{ ms}$		117100		
		47	3/2-	-42.0056(3)	$32.6 \pm 0.3 \text{ m}$		ϵ 100		
		48	4+	-44.4764 (11)	15.9735 ± 0.0025 d		$\epsilon 100$		
		49	1/2-	-47.9609 (9)	$330 \pm 15 \text{ d}$		$\epsilon 100$		
		50 E1	0+ 7/2	-49.224 (9)	> 2.1E+17 y	$0.25\% \pm 0.002\%$	$\epsilon > 92.90; \beta < 7.10$		
		51	7/2-	-32.2039 (9)	$2.742 \pm 0.005 m$	99.75% ± 0.002%	2= 100		
		52	3+ 7/2	-51.4456(9)	3.743 ± 0.003 III 1 542 ± 0.014 m		β 100 β 100		
		55 54	2	-31.63(3)	1.343 ± 0.014 III 40.8 ± 0.5 c		β 100 β^{-} 100		
		54 55	(7/2)	-49.692 (13)	49.8 ± 0.3 S		β 100 β 100		
		55 E6	(//2-)	-49.13(10)	0.34 ± 0.15 s		$\beta = 100$		
		56 57	1+ (7/2)	-40.00(20)	0.210 ± 0.004 s		β 100; β n		
		57	$(7/2^{-})$	-44.19 (23)	0.32 ± 0.03 S		$\beta = 100; \beta = n$		
		50	(1+)	-40.21(23)	$97 \pm 2 \text{ ms}$		$\beta = 100; \beta = n$ $\beta^{-} = 100; \beta^{-} = \pi < 2.00$		
		60	(372-)	-37.1(3)	$97 \pm 2 \text{ ms}$		$\beta = 100; \beta = n < 3.00$		
		60	0	-32.6 (5)	$68 \pm 5 \text{ ms}$		β ; β n; β 100; β n; β^{-} 100		
		61	(3/2-)	-29.5 (3)	$52.6\pm4.2\ ms$		eta^- 100; $eta^-n \ge 6.00$		
		62	0	-24.6 (4)	$33.5\pm2\ ms$		eta^- 100; $eta^- n$		
		63	7/2-	-21.1 (5)	$19.2\pm2.4\ \mathrm{ms}$		eta^- 100; $eta^-npprox$ 35.00		
		64	0	-15.6 (5)	$19\pm8ms$		eta^- 100		
24	Cr	42	0+	6.5 (3)	$13.3\pm1~\mathrm{ms}$		ϵ 100; ϵp 94.4		

				Table	10.1 – Continued from previ	ous page	
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		43	(3/2+)	-1.94 (20)	$20.6\pm0.9~\text{ms}$		ϵ 100; ϵp 81; $\epsilon 2p$ 7.1; $\epsilon 3p$ 0.08
		44	0+	-13.14 (20)	$42.8\pm0.6~\mathrm{ms}$		$\epsilon p 14; \epsilon 100$
		45	(7/2-)	-19.4 (20)	$60.9\pm0.4~\mathrm{ms}$		ϵ 100; ϵp 34.4
		46	0+	-29.473 (20)	$0.26 \pm 0.06 \text{ s}$		$\epsilon 100$
		47	3/2-	-34.558 (14)	$500 \pm 15 \mathrm{ms}$		$\epsilon 100$
		48	0+	-42 822 (7)	21.56 ± 0.03 h		ε 100
		10 49	5/2-	-45 3329 (24)	42.3 ± 0.1 m		€ 100
		50	0+	-50 2619 (9)	> 1.3F + 18 v	$4345\% \pm 0.013\%$	2
		51	7/2-	-51 4512 (9)	277025 ± 0.0024 d	4.04070 ± 0.01070	<pre>20 < 100</pre>
		52	0+	-55 418 (6)	stable	$83.789\% \pm 0.018\%$	
		53	3/2-	-55 2858 (6)	stable	$9501\% \pm 0.017\%$	
		54	0+	-56 9336 (6)	stable	$2.365\% \pm 0.007\%$	
		55	3/2-	-55 1086 (6)	3497 ± 0.003 m	2.000 /0 ± 0.007 /0	β^{-} 100
		56	0+	-55 2812 (19)	5.94 ± 0.000 m		β^{-} 100
		57	$(3/2)_{-}$	$-52\ 5241\ (19)$	211 ± 1 s		β^{-} 100
		58	(0, 2)	-51 83 (20)	70 ± 0.3 s		β^{-} 100
		59	(1/2)	-47 89 (24)	1.05 ± 0.09 s		β^{-} 100
		60	(1/2)	-465(21)	0.49 ± 0.01 s		β^{-} 100
		61	(5/2-)	-42 2 (3)	$243 \pm 11 \text{ ms}$		β^{-} 100 $\beta^{-}n$
		62	(572) 0±	-40.4 (3)	210 ± 11 ms 206 ± 12 ms		β^{-} 100; $\beta^{-}n$ β^{-} 100; $\beta^{-}n$
		63	1/2-	-35.6 (3)	120 ± 12 ms		β^{-} 100; $\beta^{-}n$ β^{-} 100; $\beta^{-}n$
		64	1/2- 0+	-33 3 (3)	42 + 2 ms		β^{-} 100, β^{-} n^{-}
		65	$(1/2_{-})$	-27.8 (3)	$\frac{42}{28} \pm 2$ ms		β 100 β^{-} 100
		66	(1/2)	-24 3 (5)	20 ± 0 ms		β^{-} 100
25	Mn	46	(4+)	-11 96 (11)	26 ± 404 ms		5 100 en 57
20	14111	47	$(\frac{1}{5}/2)$	-22 26 (16)	88.0 ± 1.3 ms		$\epsilon 100; \epsilon p < 1.70$
		48	(572) 4±	-29 32 (11)	158.1 ± 2.2 ms		$\epsilon 100; \epsilon p < 1.70$
		40	5/2-	-37 615 (24)	$382 \pm 7 \text{ ms}$		€ 100, €p 0.20, €a < 0.01 4
		50	0+	-42 6274 (9)	283.19 ± 0.1 ms		€ 100 € 100
		50m	5+	-42 4021 (9)	1.75 ± 0.03 m		€ 100 € 100
		51	5/2-	-48 2437 (9)	46.2 ± 0.00 m		€ 100 € 100
		52	6+ 6+	$-50\ 7068\ (19)$	5591 ± 0.003 d		€ 100
		52m	2+	-50 3291 (19)	21.1 ± 0.2 m		e 100 e 98 25: IT 1 75
		53	7/2-	-54 689 (6)	374F+6+0.04F+6v		€ 100
		54	3+	-55 5565 (12)	$312 12 \pm 0.06 d$		$\epsilon 100^{\circ} \beta^- < 2.9 \text{F-}4$
		55	5/2-	-57 7117 (4)	stable	100%	C 100, <i>p</i> < 2.5E 4
		56	3+	-56 9108 (5)	25789 ± 10 F-4 h	10070	β^{-} 100
		57	5/2-	-57 4861 (15)	854 ± 1.02 III		β^{-} 100
		58	1+	-55 827 (3)	30 ± 0.1 s		β^{-} 100
		58m	4+	-55 756 (3)	65.4 ± 0.15		$\beta^{-} \approx 90.00$ $IT \approx 10.00$
		59	(5/2)-	-55 5252 (23)	459 ± 0.05 s		$\beta^- \approx 50.00, 11 \approx 10.00$ $\beta^- 100$
		60	(5/2) 1+	-52 9678 (23)	0.28 ± 0.02 s		β^{-} 100
		60m	4+	-52 6959 (23)	1.77 ± 0.02 s		β^{-} 88 5. <i>IT</i> 11 5
		61	(5/2)-	-51 742 (23)	0.67 ± 0.04 s		β^{-} 100
		62	(3+)	-48 181 (3)	$671 \pm 5 \text{ ms}$		β^{-} 100 $\beta^{-}n + \beta^{-}n $
		<u> </u>					$\beta^{-} 100$
		63	5/2-	-46.887 (4)	$0.275 \pm 0.004 \text{ s}$		β^{-} 100; $\beta^{-}n$
		64 (5	(1+)	-42.989 (4)	$90 \pm 4 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 33
		65	(5/2-)	-40.967(4)	$84 \pm 8 \text{ ms}$		$\beta 100$
		66		-36.75 (11)	$65 \pm 2 \text{ ms}$		$\beta 100$
		67	(5/2+)	-32.8 (4)	$51 \pm 4 \text{ ms}$		β 100; β $n > 10.0$
		68	(>3) E (2	-28(5)	$28 \pm 3 \text{ ms}$		$\beta n; \beta 100$
		69	5/2-	-24.4 (6)	$18 \pm 4 \text{ ms}$		β 100

_				Table	10.1 – Continued from previ	ious page	
Z	El	A	J^{π}	Δ [MeV]	$\mathrm{T}_{1/2},\Gamma$	Abundance	Decay Mode
26	Fe	45	(3/2+)	13.79 (20)	1.89 +0.49-0.21 ms		$\epsilon 3p \ 3.3; \ 2p \ 70; \ \epsilon \leq 30.00;$
			0				$\epsilon p 19; \epsilon 2p 7.8$
		46	0+	0.8 (4)	$13.0 \pm 2 \text{ ms}$		ϵ 100; ϵp 78.7
		47	(7/2-)	-6.6 (3)	$21.9 \pm 0.2 \text{ ms}$		ϵ 100; ϵp 88.4; $\epsilon 2 p$
		48	0+	-18.16 (7)	$45.3 \pm 0.6 \text{ ms}$		ϵ 100; ϵp 15.9
		49	(7/2-)	-24.82 (15)	$64.7\pm0.3~\mathrm{ms}$		ϵ 100; ϵp 56.7
		50	0+	-34.49 (6)	$155\pm11~\mathrm{ms}$		ϵ 100; ϵp ?
		51	5/2-	-40.221 (15)	$305\pm5~\mathrm{ms}$		$\epsilon \ 100$
		52	0+	-48.333 (7)	8.275 ± 0.008 h		ϵ 100
		52m	12+	-41.375 (7)	$45.9\pm0.6~\mathrm{s}$		ϵ 100; $IT <$ 4.0E-3
		53	7/2-	-50.9467 (17)	8.51 ± 0.02 m		ϵ 100
		53m	19/2-	-47.9063 (17)	2.54 ± 0.02 m		<i>IT</i> 100
		54	0+	-56.2538 (5)	stable	$5.845\%\pm 0.035\%$	
		55	3/2-	-57.4806 (5)	$2.744 \pm 0.009 \text{ y}$		$\epsilon \ 100$
		56	0+	-60.6063 (5)	stable	$91.754\% \pm 0.036\%$	
		57	1/2-	-60.1811 (5)	stable	$2.119\% \pm 0.01\%$	
		58	0+	-62.1544 (5)	stable	$0.282\% \pm 0.004\%$	
		59	3/2-	-60.6641 (5)	$44.495 \pm 0.009 \text{ d}$		eta^- 100
		60	0+	-61.413 (3)	$2.62E+6 \pm 0.04E+6$ y		eta^- 100
		61	3/2-,5/2-	-58.92 (3)	$5.98\pm0.06~\mathrm{m}$		eta^- 100
		62	0+	-58.878 (3)	$68\pm2~{ m s}$		eta^- 100
		63	(5/2-)	-55.636 (4)	$6.1\pm0.6~{ m s}$		eta^- 100
		64	0+	-54.969 (5)	$2.0\pm0.2~{ m s}$		eta^- 100
		65	(1/2-)	-51.221 (7)	$0.81\pm0.05~{ m s}$		β^- 100
		65m	(9/2+)	-50.819 (7)	$1.12\pm0.15~{ m s}$		β^- 100
		66	0+	-50.068 (4)	$440\pm 60~\mathrm{ms}$		β^- 100
		67	(1/2-)	-45.7 (4)	$0.40\pm0.04~{ m s}$		β^- 100
		68	0+	-43.1 (7)	$180\pm19~\mathrm{ms}$		β^- 100
		69	1/2-	-38.4 (5)	$110\pm 6~\mathrm{ms}$		β^- 100
		70	0+	-36.3 (6)	$71\pm10~\mathrm{ms}$		β^- 100
		71	0	-31 (8)	$28\pm5\mathrm{ms}$		β^- 100; $\beta^- n$
27	Со	50	(6+)	-17.19 (17)	$38.8\pm0.2~\mathrm{ms}$		ϵ 100; ϵp 70.5; $\epsilon 2p$
		52	(6+)	-33.92 (7)	$115\pm23~\mathrm{ms}$		$\epsilon 100$
		53	(7/2-)	-42.6585 (18)	$240\pm9~ms$		$\epsilon \ 100$
		53m	(19/2-)	-39.4615 (18)	$247\pm12~\mathrm{ms}$		$\epsilon \approx 98.50; p \approx 1.50$
		54	0+	-48.0092 (5)	$193.28\pm0.07~\mathrm{ms}$		<i>ϵ</i> 100
		54m	7+	-47.8122 (5)	$1.48\pm0.02~\mathrm{m}$		$\epsilon \ 100$
		55	7/2-	-54.0292 (5)	$17.53\pm0.03~\mathrm{h}$		$\epsilon \ 100$
		56	4+	-56.0397 (6)	$77.236 \pm 0.026 \text{ d}$		$\epsilon \ 100$
		57	7/2-	-59.3449 (6)	$271.74 \pm 0.06 \text{ d}$		$\epsilon \ 100$
		58	2+	-59.8465 (12)	$70.86 \pm 0.06 \text{ d}$		$\epsilon \ 100$
		58m	5+	-59.8215 (12)	$9.10\pm0.09~\mathrm{h}$		<i>IT</i> 100
		59	7/2-	-62.229 (5)	stable	100%	
		60	5+	-61.6496 (5)	1925.28 ± 0.14 d		β^{-} 100
		60m	2+	-61.591 (5)	10.467 ± 0.006 m		IT 99.76; β^{-} 0.24
		61	7/2-	-62.8975 (9)	1.650 ± 0.005 h		β^{-} 100
		62	2+	-61.431 (20)	1.50 ± 0.04 m		β^- 100
		62m	5+	-61.409 (20)	$13.91 \pm 0.05 \text{ m}$		$\beta^- > 99.00$: $TT < 1.00$
		63	7/2-	-61.839 (20)	27.4 ± 0.5 s		β^{-} 100
		64	1+	-59,792 (20)	0.30 ± 0.03 s		β^{-} 100
		65	(7/2)-	-59,1851 (21)	1.16 ± 0.03 s		β^- 100
		66	(3+)	-56.408 (14)	0.20 ± 0.00 s		β^- 100
		67	(7/2-)	-55 322 (6)	0.20 ± 0.025		β^{-} 100
		07	(1 / 4-)	00.022 (0)	0.120 ± 0.02 3		Continued on next nace

	Table 10.1 – Continued from previous page									
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode			
		68	(7-)	-51.91 (13)	$0.199\pm0.021~s$		eta^- 100; eta^- 100			
		69	7/2-	-50 (3)	$229\pm24~\mathrm{ms}$		eta^- 100			
		70	(6-)	-45.6 (8)	$108\pm7~\mathrm{ms}$		eta^- 100; eta^- 100			
		71	(7/2-)	-43.9 (8)	$80 \pm 3 \text{ ms}$		eta^- 100; $eta^-n \leq 6.00$			
		72	(6-,7-)	-39.7 (6)	$59.9\pm1.7~\mathrm{ms}$		$eta^-n \geq$ 6.00; eta^- 100			
		73	0	-37.2 (7)	$41\pm4~\mathrm{ms}$		β^{-}			
		74	0+	-32.7 (8)	$25\pm5~\mathrm{ms}$		eta^- ; $eta^- n pprox 18.00$			
28	Ni	48	0+	18 (5)	2.1 +1.4-0.6 ms		$2ppprox$ 70.00; ϵ			
		49	0	8.7 (4)	$7.5\pm1~\mathrm{ms}$		ϵp 83; ϵ 100			
		50	0+	-3.6 (3)	$18.5\pm1.2~\mathrm{ms}$		ϵ 100; ϵp 86.7; $\epsilon 2 p$			
		51	(7/2-)	-11.5 (3)	$23.8\pm0.2~\mathrm{ms}$		ϵ ; ϵp 87.2			
		52	0+	-22.89 (20)	$40.8\pm0.2~\mathrm{ms}$		ϵ 100; ϵp 31.4			
		53	(7/2-)	-29.7 (3)	$55.2\pm0.7~\mathrm{ms}$		ϵ 100; ϵp 23.4			
		54	0+	-39.22 (5)	$104\pm7~\mathrm{ms}$		ϵ 100			
		55	7/2-	-45.3351 (8)	$204.7\pm3.7~\mathrm{ms}$		ϵ 100			
		56	0+	-53.9068 (5)	$6.075 \pm 0.01 \text{ d}$		ϵ 100			
		57	3/2-	-56.0831 (7)	35.60 ± 0.06 h		$\epsilon \ 100$			
		58	0+	-60.2281 (5)	stable	$68.077\% \pm 0.009\%$				
		59	3/2-	-61.156 (5)	$7.6E+4 \pm 0.5E+4$ y		$\epsilon \ 100$			
		60	0+	-64.4725 (5)	stable	$26.223\% \pm 0.008\%$				
		61	3/2-	-64.2212 (5)	stable	$1.1399\% \pm 0.0013\%$				
		62	0+	-66.7458 (5)	stable	$3.6346\% \pm 0.004\%$				
		63	1/2-	-65.5122 (5)	$101.2 \pm 1.5 \text{ y}$		β^{-} 100			
		64	0+	-67.0984 (5)	stable	$0.9255\% \pm 0.0019\%$	2- 100			
		65	5/2-	-65.1252 (6)	2.5175 ± 5.0 E-4 h		β 100			
		66 (7	0+ (1 / 2)	-66.0062(14)	54.6 ± 0.3 n		β 100			
		67	$(1/2)^{-}$	-63.743(3)	21 ± 1 s		β 100			
		68	0/2	-63.464 (3)	29 ± 28		β 100			
		69 60m	9/2+ 1/2	-59.979 (4)	11.2 ± 0.9 S		$\beta = 100$			
		70	1/2-	-09.000 (4)	5.5 ± 0.9 s		p = 100			
		70	(0/2)	-59.2150 (22) 55 4059 (23)	0.0 ± 0.03 s		β 100 β^{-} 100			
		71 71m	$(\frac{9}{2+})$ $(\frac{1}{2})$	-54 9069 (23)	2.50 ± 0.05 s		β 100 β^{-} 100			
		71111 72	$(1/2^{-})$	-54 2258 (23)	$2.5 \pm 0.5 $ s		β 100 β^{-} 100			
		72	$(9/2_{\perp})$	-50 1079 (25)	0.84 ± 0.03 s		β 100 β^{-} 100			
		74	(2/21)	-30.107 (23) -48.7 (4)	0.64 ± 0.003		β^{-} 100 $\beta^{-}n$			
		75	(7/2+)	-44 1 (4)	$344 \pm 25 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 10			
		76	$(7, 2^{+})$ 0+	-41.6 (5)	$0.238 \pm 0.015 \pm 0.018$ s		β^{-} 100; $\beta^{-}n$			
		77	0	-36 7 (5)	128 + 36 - 32 ms		β^{-} 100; $\beta^{-}n$ 30			
		78	0+	-34.1 (8)	$0.11 \pm 0.1-0.06$ s		$\beta^{-} n \cdot \beta^{-} 100$			
29	C11	55	(3/2-)	-31.6 (3)	$27 \pm 8 \text{ ms}$		$\epsilon 100: \epsilon n 15$			
	Cu	56	(3, 2) (4+)	-38.2 (4)	$93 \pm 3 \mathrm{ms}$		$\epsilon n 0.4; \epsilon 100$			
		57	3/2-	-47.3082 (6)	$196.3 \pm 0.7 \text{ ms}$		$\epsilon 100$			
		58	1+	-51.6671 (7)	$3.204 \pm 0.007 \text{ s}$		ϵ 100			
		59	3/2-	-56.3577 (6)	$81.5\pm0.5~{ m s}$		<i>ϵ</i> 100			
		60	2+	-58.3445 (16)	23.7 ± 0.4 m		$\epsilon 100$			
		61	3/2-	-61.9837 (10)	3.333 ± 0.005 h		$\epsilon 100$			
		62	1+	-62.7869 (7)	$9.673 \pm 0.008 \text{ m}$		$\epsilon \ 100$			
		63	3/2-	-65.5792 (5)	stable	$69.15\% \pm 0.15\%$				
		64	1+	-65.424 (5)	$12.701 \pm 0.002 \text{ h}$		ϵ 61.5; β^- 38.5			
		65	3/2-	-67.2633 (7)	stable	$30.85\% \pm 0.15\%$				
		66	1+	-66.2579 (7)	$5.120\pm0.014~\text{m}$		β^- 100			
		67	3/2-	-67.3187 (12)	$61.83\pm0.12~h$		eta^- 100			
							0 1 1 1			

				Table 1	0.1 – Continued from prev	ious page	
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		68	1+	-65.567 (16)	$30.9\pm0.6~{\rm s}$		β^- 100
		68m	(6-)	-64.8454 (16)	$3.75\pm0.05~\mathrm{m}$		IT 84; β^- 16
		69	3/2-	-65.7362 (14)	$2.85\pm0.15~\text{m}$		eta^- 100
		70	(6-)	-62.9763 (11)	$44.5\pm0.2~{\rm s}$		eta^- 100
		70m	(3-)	-62.8752 (11)	$33\pm2\mathrm{s}$		eta^- 52; IT 48
		70m2	1+	-62.7337 (11)	$6.6\pm0.2~{ m s}$		IT 6.8; β^- 93.2
		71	3/2(-)	-62.7111 (15)	$19.4\pm1.6~{\rm s}$		eta^- 100
		72	(2)	-59.783 (14)	$6.63\pm0.03~\mathrm{s}$		eta^- 100
		73	(3/2-)	-58.9872 (20)	$4.2\pm0.3~\mathrm{s}$		eta^- 100
		74	(1+,3+)	-56.006 (6)	$1.594\pm0.01~{\rm s}$		eta^- 100
		75	(5/2-)	-54.471 (24)	$1.222 \pm 0.008 \text{ s}$		eta^- 100; $eta^- n$ 3.5
		76	(3,4)	-50.976 (7)	$637 \pm 7 \text{ ms}$		eta^- 100; $eta^- n$ 7.2; eta^- 100
		77	(5/2-)	-48.3 (5)	$468.1\pm2~\mathrm{ms}$		$eta^- n$ 30.3; eta^- 100
		78	(4-,5-,6-)	-44.5 (5)	$335 \pm 11 \text{ ms}$		eta^- 100; $eta^-n > 65.00$
		79	0	-41.9 (4)	$188\pm25~\mathrm{ms}$		eta^- 100; eta^-n 55
	_	80	0	-36.4 (6)	0.17 +0.11-0.05 s		β^-
30	Zn	54	0+	-6 (4)	1.59 +0.6-0.35 ms		2p 92
		55	(5/2-)	-14.4 (4)	$19.8 \pm 1.3 \text{ ms}$		ϵ 100; ϵp 91
		56	0+	-25.2 (4)	$30.0 \pm 1.7 \text{ ms}$		ϵ 100; ϵp 86
		57	(7/2-)	-32.55 (21)	$38 \pm 4 \text{ ms}$		ϵ 100; $\epsilon p \ge 65.00$
		58	0+	-42.3 (5)	$86 \pm 8 \text{ ms}$		$\epsilon \ 100; \epsilon p < 3.00$
		59	3/2-	-47.2149 (8)	$182.0 \pm 1.8 \text{ ms}$		$\epsilon 100; \epsilon p 0.1$
		60	0+	-54.1737 (6)	2.38 ± 0.05 m		$\epsilon 100$
		61 (1	3/2-	-56.343 (16)	$89.1 \pm 0.2 \text{ s}$		ϵ 100
		61m	1/2-	-56.255 (16)	< 430 ms		
		61m2	3/2- E/2	-55.925 (16)	0.14 ± 0.07 s		
		61m3	5/2-	-55.567(16)	< 0.135		110
		62 62	0+	-61.1074(7)	9.160 ± 0.013 n 28.47 ± 0.05 m		ϵ 100 \cdot 100
		63	3/2-	-62.213(10)	$56.47 \pm 0.05 \text{ m}$	40 179/ 0 759/	ϵ 100
		65	0+ 5/2	-00.0030 (7)	$\geq 7.0\pm 20$ y 242.02 ± 0.00 d	49.17 /0 \pm 0.73 /0	26 - 100
		66	0	-05.9110 (7) 68 800 (0)	245.95 ± 0.09 u	$27.73\% \pm 0.08\%$	ε 100
		67	$5/2_{-}$	-67.88 (9)	stable	$27.75\% \pm 0.96\%$	
		68	572- 0+	-07.00 (9)	stable	$4.04\% \pm 0.10\%$ $18.45\% \pm 0.63\%$	
		60 69	$1/2_{-}$	-68.4175(9)	$56.4 \pm 0.9 \text{ m}$	$10.45 / 0 \pm 0.05 / 0$	β^{-} 100
		69m	9/2-	-67 9789 (9)	13.76 ± 0.02 h		β^{-100} IT 99.97. β^{-} 0.03
		70	0+	-69 5646 (20)	> 2.3E + 17 v	$0.61\% \pm 0.1\%$	$2\beta^{-}$
		70	1/2-	-67 329 (3)	$245 \pm 0.1 \text{ m}$	0.01/0 ± 0.1/0	β^{-} 100
		71m	9/2+	-67.171 (3)	3.96 ± 0.05 h		β^{-} 100: $IT < 0.05$
		72	0+	-68.1454 (21)	46.5 ± 0.1 h		β^{-} 100
		73	(1/2)-	-65.5934 (19)	$23.5 \pm 1 \text{ s}$		β^- 100: β^- : IT
		73m	(5/2+)	-65.3979 (19)	$13.0 \pm 0.2 \text{ ms}$		IT 100
		74	0+	-65.757 (3)	$95.6 \pm 1.2 \text{ s}$		β^{-} 100
		75	(7/2+)	-62.5589 (20)	$10.2 \pm 0.2 \text{ s}$		β^- 100
		76	0+	-62.303 (15)	$5.7\pm0.3~{ m s}$		β^- 100
		77	(7/2+)	-58.7891 (20)	$2.08\pm0.05~\mathrm{s}$		β^- 100
		77m	(1/2-)	-58.0167 (20)	$1.05\pm0.1~{ m s}$		$IT > 50.00; \beta^- < 50.00$
		78	0+	-57.4832 (19)	$1.47\pm0.15~{\rm s}$		β^{-} 100
		79	(9/2+)	-53.4322 (22)	$0.995\pm0.019~\mathrm{s}$		β^{-} 100; $\beta^{-}n$ 1.3
		80	0+	-51.649 (3)	$0.54\pm0.02~{\rm s}$		eta^- 100; eta^-n 1
		81	(5/2+)	-46.2 (5)	$304\pm13~\mathrm{ms}$		eta^- 100; $eta^- n$ 7.5
31	Ga	60	(2+)	-39.78 (20)	$70\pm13~\mathrm{ms}$		$\epsilon\alpha <$ 0.02; ϵ 98.4; ϵp 1.6
		61	3/2-	-47.09 (5)	$167 \pm 3 \text{ ms}$		ϵ 100; $\epsilon p < 0.25$

44

				Table 1	0.1 – Continued from prev	ious page	
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		62	0+	-51.9864 (7)	$116.121 \pm 0.021 \text{ ms}$		ϵ 100; ϵp
		63	3/2-	-56.547 (13)	$32.4\pm0.5~\mathrm{s}$		$\epsilon \ 100$
		64	0+	-58.8334 (15)	$2.627 \pm 0.012 \text{ m}$		$\epsilon 100$
		65	3/2-	-62.6572 (8)	15.2 ± 0.2 m		ϵ 100
		66	0+	-63.724 (3)	9.49 ± 0.03 h		ϵ 100
		67	3/2-	-66.8788 (12)	$3.2617 \pm 5.0E-4 d$		ϵ 100
		68	1+	-67.0857 (15)	$67.71 \pm 0.09 \text{ m}$		ϵ 100
		69	3/2-	-69.3277 (12)	stable	$60.108\%\pm 0.009\%$	
		70	1+	-68.91 (12)	21.14 ± 0.03 m		eta^- 99.59; ϵ 0.41
		71	3/2-	-70.139 (8)	stable	$39.892\% \pm 0.009\%$	
		72	3-	-68.5882 (8)	14.10 ± 0.02 h		β^- 100
		73	3/2-	-69.6993 (17)	4.86 ± 0.03 h		eta^- 100
		74	(3-)	-68.049 (4)	$8.12 \pm 0.12 \text{ m}$		β^- 100
		74m	(0)	-67.989 (4)	$9.5 \pm 1 \mathrm{s}$		<i>IT</i> 75; $\beta^- < 50.00$
		75	3/2-	-68.4645 (24)	$126 \pm 2 s$		β^- 100
		76	2+	-66.2966 (20)	$32.6 \pm 0.6 \text{ s}$		β^- 100
		77	3/2-	-65.9923 (24)	$13.2 \pm 0.2 \text{ s}$		β^- 100
		78	2+	-63.7059 (19)	$5.09 \pm 0.05 \text{ s}$		β^{-} 100
		79	3/2-	-62.5476 (19)	$2.847 \pm 0.003 \text{ s}$		β^{-} 100; $\beta^{-}n$ 0.09
		80	3	-59.224 (3)	$1.676 \pm 0.014 \text{ s}$		β^{-} 100; $\beta^{-}n$ 0.86
		81	5/2-	-57.628 (3)	$1.217 \pm 0.005 \mathrm{s}$		β^{-} 100; $\beta^{-}n$ 11.9
		82	(1,2,3)	-52.9307 (24)	$0.599 \pm 0.002 \mathrm{s}$		β^{-} 100; $\beta^{-}n$ 19.8
		83	(0)	-49.257 (3)	$308.1 \pm 1 \text{ ms}$		β 100; β n 62.8
		84	(0-)	-44.3 (4)	$0.085 \pm 0.01 \text{ s}$		β 100; β n 74; β 100;
			(1/2-				ρ n:
		85	(1/2 ,3/2-)	-40.2 (5)	< 100 ms		eta^- ; $eta^-n>35.0$
32	Ge	61	(3/2-)	-33.7 (3)	$44\pm 6~\mathrm{ms}$		ϵ 100; $\epsilon p > 58.00$
		62	0+	-42.24 (14)	$129\pm35~\mathrm{ms}$		ϵ 100; ϵp
		63	3/2-	-46.92 (4)	$150\pm9~\mathrm{ms}$		$\epsilon \ 100$
		64	0+	-54.315 (4)	$63.7\pm2.5~\mathrm{s}$		$\epsilon \ 100$
		65	3/2-	-56.481 (3)	$30.9\pm0.5~{\rm s}$		ϵ 100; ϵp 0.01
		66	0+	-61.6069 (24)	$2.26\pm0.05~h$		$\epsilon \ 100$
		67	1/2-	-62.658 (5)	18.9 ± 0.3 m		$\epsilon \ 100$
		68	0+	-66.9787 (19)	$270.95 \pm 0.16 \text{ d}$		$\epsilon \ 100$
		69	5/2-	-67.1005 (13)	39.05 ± 0.1 h		$\epsilon \ 100$
		70	0+	-70.5618 (8)	stable	$20.57\% \pm 0.27\%$	
		71	1/2-	-69.9064 (8)	$11.43 \pm 0.03 \text{ d}$		ϵ 100
		71m	9/2+	-69.708 (8)	$20.41 \pm 0.18 \text{ ms}$		<i>IT</i> 100
		72	0+	-72.5856 (5)	stable	$27.45\% \pm 0.32\%$	
		73	9/2+	-71.2972 (5)	stable	$7.75\% \pm 0.12\%$	
		73m	1/2-	-71.2305 (5)	$0.499 \pm 0.011 \text{ s}$		<i>IT</i> 100
		74	0+	-73.4221 (5)	stable	$36.5\% \pm 0.2\%$	
		75	1/2-	-71.8561 (5)	$82.78 \pm 0.04 \text{ m}$		β^- 100
		75m	7/2+	-71.7164 (5)	$47.7 \pm 0.5 \text{ s}$		IT 99.97; β^- 0.03
		76	U+	-73.2128 (9)	stable	$7.73\% \pm 0.12\%$	0= 100
		77	7/2+	-71.2138 (4)	11.30 ± 0.01 h		β 100
		77m 79	1/2-	-71.0541(4)	$52.9 \pm 0.6 \text{ s}$		TT 19; β 81 2= 100
		78 70	0+	-71.862(4)	$88.0 \pm 1 \text{ m}$		$\beta = 100$
		79 70	(1/2)-	-69.53 (4)	10.90 ± 0.03 S		$\beta 100$
		79m	(//2+)	-07.34 (4)	39.0 ± 1.8		β 96; <i>IT</i> 4
		8U 01	$(0, (2, \cdot))$	-69.5353 (21)	$29.5 \pm 0.4 \text{ s}$		$\beta = 100$
		81	(9/2+)	-66.2916 (21)	$7.6 \pm 0.6 \mathrm{s}$		β 100

45

				Table	10.1 – Continued from previo	ous page	
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		81m	(1/2+)	-65.6125 (21)	$7.6\pm0.6~{ m s}$		eta^- 100
		82	0+	-65.415 (22)	$4.56\pm0.26~\mathrm{s}$		β^- 100
		83	(5/2)+	-60.9764 (24)	$1.85\pm0.06~{ m s}$		eta^- 100
		84	0+	-58.148 (3)	$0.954\pm0.014~\mathrm{s}$		$eta^- n$ 10.2; eta^- 100
		85	(1/2+,5/2)	2+)-53.123 (4)	$0.56\pm0.05~{ m s}$		eta^- 100; eta^-n 14
		87	(5/2+)	-44.2 (5)	$pprox 0.14 ext{ s}$		eta^- 100; $eta^- n$
33	As	64	0	-39.4 (3)	18 +43-7 ms		ϵ 100
		65	0	-46.94 (8)	$128 \pm 16 \text{ ms}$		ϵ 100
		66	(0+)	-52.03 (3)	$95.77 \pm 0.23 \text{ ms}$		ϵ 100
		67	(5/2-)	-56.5859 (14)	$42.5 \pm 1.2 \text{ s}$		$\epsilon 100$
		68	3+	-58.8945 (18)	$151.6 \pm 0.8 \text{ s}$		$\epsilon 100$
		69 70	5/2-	-63.09 (3)	$15.2 \pm 0.2 \text{ m}$		$\epsilon 100$
		70	4+	-64.34 (5)	52.6 ± 0.3 m		$\epsilon 100$
		71	5/2-	-67.893 (4)	65.30 ± 0.07 h		$\epsilon 100$
		72	2-	-68.229 (4)	26.0 ± 0.1 h		$\epsilon 100$
		73	3/2-	-70.952 (4)	80.30 ± 0.06 d		ϵ 100
		74	2-	-70.8597 (17)	17.77 ± 0.02 d	1000/	ϵ 66; β 34
		75 75	3/2-	-73.0337 (9)	stable	100%	177 100
		75m	9/2+	-72.7298 (9)	$17.62 \pm 0.23 \text{ ms}$		
		76	2-	-72.2908 (9)	$1.0942 \pm 7.0E-4$ d		β 100
		77	3/2-	-73.9164(17)	38.83 ± 0.05 h		β 100 β = 100
		70 70	2-	-72.817(10)	$90.7 \pm 0.2 \text{ m}$		β 100 β^{-} 100
		79 80	3/2- 1	-73.030 (3)	$9.01 \pm 0.15 \text{ m}$		β 100 β^{-} 100
		00 91	1+ 2/2	-72.171(10)	15.2 ± 0.2 S		β 100 β^{-} 100
		81 82	(2)	-72.333(3)	33.3 ± 0.8 S		β 100 β^{-} 100
		82m	(2-) (5-)	-69 956 (4)	$13.1 \pm 0.3 \text{ s}$ $13.6 \pm 0.4 \text{ s}$		β 100 β^{-} 100
		83	(5/2- 3/2-)	-69.669 (3)	$13.4 \pm 0.3 \text{ s}$		β^{-} 100 β^{-} 100
		84	(3-)	-65 853 (3)	42 ± 0.5 s		β^{-} 100: $\beta^{-}n$ 0.18
		85	(3/2-)	-63 189 (3)	2021 ± 0.01 s		β^{-} 100; β^{-} <i>n</i> 0.10 β^{-} 100; β^{-} <i>n</i> 59.4
		86	0	-58 962 (3)	0.945 ± 0.008 s		β^{-} 100; β^{-} n 26
		87	(3/2-)	-55 618 (3)	0.56 ± 0.08 s		β^{-} 100; β^{-} n 15 4
34	Se	65	(3/2-)	-32.9 (6)	$33 \pm 4 \text{ ms}$		ϵ 100: ϵp 100
		67	0	-46.58 (7)	$136 \pm 12 \text{ ms}$		$\epsilon 100; \epsilon p 0.5$
		68	0+	-54.1894 (5)	$35.5\pm0.7~\mathrm{s}$		$\epsilon 100$
		69	(1/2- ,3/2-)	-56.3 (3)	$27.4\pm0.2~\mathrm{s}$		ϵ 100; ϵp 0.05
		70	0+	-61.9298 (16)	$41.1\pm0.3~\text{m}$		$\epsilon 100$
		71	(5/2-)	-63.146 (3)	$4.74\pm0.05~\text{m}$		ϵ 100
		72	0+	-67.8681 (20)	$8.40\pm0.08~\mathrm{d}$		$\epsilon \ 100$
		73	9/2+	-68.227 (7)	$7.15\pm0.08~\mathrm{h}$		ϵ 100
		73m	3/2-	-68.201 (7)	39.8 ± 1.3 m		IT 72.6; ϵ 27.4
		74	0+	-72.2127 (3)	stable	$0.89\% \pm 0.04\%$	
		75	5/2+	-72.169 (3)	$119.79 \pm 0.04 \ d$		ϵ 100
		76	0+	-75.2518 (7)	stable	$9.37\% \pm 0.29\%$	
		77	1/2-	-74.5993 (10)	stable	$7.63\% \pm 0.16\%$	
		77m	7/2+	-74.4374 (10)	$17.4\pm0.8~{\rm s}$		<i>IT</i> 100
		78	0+	-77.0258 (20)	stable	$23.77\% \pm 0.28\%$	
		79	7/2+	-75.9173 (24)	$2.95E+5 \pm 0.38E+5$ y		eta^- 100
		79m	1/2-	-75.8215 (24)	$3.92\pm0.01~\text{m}$		IT 99.94; β^- 0.06
		80	0+	-77.7598 (15)	stable	$49.61\% \pm 0.41\%$	$2\beta^{-}$
		81	1/2-	-76.3894 (15)	$18.45 \pm 0.12 \text{ m}$		$\frac{\beta^{-} 100}{2}$

	Table 10.1 – Continued from previous page									
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode			
		81m	7/2+	-76.2864 (15)	$57.28 \pm 0.02 \text{ m}$		IT 99.95; β^- 0.05			
		82	0+	-77.594 (15)	stable	$8.73\% \pm 0.22\%$				
		83	9/2+	-75.341 (3)	$22.3\pm0.3~\text{m}$		β^- 100			
		83m	1/2-	-75.112 (3)	$70.1\pm0.4~{\rm s}$		β^- 100			
		84	0+	-75.9476 (20)	$3.26\pm0.1~\text{m}$		β^- 100			
		85	(5/2+)	-72.414 (3)	$32.9\pm0.3~\mathrm{s}$		β^- 100			
		86	0+	-70.503 (3)	$14.3\pm0.3~\mathrm{s}$		β^- 100			
		87	(5/2+)	-66.4261 (22)	$5.50\pm0.12~\mathrm{s}$		β^{-} 100; $\beta^{-}n$ 0.2			
		88	0+	-63.884 (3)	$1.53\pm0.06~{\rm s}$		β^{-} 100; $\beta^{-}n$ 0.67			
		89	(5/2+)	-58.992 (4)	$0.41\pm0.04~{ m s}$		β^{-} 100; $\beta^{-}n$ 7.8			
		91	0	-50.3 (5)	$0.27\pm0.05~{\rm s}$		β^{-} 100; $\beta^{-}n$ 21			
35	Br	70	0+	-51.426 (15)	$79.1\pm0.8~\mathrm{ms}$		ϵ 100			
		70m	9+	-49.133 (15)	$2.2\pm0.2~{ m s}$		$\epsilon 100$			
		71	(5/2)-	-56.502 (5)	$21.4\pm0.6~{ m s}$		$\epsilon 100$			
		72	1+	-59.067 (7)	$78.6\pm2.4~\mathrm{s}$		$\epsilon \ 100$			
		72m	(3-)	-58.966 (7)	$10.6\pm0.3~{ m s}$		IT 100; ϵ			
		73	1/2-	-63.648 (7)	3.4 ± 0.2 m		$\epsilon 100$			
		74	(0-)	-65.285 (6)	$25.4 \pm 0.3 \text{ m}$		$\epsilon 100$			
		74m	4(+)	-65.271 (6)	$46 \pm 2 \text{ m}$		<i>ϵ</i> 100			
		75	3/2-	-69.107 (4)	$96.7 \pm 1.3 \text{ m}$		<i>ϵ</i> 100			
		76	1-	-70.289 (9)	16.2 ± 0.2 h		€ 100			
		76m	(4)+	-70.186 (9)	1.31 ± 0.02 s		$IT > 99.40; \epsilon < 0.60$			
		77	3/2-	-73.235 (3)	57.036 ± 0.006 h		€ 100			
		77m	9/2+	-73.129 (3)	4.28 ± 0.1 m		IT 100			
		78	1+	-73.452 (4)	6.45 ± 0.04 m		$\epsilon > 99.99; \beta^- < 0.01$			
		79	3/2-	-76.0684 (15)	stable	$50.69\% \pm 0.07\%$				
		79m	9/2+	-75.8608 (15)	5.1 ± 0.4 s		IT 100			
		80	1+	-75.8894 (15)	17.68 ± 0.02 m		β^{-} 91.7: ϵ 8.3			
		80m	5-	-75.8035 (15)	$4.4205 \pm 8.0E-4$ h		IT 100			
		81	3/2-	-77.9755 (13)	stable	$49.31\% \pm 0.07\%$	11 100			
		82	5-	-77.4972 (13)	35.282 ± 0.007 h		β^{-} 100			
		82m	2-	-77.4513 (13)	$6.13 \pm 0.05 \text{ m}$		$TT 97.6: \beta^{-} 2.4$			
		83	3/2-	-79.006 (5)	2.40 ± 0.02 h		$\beta^- 100$			
		84	2-	-77.79 (3)	31.76 ± 0.08 m		β^{-} 100			
		84m	(6)-	-77.47 (3)	6.0 ± 0.2 m		β^{-} 100			
		85	3/2-	-78.575 (3)	$2.90 \pm 0.06 \mathrm{m}$		β^{-} 100			
		86	(1-)	-75.632 (3)	55.1 ± 0.4 s		β^{-} 100			
		87	3/2-	-73.892 (3)	55.65 ± 0.13 s		$\beta^{-} n 2.6; \beta^{-} 100$			
		88	(2-)	-70.716 (3)	16.29 ± 0.06 s		β^{-} 100: β^{-} <i>n</i> 6.58			
			(3/2-							
		89	(5/2-)	-68.274 (3)	$4.40\pm0.03~\mathrm{s}$		eta^- 100; eta^-n 13.8			
		90	0	-64 (3)	$1.91\pm0.01~{ m s}$		β^{-} 100: $\beta^{-}n$ 25.2			
		91	0	-61.107 (4)	$0.541 \pm 0.005 \ { m s}$		$\beta^{-} 100; \beta^{-} n 20$			
		92	(2-)	-56.233 (7)	0.343 ± 0.015 s		$\beta^{-}n$ 33.1: β^{-} 100			
		93	(5/2-)	-52.85 (20)	$102 \pm 10 \text{ ms}$		β^{-} 100: β^{-} <i>n</i> 68			
		94	0	-47.6 (4)	$70 \pm 20 \text{ ms}$		β^{-} 100: β^{-} <i>n</i> 68			
36	Kr	69	0	-32.4 (4)	$32 \pm 10 \text{ ms}$		ε 100			
00		70	0+	-41.6 (4)	$52 \pm 10 \text{ ms}$ $52 \pm 17 \text{ ms}$		$\epsilon 100: \epsilon n < 1.30$			
		71	(5/2-)	-46.33 (13)	$100 \pm 3 \text{ ms}$		$\epsilon 100: \epsilon p 2.1$			
		72	0+	-53.94 (8)	17.1 ± 0.2 s		$\epsilon 100; \epsilon p < 1.0$ E-6			
		73	3/2-	-56.552 (7)	27.3 ± 1 s		$\epsilon 100; \epsilon p 0.25$			
		74	0+	-62.3315 (20)	11.50 ± 0.11 m		$\epsilon 100, \epsilon_P 0.20$			
		75	5/2+	-64.324 (8)	$4.29 \pm 0.17 \text{ m}$		€ 100 € 100			
		.0	0,21	01.021 (0)	1.=> ± 0.17 III					

				Table	10.1 – Continued from previo	ous page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		76	0+	-69.014 (4)	$14.8\pm0.1~\mathrm{h}$		ε 100
		77	5/2+	-70.1694 (20)	$74.4\pm0.6~\mathrm{m}$		$\epsilon \ 100$
		78	0+	-74.1795 (7)	\geq 1.5E+21 y	$0.355\% \pm 0.003\%$	2ϵ
		79	1/2-	-74.443 (4)	$35.04\pm0.1~\text{h}$		$\epsilon \ 100$
		79m	7/2+	-74.313 (4)	$50\pm3~{ m s}$		<i>IT</i> 100
		80	0+	-77.8925 (8)	stable	$2.286\% \pm 0.01\%$	
		81	7/2+	-77.6947 (14)	$2.29E+5 \pm 0.11E+5 \text{ y}$		$\epsilon \ 100$
		81m	1/2-	-77.5041 (14)	$13.10\pm0.03~{\rm s}$		ϵ 0.0025; IT 100
		82	0+	-80.5902 (9)	stable	$11.593\% \pm 0.031\%$	
		83	9/2+	-79.99 (3)	stable	$11.5\% \pm 0.019\%$	
		83m	1/2-	-79.9484 (3)	1.85 ± 0.03 h		IT 100
		84	0+	-82.4393 (4)	stable	$56.987\% \pm 0.015\%$	
		85	9/2+	-81.4803 (20)	$10.752 \pm 0.025 \text{ y}$		β^- 100
		85m	1/2-	-81.1753 (20)	4.480 ± 0.008 h		β^{-} 78.6; IT 21.4
		86	0+	-83.2656 (4)	stable	$17.279\% \pm 0.041\%$	2= 100
		87	5/2+	-80.7095 (25)	76.3 ± 0.5 m		β 100 $\beta = 100$
		88	0+	-79.691 (3)	2.84 ± 0.03 h		β 100 $\beta = 100$
		09	$\frac{3}{2}(+)$	-76.3337(21)	3.13 ± 0.04 III 32.22 ± 0.09 a		β 100 β^{-} 100
		90 01	0+ 5/2(1)	-74.9392(19)	32.32 ± 0.09 S		β 100 β^{-} 100
		91	$\frac{3}{2}(+)$	-68 769 (22)	0.07 ± 0.048		β 100 β^{-} 100: β^{-} $n = 0.03$
		92	0+ 1/2+	-64 136 (3)	1.040 ± 0.000 S		β^{-} 100, β^{-} n 0.03 β^{-} 100, β^{-} n 1.95
		93	1/2+ 0+	-61 348 (12)	1.200 ± 0.01 s		β^{-} 100, β^{-} n 1.93 β^{-} 100, β^{-} n 1.11
		95	1/2(+)	-56 159 (12)	0.114 ± 0.003 s		β^{-} 100; β^{-} n 1.11 β^{-} 100; β^{-} n 2.87
		96	1/2(1)	-53 08 (20)	$80 \pm 6 \text{ ms}$		β^{-} 100; β^{-} <i>n</i> 2.07 β^{-} 100; β^{-} <i>n</i> 3.7
		97	(3/2+)	-47.42 (13)	$63 \pm 4 \text{ ms}$		β^{-} 100; β^{-} <i>n</i> 6.7
		98	(e,) 0+	-44.5 (5)	$46 \pm 8 \text{ ms}$		β^- 100: $\beta^- n$ 7
		99	0	-38.8 (5)	13 + 34 - 6 ms		β^- 100; $\beta^- n$ 11
		100	0+	-35.2 (5)	7 +11-3 ms		β^- 100; $\beta^- n$
37	Rb	74	(0+)	-51.917 (4)	$64.9\pm0.5~\mathrm{ms}$		ϵ 100
		75	(3/2-)	-57.2186 (16)	$19.0 \pm 1.2~\mathrm{s}$		$\epsilon \ 100$
		76	1(-)	-60.478 (12)	$36.5\pm0.6~\mathrm{s}$		ϵ 100; $\epsilon \alpha$ 3.8e-07
		77	3/2-	-64.8304 (13)	$3.77\pm0.04\ m$		$\epsilon \ 100$
		78	0(+)	-66.936 (7)	$17.66\pm0.03~\mathrm{m}$		$\epsilon \ 100$
		78m	4(-)	-66.825 (7)	5.74 ± 0.03 m		ϵ 91; IT 9
		79	5/2+	-70.8029 (21)	$22.9\pm0.5~\text{m}$		$\epsilon \ 100$
		80	1+	-72.1754 (19)	$33.4\pm0.7~\mathrm{s}$		$\epsilon \ 100$
		81	3/2-	-75.456 (5)	$4.572 \pm 0.004 \text{ h}$		ϵ 100
		81m	9/2+	-75.37 (5)	30.5 ± 0.3 m		<i>IT</i> 97.6; <i>ε</i> 2.4
		82	1+	-76.188 (3)	$1.2575 \pm 2.0E-4$ m		ϵ 100
		82m	5-	-76.119 (3)	6.472 ± 0.006 h		$IT < 0.33; \epsilon \ 100$
		83	5/2-	-79.0706 (23)	$86.2 \pm 0.1 \mathrm{d}$		ϵ 100
		84	2-	-79.756 (3)	32.82 ± 0.07 d		ϵ 96.1; β^- 3.9
		84m	6- 5 (0	-79.293 (3)	20.26 ± 0.04 m		11/100
		85	5/2-	-82.1673 (5)	stable	$72.17\% \pm 0.02\%$	2= 00 00 0 0050
		86 ma	2- 6	-82.747 (20)	$18.642 \pm 0.018 \text{ d}$ $1.017 \pm 0.002 \text{ m}$		β 99.99; ϵ 0.0052
		00M 87	0- 3/7	-02.1909 (20) -81 5077 (2)	$1.017 \pm 0.003 \text{ m}$ $4.81\text{E}_{\pm}10 \pm 0.00\text{E}_{\pm}10$	$27.82\% \pm 0.02\%$	$\beta = 100; \beta < 0.30$
		07	3/2- 2	-64.3977(0)	$4.01E+10 \pm 0.09E+10$ y 17.772 ± 0.011 m	$27.05\% \pm 0.02\%$	β 100 β^{-} 100
		80 80	∠- 3/2_	-02.0009 (10) -81 712 (5)	17.773 ± 0.011 III 15.15 ± 0.12 m		$\beta = 100$ $\beta^{-} = 100$
		90	0-	-79 365 (7)	15.15 ± 0.12 III $158 \pm 5 \circ$		β 100 β^{-} 100
		90m	3-	-79.565 (7)	150 ± 58 258 ± 4 c		β^{-} 97 4. IT 2 6
		91	$\frac{3}{2(-)}$	-77 746 (8)	584 ± 04		β^{-} 100
		/1	0, -()	//./10(0)	00.1 ± 0.1 5		Continued on next nage

48

				Table 1	0.1 – Continued from prev	ious page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		92	0-	-74.773 (6)	$4.492\pm0.02~s$		eta^- 100; $eta^- n$ 0.01
		93	5/2-	-72.62 (8)	$5.84\pm0.02~\mathrm{s}$		eta^- 100; $eta^- n$ 1.39
		94	3(-)	-68.562 (3)	$2.702\pm0.005~s$		eta^- 100; $eta^- n$ 10.5
		95	5/2-	-65.894 (20)	$377.7\pm0.8~\mathrm{ms}$		eta^- 100; eta^-n 8.7
		96	2(-)	-61.354 (3)	$203 \pm 3 \text{ ms}$		eta^- 100; $eta^- n$ 13.3
		97	3/2+	-58.518 (5)	$169.1\pm0.6~\mathrm{ms}$		eta^- 100; eta^-n 25.5
		98	(0,1)	-54.03 (5)	$102\pm4~\mathrm{ms}$		$egin{array}{cccccccccccccccccccccccccccccccccccc$
		98m	(3,4)	-53.76 (5)	$96\pm3~\mathrm{ms}$		β^- 100
		99	(5/2+)	-51.22 (11)	$54\pm4~\mathrm{ms}$		eta^- 100; $eta^- n$ 15.8
		100	(3+,4-)	-46.55 (20)	$51\pm8~{ m ms}$		eta^- 100; $eta^- n$ 6; $eta^- 2n$ 0.16
		101	(3/2+)	-42.97 (22)	$32\pm5~\mathrm{ms}$		eta^- 100; eta^-n 28
		102	0	-37.9 (3)	$37 \pm 3 \text{ ms}$		eta^- 100; eta^-n 18
38	Sr	73	0	-31.9 (4)	> 25 ms		ϵ 100; $\epsilon p > 0.00$
		75	(3/2-)	-46.62 (22)	$88\pm3~\mathrm{ms}$		ϵ 100; ϵp 5.2
		76	0+	-54.25 (3)	$7.89\pm0.07~\mathrm{s}$		ϵ 100; ϵp 3.4e-05
		77	5/2+	-57.803 (8)	$9.0\pm0.2~\mathrm{s}$		ϵ 100; $\epsilon p < 0.25$
		78	0+	-63.174 (7)	$160\pm8~{ m s}$		$\epsilon \ 100$
		79	3/2(-)	-65.477 (8)	$2.25\pm0.1~\text{m}$		$\epsilon \ 100$
		80	0+	-70.311 (3)	$106.3\pm1.5~\text{m}$		$\epsilon \ 100$
		81	1/2-	-71.528 (3)	$22.3\pm0.4~\text{m}$		$\epsilon \ 100$
		82	0+	-76.01 (6)	$25.34\pm0.02~d$		$\epsilon \ 100$
		83	7/2+	-76.798 (7)	$32.41\pm0.03~h$		$\epsilon \ 100$
		83m	1/2-	-76.538 (7)	$4.95\pm0.12~\mathrm{s}$		<i>IT</i> 100
		84	0+	-80.6493 (13)	stable	$0.56\% \pm 0.01\%$	
		85	9/2+	-81.103 (3)	$64.850 \pm 0.007 \text{ d}$		$\epsilon \ 100$
		85m	1/2-	-80.864 (3)	$67.63\pm0.04~\mathrm{m}$		IT 86.6; ϵ 13.4
		86	0+	-84.5232 (11)	stable	$9.86\% \pm 0.01\%$	
		87	9/2+	-84.88 (11)	stable	$7\%\pm0.01\%$	
		87m	1/2-	-84.4915 (11)	$2.815\pm0.012~h$		IT 99.7; ϵ 0.3
		88	0+	-87.9213 (11)	stable	$82.58\% \pm 0.01\%$	
		89	5/2+	-86.2087 (11)	$50.53 \pm 0.07 \text{ d}$		eta^- 100
		90	0+	-85.949 (3)	$28.90\pm0.03~\mathrm{y}$		eta^- 100
		91	5/2+	-83.653 (6)	$9.63\pm0.05h$		eta^- 100
		92	0+	-82.867 (3)	$2.66\pm0.04~h$		eta^- 100
		93	5/2+	-80.086 (8)	7.43 ± 0.03 m		eta^- 100
		94	0+	-78.843 (7)	$75.3\pm0.2~{\rm s}$		eta^- 100
		95	1/2+	-75.124 (6)	$23.90\pm0.14~\mathrm{s}$		eta^- 100
		96	0+	-72.933 (9)	$1.07\pm0.01~{ m s}$		eta^- 100
		97	1/2+	-68.592 (10)	$429\pm5~\mathrm{ms}$		eta^- 100; $eta^- n \leq 0.05$
		98	0+	-66.437 (10)	$0.653\pm0.002~\mathrm{s}$		eta^- 100; $eta^- n$ 0.25
		99	3/2+	-62.529 (7)	$0.269\pm0.001~\mathrm{s}$		eta^- 100; $eta^- n$ 0.1
		100	0+	-59.833 (10)	$202 \pm 3 \text{ ms}$		eta^- 100; $eta^- n$ 0.78
		101	(5/2-)	-55.57 (8)	$118\pm3~\mathrm{ms}$		eta^- 100; eta^-n 2.37
		102	0+	-52.4 (21)	$69 \pm 6 \text{ ms}$		eta^- 100; $eta^- n$ 5.5
		103	0	-47.53 (20)	68 +48-20 ms		β^{-}
		104	0+	-43.9 (4)	43 +9-7 ms		β^{-}
		105	0	-38.6 (5)	40 +36-13 ms		β^{-}
39	Y	77	(5/2+)	-46.78 (6)	57 +22-12 ms		ϵ 100; ϵp ; p
		78	(0+)	-52.5 (4)	$53\pm8~\mathrm{ms}$		ϵ 100; ϵp ; ϵp ; ϵ 100
		79	(5/2+)	-58.4 (5)	$14.8\pm0.6~{\rm s}$		ϵ 100; ϵp
		80	(4-)	-61.148 (6)	$30.1\pm0.5~\mathrm{s}$		ϵ 100; ϵp
		80m	(1-)	-60.92 (6)	$4.8\pm0.3~\mathrm{s}$		<i>IT</i> 81; <i>\epsilon</i> 19

				Table 1	0.1 – Continued from previo	ous page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		81	(5/2+)	-65.713 (6)	$70.4 \pm 1 \mathrm{~s}$		$\epsilon \ 100$
		82	1+	-68.064 (6)	$8.30\pm0.2~{ m s}$		$\epsilon \ 100$
		83	9/2+	-72.206 (19)	$7.08\pm0.06~\mathrm{m}$		$\epsilon \ 100$
		83m	3/2-	-72.144 (19)	$2.85\pm0.02~\text{m}$		IT 40; ϵ 60
		84	(6+)	-73.894 (4)	39.5 ± 0.8 m		$\epsilon \ 100$
		84m	1+	-73.827 (4)	$4.6\pm0.2~{ m s}$		$\epsilon \ 100$
		85	(1/2)-	-77.842 (19)	$2.68\pm0.05~h$		$\epsilon \ 100$
		85m	9/2+	-77.822 (19)	4.86 ± 0.2 h		ϵ 100; $IT <$ 2.0E-3
		86	4-	-79.283 (14)	$14.74\pm0.02~\mathrm{h}$		$\epsilon \ 100$
		86m	(8+)	-79.065 (14)	$48\pm1~{ m m}$		<i>IT</i> 99.31; ϵ 0.69
		87	1/2-	-83.0183 (16)	79.8 ± 0.3 h		$\epsilon \ 100$
		87m	9/2+	-82.6375 (16)	$13.37\pm0.03~\text{h}$		ϵ 1.57; IT 98.43
		88	4-	-84.2987 (19)	$106.626 \pm 0.021 \text{ d}$		$\epsilon \ 100$
		89	1/2-	-87.7096 (25)	stable	100%	
		89m	9/2+	-86.8006 (25)	$15.663 \pm 0.005 \text{ s}$		<i>IT</i> 100
		90	2-	-86.4953 (25)	$64.053 \pm 0.02 \text{ h}$		eta^- 100
		90m	7+	-85.8136 (25)	$3.19\pm0.06~\mathrm{h}$		$IT~100; \beta^-~0.0018$
		91	1/2-	-86.353 (3)	$58.51 \pm 0.06 \text{ d}$		β^- 100
		91m	9/2+	-85.797 (3)	$49.71\pm0.04~\mathrm{m}$		$IT \ 100; \beta^- < 1.50$
		92	2-	-84.818 (9)	$3.54\pm0.01~\mathrm{h}$		β^- 100
		93	1/2-	-84.228 (11)	$10.18\pm0.08~\mathrm{h}$		β^- 100
		93m	(9/2)+	-83.47 (11)	$0.82\pm0.04~\mathrm{s}$		<i>IT</i> 100
		94	2-	-82.353 (7)	$18.7\pm0.1~\mathrm{m}$		β^- 100
		95	1/2-	-81.213 (7)	$10.3\pm0.1~\mathrm{m}$		β^- 100
		96	0-	-78.345 (7)	$5.34\pm0.05~ m s$		β^- 100
		96m	8+	-77.205 (7)	$9.6\pm0.2~\mathrm{s}$		β^- 100
		97	(1/2-)	-76.13 (7)	$3.75\pm0.03~\mathrm{s}$		β^{-} 100; $\beta^{-}n$ 0.06
		97m	(9/2)+	-75.463 (7)	$1.17\pm0.03~s$		$\beta^- n < 0.08; \ \beta^- > 99.30;$ IT < 0.70
		97m2	(27/2-)	-72.608 (7)	$142\pm8~\mathrm{ms}$		<i>IT</i> 98.4; β^{-} 1.6
		98	(0)-	-72.304 (8)	$0.548\pm0.002~\mathrm{s}$		β^{-} 100; $\beta^{-}n$ 0.33
		98m	(4,5)	-71.894 (8)	$2.0\pm0.2s$		$eta^- > 80.00; \ IT < 20.00; \ eta^- n \ 3.4$
		99	(5/2+)	-70.659 (7)	$1.484\pm0.007~\mathrm{s}$		β^{-} 100; $\beta^{-}n$ 1.7
		100	1-,2-	-67.336 (11)	$735\pm7~\mathrm{ms}$		$\beta^{-}n \ 0.92; \beta^{-} \ 100$
		100m	(3,4,5)	-67.191 (11)	$0.94\pm0.03~{ m s}$		β^- 100
		101	(5/2+)	-65.07 (8)	$0.45\pm0.02~{ m s}$		β^{-} 100; $\beta^{-}n$ 1.94
		102	HighJ	-61.21 (20)	$0.36\pm0.04~s$		$egin{array}{c} eta^- 100; eta^- n 4.9; eta^- 100; \ eta^- n 4.9; eta^- 100; \ eta^- n 4.9 \end{array}$
		103	(5/2+)	-58.5 (10)	$0.23\pm0.02~\mathrm{s}$		eta^- 100; eta^-n 8
		104	0	-54.1 (4)	$197 \pm 4 \text{ ms}$		β^- 100; $\beta^- n$
		105	0	-50.8 (5)	85 +5-4 ms		β^- ; $\beta^- n < 82.00$
		106	0	-46.1 (5)	62 +25-14 ms		β^{-}
		107	(5/2+)	-42.4 (5)	41 +15-9 ms		β^- 100
		108	0	-37.3 (6)	25 +66-10 ms		$\beta^-;\beta^-n$
40	Zr	79	0	-47.1 (4)	$56\pm30~\mathrm{ms}$		$\epsilon;\epsilon p$
		80	0+	-55.5 (15)	$4.6\pm0.6~{ m s}$		ϵ 100; ϵp
		81	(3/2-)	-58.4 (16)	$5.5\pm0.4~ m s$		$\epsilon 100; \epsilon p 0.12$
		82	0+	-63.94 (20)	$32\pm5~\mathrm{s}$		$\epsilon 100$
		83	(1/2-)	-65.912 (7)	$41.6\pm2.4~\mathrm{s}$		ϵ 100; ϵp
		84	0+	-71.422 (6)	$25.8\pm0.5~\text{m}$		$\epsilon 100$
		85	(7/2+)	-73.175 (7)	$7.86\pm0.04~\text{m}$		$\epsilon 100$
		85m	(1/2-)	-72.883 (7)	$10.9\pm0.3~\mathrm{s}$		$IT < 92.00; \epsilon > 8.00$
		86	0+	-77.969 (4)	$16.5 \pm 0.1 \text{ h}$		ε 100
		- ~	-	· · · · · · · · · · · · · · · · · · ·			

				Table	10.1 – Continued from previo	ous page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		87	(9/2)+	-79.348 (4)	$1.68\pm0.01~\mathrm{h}$		$\epsilon \ 100$
		87m	(1/2)-	-79.012 (4)	$14.0\pm0.2~\mathrm{s}$		<i>IT</i> 100
		88	0+	-83.629 (6)	83.4 ± 0.3 d		$\epsilon \ 100$
		89	9/2+	-84.877 (4)	$78.41\pm0.12~\mathrm{h}$		$\epsilon \ 100$
		89m	1/2-	-84.289 (4)	$4.161 \pm 0.017 \text{ m}$		<i>IT</i> 93.77; ϵ 6.23
		90	0+	-88.7742 (22)	stable	$51.45\% \pm 0.4\%$	
		90m	5-	-86.4552 (22)	$809.2 \pm 2 \text{ ms}$		<i>IT</i> 100
		91	5/2+	-87.8973 (22)	stable	$11.22\% \pm 0.05\%$	
		92	0+	-88.4607 (22)	stable	$17.15\% \pm 0.08\%$	
		93	5/2+	-87.1238 (22)	$1.61E+6 \pm 0.05E+6$ y		eta^- 100
		94	0+	-87.2725 (23)	stable	$17.38\% \pm 0.28\%$	
		95	5/2+	-85.6633 (22)	$64.032 \pm 0.006 \text{ d}$		β^- 100
		96	0+	-85.4477 (25)	$2.35E+19 \pm 0.21E+19 \text{ y}$	$2.8\% \pm 0.09\%$	$2\beta^-$
		97	1/2+	-82.9515 (25)	16.749 ± 0.008 h		β^- 100
		98	0+	-81.296 (9)	$30.7\pm0.4~{ m s}$		eta^- 100
		99	(1/2+)	-77.626 (11)	$2.1\pm0.1~\mathrm{s}$		β^- 100
		100	0+	-76.384 (8)	$7.1 \pm 0.4 \mathrm{s}$		β^- 100
		101	(3/2+)	-73.173 (9)	$2.3 \pm 0.1 \mathrm{s}$		β^{-} 100
		102	0+	-71.595 (9)	$2.9 \pm 0.2 \mathrm{s}$		β^- 100
		103	(5/2-)	-67.825 (10)	$1.32 \pm 0.11 \text{ s}$		eta^- 100; $eta^-n \leq 1.00$
		104	0+	-65.733 (10)	$0.87 \pm 0.06 \mathrm{s}$		β^- 100; $\beta^- n \le 1.00$
		105	0	-61.474 (12)	0.66 ± 0.07 s		β^{-} 100; $\beta^{-}n \leq 2.00$
		106	0+	-59 (3)	$191 \pm 19 \text{ ms}$		β^{-} 100; $\beta^{-}n \le 7.00$
		107	0	-54.3 (3)	$138 \pm 4 \text{ ms}$		β 100; β $n \le 23.00$
		108	0+	-51.4 (4)	$73 \pm 4 \text{ ms}$		β 100; β n
		109	0	-46.2 (5)	63 + 38 - 17 ms		β ; β n
41	NTI.	110	(0+)	-42.9 (6)	57 + 17 - 9 ms		β
41	IND	82 82	(0+)	-52.2 (5)	$50 \pm 5 \text{ ms}$		ϵ 100; ϵp
		03 84	(3/2+) (1+2+2+)	-30.4(3)	$3.0 \pm 0.2 \text{ s}$		$\epsilon 100$
		04 85	(1+,2+,3+)	-01(3)	9.0 ± 0.98		ϵ 100; ϵp
		86	(9/2+)	-69 134 (6)	$20.3 \pm 1.2 \text{ S}$ $88 \pm 1 \text{ c}$		e 100, 11, e, e, 11 e 100
		87	(0+) (1/2-)	-73 875 (7)	375 ± 0.09 m		c 100
		87m	(1/2) (9/2+)	-73 871 (7)	26 ± 0.09 m		e 100
		88	(9/21)	-76 18 (5)	1455 ± 0.06 m		e 100· e 100
		89	(9/2+)	-80.65 (3)	2.03 ± 0.07 h		€ 100, € 100
		89m	(1/2)-	-80.62 (3)	$66 \pm 2 \text{ m}$		€ 100 € 100
		90	8+	-82.663 (5)	14.60 ± 0.05 h		ϵ 100
		90m	4-	-82.538 (5)	$18.81\pm0.06~\mathrm{s}$		<i>IT</i> 100
		91	9/2+	-86.639 (4)	$6.8E+2 \pm 1.3E+2 \text{ v}$		$\epsilon 100$
		91m	1/2-	-86.535 (4)	60.86 ± 0.22 d		<i>IT</i> 96.6; <i>e</i> 3.4
		92	(7)+	-86.455 (3)	$3.47E$ +7 $\pm 0.24E$ +7 y		ϵ 100; $\beta^- < 0.05$
		92m	(2)+	-86.319 (3)	$10.15 \pm 0.02 \text{ d}$		$\epsilon 100$
		93	9/2+	-87.2142 (23)	stable	100%	
		93m	1/2-	-87.1834 (23)	$16.12\pm0.12~\mathrm{y}$		<i>IT</i> 100
		94	6+	-86.3704 (23)	$2.03E+4 \pm 0.16E+4$ y		β^- 100
		94m	3+	-86.3295 (23)	6.263 ± 0.004 m $^{\circ}$		IT 99.5; eta^- 0.5
		95	9/2+	-86.7863 (16)	$34.991 \pm 0.006 \; d$		β^{-} 100
		95m	1/2-	-86.5506 (16)	$3.61\pm0.03~d$		IT 94.4; β^- 5.6
		96	6+	-85.608 (4)	$23.35\pm0.05~h$		eta^- 100
		97	9/2+	-85.6103 (23)	$72.1\pm0.7~\mathrm{m}$		eta^- 100
		97m	1/2-	-84.8669 (23)	$58.7\pm1.8~{\rm s}$		<i>IT</i> 100
		98	1+	-83.533 (6)	$2.86\pm0.06~s$		β^- 100

51

Z El A J [*] Allely $T_{1/2}$, T Abundance Decay Mode 98m (5) -83.49 (6) 51.3 ± 0.4 m β^{-1} 90. β^{-1} 10. 99m 9/2+ -82.33 (12) 15.0 ± 0.2 s β^{-1} 10. β^{-1} 20.2 m β^{-1} 10. 99m 1/2- -81.965 (12) 2.5 ± 0.2 m β^{-1} 10. β^{-1} 10. 1000 (5+ -79.492 (8) 2.99 ± 0.11 s. β^{-1} 10. β^{-1} 10. 1012 (4+) -76.314 (4) 4.3 ± 0.4 s. β^{-1} 10.0 β^{-1} 10.0 102 (4+) -76.314 (4) 4.9 ± 0.3 s. β^{-1} 10.0 β^{-1} n.0.6 104 (1+) -71.828 (4) 4.9 ± 0.3 s. β^{-1} 10.0 β^{-1} n.4.5 105 (5/2+) -69.91 (4) 2.95 ± 0.06 s. β^{-1} 10.0 β^{-1} n.4.5 105 (5/2+) -69.91 (4) 2.95 ± 0.06 s. β^{-1} 10.0 β^{-1} n.4.5 106 0 -61.98 (5) 0.93 ± 0.04 s. β^{-1} 10.0 β^{-1} n.4.5 107 0		Table 10.1 – Continued from previous page										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			98m	(5+)	-83.449 (6)	51.3 ± 0.4 m		eta^- 99.9; $IT < 0.20$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			99	9/2+	-82.33 (12)	$15.0\pm0.2~\mathrm{s}$		eta^- 100				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			99m	1/2-	-81.965 (12)	2.5 ± 0.2 m		$eta^- >$ 96.20; $IT <$ 3.80				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			100	1+	-79.806 (8)	$1.5\pm0.2~{ m s}$		eta^- 100				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			100m	(5+)	-79.492 (8)	$2.99\pm0.11~{\rm s}$		eta^- 100				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			101	(5/2+)	-78.886 (4)	$7.1\pm0.3~{ m s}$		eta^- 100				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			102	(4+)	-76.314 (4)	$4.3\pm0.4~\mathrm{s}$		eta^- 100; eta^- 100				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			103	(5/2+)	-75.023 (4)	$1.5\pm0.2~{ m s}$		eta^- 100				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			104	(1+)	-71.828 (4)	$4.9\pm0.3~{ m s}$		eta^- 100; $eta^- n$ 0.06				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			104m	0	-71.613 (4)	$0.94\pm0.04~{ m s}$		eta^- 100; $eta^- n$ 0.05				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			105	(5/2+)	-69.91 (4)	$2.95\pm0.06~{\rm s}$		eta^- 100; $eta^- n$ 1.7				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			106	0	-66.198 (5)	$0.93\pm0.04~\mathrm{s}$		eta^- 100; $eta^- n$ 4.5				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			107	0	-63.718 (8)	$300 \pm 9 \text{ ms}$		eta^- 100; eta^-n 8				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			108	(2+)	-59.56 (10)	$220\pm18~\mathrm{ms}$		eta^- 100; eta^-n 8				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			109	(5/2)	-56.8 (3)	$106 \pm 9 \text{ ms}$		eta^- 100; $eta^- n <$ 15.00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			110	0	-52.3 (3)	$86 \pm 6 \text{ ms}$		eta^- 100; eta^-n 40				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			111	(5/2+)	-49 (4)	51 +6-5 ms		β^{-}				
42 Mo 83 0 -46.7 (4) 6+30-3 ms $\epsilon 100$ 84 0+ -54.5 (4) 2.3 ± 0.3 s $\epsilon 100; \epsilon p$ 85 (1/2) -57.51 (16) 3.2 ± 0.2 s $\epsilon; \epsilon p \approx 0.14$ 86 0+ -64.11 (4) 19.1 ± 0.3 s $\epsilon 100; \epsilon p$ 15 88 0+ -72.686 (4) 8.0 ± 0.2 m $\epsilon 100$ 89 (9/2+) -75.015 (4) 2.11 ± 0.1 m $\epsilon 100$ 89 (9/2+) -75.015 (4) 2.11 ± 0.1 m $\epsilon 100$ 90 0+ -80.174 (6) 5.56 ± 0.09 h $\epsilon 100$ 91 9/2+ -82.208 (11) 15.49 ± 0.01 m $\epsilon 100$ 91 9/2+ -82.208 (11) 15.49 ± 0.01 m $\epsilon 100$ 91 9/2+ -82.08 (11) 15.49 ± 0.01 m $\epsilon 100$ 93 5/2+ -86.808 (4) 4.0E+3 ± 0.8E+3 y $\epsilon 100$ 93 m 21/2+ -84.383 (4) 6.85 ± 0.07 h IT 99.88; $\epsilon 0.12$ 94 0+ -88.4141 (15) stable 9.15% ± 0.09% 95 5/2+ -87.7119 (15) stable 16.67% ± 0.15% 97 5/2+ -87.5448 (15) stable 16.67% ± 0.15% 97 5/2+ -87.5448 (15) stable 9.66% ± 0.14% 98 0+ -88.1161 (15) stable 24.39% ± 0.37% 99 1/2+ -85.9702 (15) 65.976 ± 0.024 h $\beta^{-1} 100$ 100 0+ -86.1878 (20) 7.3E+18 ± 0.4E+18 y 9.82% ± 0.31% $\beta^{-1} 100$ 101 1/2+ -83.5147 (20) 14.61 ± 0.03 m $\beta^{-1} 100$ 102 0+ -83.573 (9) 11.3 ± 0.2 m $\beta^{-1} 100$ 103 (3/2+) -80.97 (10) 67.5 ± 1.5 s $\beta^{-1} 100$ 104 0+ -80.359 (9) 60 ± 2 s $\beta^{-1} 100$ 105 (5/2-) -77.346 (9) 35.6 ± 1.6 s $\beta^{-1} 100$ 106 0+ -76.144 (9) 8.73 ± 0.12 s $\beta^{-1} 100$ 107 (5/2+) -72.561 (10) 3.5 ± 0.55 $\beta^{-1} 100$ 108 0+ -70.766 (10) 1.09 ± 0.02 s $\beta^{-1} 100; \beta^{-n} < 0.50$			112	(2+)	-44.4 (5)	33 +9-6 ms		β^{-}				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42	Mo	83	0	-46.7 (4)	6 +30-3 ms		ϵ 100				
85 $(1/2-)$ $-57.51 (16)$ $3.2 \pm 0.2 s$ $\epsilon ; \rho \approx 0.14$ 860+ $-64.11 (4)$ $19.1 \pm 0.3 s$ $\epsilon 100$ 87 $7/2+$ $-66.883 (4)$ $14.02 \pm 0.26 s$ $\epsilon 100; \epsilon p 15$ 880+ $-72.686 (4)$ $8.0 \pm 0.2 m$ $\epsilon 100$ 89 $(9/2+)$ $-75.015 (4)$ $2.11 \pm 0.1 m$ $\epsilon 100$ 89m $(1/2-)$ $-74.627 (4)$ $190 \pm 15 ms$ $1T 100$ 900+ $-80.174 (6)$ $5.56 \pm 0.09 h$ $\epsilon 100$ 91 $9/2+$ $-82.208 (11)$ $15.49 \pm 0.01 m$ $\epsilon 100$ 91m $1/2 -81.555 (11)$ $64.6 \pm 0.6 s$ $\epsilon 50; 1T 50$ 920+ $-86.809 (4)$ stable $14.53\% \pm 0.3\%$ 93 $5/2+$ $-86.808 (4)$ $4.0E+3 \pm 0.8E+3 y$ $\epsilon 100$ 93m $21/2+$ $-84.383 (4)$ $6.85 \pm 0.07 h$ $1T 99.88; \epsilon 0.12$ 940+ $-88.7949 (15)$ stable $15.84\% \pm 0.11\%$ 960+ $-88.7949 (15)$ stable $16.67\% \pm 0.15\%$ 97 $5/2+$ $-87.5448 (15)$ stable $24.39\% \pm 0.37\%$ 980+ $-88.1161 (15)$ stable $24.39\% \pm 0.37\%$ 99 $1/2+$ $-83.573 (9)$ $11.3 \pm 0.2 m$ $\beta^- 100$ 101 $1/2+$ $-83.573 (9)$ $11.3 \pm 0.2 m$ $\beta^- 100$ 1020+ $-83.573 (9)$ $11.3 \pm 0.2 m$ $\beta^- 100$ 103 $(3/2+)$ $-80.97 (10)$ $67.5 \pm 1.5 s$ $\beta^- 100$ 1040+ $-80.359 (9)$ $60 \pm 2 s$			84	0+	-54.5 (4)	$2.3\pm0.3~{ m s}$		ϵ 100; ϵp				
860+-64.11 (4)19.1 \pm 0.3 s ϵ 100877/2+-66.883 (4)14.02 \pm 0.26 s ϵ 100; ϵp 15880+-72.686 (4)8.0 \pm 0.2 m ϵ 10089(9/2+)-75.015 (4)2.11 \pm 0.1 m ϵ 10089m(1/2-)-74.627 (4)190 \pm 15 msIT 100900+-80.174 (6)5.56 \pm 0.09 h ϵ 100919/2+-82.208 (11)15.49 \pm 0.01 m ϵ 10091m1/281.555 (11)64.6 \pm 0.6 s ϵ 50; IT 50920+-86.809 (4)stable14.53% \pm 0.3%935/2+-86.808 (4)4.0E+3 \pm 0.8E+3 y ϵ 10093m21/2+-84.383 (4)6.85 \pm 0.07 hIT 99.88; ϵ 0.12940+-88.4141 (15)stable9.15% \pm 0.09%955/2+-87.7119 (15)stable16.67% \pm 0.14%960+-88.7949 (15)stable24.39% \pm 0.37%991/2+-85.9702 (15)65.976 \pm 0.024 h β^- 1001000+-86.1878 (20)7.3E+18 \pm 0.4E+18 y9.82% \pm 0.31% $2\beta^-$ 1001011/2+-83.5147 (20)14.61 \pm 0.03 m β^- 1001020+-83.573 (9)11.3 \pm 0.2 m β^- 100103(3/2+)-80.97 (10)67.5 \pm 1.5 s β^- 100103(3/2+)-80.97 (10)67.5 \pm 1.5 s β^- 1001040+-80.359 (9)60 \pm 2 s β^- 100 <td< th=""><th></th><th></th><th>85</th><th>(1/2-)</th><th>-57.51 (16)</th><th>$3.2\pm0.2~{ m s}$</th><th></th><th>ϵ ; $\epsilon p pprox 0.14$</th></td<>			85	(1/2-)	-57.51 (16)	$3.2\pm0.2~{ m s}$		ϵ ; $\epsilon p pprox 0.14$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			86	0+	-64.11 (4)	$19.1\pm0.3~{ m s}$		$\epsilon \ 100$				
880+ $-72.686(4)$ $8.0 \pm 0.2 \text{ m}$ $\epsilon 100$ 89 $(9/2+)$ $-75.015(4)$ $2.11 \pm 0.1 \text{ m}$ $\epsilon 100$ 89m $(1/2-)$ $-74.627(4)$ $190 \pm 15 \text{ ms}$ $TT 100$ 900+ $-80.174(6)$ $5.56 \pm 0.09 \text{ h}$ $\epsilon 100$ 91 $9/2+$ $-82.208(11)$ $15.49 \pm 0.01 \text{ m}$ $\epsilon 100$ 91m $1/2 -81.555(11)$ $64.6 \pm 0.6 \text{ s}$ $\epsilon 50; TT 50$ 920+ $-86.809(4)$ $stable$ $14.53\% \pm 0.3\%$ 93 $5/2+$ $-86.808(4)$ $4.0E+3 \pm 0.8E+3 \text{ y}$ $\epsilon 100$ 93m $21/2+$ $-84.383(4)$ $6.85 \pm 0.07 \text{ h}$ $TT 99.88; \epsilon 0.12$ 940+ $-88.4141(15)$ $stable$ $9.15\% \pm 0.09\%$ 95 $5/2+$ $-87.7119(15)$ $stable$ $16.67\% \pm 0.19\%$ 960+ $-88.7949(15)$ $stable$ $16.67\% \pm 0.13\%$ 97 $5/2+$ $-87.5448(15)$ $stable$ $24.39\% \pm 0.37\%$ 980+ $-88.1161(15)$ $stable$ $24.39\% \pm 0.37\%$ 99 $1/2+$ $-85.9702(15)$ $65.976 \pm 0.024 \text{ h}$ β^-100 1000+ $-86.1878(20)$ $7.3E+18 \pm 0.4E+18 \text{ y}$ $9.82\% \pm 0.31\%$ $2\beta^-100$ 101 $1/2+$ $-83.5147(20)$ $14.61 \pm 0.03 \text{ m}$ β^-100 1020+ $-83.573(9)$ $11.3 \pm 0.2 \text{ m}$ β^-100 103 $(3/2+)$ $-80.597(10)$ $67.5 \pm 1.5 \text{ s}$ β^-100 1040+ $-80.359(9)$ $60 \pm 2 \text{ s}$ β^-100 <t< th=""><th></th><th></th><th>87</th><th>7/2+</th><th>-66.883 (4)</th><th>$14.02\pm0.26~\mathrm{s}$</th><th></th><th>ϵ 100; ϵp 15</th></t<>			87	7/2+	-66.883 (4)	$14.02\pm0.26~\mathrm{s}$		ϵ 100; ϵp 15				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			88	0+	-72.686 (4)	8.0 ± 0.2 m		$\epsilon 100$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			89	(9/2+)	-75.015 (4)	$2.11 \pm 0.1 \text{ m}$		$\epsilon 100$				
90 0^+ $-80.1/4$ (6) 5.56 ± 0.09 h $\epsilon 100$ 91 $9/2+$ -82.208 (11) 15.49 ± 0.01 m $\epsilon 100$ 91m $1/2 -81.555$ (11) 64.6 ± 0.6 s $\epsilon 50; IT 50$ 92 0^+ -86.809 (4) $stable$ $14.53\% \pm 0.3\%$ 93 $5/2+$ -86.808 (4) $4.0E+3 \pm 0.8E+3$ y $\epsilon 100$ 93m $21/2+$ -84.383 (4) 6.85 ± 0.07 h $IT 99.88; \epsilon 0.12$ 94 0^+ -88.4141 (15) $stable$ $9.15\% \pm 0.09\%$ 95 $5/2+$ -87.7119 (15) $stable$ $16.67\% \pm 0.11\%$ 96 0^+ -88.7949 (15) $stable$ $16.67\% \pm 0.13\%$ 97 $5/2+$ -87.5448 (15) $stable$ $9.6\% \pm 0.14\%$ 98 0^+ -88.1161 (15) $stable$ $24.39\% \pm 0.37\%$ 99 $1/2+$ -85.9702 (15) 65.976 ± 0.024 h $\beta^- 100$ 100 0^+ -86.1878 (20) $7.3E+18 \pm 0.4E+18$ y $9.82\% \pm 0.31\%$ $2\beta^- 100$ 101 $1/2+$ -83.5147 (20) 14.61 ± 0.03 m $\beta^- 100$ 102 0^+ -83.573 (9) 11.3 ± 0.2 m $\beta^- 100$ 103 $(3/2+)$ -80.97 (10) 67.5 ± 1.5 s $\beta^- 100$ 103 $(3/2+)$ -80.97 (10) 67.5 ± 1.5 s $\beta^- 100$ 104 0^+ -80.359 (9) 60 ± 2 s $\beta^- 100$ 105 $(5/2-)$ -77.346 (9) 35.6 ± 1.6 s $\beta^- 100$ 106 0^+ -76.144 (9) 8.73 ± 0.12 s $\beta^- 100$ <th></th> <th></th> <th>89m</th> <th>(1/2-)</th> <th>-74.627 (4)</th> <th>$190 \pm 15 \text{ ms}$</th> <th></th> <th><i>IT</i> 100</th>			89m	(1/2-)	-74.627 (4)	$190 \pm 15 \text{ ms}$		<i>IT</i> 100				
919/2+-82.208 (11)15.49 \pm 0.01 m ϵ 10091m1/281.555 (11)64.6 \pm 0.6 s ϵ 50; <i>IT</i> 50920+-86.809 (4)stable14.53% \pm 0.3%935/2+-86.808 (4)4.0E+3 \pm 0.8E+3 y ϵ 10093m21/2+-84.383 (4) $6.85 \pm$ 0.07 h <i>IT</i> 99.88; ϵ 0.12940+-88.4141 (15)stable9.15% \pm 0.09%955/2+-87.7119 (15)stable16.67% \pm 0.15%960+-88.7949 (15)stable16.67% \pm 0.14%980+-88.1161 (15)stable24.39% \pm 0.37%991/2+-85.9702 (15)65.976 \pm 0.024 h β^- 1001000+-86.1878 (20)7.3E+18 \pm 0.4E+18 y9.82% \pm 0.31%991/2+-85.9702 (15)65.976 \pm 0.024 h β^- 1001011/2+-83.573 (9)11.3 \pm 0.2 m β^- 1001020+-83.573 (9)11.3 \pm 0.2 m β^- 100103(3/2+)-80.97 (10)67.5 \pm 1.5 s β^- 1001040+-80.359 (9)60 \pm 2 s β^- 100105(5/2-)-77.346 (9)35.6 \pm 1.6 s β^- 1001060+-76.144 (9)8.73 \pm 0.12 s β^- 1001060+-70.256 (10)1.09 \pm 0.02 s β^- 100			90	0+	-80.174 (6)	5.56 ± 0.09 h		$\epsilon 100$				
91m $1/2^{-}$ $-81.555 (11)$ $64.6 \pm 0.6 \text{ s}$ $\epsilon 50; TT 50$ 920+ $-86.809 (4)$ \mathbf{stable} $14.53\% \pm 0.3\%$ 93 $5/2+$ $-86.808 (4)$ $4.0E+3 \pm 0.8E+3 \text{ y}$ $\epsilon 100$ 93m $21/2+$ $-84.383 (4)$ $6.85 \pm 0.07 \text{ h}$ $TT 99.88; \epsilon 0.12$ 940+ $-88.4141 (15)$ \mathbf{stable} $9.15\% \pm 0.09\%$ 95 $5/2+$ $-87.7119 (15)$ \mathbf{stable} $16.67\% \pm 0.15\%$ 960+ $-88.7949 (15)$ \mathbf{stable} $9.6\% \pm 0.14\%$ 97 $5/2+$ $-87.5448 (15)$ \mathbf{stable} $9.6\% \pm 0.14\%$ 980+ $-88.1161 (15)$ \mathbf{stable} $24.39\% \pm 0.37\%$ 99 $1/2+$ $-85.9702 (15)$ $65.976 \pm 0.024 \text{ h}$ $\beta^- 100$ 1000+ $-86.1878 (20)$ $7.3E+18 \pm 0.4E+18 \text{ y}$ $9.82\% \pm 0.31\%$ $2\beta^- 100$ 101 $1/2+$ $-83.573 (9)$ $11.3 \pm 0.2 \text{ m}$ $\beta^- 100$ 101 $1/2+$ $-80.375 (9)$ $67.5 \pm 1.5 \text{ s}$ $\beta^- 100$ 1020+ $-83.3573 (9)$ $11.3 \pm 0.2 \text{ m}$ $\beta^- 100$ 103 $(3/2+)$ $-80.97 (10)$ $67.5 \pm 1.5 \text{ s}$ $\beta^- 100$ 1040+ $-80.359 (9)$ $60 \pm 2 \text{ s}$ $\beta^- 100$ 105 $(5/2-)$ $-77.346 (9)$ $35.6 \pm 1.6 \text{ s}$ $\beta^- 100$ 1060+ $-76.144 (9)$ $8.73 \pm 0.12 \text{ s}$ $\beta^- 100$ 105 $(5/2+)$ $-72.561 (10)$ $3.5 \pm 0.5 \text{ s}$ $\beta^- 100$ 1080+ $-70.766 (10)$ <th></th> <th></th> <th>91</th> <th>9/2+</th> <th>-82.208 (11)</th> <th>$15.49 \pm 0.01 \text{ m}$</th> <th></th> <th>$\epsilon 100$</th>			91	9/2+	-82.208 (11)	$15.49 \pm 0.01 \text{ m}$		$\epsilon 100$				
92 $0+$ -86.809 (4)stable14.53% $\pm 0.3\%$ 93 $5/2+$ -86.808 (4) $4.0E+3 \pm 0.8E+3$ y $\epsilon 100$ 93m $21/2+$ -84.383 (4) 6.85 ± 0.07 h IT 99.88; $\epsilon 0.12$ 94 $0+$ -88.4141 (15)stable $9.15\% \pm 0.09\%$ 95 $5/2+$ -87.7119 (15)stable $15.84\% \pm 0.11\%$ 96 $0+$ -88.7949 (15)stable $16.67\% \pm 0.15\%$ 97 $5/2+$ -87.5448 (15)stable $9.6\% \pm 0.14\%$ 98 $0+$ -88.1161 (15)stable $24.39\% \pm 0.37\%$ 99 $1/2+$ -85.9702 (15) 65.976 ± 0.024 h $\beta^- 100$ 100 $0+$ -86.1878 (20) $7.3E+18 \pm 0.4E+18$ y $9.82\% \pm 0.31\%$ 101 $1/2+$ -83.5147 (20) 14.61 ± 0.03 m $\beta^- 100$ 102 $0+$ -83.573 (9) 11.3 ± 0.2 m $\beta^- 100$ 103 $(3/2+)$ -80.97 (10) 67.5 ± 1.5 s $\beta^- 100$ 104 $0+$ -80.359 (9) 60 ± 2 s $\beta^- 100$ 105 $(5/2-)$ -77.346 (9) 35.6 ± 1.6 s $\beta^- 100$ 106 $0+$ -76.144 (9) 8.73 ± 0.12 s $\beta^- 100$ 107 $(5/2+)$ -72.561 (10) 3.5 ± 0.5 s $\beta^- 100$ 108 $0+$ -70.766 (10) 1.09 ± 0.02 s $\beta^- 100; \beta^- n < 0.50$			91m	1/2-	-81.555 (11)	$64.6 \pm 0.6 \text{ s}$	14 500/ + 0.00/	ϵ 50; TT 50				
93 $5/2+$ $-86.808 (4)$ $4.0\pm 4 \pm 0.8\pm 3 \text{ y}$ $\epsilon 100$ 93 m $21/2+$ $-84.383 (4)$ $6.85 \pm 0.07 \text{ h}$ $IT 99.88; \epsilon 0.12$ 940+ $-88.4141 (15)$ $stable$ $9.15\% \pm 0.09\%$ 95 $5/2+$ $-87.7119 (15)$ $stable$ $15.84\% \pm 0.11\%$ 960+ $-88.7949 (15)$ $stable$ $16.67\% \pm 0.15\%$ 97 $5/2+$ $-87.5448 (15)$ $stable$ $9.6\% \pm 0.14\%$ 980+ $-88.1161 (15)$ $stable$ $24.39\% \pm 0.37\%$ 99 $1/2+$ $-85.9702 (15)$ $65.976 \pm 0.024 \text{ h}$ $\beta^- 100$ 1000+ $-86.1878 (20)$ $7.3\pm +18 \pm 0.4\pm +18 \text{ y}$ $9.82\% \pm 0.31\%$ $2\beta^- 100$ 101 $1/2+$ $-83.5147 (20)$ $14.61 \pm 0.03 \text{ m}$ $\beta^- 100$ 1020+ $-83.573 (9)$ $11.3 \pm 0.2 \text{ m}$ $\beta^- 100$ 103 $(3/2+)$ $-80.97 (10)$ $67.5 \pm 1.5 \text{ s}$ $\beta^- 100$ 1040+ $-80.359 (9)$ $60 \pm 2 \text{ s}$ $\beta^- 100$ 105 $(5/2-)$ $-77.346 (9)$ $35.6 \pm 1.6 \text{ s}$ $\beta^- 100$ 1060+ $-76.144 (9)$ $8.73 \pm 0.12 \text{ s}$ $\beta^- 100$ 107 $(5/2+)$ $-72.561 (10)$ $3.5 \pm 0.5 \text{ s}$ $\beta^- 100$ 1080+ $-70.766 (10)$ $1.09 \pm 0.02 \text{ s}$ $\beta^- 100; \beta^- n < 0.50$			92	0+	-86.809 (4)	stable	$14.53\% \pm 0.3\%$	100				
93m $21/24$ $-84.383 (4)$ 6.85 ± 0.07 h $17^{-99.88}; \epsilon 0.12$ 940+ $-88.4141 (15)$ stable $9.15\% \pm 0.09\%$ 95 $5/24$ $-87.7119 (15)$ stable $15.84\% \pm 0.11\%$ 960+ $-88.7949 (15)$ stable $16.67\% \pm 0.15\%$ 97 $5/24$ $-87.5448 (15)$ stable $9.6\% \pm 0.14\%$ 980+ $-88.1161 (15)$ stable $24.39\% \pm 0.37\%$ 99 $1/2+$ $-85.9702 (15)$ 65.976 ± 0.024 h $\beta^- 100$ 1000+ $-86.1878 (20)$ $7.3E+18 \pm 0.4E+18$ y $9.82\% \pm 0.31\%$ 101 $1/2+$ $-83.5147 (20)$ 14.61 ± 0.03 m $\beta^- 100$ 1020+ $-83.573 (9)$ 11.3 ± 0.2 m $\beta^- 100$ 103 $(3/2+)$ $-80.97 (10)$ 67.5 ± 1.5 s $\beta^- 100$ 1040+ $-80.359 (9)$ 60 ± 2 s $\beta^- 100$ 105 $(5/2-)$ $-77.346 (9)$ 35.6 ± 1.6 s $\beta^- 100$ 1060+ $-76.144 (9)$ 8.73 ± 0.12 s $\beta^- 100$ 107 $(5/2+)$ $-72.561 (10)$ 3.5 ± 0.5 s $\beta^- 100$ 1080+ $-70.766 (10)$ 1.09 ± 0.02 s $\beta^- 100; \beta^- n < 0.50$			93	5/2+	-86.808 (4)	$4.0E+3 \pm 0.8E+3$ y		ϵ 100				
940+-58.4141 (15)stable9.15% $\pm 0.09\%$ 955/2+-87.7119 (15)stable15.84% $\pm 0.11\%$ 960+-88.7949 (15)stable16.67% $\pm 0.15\%$ 975/2+-87.5448 (15)stable9.6% $\pm 0.14\%$ 980+-88.1161 (15)stable24.39% $\pm 0.37\%$ 991/2+-85.9702 (15)65.976 ± 0.024 h $\beta^- 100$ 1000+-86.1878 (20)7.3E+18 $\pm 0.4E+18$ y9.82% $\pm 0.31\%$ 1011/2+-83.5147 (20)14.61 ± 0.03 m $\beta^- 100$ 1020+-83.573 (9)11.3 ± 0.2 m $\beta^- 100$ 103(3/2+)-80.97 (10)67.5 ± 1.5 s $\beta^- 100$ 1040+-80.359 (9)60 ± 2 s $\beta^- 100$ 105(5/2-)-77.346 (9)35.6 ± 1.6 s $\beta^- 100$ 1060+-76.144 (9) 8.73 ± 0.12 s $\beta^- 100$ 107(5/2+)-72.561 (10) 3.5 ± 0.5 s $\beta^- 100$ 1080+-70.766 (10) 1.09 ± 0.02 s $\beta^- 100; \beta^- n < 0.50$			93m	21/2+	-84.383(4)	6.85 ± 0.07 h		TT 99.88; ϵ 0.12				
95 $5/2^+$ $-67.7119 (13)$ stable $13.64\% \pm 0.11\%$ 960+ $-88.7949 (15)$ stable $16.67\% \pm 0.15\%$ 97 $5/2+$ $-87.5448 (15)$ stable $9.6\% \pm 0.14\%$ 980+ $-88.1161 (15)$ stable $24.39\% \pm 0.37\%$ 99 $1/2+$ $-85.9702 (15)$ 65.976 ± 0.024 h β^- 1001000+ $-86.1878 (20)$ $7.3E+18 \pm 0.4E+18$ y $9.82\% \pm 0.31\%$ $2\beta^-$ 100101 $1/2+$ $-83.5147 (20)$ 14.61 ± 0.03 m β^- 1001020+ $-83.573 (9)$ 11.3 ± 0.2 m β^- 100103 $(3/2+)$ $-80.97 (10)$ 67.5 ± 1.5 s β^- 1001040+ $-80.359 (9)$ 60 ± 2 s β^- 100105 $(5/2-)$ $-77.346 (9)$ 35.6 ± 1.6 s β^- 1001060+ $-76.144 (9)$ 8.73 ± 0.12 s β^- 100107 $(5/2+)$ $-72.561 (10)$ 3.5 ± 0.5 s β^- 1001080+ $-70.766 (10)$ 1.09 ± 0.02 s β^- 100; $\beta^- n < 0.50$			94 05	0+ E /2 -	-88.4141 (15) 97.7110 (15)	stable	$9.15\% \pm 0.09\%$					
960+-88.7949 (15)stable16.87% $\pm 0.15\%$ 97 $5/2 \pm$ -87.5448 (15)stable $9.6\% \pm 0.14\%$ 980+-88.1161 (15)stable $24.39\% \pm 0.37\%$ 99 $1/2 \pm$ -85.9702 (15) 65.976 ± 0.024 h β^- 1001000+-86.1878 (20) $7.3\pm18 \pm 0.4\pm18$ y $9.82\% \pm 0.31\%$ $2\beta^-$ 100101 $1/2 \pm$ -83.5147 (20) 14.61 ± 0.03 m β^- 1001020+-83.573 (9) 11.3 ± 0.2 m β^- 100103 $(3/2 \pm)$ -80.97 (10) 67.5 ± 1.5 s β^- 1001040+-80.359 (9) 60 ± 2 s β^- 100105 $(5/2 -)$ -77.346 (9) 35.6 ± 1.6 s β^- 1001060+-76.144 (9) 8.73 ± 0.12 s β^- 100107 $(5/2 +)$ -72.561 (10) 3.5 ± 0.5 s β^- 1001080+-70.766 (10) 1.09 ± 0.02 s β^- 100; $\beta^-n < 0.50$			95	5/2+	-87.7119 (15)	stable	$15.84\% \pm 0.11\%$					
97 $5/2+$ $-87.3448(15)$ stable $9.5\% \pm 0.14\%$ 98 $0+$ $-88.1161(15)$ stable $24.39\% \pm 0.37\%$ 99 $1/2+$ $-85.9702(15)$ 65.976 ± 0.024 h $\beta^- 100$ 100 $0+$ $-86.1878(20)$ $7.3E+18 \pm 0.4E+18$ y $9.82\% \pm 0.31\%$ $2\beta^- 100$ 101 $1/2+$ $-83.5147(20)$ 14.61 ± 0.03 m $\beta^- 100$ 102 $0+$ $-83.573(9)$ 11.3 ± 0.2 m $\beta^- 100$ 103 $(3/2+)$ $-80.97(10)$ 67.5 ± 1.5 s $\beta^- 100$ 104 $0+$ $-80.359(9)$ 60 ± 2 s $\beta^- 100$ 105 $(5/2-)$ $-77.346(9)$ 35.6 ± 1.6 s $\beta^- 100$ 106 $0+$ $-76.144(9)$ 8.73 ± 0.12 s $\beta^- 100$ 107 $(5/2+)$ $-72.561(10)$ 3.5 ± 0.5 s $\beta^- 100$ 108 $0+$ $-70.766(10)$ 1.09 ± 0.02 s $\beta^- 100; \beta^- n < 0.50$			96 07	0+ E /2 -	-88.7949 (15) 97 E449 (15)	stable	$16.67\% \pm 0.15\%$					
960+-56.1161 (15)stable $24.39\% \pm 0.37\%$ 99 $1/2+$ -85.9702 (15) 65.976 ± 0.024 h β^- 1001000+-86.1878 (20) $7.3E+18 \pm 0.4E+18$ y $9.82\% \pm 0.31\%$ $2\beta^-$ 100101 $1/2+$ -83.5147 (20) 14.61 ± 0.03 m β^- 1001020+-83.573 (9) 11.3 ± 0.2 m β^- 100103 $(3/2+)$ -80.97 (10) 67.5 ± 1.5 s β^- 1001040+-80.359 (9) 60 ± 2 s β^- 100105 $(5/2-)$ -77.346 (9) 35.6 ± 1.6 s β^- 1001060+-76.144 (9) 8.73 ± 0.12 s β^- 100107 $(5/2+)$ -72.561 (10) 3.5 ± 0.5 s β^- 1001080+-70.766 (10) 1.09 ± 0.02 s β^- 100; $\beta^-n < 0.50$			97	5/2+	-87.3448(13)	stable	$9.0\% \pm 0.14\%$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			90 00	0+	-66.1101(13)	Stable 65.076 ± 0.024 h	24.39 /0 \pm 0.37 /0	2= 100				
100 $0+$ -30.1878 (20)7.3±+18 \pm 0.4±+18 y9.02 /8 \pm 0.31 /825100101 $1/2+$ -83.5147 (20)14.61 \pm 0.03 m β^- 1001020+-83.573 (9)11.3 \pm 0.2 m β^- 100103 $(3/2+)$ -80.97 (10)67.5 \pm 1.5 s β^- 1001040+-80.359 (9)60 \pm 2 s β^- 100105 $(5/2-)$ -77.346 (9)35.6 \pm 1.6 s β^- 1001060+-76.144 (9)8.73 \pm 0.12 s β^- 100107 $(5/2+)$ -72.561 (10)3.5 \pm 0.5 s β^- 1001080+-70.766 (10)1.09 \pm 0.02 s β^- 100; $\beta^-n < 0.50$			99 100	1/2+	-65.9702 (15)	03.976 ± 0.024 II 7 2E + 18 ± 0.4 E + 18 w	$0.92\% \pm 0.21\%$	p = 100 $2e^{-} = 100$				
101 $1/2+$ -65.5147 (20) 14.61 ± 0.05 m β^{-} 100 102 $0+$ -83.573 (9) 11.3 ± 0.2 m β^{-} 100 103 $(3/2+)$ -80.97 (10) 67.5 ± 1.5 s β^{-} 100 104 $0+$ -80.359 (9) 60 ± 2 s β^{-} 100 105 $(5/2-)$ -77.346 (9) 35.6 ± 1.6 s β^{-} 100 106 $0+$ -76.144 (9) 8.73 ± 0.12 s β^{-} 100 107 $(5/2+)$ -72.561 (10) 3.5 ± 0.5 s β^{-} 100 108 $0+$ -70.766 (10) 1.09 ± 0.02 s β^{-} 100; $\beta^{-}n < 0.50$			100	0+ 1/2	-30.1070(20) 83 5147 (20)	$7.52\pm10 \pm 0.42\pm10$ y 14.61 ± 0.03 m	$9.02/0 \pm 0.01/0$	2β 100 β^{-} 100				
102 $0+$ $-60.576(9)$ 11.5 ± 0.2 m β^{-} 100 103 $(3/2+)$ $-80.97(10)$ 67.5 ± 1.5 s β^{-} 100 104 $0+$ $-80.359(9)$ 60 ± 2 s β^{-} 100 105 $(5/2-)$ $-77.346(9)$ 35.6 ± 1.6 s β^{-} 100 106 $0+$ $-76.144(9)$ 8.73 ± 0.12 s β^{-} 100 107 $(5/2+)$ $-72.561(10)$ 3.5 ± 0.5 s β^{-} 100 108 $0+$ $-70.766(10)$ 1.09 ± 0.02 s β^{-} 100; $\beta^{-}n < 0.50$			101	1/2+ 0+	-83 573 (9)	11.01 ± 0.00 m		β 100 β^{-} 100				
105 $(5/2+)$ -60.57 (10) 107.5 ± 1.5 s β^{-} 100 104 $0+$ -80.359 (9) 60 ± 2 s β^{-} 100 105 $(5/2-)$ -77.346 (9) 35.6 ± 1.6 s β^{-} 100 106 $0+$ -76.144 (9) 8.73 ± 0.12 s β^{-} 100 107 $(5/2+)$ -72.561 (10) 3.5 ± 0.5 s β^{-} 100 108 $0+$ -70.766 (10) 1.09 ± 0.02 s β^{-} 100; $\beta^{-}n < 0.50$			102	(3/2)	-80.97(10)	$675 \pm 15s$		β 100 β^{-} 100				
104 $0+$ $-60.357(9)$ 00 ± 2.8 β^{-100} 105 $(5/2-)$ $-77.346(9)$ 35.6 ± 1.6 s β^{-100} 106 $0+$ $-76.144(9)$ 8.73 ± 0.12 s β^{-100} 107 $(5/2+)$ $-72.561(10)$ 3.5 ± 0.5 s β^{-100} 108 $0+$ $-70.766(10)$ 1.09 ± 0.02 s $\beta^{-100; \beta^{-}n < 0.50$			103	(372+) 0+	-80 359 (9)	60 ± 2		β 100 β^{-} 100				
105 $(5/2^2)$ $-77.540(5)$ $55.6 \pm 1.6 \text{ s}$ β^-100 106 $0+$ $-76.144(9)$ $8.73 \pm 0.12 \text{ s}$ β^-100 107 $(5/2+)$ $-72.561(10)$ $3.5 \pm 0.5 \text{ s}$ β^-100 108 $0+$ $-70.766(10)$ $1.09 \pm 0.02 \text{ s}$ $\beta^-100; \beta^-n < 0.50$			104	(5/2)	-77 346 (9)	35.6 ± 1.6 s		β 100 β^{-} 100				
100 01 -70.144 (9) 0.75 ± 0.12 s β^{-100} 107 (5/2+) -72.561 (10) 3.5 ± 0.5 s β^{-100} 108 0+ -70.766 (10) 1.09 ± 0.02 s β^{-100} ; $\beta^{-n} < 0.50$			105	$(3/2^{-})$	-76 144 (9)	873 ± 0.12 s		β^{-} 100 β^{-} 100				
107 (3/21) 72.001 (10) $3.5 \pm 0.5 3$ β^{-100} 108 0+ -70.766 (10) $1.09 \pm 0.02 \text{ s}$ $\beta^{-100}; \beta^{-}n < 0.50$			107	(5/2+)	-72561(10)	35 ± 0.123		β^{-} 100				
100 0 10 10 10 10 10 10 10 10 10 10 10 1			108	(0, 2, 2)	-70 766 (10)	1.09 ± 0.03		$\beta^{-} 100 \beta^{-} n < 0.50$				
109 (7/2-) -66 676 (11) 660 + 45 ms β^{-100} β^{-2} 13			109	(7/2)	-66 676 (11)	$660 \pm 45 \mathrm{ms}$		β^{-} 100, β^{-} $n < 0.50$ β^{-} 100, β^{-} $n = 1.3$				
$100, \beta^{-1} 100, \beta^{-1} 100,$			110	(7, 2)	-64 552 (24)	0.27 ± 0.01 s		$\beta^{-} 100, \beta^{-} n 2$				
$110 01002 (21) 0.27 \pm 0.013 \qquad \qquad p = 100, p = h2$ $111 0 \qquad -60.06 (20) \qquad 220 \pm 41-36 \text{ ms} \qquad \qquad B^- \cdot B^- n < 12$			111	0	-60 06 (20)	$270 \pm 41-36$ ms		$\beta^{-} \cdot \beta^{-} n < 12$				
$\begin{array}{cccccccccccccc} 111 & 0 & 0.00 (20) & 220 + 11 00 113 & & & p & , p & n \leq 12 \\ 112 & 0+ & -57.6 (3) & 120 + 13-11 \text{ ms} & & & & & & & & & & \\ \end{array}$			112	0+	-57 6 (3)	120 + 13 - 11 ms		β^{-}				
112 0.1 0.10 0.			113	0	-52.9 (3)	78 + 6 - 5 ms		β^{-}				
$114 0+ \qquad -50 (4) \qquad 60 + 13 - 9 \text{ ms} \qquad \beta^{-}$			114	0+	-50 (4)	60 +13-9 ms		β^{-}				

				Table	10.1 – Continued from previou	ıs page	
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		115	0	-44.7 (4)	51 +79-19 ms		eta^- ; $eta^- n$
43	Tc	85	0	-46 (4)	$pprox 0.5 \ { m s}$		p ?
		86	(0+)	-51.3 (3)	$54\pm7~\mathrm{ms}$		ϵ 100; ϵp
		87	(9/2+)	-57.69 (4)	$2.2\pm0.2~\mathrm{s}$		$\epsilon \ 100$
		88	(3+)	-61.679 (4)	$5.8\pm0.2~{ m s}$		ϵ 100; ϵ 100
		89	(9/2+)	-67.395 (4)	$12.8\pm0.9~\mathrm{s}$		$\epsilon \ 100$
		89m	(1/2-)	-67.332 (4)	$12.9\pm0.8~\mathrm{s}$		ϵ 100; $IT < 0.01$
		90	1+	-70.724 (3)	$8.7\pm0.2~{ m s}$		$\epsilon \ 100$
		90m	(6+)	-70.224 (3)	$49.2\pm0.4~\mathrm{s}$		$\epsilon \ 100$
		91	(9/2)+	-75.987 (3)	3.14 ± 0.02 m		$\epsilon \ 100$
		91m	(1/2)-	-75.848 (3)	3.3 ± 0.1 m		ϵ 100; $IT < 1.00$
		92	(8)+	-78.925 (4)	$4.25\pm0.15~\mathrm{m}$		$\epsilon \ 100$
		93	9/2+	-83.607 (4)	$2.75\pm0.05~\mathrm{h}$		$\epsilon \ 100$
		93m	1/2-	-83.215 (4)	43.5 ± 1 m		IT 77.4; ϵ 22.6
		94	7+	-84.158 (4)	$293 \pm 1 \text{ m}$		$\epsilon \ 100$
		94m	(2)+	-84.082 (4)	$52.0 \pm 1 \text{ m}$		ϵ 100; $IT < 0.10$
		95	9/2+	-86.021 (5)	$20.0\pm0.1~{ m h}$		$\epsilon \ 100$
		95m	1/2-	-85.982 (5)	$61 \pm 2 d$		ϵ 96.12; IT 3.88
		96	7+	-85.822 (5)	$4.28\pm0.07~\mathrm{d}$		$\epsilon \ 100$
		96m	4+	-85.787 (5)	51.5 ± 1 m		<i>IT</i> 98; <i>ε</i> 2
		97	9/2+	-87.224 (4)	$4.21E$ +6 \pm 0.16E+6 y		$\epsilon \ 100$
		97m	1/2-	-87.128 (4)	$91.0\pm0.6~\mathrm{d}$		IT 96.06; ϵ 3.94
		98	(6)+	-86.432 (4)	$4.2\text{E+6}\pm0.3\text{E+6}\text{ y}$		eta^- 100
		99	9/2+	-87.3271 (17)	$2.111E+5 \pm 0.012E+5 \text{ y}$		eta^- 100
		99m	1/2-	-87.1844 (17)	6.0067 ± 5.0 E-4 h		IT 100; β^- 0.0037
		100	1+	-86.0202 (20)	$15.46\pm0.19~\mathrm{s}$		eta^- 100; ϵ 0.0026
		101	9/2+	-86.339 (24)	$14.02\pm0.01~\text{m}$		eta^- 100
		102	1+	-84.569 (9)	$5.28\pm0.15~{\rm s}$		eta^- 100; eta^- 98; IT 2
		103	5/2+	-84.6 (10)	$54.2\pm0.8~\mathrm{s}$		eta^- 100
		104	(3+)	-82.509 (25)	18.3 ± 0.3 m		eta^- 100
		105	(3/2-)	-82.29 (4)	7.6 ± 0.1 m		eta^- 100
		106	(2+)	-79.774 (13)	$35.6\pm0.6~\mathrm{s}$		eta^- 100
		107	(3/2-)	-78.746 (9)	$21.2\pm0.2~ m s$		eta^- 100
		108	(2)+	-75.919 (9)	$5.17\pm0.07~\mathrm{s}$		eta^- 100
		109	(5/2+)	-74.279 (10)	$0.86\pm0.04~\mathrm{s}$		eta^- 100; $eta^- n$ 0.08
		110	(2+)	-71.031 (10)	$0.92\pm0.03~\mathrm{s}$		eta^- 100; $eta^- n$ 0.04
		111	(5/2+)	-69.021 (11)	$350\pm21~\mathrm{ms}$		eta^- 100; $eta^- n$ 0.85
		112	0	-65.253 (6)	$0.29\pm0.02~\mathrm{s}$		eta^- 100; eta^-n 4
		113	>5/2	-62.88 (10)	160 +50-40 ms		eta^- ; $eta^- n$ 2.1
		114	>3	-58.85 (20)	$100 \pm 20 \text{ ms}$		$egin{array}{cccccccccccccccccccccccccccccccccccc$
		115	0	-56.1 (3)	83 +20-13 ms		$\beta^-:\beta^-n$
		116	0	-51.5 (3)	56 +15-10 ms		β^{-}
		117	(5/2+)	-48.4 (4)	85 +95-30 ms		β^{-}
44	Ru	88	0+	-54.4 (3)	1.2 +0.3-0.2 s		$\epsilon 100$
		89	(9/2+)	-58.1 (3)	$1.5\pm0.2~{ m s}$		$\epsilon 100; \epsilon p < 0.15$
		90	0+	-64.883 (4)	$11.7\pm0.9~\mathrm{s}$		$\epsilon 100$
		91	(9/2+)	-68.239 (3)	$7.9\pm0.4~{ m s}$		ϵ 100; <i>IT</i> ; ϵ > 0.00; ϵp >
		92	0+	-74,301 (3)	$3.65 \pm 0.05 \mathrm{m}$		$\epsilon 100$
		93	(9/2)+	-77.214 (4)	$59.7 \pm 0.6 \text{ s}$		ϵ 100
		93m	(1/2)-	-76.479 (4)	$10.8\pm0.3~\mathrm{s}$		ϵ 78; IT 22: ϵp 0.03
		94	0+	-82.579 (4)	51.8 ± 0.6 m		$\epsilon 100$
		95	5/2+	-83.458 (10)	1.643 ± 0.013 h		<i>ϵ</i> 100
			-,				

				Table 1	0.1 – Continued from prev	ious page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode
		96	0+	-86.0804 (15)	stable	$5.54\% \pm 0.14\%$	
		97	5/2+	-86.12 (3)	$2.83\pm0.23~d$		ϵ 100
		98	0+	-88.225 (6)	stable	$1.87\% \pm 0.03\%$	
		99	5/2+	-87.6202 (20)	stable	$12.76\% \pm 0.14\%$	
		100	0+	-89.2222 (20)	stable	$12.6\% \pm 0.07\%$	
		101	5/2+	-87.9529 (20)	stable	$17.06\% \pm 0.02\%$	
		102	0+	-89.1012 (20)	stable	$31.55\% \pm 0.14\%$	
		103	3/2+	-87.262 (20)	$39.247 \pm 0.013 \text{ d}$		eta^- 100
		104	0+	-88.092 (3)	stable	$18.62\% \pm 0.27\%$	
		105	3/2+	-85.931 (3)	$4.44\pm0.02~\text{h}$		eta^- 100
		106	0+	-86.321 (6)	$371.8 \pm 1.8 \text{ d}$		eta^- 100
		107	(5/2)+	-83.859 (9)	3.75 ± 0.05 m		eta^- 100
		108	0+	-83.658 (9)	4.55 ± 0.05 m		eta^- 100
		109	(5/2+)	-80.735 (9)	$34.5\pm1\mathrm{s}$		eta^- 100
		110	0+	-80.069 (9)	$11.6\pm0.6~{ m s}$		eta^- 100
		111	5/2+	-76.782 (10)	$2.12\pm0.07~\mathrm{s}$		eta^- 100
		112	0+	-75.627 (10)	$1.75\pm0.07~\mathrm{s}$		eta^- 100
		113	(1/2+)	-71.87 (4)	$0.80\pm0.05~{ m s}$		eta^- 100; eta^- 100
		114	0+	-70.215 (12)	$0.52\pm0.05~{ m s}$		eta^- 100
		115	(3/2+)	-66.19 (9)	$318\pm19~\mathrm{ms}$		eta^- ; eta^- 100; $eta^- n$;
							$\beta^{-} 100; \ \beta^{-}n \ ; \ \beta^{-} 100; \ \beta^{-}n$
		116	0+	-64 16 (20)	204 + 32 - 29 ms		β^{-}
		117	0	-59.56 (20)	142 + 18 - 17 ms		β^{-} 100
		118	0+	-57.3 (3)	123 + 48 - 35 ms		β^- 100: $\beta^- n$
45	Rh	90	0	-52 (4)	12 +9-4 ms		ϵ ?: ϵ ?
		91	(9/2+)	-58.8 (4)	1.47 ± 0.22 s		<i>ϵ</i> : <i>ϵ</i>
		92	(6+)	-62.999 (4)	$4.66\pm0.25~\mathrm{s}$		ϵ 100; ϵ 100
		93	(9/2+)	-69.017 (3)	$12.2 \pm 0.7 \; { m s}$		$\epsilon 100$
		94	(4+)	-72.907 (4)	$66\pm 6~{ m s}$		$\epsilon p \ 1.8; \epsilon \ 100$
		94m	(8+)	-72.607 (4)	$25.8\pm0.2~\mathrm{s}$		$\epsilon 100$
		95	9/2+	-78.342 (4)	$5.02\pm0.1~\mathrm{m}$		$\epsilon \ 100$
		95m	(1/2)-	-77.799 (4)	1.96 ± 0.04 m		IT 88; ϵ 12
		96	GE 6+	-79.688 (10)	$9.90\pm0.1~\mathrm{m}$		<i>ϵ</i> 100
		96m	3+	-79.636 (10)	$1.51\pm0.02~\mathrm{m}$		IT 60; ϵ 40
		97	9/2+	-82.6 (4)	$30.7\pm0.6~\mathrm{m}$		$\epsilon \ 100$
		97m	1/2-	-82.34 (4)	$46.2\pm1.6~\text{m}$		ϵ 94.4; IT 5.6
		98	(2)+	-83.175 (12)	$8.72\pm0.12~\text{m}$		ϵ 100; IT 89; ϵ 11
		99	1/2-	-85.577 (7)	16.1 ± 0.2 d		ϵ 100
		99m	9/2+	-85.512 (7)	$4.7\pm0.1~h$		$\epsilon > 99.84; IT < 0.16$
		100	1-	-85.587 (18)	$20.8\pm0.1~h$		$\epsilon \ 100$
		100m	(5+)	-85.479 (18)	4.6 ± 0.2 m		$ITpprox$ 98.30; \epsilonpprox 1.70
		101	1/2-	-87.412 (6)	$3.3\pm0.3~\mathrm{y}$		$\epsilon \ 100$
		101m	9/2+	-87.254 (6)	$4.34\pm0.01~d$		ϵ 92.8; IT 7.2
		102	(1-,2-)	-86.778 (5)	$207.3 \pm 1.7 \text{ d}$		ϵ 78; eta^- 22
		102m	6(+)	-86.638 (5)	$3.742\pm0.01~\mathrm{y}$		ϵ 99.77; IT 0.23
		103	1/2-	-88.026 (3)	stable	100%	
		103m	7/2+	-87.986 (3)	$56.114\pm0.009~\mathrm{m}$		<i>IT</i> 100
		104	1+	-86.953 (3)	$42.3\pm0.4~s$		eta^- 99.55; ϵ 0.45
		104m	5+	-86.824 (3)	$4.34\pm0.03\ m$		eta^- 0.13; IT 99.87
		105	7/2+	-87.849 (4)	$35.36\pm0.06~h$		eta^- 100
		105m	1/2-	-87.719 (4)	$42.9\pm0.3~s$		<i>IT</i> 100
		106	1+	-86.36 (6)	$30.07\pm0.35~s$		eta^- 100
		106m	(6)+	-86.223 (6)	131 ± 2 m		β^- 100

				Table	10.1 – Continued from previ	ous page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode
		107	7/2+	-86.861 (12)	21.7 ± 0.4 m		β^{-} 100
		108	1+	-85.031 (14)	$16.8\pm0.5~\mathrm{s}$		eta^- 100; eta^- 100; IT
		109	7/2+	-85.011 (6)	$80\pm2\mathrm{s}$		eta^- 100
		110	(GE4)	-82.844 (19)	$28.5\pm1.5~\mathrm{s}$		eta^- 100; eta^- 100
		111	(7/2+)	-82.304 (7)	$11\pm1~{ m s}$		eta^- 100
		112	1+	-79.73 (4)	$3.45\pm0.37~\mathrm{s}$		eta^- 100; eta^- 100
		113	(7/2+)	-78.767 (7)	$2.80\pm0.12~ m s$		eta^- 100
		114	1+	-75.71 (7)	$1.85\pm0.05~{ m s}$		eta^- 100
		114m	(7-)	-75.51 (7)	$1.86\pm0.06~{ m s}$		eta^- 100
		115	(7/2+)	-74.23 (8)	$0.99\pm0.05~{ m s}$		eta^- 100
		116	1+	-70.74 (7)	$0.68\pm0.06~{ m s}$		eta^- 100
		116m	(6-)	-70.59 (7)	$0.57\pm0.05~{ m s}$		eta^- 100
		117	(7/2+)	-68.897 (9)	$0.44\pm0.04~{ m s}$		eta^- 100
		118	0	-64.887 (24)	266 +22-21 ms		eta^- 100; $eta^- n$ 3.1
		119	(7/2+)	-62.85 (20)	$171 \pm 18 \text{ ms}$		eta^- 100; $eta^- n$ 6.4
		120	0	-58.81 (20)	136 +14-13 ms		eta^- 100; $eta^- n <$ 5.40
		121	0	-56.4 (3)	151 +67-58 ms		eta^- 100; $eta^- n$
46	Pd	92	0+	-55.1 (5)	0.7 +0.4-0.2 s		ϵ 100
		93	(9/2+)	-59.1 (4)	$1.00\pm0.09~\mathrm{s}$		ϵ 100; ϵp
		94	0+	-66.102 (5)	$9.6\pm0.2~\mathrm{s}$		ϵ 100
		95	(9/2+)	-69.966 (5)	$5\pm3\mathrm{s}$		ϵ 100
		95m	(21/2+)	-68.091 (5)	$13.3\pm0.3~\mathrm{s}$		ϵ 89; IT 11; ϵp 0.93
		96	0+	-76.183 (4)	122 ± 2 s		ϵ 100
		97	(5/2+)	-77.806 (5)	$3.10 \pm 0.09 \text{ m}$		ϵ 100
		98	0+	-81.32 (5)	17.7 ± 0.3 m		$\epsilon 100$
		99	(5/2)+	-82.184 (5)	21.4 ± 0.2 m		$\epsilon 100$
		100	0+	-85.226 (18)	3.63 ± 0.09 d		$\epsilon 100$
		101	5/2+	-85.432 (5)	8.47 ± 0.06 h	1.000/ 1.0.010/	$\epsilon 100$
		102	0+	-87.929 (3)		$1.02\% \pm 0.01\%$	100
		103	5/2+	-87.483 (3)	16.991 ± 0.019 d		$\epsilon 100$
		104	0+ E / 2 ·	-89.393 (3)	stable	$11.14\% \pm 0.08\%$	
		105	3/2+	-00.410(3)	stable	$22.33\% \pm 0.06\%$	
		100	0+ 5/2	-09.900 (3)	$65E+6\pm0.2E+6x$	$27.33 / 0 \pm 0.03 / 0$	<i>a</i> = 100
		107 107m	$\frac{3}{2+}$	-66.371(3)	$0.5\pm0\pm0.5\pm0$ y		β 100
		107111	11/2-	-00.130 (3)	21.3 ± 0.5 stable	$26.46\% \pm 0.00\%$	11 100
		100	0+ 5/2	-69.521 (3)	137012 ± 0.0024 h	$20.40 / 0 \pm 0.09 / 0$	β^{-} 100
		109 109m	$\frac{3}{2+}$	-87.003(3)	4.696 ± 0.0024 m		p 100 IT 100
		10911	11/2- 0+	-88 348 (7)	4.090 ± 0.005 m	$11.72\% \pm 0.09\%$	11 100
		110	5/2+	-86 003 (7)	234 ± 0.2 m	11.7270 ± 0.0770	β^{-} 100
		111 111m	11/2-	-85 831 (7)	55 ± 0.1 h		β^{-100} IT 73: β^{-27}
		112	0+	-86 323 (7)	21.03 ± 0.05 h		β^{-} 100
		112	(5/2+)	-83,591 (7)	93 ± 5 s		β^{-} 100 β^{-} 100
		113m	(9/2-)	-83.51 (7)	0.3 ± 0.1 s		JT 100
		114	(2) = (2)	-83.491 (7)	$2.42 \pm 0.06 \text{ m}$		$\beta^- 100$
		115	(5/2+)	-80.426 (14)	25 ± 2 s		β^{-} 100
		115m	(11/2-)	-80.337 (14)	$50 \pm 3 s$		β^- 92: IT 8
		116	(-79.831 (7)	$11.8 \pm 0.4 \text{ s}$		$\beta^- 100$
		117	(5/2+)	-76.424 (7)	4.3 ± 0.3 s		β^- 100
		118	0+	-75.391 (8)	$1.9 \pm 0.1 \text{ s}$		β^- 100
		119	0	-71.408 (8)	$0.92\pm0.01~{ m s}$		β^{-} 100
		120	0+	-70.31 (9)	$0.5\pm0.1~{ m s}$		β^{-} 100
		121	(3/2+)	-66.3 (5)	$285\pm24~ms$		eta^- 100; $eta^-n \leq 0.80$

				Table 10).1 – Continued from pret	vious page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		122	0+	-64.7 (4)	$175\pm16~\mathrm{ms}$		$eta^- \geq$ 97.50; $eta^- n \leq$ 2.50
		123	0	-60.6 (6)	174 +38-34 ms		β^{-}
		124	0+	-58.8 (5)	38 +38-19 ms		eta^- 100
47	Ag	94	(0+)	-52.4 (6)	26 +26-9 ms		ϵ 100; ϵp ; ϵ 100; ϵp 20
		94m	(21+)	-45.7 (6)	$0.40\pm0.04~{ m s}$		ϵ 95.4; ϵp 27; p 4.1; $2p$ 0.5
		95	(9/2+)	-59.6 (4)	$1.75\pm0.12~\mathrm{s}$		ϵp ; ϵ 100
		95m	(1/2-)	-59.3 (4)	< 500 ms		<i>IT</i> 100
		96	(8)+	-64.62 (6)	$4.40\pm0.06~\mathrm{s}$		ϵ 100; ϵp 8.5; ϵ 100; ϵp 18
		97	(9/2+)	-70.83 (11)	$25.5\pm0.3~\mathrm{s}$		ϵ 100
		98	(6+)	-73.05 (4)	$47.5\pm0.3~\mathrm{s}$		ϵ 100; ϵp 0.0011
		99	(9/2)+	-76.712 (6)	$124 \pm 3 \mathrm{s}$		ϵ 100
		99m	(1/2-)	-76.206 (6)	$10.5 \pm 0.5 \text{ s}$		IT 100
		100	(5)+	-78.138 (5)	$2.01 \pm 0.09 \text{ m}$		ϵ 100
		100m	(2)+	-78.122 (5)	$2.24 \pm 0.13 \text{ m}$		ϵ ; IT
		101	9/2+	-81.334 (5)	$11.1 \pm 0.3 \text{ m}$		ϵ 100
		101m	(1/2)-	-81.06 (5)	$3.10 \pm 0.1 \text{ s}$		<i>IT</i> 100
		102	5(+)	-82.247 (8)	$12.9 \pm 0.3 \text{ m}$		$\epsilon 100$
		102m	2+	-82.237 (8)	$7.7 \pm 0.5 \text{ m}$		ϵ 51; <i>IT</i> 49
		103	7/2+	-84.8 (4)	$65.7 \pm 0.7 \text{ m}$		$\epsilon 100$
		103m	1/2-	-84.666 (4)	$5.7 \pm 0.3 \mathrm{s}$		11/ 100
		104	5+	-85.114 (5)	$69.2 \pm 1 \text{ m}$		ϵ 100
		104m	2+	-85.108 (5)	$33.5 \pm 2 \text{ m}$		ϵ 99.93; $TT < 0.07$
		105	1/2-	-87.071 (5) 87.04E (E)	41.29 ± 0.07 d 7.22 + 0.16 m		ϵ 100
		105m	1/2+	-87.045 (5)	$7.23 \pm 0.16 \text{ m}$		11 99.66; $\epsilon 0.34$
		106 106m	1+	-00.94(4)	25.90 ± 0.04 m 8.28 ± 0.02 d		ϵ 99.5; ρ < 1.00
		10011	0+ 1/2	-00.031 (4)	0.20 ± 0.02 u	51 830% \pm 0.008%	ϵ 100
		107 107m	7/2-	-66.403(3)	5table	51.039 /0 \pm 0.000 /0	<i>IT</i> 100
		107111	7/∠⊤ 1.	-00.512 (5)	$11.0 \pm 0.2.5$ 2 282 ± 0.011 m		β^{-} 07 15; < 2.85
		108 108m	1+ 6+	-87.000 (3)	$2.302 \pm 0.011 \text{ m}$ $438 \pm 9 \text{ v}$		ρ 97.13, ϵ 2.03
		10011	0+ 1/2-	-88 7195 (20)	stable	$48.161\% \pm 0.008\%$	e 91.3, 11 0.7
		109 109m	1/2- 7/2+	-88 6315 (20)	39.6 ± 0.2 s	40.10170 ± 0.00070	<i>IT</i> 100
		110	1+	-87 4574 (20)	24.6 ± 0.2 s		β^{-} 99 7: ϵ 0.3
		110 110m	6+	-87,3398 (20)	249.76 ± 0.04 d		β^{-} 98 64: <i>IT</i> 1 36
		111	1/2-	-88 2179 (22)	$745 \pm 0.01 d$		β^{-} 100
		111m	$\frac{1}{7}$	-88.1581 (22)	64.8 ± 0.8 s		$IT 99.3: \beta^{-} 0.7$
		112	2(-)	-86.5837 (24)	3.130 ± 0.009 h		β^- 100
		113	1/2-	-87.03 (17)	$5.37\pm0.05~\mathrm{h}$		β^- 100
		113m	7/2+	-86.986 (17)	$68.7\pm1.6~{\rm s}$		$IT 64; \beta^{-} 36$
		114	1+	-84.931 (5)	$4.6\pm0.1~{ m s}$		β^- 100
		115	1/2-	-84.983 (18)	$20.0\pm0.5~\text{m}$		β^- 100
		115m	7/2+	-84.942 (18)	$18.0\pm0.7~\mathrm{s}$		β^{-} 79; IT 21
		116	(0-)	-82.543 (3)	$237\pm5~{ m s}$		β^- 100
		116m	(3+)	-82.495 (3)	$20\pm1~{ m s}$		eta^- 93; IT 7
		116m2	2 (6-)	-82.413 (3)	$9.3\pm0.3~\mathrm{s}$		eta^- 92; IT 8
		117	(1/2-)	-82.182 (14)	72.8 +2-0.7 s		β^- 100
		117m	(7/2+)	-82.153 (14)	$5.34\pm0.05~s$		eta^- 94; IT 6
		118	1(-)	-79.554 (3)	$3.76\pm0.15~s$		β^- 100
		118m	4(+)	-79.426 (3)	$2.0\pm0.2~{\rm s}$		eta^- 59; IT 41
		119	(1/2-)	-78.646 (15)	$6.0\pm0.5~{\rm s}$		eta^- 100; eta^- 100
		120	3(+)	-75.651 (4)	$1.23\pm0.04~\mathrm{s}$		β^- 100; $\beta^- n <$ 3.0E-3
		120m	6(-)	-75.448 (4)	$0.40\pm0.03~{\rm s}$		$\beta^- \approx$ 63.00; $IT \approx$ 37.00
		121	(7/2+)	-74.403 (12)	$0.78\pm0.02~\mathrm{s}$		eta^- 100; $eta^- n$ 0.08

				Table	10.1 – Continued from previo	ous page	
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		122	(3+)	-71.11 (4)	$0.529 \pm 0.013 \ { m s}$		eta^- 99.8; $eta^- n$ 0.2; eta^- ;
							IT ; $eta^- n$
		122m	(9-)	-71.03 (4)	$0.20\pm0.05~{ m s}$		eta^- ; $eta^- n$
		123	(7/2+)	-69.55 (3)	$0.300\pm0.005~\mathrm{s}$		eta^- 100; $eta^- n$ 0.55
		124	—>2	-66.2 (3)	$0.172\pm0.005~\mathrm{s}$		eta^- 100; $eta^- n$ 1.3
		125	(9/2+)	-64.43 (20)	$166 \pm 7 \text{ ms}$		eta^- 100; $eta^- n$
		126	0	-60.85 (20)	$107\pm12~\mathrm{ms}$		eta^- 100; $eta^- n$
		127	0	-58.8 (3)	$109\pm25~\mathrm{ms}$		β^- 100
		128	0	-54.9 (3)	$58\pm5~\mathrm{ms}$		β^- 100; $\beta^- n$
		129	(9/2+)	-52.6 (4)	46 +5-9 ms		β^- 100; $\beta^- n$; β^- ; $\beta^- n$
		130	Ò	-46.3 (3)	$\approx 50~\mathrm{ms}$		$\beta^-;\beta^-n$
48	Cd	96	0+	-55.6 (4)	1.03 +0.24-0.21 s		ϵ 100
		97	(9/2+)	-60.5 (3)	$1.10\pm0.07~{ m s}$		$\epsilon \ 100; \epsilon p \ 12; \epsilon \ 100; \epsilon p \ 25$
		98	0+	-67.62 (5)	9.2 ± 0.3 s		$\epsilon 100: \epsilon p < 0.03$
		99	(5/2+)	-69.9311 (16)	$16 \pm 3 \text{s}$		$\epsilon \alpha < 1.0$ E-4; $\epsilon p 0.17$; $\epsilon 100$
		100	(0, -1)	-74,1946 (17)	49.1 ± 0.5 s		ε 100
		101	(5/2+)	-75.8361 (14)	1.36 ± 0.05 m		$\epsilon 100$
		102	(0, -1)	-79.6597 (17)	5.5 ± 0.5 m		$\epsilon 100$
		103	(5/2)+	-80.6521 (18)	7.3 ± 0.1 m		€ 100 € 100
		104	(e, <u>-</u>): 0+	-83.9683 (17)	$57.7 \pm 1 \text{ m}$		€ 100 € 100
		105	5/2+	-84 3339 (13)	55.5 ± 0.4 m		€ 100 € 100
		106	0+	-87 1304 (17)	> 3.6E + 20 v	$1.25\% \pm 0.06\%$	26
		107	5/2+	-86 99 (17)	6.50 ± 0.02 h	1.20 /0 ± 0.00 /0	ε 100
		108	0+	-89 2524 (21)	> 1.9E + 18 v	$0.89\% \pm 0.03\%$	2e
		109	5/2+	-88 5043 (16)	461.4 ± 1.2 d		ε 100
		110	0+	-90.3503(17)	stable	$1249\% \pm 018\%$	2 200
		111	1/2+	-89.2547 (17)	stable	$12.8\% \pm 0.12\%$	
		111m	11/2-	-88 8585 (17)	48.50 ± 0.09 m		LT 100
		112	0+	-90,5777 (17)	stable	$2413\% \pm 0.21\%$	11 100
		113	1/2+	-89 0464 (16)	$8.00E15 \pm 0.26E15 v$	$1222\% \pm 0.12\%$	β^{-} 100
		113m	11/2-	-88 7829 (16)	$141 \pm 0.5 \text{ v}$	12.22 /0 ± 0.12 /0	β^{-} 99.86: <i>IT</i> 0.14
		114	0+	-90 018 (16)	> 2 1E18 v	$2873\% \pm 042\%$	$2\beta^{-}$
		115	1/2+	-88 0876 (17)	53.46 ± 0.05 h	2011 0 10 ± 0.12 10	β^{-} 100
		115m	(11/2)-	-87 9066 (17)	44.56 ± 0.24 d		β^{-} 100
		116	(11, 2) 0+	-88 7164 (17)	33F+19+04F+19v	$749\% \pm 018\%$	$2\beta^{-}$
		117	1/2+	-86 4223 (20)	249 ± 0.04 h	7.17/0 ± 0.10/0	β^{-} 100
		117 117m	$(11/2)_{-}$	-86 2859 (20)	2.49 ± 0.04 h 3.36 ± 0.05 h		β^{-} 100
		117	(11/2) 0+	-86 706 (20)	50.3 ± 0.2 m		β^{-} 100
		110	3/2+	-83 98 (4)	2.69 ± 0.02 m		β^{-} 100
		119m	(11/2)	-83 83 (4)	2.09 ± 0.02 m		β^{-} 100
		120	$(11/2^{-})$	-83.957(4)	2.20 ± 0.02 m 50.80 \pm 0.21 s		β 100 β^{-} 100
		120	(3/2)	-05.957 (4) 81.06 (8)	135 ± 0.3 c		β 100 β^{-} 100
		121 121m	(3/2+)	-01.00 (0)	13.5 ± 0.5 s		β 100 β^{-} 100
		121111	$(11/2^{-})$	-00.04 (0) 80.616 (1)	5.3 ± 0.03		β 100 β^{-} 100
		122	(3/2)	-30.010(4)	3.24 ± 0.03 s		β 100 β^{-} 100
		123 122m	(3/2+)	-77.32(4)	2.10 ± 0.02 S		$\beta = 100$
		123III 124	(11/ <i>2-)</i> 01	-77 (4) -76 607 (0)	1.02 ± 0.00 S 1.05 \pm 0.02 s		$p \ge 100.00; 11$ $\beta^{-} 100$
		124 195	(2/2)	73.25(6)	1.25 ± 0.025		ρ 100 β^{-} 100, β^{-} 100
		123 124	(3/2+) 0	-73.33(0)	0.00 ± 0.04 S		p = 100; p = 100
		120 127	(2/2)	-12.230 (4)	0.313 ± 0.017 S		p = 100 p = 100
		12/ 1 2 0	(3/2+) 0	-00.44 (0) 67 25 (17)	0.37 ± 0.07 S		p = 100 p = 100
		120	(2/2)	-07.23(17)	0.20 ± 0.04 S		β 100
		129 120	(3/2+) 0	-03.31 (20)	0.27 ± 0.04 S		ρ^{-} = 2 E, ρ^{-} 100
		130	0+	-01.34 (16)	$102 \pm 7 \text{ ms}$		$\beta n 3.5; \beta 100$

Table 10.1 – Continued from previous page									
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode		
		131	(7/2-)	-55.38 (20)	$68 \pm 3 \text{ ms}$		eta^- 100; $eta^- n$ 3.5		
		132	0+	-50.9 (3)	$97\pm10~\mathrm{ms}$		eta^- 100; eta^-n 60		
		133	(7/2-)	0	$57\pm10~\mathrm{ms}$		eta^- 100; $eta^- n$; $eta^- 2n$		
49	In	98	0	-53.9 (20)	32 +32-11 ms		ϵ ; ϵ		
		99	0	-61.38 (20)	$3.0\pm0.8~{ m s}$		ϵ		
		100	(6+,7+)	-64.34 (18)	$5.9\pm0.2~{ m s}$		ϵ 100; ϵp 1.6		
		101	(9/2+)	-68.6 (3)	$15.1\pm0.3~\mathrm{s}$		ϵ ; ϵp		
		102	(6+)	-70.695 (5)	$23.3\pm0.1~\mathrm{s}$		ϵ 100; ϵp 0.0093		
		103	(9/2)+	-74.629 (9)	$65\pm7~{ m s}$		$\epsilon \ 100$		
		103m	(1/2-)	-73.998 (9)	$34\pm2\mathrm{s}$		IT 33; ϵ 67		
		104	(6+)	-76.183 (6)	1.80 ± 0.03 m		$\epsilon \ 100$		
		104m	(3+)	-76.089 (6)	$15.7\pm0.5~\mathrm{s}$		IT 80; ϵ 20		
		105	9/2+	-79.64 (10)	$5.07 \pm 0.07 \text{ m}$		$\epsilon \ 100$		
		105m	(1/2-)	-78.966 (10)	$48\pm 6~{ m s}$		IT 100		
		106	7+	-80.604 (11)	6.2 ± 0.1 m		$\epsilon 100$		
		106m	(2)+	-80.575 (11)	$5.2 \pm 0.1 \text{ m}$		$\epsilon \ 100$		
		107	9/2+	-83.564 (10)	32.4 ± 0.3 m		$\epsilon 100$		
		10/m	1/2-	-82.886 (10)	$50.4 \pm 0.6 \text{ s}$		<i>IT</i> 100		
		108	7+	-84.116 (9)	$58.0 \pm 1.2 \text{ m}$		$\epsilon 100$		
		108m	2+	-84.086 (9)	$39.6 \pm 0.7 \text{ m}$		ϵ 100		
		109	9/2+	-86.488 (4)	4.167 ± 0.018 h		$\epsilon 100$		
		109m	1/2-	-85.838 (4)	1.34 ± 0.07 m		<i>IT</i> 100		
		109m2	2 (19/2+)	-84.387 (4)	$0.209 \pm 0.006 \text{ s}$		<i>TT</i> 100		
		110	/+ 2+	-86.472 (12)	4.9 ± 0.1 h		$\epsilon 100$		
		110m	2+ 0 / 2 -	-80.41(12)	$69.1 \pm 0.5 \text{ m}$		ε 100 100		
		111 111m	9/2+	-00.393(4)	$2.0047 \pm 4.02-4$ d		$\epsilon 100$		
		111111	1/2-	-07.000 (4)	7.7 ± 0.2 m 14.07 ± 0.1 m		$11\ 100$		
		112 112m	1+	-67.993 (5)	14.97 ± 0.1 III 20.56 ± 0.06 m		ϵ 56; β 44 IT 100		
		112111	4+ 9/2+	-89 3683 (15)	stable	$4.29\% \pm 0.05\%$	11 100		
		113 113m)/2+ 1/2-	-88 9766 (15)	$99476\pm0.023\mathrm{m}$	4.2970 ± 0.0070	LT 100		
		114	1/2	-88 5708 (15)	71.9 ± 0.1 s		β^{-} 99 5: $\epsilon = 0.5$		
		114m	5+	-88 3805 (15)	4951 ± 0.01 d		T 96.75		
		115	9/2+	-89 5363 (12)	$441E+14 \pm 0.25E+14 v$	$95.71\% \pm 0.05\%$	β^{-} 100		
		115m	1/2-	-89.2001 (12)	4.486 ± 0.004 h	you 1/0 ± 0.00 /0	$TT 95: \beta^{-} 5$		
		116	1+	-88.2497 (22)	14.10 ± 0.03 s		$\epsilon 0.02; \beta^{-} 99.98$		
		116m	5+	-88.1224 (22)	54.29 ± 0.17 m		β^{-} 100		
		116m2	2 8-	-87.96 (22)	$2.18\pm0.04~\mathrm{s}$		<i>IT</i> 100		
		117	9/2+	-88.943 (5)	43.2 ± 0.3 m		β^- 100		
		117m	1/2-	-88.628 (5)	116.2 ± 0.3 m		β^{-} 52.9; <i>IT</i> 47.1		
		118	1+	-87.228 (8)	$5.0\pm0.5~{ m s}$		β^- 100		
		118m	5+	-87.168 (8)	$4.45\pm0.05~\mathrm{m}$		β^- 100		
		118m2	2 8-	-87.028 (8)	$8.5\pm0.3~{ m s}$		IT 98.6; β^- 1.4		
		119	9/2+	-87.699 (8)	$2.4\pm0.1~\text{m}$		β^- 100		
		119m	1/2-	-87.388 (8)	18.0 ± 0.3 m		eta^- 95.6; IT 4.4		
		120	1+	-85.73 (4)	$3.08\pm0.08~s$		eta^- 100; eta^- 100		
		120m	(5)+	-85.66 (4)	$46.2\pm0.8~\mathrm{s}$		eta^- 100		
		121	9/2+	-85.84 (3)	$23.1\pm0.6~s$		eta^- 100		
		121m	1/2-	-85.52 (3)	$3.88\pm0.1\ m$		eta^- 98.8; IT 1.2		
		122	1+	-83.57 (5)	$1.5\pm0.3~{ m s}$		eta^- 100		
		122m	5+	-83.53 (5)	$10.3\pm0.6~{\rm s}$		eta^- 100		
		122m2	2 (8-)	-83.28 (5)	$10.8\pm0.4~\mathrm{s}$		eta^- 100		
		123	(9/2)+	-83.428 (23)	$6.17\pm0.05~{\rm s}$		β^- 100		

	Table 10.1 – Continued from previous page									
Ζ	El	$\mathbf{A} = \mathbf{J}^{\pi}$	Δ [MeV]	${f T_{1/2}}, {f \Gamma}$	Abundance	Decay Mode				
		123m (1/2)-	-83.1 (23)	$47.4\pm0.4~\mathrm{s}$		β^- 100				
		124 (1)+	-80.87 (3)	$3.12\pm0.09~\mathrm{s}$		β^- 100				
		124m (8-)	-80.82 (3)	$3.7\pm0.2~\mathrm{s}$		β^- 100				
		125 9/2+	-80.48 (3)	$2.36\pm0.04~\mathrm{s}$		β^- 100				
		125m 1/2(-)	-80.12 (3)	$12.2\pm0.2~\mathrm{s}$		β^- 100				
		126 3(+)	-77.81 (4)	$1.53\pm0.01~{ m s}$		β^{-} 100				
		126m (8-)	-77.71 (4)	$1.64\pm0.05~{ m s}$		β^{-} 100				
		127 (9/2+)	-76.892 (22)	1.09 ± 0.01 s		β^{-} 100: $\beta^{-} n < 0.03$				
		127m (1/2-)	-76.43 (22)	3.67 ± 0.04 s		β^- 100; β^- n 0.69				
		$127m^2 (21/2-)$	-75.029 (22)	1.04 ± 0.1 s		β^{-} 100				
		128 (3)+	-74.36 (5)	0.84 ± 0.06 s		β^{-} 100: $\beta^{-}n < 0.05$				
		128m (8-)	-74.02(5)	0.72 ± 0.18		$\beta^{-} 100; \beta^{-} n < 0.05$				
		12011 (0) 129 (9/2+)	-72.81(4)	0.61 ± 0.01 s		β^{-} 100; β^{-} $n = 0.25$				
		129 (9/21) 129 (1/2-)	-72.01(1)	1.23 ± 0.03 s		F = 100, F = 100, 20 $T = 0.30, B^{-} > 99.70$				
		12/11(1/2)	72.11(1)	1.20 ± 0.00 0		$\beta^{-}n 2.5$				
		129m2 (23/2-)	-71.18 (4)	0.67 ± 0.1 s		β^{-} 100				
		130 1(-)	-69.89 (4)	0.29 ± 0.02 s		β^{-} 100: β^{-} n 0.93				
		130m (10-)	-69 84 (4)	0.54 ± 0.01 s		β^{-} 100; β^{-} n 1 65				
		$130m^2 (5+)$	-69 49 (4)	0.54 ± 0.01 s		β^{-} 100; β^{-} n 1.65				
		131 (9/2+)	-68.05 (20)	0.28 ± 0.03 s		$\beta^{-} 100; \beta^{-} n < 2.00$				
		131m (1/2-)	-67 748 (20)	0.20 ± 0.00 s		$\beta^{-}n < 2.00$ $TT < 0.02$				
		101111 (1/2)	07.17 10 (20)	0.00 ± 0.00 0		$\beta^{-} \approx 2.00, 11 \leq 0.02, \beta^{-} > 99.98$				
		131m2(21/2+)	-64.286 (20)	0.32 ± 0.06 s		$\beta^{-} > 99.00; IT < 1.00;$				
		(, , , ,				$\beta^- n \approx 0.03$				
		132 (7-)	-62.41 (6)	$0.207\pm0.006~\mathrm{s}$		$\beta^{-} 100; \beta^{-} n 6.3$				
		133 (9/2+)	-57.8 (3)	$165\pm3~\mathrm{ms}$		β^- 100; β^- n 85				
		133m (1/2-)	-57.4 (3)	$180\pm15~\mathrm{ms}$		IT ; $eta^- n$; eta^-				
		134 (4- to 7-)	-52 (4)	$140\pm4~\mathrm{ms}$		eta^- 100; eta^-n 65				
		135 0	-47.2 (5)	$92\pm10~\mathrm{ms}$		eta^- 100; $eta^- n$				
50	Sn	100 0+	-56.9 (6)	0.86 +0.37-0.2 s		ϵ 100; $\epsilon p < 17.00$				
		101 (5/2+)	-59.9 (3)	$1.7\pm0.3~{ m s}$		ϵp 26; ϵ 100				
		102 0+	-64.93 (10)	$3.8\pm0.2~\mathrm{s}$		ϵ 100				
		103 (5/2+)	-66.97 (7)	$7.0\pm0.2~\mathrm{s}$		ϵ 100; ϵp 1.2				
		104 0+	-71.625 (6)	$20.8\pm0.5~{\rm s}$		$\epsilon 100$				
		105 (5/2+)	-73.338 (4)	$32.7\pm0.5~\mathrm{s}$		ϵ 100; ϵp 0.01				
		106 0+	-77.354 (5)	$115\pm5~{ m s}$		$\epsilon 100$				
		107 (5/2+)	-78.512 (5)	$2.90\pm0.05~\text{m}$		ϵ 100				
		108 0+	-82.071 (5)	$10.30\pm0.08~\mathrm{m}$		ϵ 100				
		109 5/2+	-82.633 (8)	18.0 ± 0.2 m		$\epsilon \ 100$				
		110 0+	-85.844 (14)	$4.11\pm0.1~{ m h}$		$\epsilon \ 100$				
		111 7/2+	-85.941 (6)	35.3 ± 0.6 m		$\epsilon \ 100$				
		112 0+	-88.6579 (17)	< 1.3E+21 v	$0.97\% \pm 0.01\%$	2ϵ				
		113 1/2+	-88.3303 (22)	115.09 ± 0.03 d		$\epsilon \ 100$				
		113m 7/2+	-88.2528 (22)	21.4 ± 0.4 m		$IT 91.1; \epsilon 8.9$				
		114 0+	-90.5594 (15)	stable	$0.66\% \pm 0.01\%$,				
		115 1/2+	-90.0338 (15)	stable	$0.34\% \pm 0.01\%$					
		116 0+	-91.5259 (10)	stable	$14.54\%\pm 0.09\%$					
		117 1/2+	-90.3977 (5)	stable	$7.68\% \pm 0.07\%$					
		117m 11/2-	-90.0831 (5)	13.76 ± 0.04 d		<i>IT</i> 100				
		118 0+	-91.6528 (5)	stable	$24.22\%\pm 0.09\%$					
		119 1/2+	-90.065 (7)	stable	$8.59\% \pm 0.04\%$					
		119m 11/2-	-89.9755 (7)	$293.1 \pm 0.7 \text{ d}$		<i>IT</i> 100				
		120 0+	-91.0982 (22)	stable	$32.58\% \pm 0.09\%$					
		121 3/2+	-89.1971 (22)	$27.03\pm0.04~\text{h}$		β^- 100				
		-,	· · · · · · · · · · · · · · · · · · ·							

	Table 10.1 – Continued from previous page									
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode			
		121m	11/2-	-89.1908 (22)	$43.9\pm0.5~\mathrm{y}$		IT 77.6; β^- 22.4			
		122	0+	-89.943 (3)	stable	$4.63\% \pm 0.03\%$				
		123	11/2-	-87.818 (3)	$129.2 \pm 0.4 \text{ d}$		eta^- 100			
		123m	3/2+	-87.793 (3)	$40.06 \pm 0.01 \text{ m}$		eta^- 100			
		124	0+	-88.237 (14)	> 1.2E+21 y	$5.79\% \pm 0.05\%$	$2\beta^-$			
		125	11/2-	-85.8988 (15)	9.64 ± 0.03 d		eta^- 100			
		125m	3/2+	-85.8713 (15)	$9.52 \pm 0.05 \text{ m}$		eta^- 100			
		126	0+	-86.021 (11)	$2.30E+5 \pm 0.14E+5 \text{ y}$		β^{-} 100			
		127	(11/2-)	-83.47 (10)	2.10 ± 0.04 h		β^{-} 100			
		12/m	(3/2+)	-83.465 (10)	4.13 ± 0.03 m		β^{-} 100			
		128	0+	-83.34 (3)	59.07 ± 0.14 m		β^{-} 100			
		128m	(7-)	-81.24 (3)	$6.5 \pm 0.5 \mathrm{s}$		<i>IT</i> 100			
		129	(3/2+)	-80.59 (3)	$2.23 \pm 0.04 \text{ m}$		β 100			
		129m	(11/2-)	-80.56 (3)	$6.9 \pm 0.1 \text{ m}$		β 100; $TT < 2.0E-3$			
		130	(7)	-80.137 (9)	3.72 ± 0.07 m		β 100			
		130m	(7-)	-76.19(9)	$1.7 \pm 0.1 \text{ m}$		$\beta = 100$			
		131	(3/2+)	-77.272 (9)	36.0 ± 0.3 s		$\beta 100; \beta 100; 11$			
		132	0+	-70.340 (0)	39.7 ± 0.08		$\beta = 100$ $\beta^{-} = 100; \ \beta^{-} = 0.02$			
		133	// <i>2-</i> 0+	-66.32(15)	1.40 ± 0.00 S		$\beta = 100; \beta = n \ 0.05$ $\beta^{-} = 100; \beta^{-} = 17$			
		134	(7/2)	-60.6 (4)	$530 \pm 20 \text{ ms}$		$\beta = 100; \beta = n 17$ $\beta = 100; \beta = n 21$			
		136	(772^{-})	-56 3 (5)	0.25 ± 0.03 s		$\beta^{-100}, \beta^{-n} 21$ $\beta^{-100}, \beta^{-n} 30$			
		137	0	-50.3 (6)	$190 \pm 60 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 50 β^{-} 100; $\beta^{-}n$ 58			
51	Sb	104	0	-59 17 (22)	$0.44 \pm 0.15 \pm 0.11$ s		$p < 1.00; p = 1.00; \epsilon_n < 7.00$			
01	00	105	(5/2+)	-63.853 (16)	1.22 ± 0.11 s		<i>ϵ</i> 99: <i>n</i> 1			
		106	(2+)	-66.473 (7)	$0.6 \pm 0.2 \text{ s}$		e			
		107	(5/2+)	-70.653 (4)	$4.0\pm0.2~{ m s}$		ϵ 100			
		108	(4+)	-72.445 (5)	$7.4\pm0.3~ m s$		$\epsilon 100$			
		109	(5/2+)	-76.251 (5)	$17.0\pm0.7~\mathrm{s}$		$\epsilon \ 100$			
		110	(3+,4+)	-77.45 (6)	$23.0\pm0.4~\mathrm{s}$		$\epsilon \ 100$			
		111	(5/2+)	-80.837 (9)	$75\pm1\mathrm{s}$		ϵ 100			
		112	3+	-81.601 (18)	$51.4\pm1~ m s$		$\epsilon \ 100$			
		113	5/2+	-84.417 (17)	$6.67\pm0.07~\mathrm{m}$		$\epsilon \ 100$			
		114	3+	-84.496 (22)	$3.49\pm0.03~\mathrm{m}$		$\epsilon \ 100$			
		115	5/2+	-87.003 (16)	32.1 ± 0.3 m		$\epsilon \ 100$			
		116	3+	-86.822 (5)	15.8 ± 0.8 m		$\epsilon \ 100$			
		116m	8-	-86.439 (5)	60.3 ± 0.6 m		ϵ 100			
		117	5/2+	-88.642 (9)	$2.80\pm0.01~\mathrm{h}$		ϵ 100			
		118	1+	-87.996 (3)	3.6 ± 0.1 m		ϵ 100			
		118m	8-	-87.746 (3)	5.00 ± 0.02 h		ϵ 100			
		119	5/2+	-89.474 (8)	38.19 ± 0.22 h		$\epsilon 100$			
		119m	(27/2+)	-86.632 (8)	$0.85 \pm 0.09 \mathrm{s}$		11 100			
		120	1+	-88.417 (7)	15.89 ± 0.04 m		ϵ 100; ϵ 100			
		121	5/2+	-89.6 (3)		$57.21\% \pm 0.05\%$				
		122	2-	-88.335 (3)	$2.7238 \pm 2.0E-4$ d		β 97.59; ϵ 2.41			
		122m	(8)-	-88.171(3)	$4.191 \pm 0.003 \text{ m}$		11 100			
		123	//∠+ 3	-07.2201 (22) 87.6222 (22)	stable 60.20 ± 0.02 d	42.7970 ± 0.0370	<i>Q</i> = 100			
		12 4 124	5- 5-	-07.0223 (22) _87.6114 (22)	$00.20 \pm 0.00 \text{ u}$		p 100 IT 75: ρ^- 25			
		124111 124m')⊤ 7 (8)-	-07.0114 (22) _87 5855 (22)	93 ± 0.8 20.2 ± 0.2 m		11 75,β 25 IT 100			
		124111	2 (0) ⁻ 7/2⊥	-88 258 (3)	$20.2 \pm 0.2 \text{ m}$ 2 75856 + 2 5F-4 v		$\beta^{-} 100$			
		125	(8-)	-86 4 (3)	$12.35 \pm 0.06 d$		$\beta^{-} 100$			
		120 126m	(5+)	-86.38 (3)	$12.00 \pm 0.00 \text{ u}$ 19 15 + 0.08 m		β^{-} 86. <i>IT</i> 14			
		120111	(01)	00.00 (0)	17.10 ± 0.00 III					

Table 10.1 – Continued from previous page									
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode		
		126m2	2 (3-)	-86.36 (3)	$\approx 11 \text{ s}$		<i>IT</i> 100		
		127	7/2+	-86.701 (5)	$3.85 \pm 0.05 \text{ d}$		β^- 100		
		128	8-	-84.61 (3)	9.01 ± 0.04 h		β^{-} 100; β^{-} 96.4; <i>IT</i> 3.6		
		129	7/2+	-84.629 (21)	4.40 ± 0.01 h		β^{-} 100		
		129m	(19/2-)	-82.778 (21)	$17.7 \pm 0.1 \text{ m}$		β^{-} 85; <i>IT</i> 15		
		130	(8-)	-82.29 (16)	39.5 ± 0.8 m		β^{-} 100		
		130m	(4,5)+	-82.285 (16)	$6.3 \pm 0.2 \text{ m}$		β^{-} 100		
		131	(7/2+)	-81.976 (11)	23.03 ± 0.04 m		$\beta^{-} 100$		
		132	(4)+	-79.669 (10)	2.79 ± 0.07 m		$\beta 100; \beta 100$		
		133	(7/2+)	-78.94(3)	2.34 ± 0.05 m		β 100 β = 100		
		134 124m	(0-)	-74.17(4)	0.78 ± 0.06 s 10.07 ± 0.05 c		p = 100 $a^{-} = 100; a^{-} = 0.00$		
		13411	(7^{-})	-73.89 (4) 69 79 (5)	10.07 ± 0.03 s		$\beta = 100; \beta = n 0.09$		
		135	(772+) 1_	-64 5 (3)	1.079 ± 0.013 S		$\beta \ n \ 22; \beta \ 100$ $\beta^{-} \ 100; \beta^{-} \ n \ 16 \ 3$		
		130	(7/2)	-60.4 (4)	$492 \pm 25 \text{ ms}$		β^{-} 100, $\beta^{-}n$ 10.3 β^{-} 100, $\beta^{-}n$ 49		
		138	(7/21)	-54.8 (3)	350 ± 15 ms		β^{-} 100; β^{-} n 72		
		139	0	-50.3 (5)	93 + 14 - 3 ms		$\beta^{-} 100; \beta^{-} n 72$ $\beta^{-} 100; \beta^{-} n 90$		
52	Te	107	0	-60.54 (7)	3.1 ± 0.1 ms		α 70: ϵ 30		
		108	0+	-65.784 (6)	$2.1 \pm 0.1 \text{ s}$		ϵ 51; α 49; ϵp 2.4		
		109	(5/2+)	-67.715 (4)	$4.6\pm0.3~{ m s}$		$\epsilon \alpha < 5.0$ E-3: ϵ 96.1: ϵp 9.4:		
							α 3.9		
		110	0+	-72.23 (7)	$18.6\pm0.8~{ m s}$		ϵ 100; $\alpha \approx$ 3.0E-3		
		111	(5/2)+	-73.587 (6)	$19.3\pm0.4~\mathrm{s}$		ϵ 100; ϵp		
		112	0+	-77.567 (8)	2.0 ± 0.2 m		ϵ 100		
		113	(7/2+)	-78.35 (3)	1.7 ± 0.2 m		ϵ 100		
		114	0+	-81.89 (3)	15.2 ± 0.7 m		ϵ 100		
		115	7/2+	-82.06 (3)	5.8 ± 0.2 m		ϵ 100		
		115m	(1/2)+	-82.04 (3)	6.7 ± 0.4 m		IT ; $\epsilon \leq 100.00$		
		116	0+	-85.27 (3)	2.49 ± 0.04 h		ϵ 100		
		117	1/2+	-85.097 (13)	$62 \pm 2 \text{ m}$		$\epsilon 100$		
		117m	(11/2-)	-84.801 (13)	$103 \pm 3 \text{ ms}$		100		
		118	0+ 1 /2 -	-87.684 (19)	6.00 ± 0.02 d		ε 100 100		
		119	1/2+ 11/2	-07.101(0)	16.05 ± 0.05 h 4.70 ± 0.04 d		$\epsilon 100$		
		11911	11/2-	-00.92 (0)	4.70 ± 0.04 d	$0.00\% \pm 0.01\%$	ϵ 100; 11 < 8.0E-3		
		120	0+ 1 /2⊥	-88 55 (3)	19.17 ± 0.04 d	0.09 /0 \pm 0.01 /0	c 100		
		121 121m	1/2+ 11/2-	-88 25 (3)	19.17 ± 0.04 d		e 100 e 11 4· IT 88 6		
		12111	0+	-90.3158 (16)	stable	$2.55\% \pm 0.12\%$			
		123	1/2+	-89.1735 (16)	> 9.2E + 16 v	$0.89\% \pm 0.03\%$	$\epsilon 100$		
		123m	11/2-	-88.926 (16)	$119.2 \pm 0.1 \mathrm{d}$		IT 100		
		124	0+	-90.5266 (16)	stable	$4.74\% \pm 0.14\%$			
		125	1/2+	-89.0243 (16)	stable	$7.07\% \pm 0.15\%$			
		125m	11/2-	-88.8795 (16)	$57.40 \pm 0.15 \text{ d}$		<i>IT</i> 100		
		126	0+	-90.0666 (16)	stable	$18.84\% \pm 0.25\%$			
		127	3/2+	-88.283 (16)	$9.35\pm0.07~\mathrm{h}$		eta^- 100		
		127m	11/2-	-88.1947 (16)	$106.1\pm0.7~\mathrm{d}$		IT 97.6; β^- 2.4		
		128	0+	-88.9937 (9)	$2.41E+24 \pm 0.39E+24 \text{ y}$	$31.74\% \pm 0.08\%$	$2eta^-$ 100		
		129	3/2+	-87.0048 (9)	69.6 ± 0.3 m		eta^- 100		
		129m	11/2-	-86.8993 (9)	$33.6 \pm 0.1 d$		IT 63; β^- 37		
		130	0+	-87.3529 (11)	\geq 3.0E+24 y	$34.08\% \pm 0.62\%$	$2\beta^{-} 100$		
		131	3/2+	-85.211 (6)	$25.0 \pm 0.1 \text{ m}$		$\beta^{-} 100$		
		131m	11/2-	-85.0287 (6)	33.25 ± 0.25 h		β 74.1; <i>IT</i> 25.9		
		131m2	2 (23/2+)	-83.2/1 (6)	$93 \pm 12 \text{ ms}$				

61

Table 10.1 – Continued from previous page								
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode	
		132	0+	-85.18 (7)	$3.204 \pm 0.013 \text{ d}$		eta^- 100	
		133	(3/2+)	-82.944 (24)	12.5 ± 0.3 m		eta^- 100	
		133m	(11/2-)	-82.61 (24)	55.4 ± 0.4 m		eta^- 83.5; IT 16.5	
		134	0+	-82.559 (11)	41.8 ± 0.8 m		eta^- 100	
		135	(7/2-)	-77.903 (15)	$19.0\pm0.2~\mathrm{s}$		eta^- 100	
		136	0+	-74.479 (25)	$17.63\pm0.08~{\rm s}$		eta^- 100; eta^-n 1.31	
		137	(7/2-)	-69.29 (12)	$2.49\pm0.05~{\rm s}$		eta^- 100; eta^-n 2.99	
		138	0+	-65.76 (12)	$1.4\pm0.4~ m s$		eta^- 100; eta^-n 6.3	
53	Ι	108	(1)	-52.65 (21)	$36 \pm 6 \text{ ms}$		$lpha$ 91; ϵ 9; $p < 1.00$	
		110	0	-60.46 (5)	$0.65\pm0.02~\mathrm{s}$		ϵ 83; α 17; ϵp 11; $\epsilon \alpha$ 1.1	
		111	(5/2+)	-64.954 (5)	$2.5\pm0.2~{ m s}$		$\alpha \approx 0.10; \epsilon 99.9$	
		112	0	-67.063 (10)	$3.42\pm0.11~ m s$		ϵ 100; $\alpha \approx$ 1.2E-3	
		113	5/2+	-71.119 (8)	$6.6\pm0.2~\mathrm{s}$		ϵ 100; α 3.3e-07	
		114	1+	-72.8 (3)	$2.1\pm0.2~{ m s}$		ϵ 100; ϵp	
		114m	(7)	-72.5 (3)	$6.2\pm0.5~\mathrm{s}$		ϵ 91; IT 9	
		115	(5/2+)	-76.34 (3)	1.3 ± 0.2 m		$\epsilon \ 100$	
		116	1+	-77.49 (10)	$2.91\pm0.15~\mathrm{s}$		$\epsilon \ 100$	
		117	(5/2)+	-80.43 (3)	2.22 ± 0.04 m		$\epsilon \ 100$	
		118	2-	-80.971 (20)	13.7 ± 0.5 m		$\epsilon \ 100$	
		118m	(7-)	-80.867 (20)	8.5 ± 0.5 m		$\epsilon <$ 100.00; IT	
		119	5/2+	-83.77 (3)	19.1 ± 0.4 m		$\epsilon \ 100$	
		120	2-	-83.755 (15)	81.6 ± 0.2 m		$\epsilon \ 100$	
		120m	(7-)	-83.435 (15)	$53 \pm 4 \text{ m}$		$\epsilon \ 100$	
		121	5/2+	-86.253 (5)	$2.12\pm0.01~\mathrm{h}$		$\epsilon \ 100$	
		122	1+	-86.082 (5)	3.63 ± 0.06 m		ϵ 100	
		123	5/2+	-87.945 (4)	13.2235 ± 0.0019 h		$\epsilon \ 100$	
		124	2-	-87.367 (24)	4.1760 ± 3.0 E-4 d		$\epsilon \ 100$	
		125	5/2+	-88.8385 (16)	$59.407 \pm 0.01 \text{ d}$		$\epsilon \ 100$	
		126	2-	-87.912 (4)	$12.93 \pm 0.05 \text{ d}$		ϵ 52.7; eta^- 47.3	
		127	5/2+	-88.985 (4)	stable	100%		
		128	1+	-87.739 (4)	$24.99\pm0.02~\mathrm{m}$		eta^- 93.1; ϵ 6.9	
		129	7/2+	-88.507 (3)	$1.57E+7 \pm 0.04E+7 \text{ y}$		eta^- 100	
		130	5+	-86.936 (3)	$12.36 \pm 0.01 \text{ h}$		eta^- 100	
		130m	2+	-86.896 (3)	8.84 ± 0.06 m		IT 84; eta^- 16	
		131	7/2+	-87.4427 (6)	8.0252 ± 6.0 E-4 d		eta^- 100	
		132	4+	-85.698 (6)	2.295 ± 0.013 h		eta^- 100	
		132m	(8-)	-85.578 (6)	1.387 ± 0.015 h		IT 86; eta^- 14	
		133	7/2+	-85.886 (5)	20.83 ± 0.08 h		eta^- 100	
		133m	(19/2-)	-84.252 (5)	$9\pm2\mathrm{s}$		<i>IT</i> 100	
		134	(4)+	-84.072 (8)	52.5 ± 0.2 m		eta^- 100	
		134m	(8)-	-83.756 (8)	3.52 ± 0.04 m		IT 97.7; β^- 2.3	
		135	7/2+	-83.791 (7)	6.58 ± 0.03 h		eta^- 100	
		136	(1-)	-79.572 (19)	$83.4 \pm 1 \mathrm{~s}$		eta^- 100	
		136m	(6-)	-78.932 (19)	$46.9 \pm 1 \mathrm{s}$		eta^- 100	
		137	(7/2+)	-76.51 (3)	$24.5 \pm 0.2 \text{ s}$		β^- 100; $\beta^- n$ 7.14	
		138	(2-)	-71.9 (10)	$6.23 \pm 0.03 \text{ s}$		β^- 100; $\beta^- n$ 5.56	
		139	(7/2+)	-68.53 (12)	$2.280 \pm 0.011 \text{ s}$		β^- 100; $\beta^- n$ 10	
		140	(4-)	-63.6 (12)	$0.86 \pm 0.04 \text{ s}$		β^- 100; $\beta^- n$ 9.3	
		141	0	-60.3 (13)	$0.43 \pm 0.02 \text{ s}$		β^- 100; β^- n 21.2	
		142	0	-55 (4)	$222 \pm 12 \text{ ms}$		eta^- 100; eta^-n ?	
		143	0	-51.1 (4)	$130 \pm 45 \text{ ms}$		β^- ?	
54	Xe	109	(7/2+)	-45.9 (3)	$13 \pm 2 \text{ ms}$		α 100	
		110	0+	-51.92 (10)	$93 \pm 3 \text{ ms}$		ϵp ; α 64; ϵ	

	Table 10.1 – Continued from previous page									
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode			
		111	(7/2+)	-54.39 (9)	$0.81\pm0.2~{ m s}$		ϵ 90; α 10			
		112	0+	-60.028 (8)	$2.7\pm0.8~{ m s}$		ϵ 99.16; $lpha$ 0.84			
		113	(5/2+)	-62.204 (7)	$2.74\pm0.08~\mathrm{s}$		ϵ ; ϵp 7; $\alpha \approx 0.01$; $\epsilon \alpha \approx$ 7.0E-3			
		114	0+	-67.086 (11)	$10.0\pm0.4~{\rm s}$		$\epsilon \ 100$			
		115	(5/2+)	-68.657 (12)	$18\pm4~{ m s}$		ϵp 0.34; α 0.0003; ϵ 100			
		116	0+	-73.047 (13)	$59\pm2\mathrm{s}$		$\epsilon \ 100$			
		117	5/2(+)	-74.185 (10)	$61\pm2\mathrm{s}$		ϵ 100; ϵp 0.0029			
		118	0+	-78.079 (10)	$3.8\pm0.9~\text{m}$		$\epsilon \ 100$			
		119	(5/2+)	-78.794 (10)	5.8 ± 0.3 m		$\epsilon \ 100$			
		120	0+	-82.172 (12)	$40 \pm 1 \text{ m}$		$\epsilon \ 100$			
		121	5/2(+)	-82.473 (11)	40.1 ± 2 m		$\epsilon \ 100$			
		122	0+	-85.355 (11)	$20.1\pm0.1~h$		$\epsilon \ 100$			
		123	(1/2)+	-85.249 (10)	$2.08\pm0.02h$		$\epsilon \ 100$			
		124	0+	-87.6612 (18)	\geq 1.6E+14 y	$0.0952\% \pm 0.0003\%$	2ϵ			
		125	1/2(+)	-87.1932 (18)	16.9 ± 0.2 h		$\epsilon \ 100$			
		125m	9/2(-)	-86.9406 (18)	$57 \pm 1 \mathrm{s}$		<i>IT</i> 100			
		126	0+	-89.146 (4)	stable	$0.089\%\pm 0.0002\%$				
		127	1/2+	-88.322 (4)	$36.346 \pm 0.003 \text{ d}$		$\epsilon \ 100$			
		127m	9/2-	-88.025 (4)	$69.2\pm0.9~\mathrm{s}$		<i>IT</i> 100			
		128	0+	-89.8602 (11)	stable	$1.9102\%\pm 0.0008\%$				
		129	1/2+	-88.696 (6)	stable	$26.4006\% \pm 0.0082\%$				
		129m	11/2-	-88.4599 (6)	$8.88 \pm 0.02 \text{ d}$		<i>IT</i> 100			
		130	0+	-89.8804 (9)	stable	$4.071\%\pm 0.0013\%$				
		131	3/2+	-88.4136 (22)	stable	$21.232\% \pm 0.03\%$				
		131m	11/2-	-88.2497 (22)	$11.84 \pm 0.04 \text{ d}$		IT 100			
		132	0+	-89.2789 (5)	stable	$26.9086\% \pm 0.0033\%$				
		132m	(10+)	-86.5267 (5)	$8.39 \pm 0.11 \text{ ms}$		<i>IT</i> 100			
		133	3/2+	-87.6435 (24)	5.2475 ± 5.0 E-4 d		β^{-} 100			
		133m	11/2-	-87.4103 (24)	2.198 ± 0.013 d		<i>TT</i> 100			
		134	0+	-88.1245 (8)	> 5.8E+22 y	$10.4357\% \pm 0.0021\%$	$2\beta^-$			
		134m	7- 2 / 2 ·	-86.1589 (8)	$290 \pm 17 \text{ ms}$		<i>IT</i> 100			
		135	3/2+	-86.418 (5)	9.14 ± 0.02 n		β 100			
		135m	11/2-	-85.891 (5)	$15.29 \pm 0.05 \text{ m}$	0.05720/ 1.0.00440/	$TT > 99.40; \beta < 0.60$			
		136	0+ 7/2	-86.4291 (10)	> 2.4E+21 y	$8.8573\% \pm 0.0044\%$	2β			
		137	// <i>Z</i> -	-62.3633(11)	3.818 ± 0.013 m		β 100 β 100			
		130	0+ 2 / 2	-79.973(3)	$14.00 \pm 0.00 \text{ III}$		$\beta = 100$			
		139	5/2- 0	-73.0443(21)	59.00 ± 0.14 S		$\beta = 100$			
		140	0+ 5/2()	-72.9004 (23) 68 107 (2)	13.00 ± 0.18 1.72 ± 0.01 s		$\beta = 100$ $\beta^{-} = 100; \ \beta^{-} = 0.04$			
		141	5/2(-)	-00.197(3)	1.75 ± 0.018		$\beta = 100; \beta = n \ 0.04$			
		142 172	0+ 5/2	-03.23 (3)	1.25 ± 0.028 0.511 \pm 0.006 a		$\beta = 100; \beta = n \ 0.21$ $\beta^{-} = 100; \beta^{-} = n \ 1$			
		143	5/2- 0	-60.203 (3)	0.311 ± 0.000 s		$\beta = 100; \beta = n = 1$			
		144	0+	-30.872 (3)	0.300 ± 0.007 S		$\beta = 100; \beta = n.5$ $\beta^{-} = 100; \beta^{-} = n.5$			
		145	0+	-31.493 (11)	100 ± 4005 $146 \pm 6 ms$		$\beta = 100, \beta = \pi 5$ $\beta^{-} = 100, \beta^{-} \pi 5$			
		140	(3/2)	-47.933(24)	140 ± 0.113 0.10 ±0.1_0.05 c		$\beta^{-}:\beta^{-}m < 8.00$			
55	C	111	$(3/2^{-})$ (1+)	-54 68 (7)	0.10 + 0.1 - 0.05 s		ρ , ρ $n < 0.00$			
55	0	115	(1)	E0 7 (2)			$\alpha 0.02$			
		115	(1, 1)	-59.7(3)	$1.4 \pm 0.8 \text{ s}$		ϵ 100; $\epsilon p \approx 0.07$			
		110 116m	(1+) 4 E 6	-02.07 (10) 61.07 (10)	0.70 ± 0.04 S		$\epsilon \alpha$ 0.05; ϵ 100; ϵp 2.8			
		110IN 117	4+,3,0 (0/2,1)	-01.77 (10)	3.03 ± 0.13 S 8 4 ± 0.6 c		ϵ 100; ϵp 0.51; $\epsilon \alpha$ 0.008			
		11/	(7/2+)	-00.49 (0)	0.4 ± 0.0 S		e 100; e			

	Table 10.1 – Continued from previous page									
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode			
		118	2	-68.409 (13)	$14\pm2\mathrm{s}$		ϵ 100; ϵp < 0.04; $\epsilon lpha$ <			
							2.4E-3; $\epsilon \alpha <$ 2.4E-3; ϵ 100;			
							$\epsilon p < 0.04$			
		119	9/2+	-72.305 (14)	$43.0\pm0.2~\mathrm{s}$		ϵ 100; ϵ 100			
		120	2(+)	-73.889 (10)	$61.3 \pm 1.1 \text{ s}$		ϵ 100; $\epsilon \alpha$ 2e-05; ϵp 7e-06;			
		4.04					$\epsilon 100$			
		121	3/2(+)	-77.1 (14)	$155 \pm 4 \text{ s}$		$\epsilon 100$			
		121m	9/2(+)	-77.032 (14)	$122 \pm 3 \text{ s}$		ϵ 83; TT 17			
		122	1+	-78.14 (3)	21.18 ± 0.19 s		$\epsilon 100$			
		122m	(5)-	-78.01 (3)	$0.36 \pm 0.02 \text{ s}$		11 100			
		122m2	28(-)	-78 (3)	3.70 ± 0.11 m		ϵ 100			
		123	1/2+	-81.044 (12)	5.88 ± 0.03 m		ϵ 100			
		123m	(11/2)-	-80.887 (12)	$1.64 \pm 0.12 \text{ s}$		<i>IT</i> 100			
		124	1+	-81.731 (8)	$30.9\pm0.4~\mathrm{s}$		ϵ 100			
		124m	(7)+	-81.269 (8)	$6.3\pm0.2~{ m s}$		<i>IT</i> 100			
		125	1/2(+)	-84.088 (8)	46.7 ± 0.1 m		ϵ 100			
		126	1+	-84.345 (12)	1.64 ± 0.02 m		ϵ 100			
		127	1/2+	-86.24 (6)	6.25 ± 0.1 h		ϵ 100			
		128	1+	-85.931 (5)	3.66 ± 0.02 m		ϵ 100			
		129	1/2+	-87.499 (5)	32.06 ± 0.06 h		ϵ 100			
		130	1+	-86.9 (8)	29.21 ± 0.04 m		ϵ 98.4; β^- 1.6			
		130m	5-	-86.736 (8)	3.46 ± 0.06 m		<i>IT</i> 99.84; ϵ 0.16			
		131	5/2+	-88.059 (5)	$9.689 \pm 0.016 \text{ d}$		$\epsilon \ 100$			
		132	2+	-87.1557 (19)	$6.480 \pm 0.006 \text{ d}$		ϵ 98.13; eta^- 1.87			
		133	7/2+	-88.0709 (8)	stable	100%				
		134	4+	-86.8911 (16)	$2.0652\pm4.0 ext{E-4} ext{ y}$		ϵ 0.0003; eta^- 100			
		134m	8-	-86.7524 (16)	$2.912 \pm 0.002 \ h$		<i>IT</i> 100			
		135	7/2+	-87.5818 (10)	$2.3E+6 \pm 0.3E+6$ y		eta^- 100			
		135m	19/2-	-85.9489 (10)	$53 \pm 2 \text{ m}$		<i>IT</i> 100			
		136	5+	-86.339 (19)	$13.04 \pm 0.03 \text{ d}$		eta^- 100			
		136m	8-	-85.8211 (19)	$17.5\pm0.2~\mathrm{s}$		eta^- ; $IT>0.00$			
		137	7/2+	-86.5459 (4)	$30.08\pm0.09~\mathrm{y}$		eta^- 100			
		138	3-	-82.887 (9)	33.41 ± 0.18 m		eta^- 100			
		138m	6-	-82.807 (9)	$2.91\pm0.08~\text{m}$		eta^- 19; IT 81			
		139	7/2+	-80.701 (3)	$9.27\pm0.05~\text{m}$		eta^- 100			
		140	1-	-77.05 (8)	$63.7\pm0.3~\mathrm{s}$		eta^- 100			
		141	7/2+	-74.48 (10)	$24.84\pm0.16~{\rm s}$		eta^- 100; $eta^- n$ 0.04			
		142	0-	-70.525 (11)	$1.684\pm0.014~\mathrm{s}$		eta^- 100; $eta^- n$ 0.09			
		143	3/2+	-67.675 (22)	$1.791 \pm 0.007 \ { m s}$		eta^- 100; $eta^- n$ 1.64			
		144	1(-)	-63.27 (3)	$0.994\pm0.006~\mathrm{s}$		eta^- 100; $eta^- n$ 3.03; eta^-			
		145	3/2+	-60.056 (11)	$0.587\pm0.005~\mathrm{s}$		eta^- 100; eta^-n 14.7			
		146	1-	-55.57 (4)	$0.321\pm0.002~\mathrm{s}$		eta^- 100; eta^-n 14.2			
		147	(3/2+)	-52.02 (5)	$0.230\pm0.001~\mathrm{s}$		eta^- 100; eta^-n 28.5			
		148	0	-47.3 (6)	$146\pm 6~\mathrm{ms}$		eta^- 100; $eta^- n$ 25.1			
		149	0	-43.84 (20)	> 50 ms		eta^- ; $eta^- n$			
		150	0	-39 (3)	> 50 ms		eta^- ; $eta^- n$			
		151	0	-35.1 (4)	> 50 ms		eta^- ; $eta^- n$			
56	Ва	114	0+	-45.96 (11)	0.43 +0.3-0.15 s		ϵ 99.1; ϵp 20; $lpha$ 0.9; $^{12}C < 0.0034$			
		115	(5/2+)	-49 (6)	$0.45\pm0.05~{\rm s}$		ϵ 100; $\epsilon p > 15.00$			
		116	0+	-54.6 (4)	$1.3\pm0.2~{ m s}$		ϵ 100; ϵp 3			
		117	(3/2)	-57.5 (3)	$1.75\pm0.07~\mathrm{s}$		$\epsilon 100; \epsilon \alpha > 0.00; \epsilon p > 0.00$			
		118	0+	-62.37 (20)	$5.5\pm0.2~{ m s}$		ϵ 100; ϵp			
		119	(5/2+)	-64.59 (20)	$5.4\pm0.3~{ m s}$		ϵ 100; $\epsilon p < 25.00$			
			· · /	· -/	-					

	Table 10.1 – Continued from previous page									
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode			
		120	0+	-68.9 (3)	$24\pm2~{ m s}$		ε 100			
		121	5/2(+)	-70.74 (14)	$29.7\pm1.5~{\rm s}$		$\epsilon \ 100$			
		122	0+	-74.61 (3)	$1.95\pm0.15~\text{m}$		$\epsilon \ 100$			
		123	5/2(+)	-75.655 (12)	2.7 ± 0.4 m		$\epsilon \ 100$			
		124	0+	-79.09 (12)	$11.0\pm0.5~\text{m}$		$\epsilon \ 100$			
		125	1/2(+)	-79.668 (11)	3.3 ± 0.3 m		$\epsilon \ 100$			
		126	0+	-82.67 (12)	100 ± 2 m		$\epsilon \ 100$			
		127	1/2+	-82.815 (11)	12.7 ± 0.4 m		$\epsilon \ 100$			
		127m	7/2-	-82.735 (11)	$1.9\pm0.2~\mathrm{s}$		<i>IT</i> 100			
		128	0+	-85.379 (5)	$2.43\pm0.05~\mathrm{d}$		$\epsilon \ 100$			
		129	1/2+	-85.064 (11)	$2.23\pm0.11~\text{h}$		$\epsilon \ 100$			
		129m	7/2+	-85.056 (11)	$2.16\pm0.02~h$		$\epsilon \leq$ 100.00; IT			
		130	0+	-87.262 (3)	stable	$0.106\% \pm 0.001\%$	2ϵ			
		130m	8-	-84.787 (3)	$9.4\pm0.4~\mathrm{ms}$		<i>IT</i> 100			
		131	1/2+	-86.684 (3)	$11.50\pm0.06~\mathrm{d}$		$\epsilon \ 100$			
		131m	9/2-	-86.496 (3)	$14.6\pm0.2~\text{m}$		<i>IT</i> 100			
		132	0+	-88.4349 (11)	> 3.0E+21 y	$0.101\% \pm 0.001\%$	2ϵ			
		133	1/2+	-87.5535 (10)	$10.551 \pm 0.011 \text{ y}$		$\epsilon \ 100$			
		133m	11/2-	-87.2652 (10)	$38.93\pm0.1~\text{h}$		IT 99.99; ϵ 0.01			
		134	0+	-88.9501 (3)	stable	$2.417\% \pm 0.018\%$				
		135	3/2+	-87.8508 (3)	stable	$6.592\% \pm 0.012\%$				
		135m	11/2-	-87.5826 (3)	$28.7\pm0.2~h$		<i>IT</i> 100			
		136	0+	-88.8872 (3)	stable	$7.854\% \pm 0.024\%$				
		136m	7-	-86.8567 (3)	$0.3084 \pm 0.0019 \ s$		<i>IT</i> 100			
		137	3/2+	-87.7215 (3)	stable	$11.232\%\pm 0.024\%$				
		137m	11/2-	-87.0598 (3)	$2.552\pm0.001~\text{m}$		<i>IT</i> 100			
		138	0+	-88.2619 (3)	stable	$71.698\% \pm 0.042\%$				
		139	7/2-	-84.914 (3)	$83.06\pm0.28~\text{m}$		eta^- 100			
		140	0+	-83.27 (8)	$12.7527 \pm 0.0023 \text{ d}$		eta^- 100			
		141	3/2-	-79.733 (5)	$18.27\pm0.07~\mathrm{m}$		eta^- 100			
		142	0+	-77.845 (6)	10.6 ± 0.2 m		eta^- 100			
		143	5/2-	-73.937 (7)	$14.5\pm0.3~{ m s}$		eta^- 100			
		144	0+	-71.767 (7)	$11.5\pm0.2~{ m s}$		eta^- 100			
		145	5/2-	-67.516 (8)	$4.31\pm0.16~{\rm s}$		eta^- 100			
		146	0+	-64.941 (20)	$2.22\pm0.07~\mathrm{s}$		eta^- 100			
		147	(3/2-)	-60.264 (20)	$0.894\pm0.01~{\rm s}$		eta^- 100; $eta^- n$ 0.06			
		148	0+	-57.59 (6)	$0.612 \pm 0.017 \ { m s}$		eta^- 100; $eta^- n$ 0.4			
		149	0	-53.17 (20)	$0.344\pm0.007~\mathrm{s}$		eta^- 100; $eta^- n$ 0.43			
		150	0+	-50.3 (4)	$0.3\pm0~{ m s}$		eta^- 100; $eta^- n$			
57	La	117	(3/2+,3/2-)	-46.5 (4)	$23.5\pm2.6\ ms$		<i>p</i> 93.9; <i>ε</i> 6.1			
		117m	(9/2+)	-46.3 (4)	$10\pm5~ms$		ϵ 2.6; p 97.4			
		120	0	-57.7 (5)	$2.8\pm0.2~\mathrm{s}$		ϵ 100; $\epsilon p > 0.00$			
		121	0	-62.4 (5)	$5.3\pm0.2~\mathrm{s}$		$\epsilon \ 100$			
		122	0	-64.5 (3)	$8.6\pm0.5~{ m s}$		ϵ 100; ϵp			
		123	0	-68.71 (20)	$17\pm3~{ m s}$		$\epsilon \ 100$			
		124	(8-)	-70.26 (6)	$29.21\pm0.17~s$		ϵ 100; ϵ 100			
		125	(3/2+)	-73.76 (3)	$64.8\pm1.2~\mathrm{s}$		$\epsilon \ 100$			
		125m	0	-73.65 (3)	$0.39\pm0.04\ s$					
		126	(5+)	-74.97 (9)	$54\pm2~{ m s}$		$\epsilon > 0.00; \epsilon$; IT			
		127	(11/2-)	-77.9 (3)	$5.1\pm0.1~\text{m}$		$\epsilon \ 100$			
		127m	(3/2+)	-77.88 (3)	$3.7\pm0.4\ m$		ϵ 100; IT			
		128	(5+)	-78.63 (5)	$5.18\pm0.14~\text{m}$		ϵ 100; ϵ 100			
							Continued on next page			

	Table 10.1 – Continued from previous page									
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode			
		129	3/2+	-81.326 (21)	11.6 ± 0.2 m		ε 100			
		129m	11/2-	-81.154 (21)	$0.56\pm0.05~{\rm s}$		<i>IT</i> 100			
		130	3(+)	-81.63 (3)	$8.7\pm0.1~{ m m}$		$\epsilon \ 100$			
		131	3/2+	-83.77 (3)	59 ± 2 m		$\epsilon \ 100$			
		132	2-	-83.72 (4)	$4.8\pm0.2~{ m h}$		$\epsilon \ 100$			
		132m	6-	-83.54 (4)	$24.3\pm0.5~\mathrm{m}$		IT 76; ϵ 24			
		133	5/2+	-85.49 (3)	$3.912 \pm 0.008 \text{ h}$		$\epsilon \ 100$			
		134	1+	-85.219 (20)	$6.45\pm0.16~\mathrm{m}$		$\epsilon \ 100$			
		135	5/2+	-86.651 (10)	19.5 ± 0.2 h		$\epsilon \ 100$			
		136	1+	-86.04 (5)	$9.87\pm0.03~\mathrm{m}$		$\epsilon \ 100$			
		136m	(8+)	-85.81 (5)	$114 \pm 3 \text{ ms}$		<i>IT</i> 100			
		137	7/2+	-87.106 (12)	$6E+4 \pm 2E+4$ y		$\epsilon 100$			
		138	5+	-86.521 (3)	$1.02E+11 \pm 0.01E+11 \text{ y}$	$0.08881\%\pm 0.00071\%$	ϵ 65.6; eta^- 34.4			
		139	7/2+	-87.2282 (23)	stable	$99.9119\% \pm 0.0071\%$				
		140	3-	-84.3179 (23)	$1.67855 \pm 1.2E-4 d$		eta^- 100			
		141	(7/2+)	-82.934 (4)	3.92 ± 0.03 h		β^- 100			
		142	2-	-80.022 (7)	91.1 ± 0.5 m		β^- 100			
		143	(7/2)+	-78.171 (7)	14.2 ± 0.1 m		β^- 100			
		144	(3-)	-74.833 (18)	$40.8 \pm 0.4 \text{ s}$		β^- 100			
		145	(5/2+)	-72.832 (12)	$24.8 \pm 2 \mathrm{s}$		β^- 100			
		146	2-	-69.05 (3)	$6.27 \pm 0.1 \mathrm{s}$		β^- 100; β^- 100			
		147	(3/2+)	-66.678 (11)	$4.06 \pm 0.04 \text{ s}$		β^{-} 100; β^{-} n 0.04			
		148	(2-)	-62.709 (19)	$1.26 \pm 0.08 \text{ s}$		β^{-} 100; β^{-} n 0.15			
		149	(3/2-)	-60.22 (20)	1.05 ± 0.03 s		β 100; β n 1.43			
50	0	150	(3+)	-56.55 (20)	$0.86 \pm 0.05 \text{ s}$		β 100; β n 2.7			
58	Ce	121	(5/2)	-52.5 (5)	$1.1 \pm 0.1 \text{ s}$		$\epsilon 100; \epsilon p \approx 1.00$			
		123	(5/2)	-60.1(3)	$3.8 \pm 0.2 \mathrm{s}$		ϵ 100; $\epsilon p > 0.00$			
		124	(7/2)	-64.6 (3)	$6 \pm 2 s$		$\epsilon 100$			
		125	(//2-)	-00.00 (20)	9.7 ± 0.3 S		ϵ 100; ϵp			
		120	(1/2)	-70.62 (5)	51.0 ± 0.5 S		ε 100 - 100			
		127 127m	(1/2+) (5/2+)	-71.98 (0)	34 ± 25		e 100 c 100			
		127111	(372+) 0+	-75 53 (3)	3.93 ± 0.02 m		e 100			
		120	5/2+	-76 29 (3)	35 ± 0.52 m		$\epsilon > 0.00$			
		130	0 + 0 +	-79 42 (3)	22.9 ± 0.5 m		€ 200			
		131	7/2+	-79 71 (3)	10.3 ± 0.3 m		€ 100 € 100			
		131m	(1/2+)	-79.64 (3)	$54 \pm 0.4 \text{ m}$		$\epsilon 100$ T			
		132	(1, 2)	-82.471 (20)	3.51 ± 0.11 h		€ 100) € 100			
		132m	(8-)	-80.13 (20)	$9.4 \pm 0.3 \text{ ms}$		IT 100			
		133	1/2+	-82.423 (16)	$97 \pm 4 \text{ m}$		<i>€</i> 100			
		133m	9/2-	-82.386 (16)	5.1 ± 0.3 h		$\epsilon: IT$			
		134	0+	-84.836 (20)	$3.16 \pm 0.04 \text{ d}$		$\epsilon 100$			
		135	1/2(+)	-84.625 (11)	17.7 ± 0.3 h		$\epsilon 100$			
		135m	(11/2-)	-84.179 (11)	$20\pm1\mathrm{s}$		<i>IT</i> 100			
		136	0+	-86.474 (12)	> 0.7E + 14 v	$0.185\% \pm 0.002\%$	2ϵ			
		137	3/2+	-85.884 (12)	9.0 ± 0.3 h		$\epsilon \ 100$			
		137m	11/2-	-85.629 (12)	$34.4\pm0.3~h$		<i>IT</i> 99.21; ϵ 0.79			
		138	0+	-87.564 (10)	\geq 0.9E+14 y	$0.251\% \pm 0.002\%$	2ϵ 100			
		138m	7-	-85.435 (10)	$8.65\pm0.2~{ m ms}$		<i>IT</i> 100			
		139	3/2+	-86.95 (7)	$137.641 \pm 0.02 \text{ d}$		ϵ 100			
		139m	11/2-	-86.196 (7)	$54.8\pm1\mathrm{s}$		<i>IT</i> 100			
		140	0+	-88.0786 (22)	stable	$88.45\% \pm 0.051\%$				
		141	7/2-	-85.4354 (22)	$32.508 \pm 0.013 \text{ d}$		eta^- 100			
							Continued on next nage			
				Table 1	0.1 – Continued from prea	vious page				
----	----	------	--------------------	----------------	-------------------------------------	-----------------------	--			
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode			
		142	0+	-84.532 (3)	> 5E+16 y	$11.114\%\pm 0.051\%$	$2\beta^-$			
		143	3/2-	-81.605 (3)	$33.039 \pm 0.006 \text{ h}$		eta^- 100			
		144	0+	-80.431 (3)	$284.91 \pm 0.05 \text{ d}$		eta^- 100			
		145	(5/2-)	-77.09 (4)	$3.01\pm0.06\ m$		eta^- 100			
		146	0+	-75.641 (18)	$13.52\pm0.13~\text{m}$		eta^- 100			
		147	(5/2-)	-72.014 (9)	$56.4 \pm 1 \mathrm{~s}$		eta^- 100			
		148	0+	-70.398 (11)	$56\pm1~{ m s}$		eta^- 100			
		149	(3/2-)	-66.67 (10)	$5.3\pm0.2~{ m s}$		eta^- 100			
		150	0+	-64.849 (12)	$4.0\pm0.6~{ m s}$		eta^- 100			
		151	(5/2+)	-61.225 (18)	$1.76\pm0.06~{\rm s}$		eta^- 100; eta^-			
		152	0+	-59.31 (20)	$1.4\pm0.2~{ m s}$		eta^- 100			
59	Pr	121	(3/2)	-41.4 (7)	10 +6-3 ms		$p \ 100$			
		122	0	-44.7 (5)	$pprox 0.5 \ { m s}$		ϵ ?			
		123	0	-50.1 (6)	$pprox 0.8~{ m s}$		ϵ ?			
		124	0	-53 (6)	$1.2\pm0.2~{ m s}$		$\epsilon p > 0.00; \epsilon \ 100$			
		125	0	-57.7 (4)	$3.3\pm0.7~\mathrm{s}$		ϵ 100; ϵp			
		126	>3	-60.14 (20)	$3.14\pm0.22~{\rm s}$		ϵ 100; ϵp			
		127	0	-64.32 (20)	$4.2\pm0.3~\mathrm{s}$		$\epsilon \ 100$			
		128	4,5,6	-66.33 (3)	$2.84\pm0.09~\mathrm{s}$		$\epsilon \ 100$			
		129	(11/2-)	-69.77 (3)	$30\pm4~{ m s}$		$\epsilon > 0.00$			
		130	(7,8)	-71.18 (6)	$40\pm4~ m s$		ϵ 100; ϵ 100; ϵ 100			
		131	(3/2+)	-74.3 (5)	$1.51\pm0.02~\text{m}$		$\epsilon \ 100$			
		131m	(11/2-)	-74.15 (5)	$5.73\pm0.2~\mathrm{s}$		<i>IT</i> 96.4; <i>\epsilon</i> 3.6			
		132	(2)+	-75.21 (6)	1.6 ± 0.3 m		$\epsilon \ 100$			
		133	(3/2+)	-77.937 (12)	6.5 ± 0.3 m		$\epsilon \ 100$			
		133m	(11/2-)	-77.745 (12)	$1.1\pm0.2~{ m s}$		<i>IT</i> 100			
		134	(6-)	-78.51 (4)	\approx 11 m		ϵ 100; ϵ 100			
		135	3/2(+)	-80.936 (12)	$24\pm1~m$		$\epsilon \ 100$			
		136	2+	-81.329 (12)	13.1 ± 0.1 m		$\epsilon \ 100$			
		137	5/2+	-83.179 (11)	$1.28\pm0.03~h$		$\epsilon \ 100$			
		138	1+	-83.127 (14)	$1.45\pm0.05~\text{m}$		$\epsilon \ 100$			
		138m	7-	-82.763 (14)	$2.12\pm0.04~h$		$\epsilon \ 100$			
		139	5/2+	-84.821 (8)	$4.41\pm0.04~\text{h}$		$\epsilon \ 100$			
		140	1+	-84.691 (6)	$3.39\pm0.01~\text{m}$		$\epsilon \ 100$			
		141	5/2+	-86.0158 (22)	stable	100%				
		142	2-	-83.7877 (22)	$19.12\pm0.04~\text{h}$		eta^- 99.98; ϵ 0.02			
		142m	5-	-83.784 (22)	14.6 ± 0.5 m		<i>IT</i> 100			
		143	7/2+	-83.0674 (23)	$13.57 \pm 0.02 \text{ d}$		eta^- 100			
		144	0-	-80.75 (3)	17.28 ± 0.05 m		eta^- 100			
		144m	3-	-80.691 (3)	7.2 ± 0.3 m		IT 99.93; β^- 0.07			
		145	7/2+	-79.626 (7)	5.984 ± 0.01 h		eta^- 100			
		146	(2)-	-76.69 (4)	$24.15\pm0.18~\mathrm{m}$		eta^- 100			
		147	(5/2+)	-75.444 (16)	13.4 ± 0.3 m		eta^- 100			
		148	1-	-72.535 (15)	2.29 ± 0.02 m		eta^- 100			
		148m	(4)	-72.445 (15)	2.01 ± 0.07 m		eta^- 100			
		149	(5/2+)	-71.039 (10)	$2.26\pm0.07~\mathrm{m}$		β^- 100			
		150	(1)-	-68.299 (9)	$6.19\pm0.16~\mathrm{s}$		β^- 100			
		151	(3/2-)	-66.78 (12)	$18.90 \pm 0.07 \text{ s}$		β^- 100			
		152	(4+)	-63.758 (19)	$3.57\pm0.18~{\rm s}$		β^- 100			
		153	0	-61.581 (14)	$4.28\pm0.11~\mathrm{s}$		β^- 100			
		154	(3+)	-58.19 (15)	$2.3 \pm 0.1 \text{ s}$		β^- 100			
60	Nd	125	(5/2)	-47.4 (4)	$0.65 \pm 0.15 \text{ s}$		ϵ 100; $\epsilon p > 0.00$			
		127	0	-55.3 (4)	$1.8\pm0.4~{ m s}$		ϵ 100; ϵp			

				Table	10.1 – Continued from previo	ous page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		128	0+	-60.07 (20)	$5\pm0~{ m s}$		ϵ 100; ϵp
		129	(5/2+)	-62.23 (20)	$4.9\pm0.2~{ m s}$		$\epsilon > 0.00; \epsilon p > 0.00$
		130	0+	-66.6 (3)	$21\pm3~{ m s}$		$\epsilon \ 100$
		131	(5/2+)	-67.77 (3)	$25.4\pm0.9~\mathrm{s}$		ϵ 100; $\epsilon p > 0.00$
		132	0+	-71.426 (24)	$94\pm8~{ m s}$		$\epsilon \ 100$
		133	(7/2+)	-72.33 (5)	$70\pm10~ m s$		$\epsilon \ 100$
		133m	(1/2+)	-72.2 (5)	pprox 70 m s		ϵ ; IT
		134	0+	-75.646 (12)	8.5 ± 1.5 m		$\epsilon \ 100$
		135	9/2(-)	-76.214 (19)	12.4 ± 0.6 m		$\epsilon \ 100$
		135m	(1/2+)	-76.149 (19)	5.5 ± 0.5 m		$\epsilon >$ 99.97; $IT < 0.03$
		136	0+	-79.199 (12)	50.65 ± 0.33 m		ϵ 100
		137	1/2+	-79.584 (12)	38.5 ± 1.5 m		ϵ 100
		137m	11/2-	-79.065 (12)	$1.60\pm0.15~\mathrm{s}$		<i>IT</i> 100
		138	0+	-82.018 (12)	5.04 ± 0.09 h		ϵ 100
		139	3/2+	-82.01 (3)	29.7 ± 0.5 m		ϵ 100
		139m	11/2-	-81.78 (3)	5.50 ± 0.2 h		ϵ 88.2; IT 11.8
		140	0+	-84.25 (3)	$3.37 \pm 0.02 \text{ d}$		ϵ 100
		141	3/2+	-84.193 (4)	2.49 ± 0.03 h		ϵ 100
		141m	11/2-	-83.436 (4)	$62.0 \pm 0.8 \text{ s}$		IT 100; $\epsilon < 0.05$
		142	0+	-85.9493 (18)	stable	$27.152\% \pm 0.04\%$	
		143	7/2-	-84.0015 (18)	stable	$12.174\% \pm 0.026\%$	
		144	0+	-83.7473 (18)	$2.29E+15 \pm 0.16E+15 \text{ y}$	$23.798\% \pm 0.019\%$	lpha 100
		145	7/2-	-81.4312 (18)	stable	$8.293\% \pm 0.012\%$	
		146	0+	-80.9252 (18)	stable	$17.189\% \pm 0.032\%$	2- 400
		147	5/2-	-78.146 (18)	10.98 ± 0.01 d		β^{-} 100
		148	0+	-77.4068 (24)	stable	$5.756\% \pm 0.021\%$	0= 100
		149	5/2-	-74.3743 (24)	1.728 ± 0.001 h		β 100
		150	0+	-73.683 (3)	$0.79E19 \pm 0.07E19$ y	$5.638\% \pm 0.028\%$	2= 100
		151	3/2+	-70.946 (3)	$12.44 \pm 0.07 \text{ m}$		β 100
		152	0+	-70.152 (25)	$11.4 \pm 0.2 \text{ m}$		β 100
		155	(3/2)-	-67.34(3)	31.6 ± 1.8		β 100 β = 100
		154	0+	-03.00 (11)	23.9 ± 0.2 S		β 100 β^{-} 100
		155	0	-02.47(13)	0.9 ± 0.25 5.06 ± 0.12 c		β 100 β = 100
61	Dm	130	0	47.6 (5)	1.0 ± 0.13 s		β 100 c α c β
01	1 111	120	(5/2)	-47.0(3)	$1.0 \pm 0.3 \text{ s}$ $2.4 \pm 0.9 \text{ s}$		ϵ 100, α , ϵp
		129	$(3/2^{-})$	-55.2 (3)	2.4 ± 0.93 2.6 ± 0.2 s		e 100 c 100: cm
		130	(4,3,0) (11/2)	-59 59 (20)	2.0 ± 0.23 6 3 + 0.8 s		e 100, ep
		132	(11/2) (3+)	-61 64 (20)	62 ± 0.63		$\epsilon 100 \epsilon n \approx 5.0 \text{F}-5$
		133	(3/2+)	-65 41 (5)	$135 \pm 21s$		$\epsilon 100, \epsilon p \approx 0.010$
		133m	$(0/2^{-1})$ $(11/2^{-1})$	-65 28 (5)	< 8.8 s		$TT \cdot \epsilon$
		134	(11/2) (2+)	-66 74 (6)	< 5.6 b ≈ 5 s		ε 100· ε 100
		135	(3/2+5/2+	-69 98 (6)	49 + 38		€ 100, € 100 € 100
		135m	(0/2+,0/2)	-69.91 (6)	45 ± 48		€ 100 € 100
		136	(5-)	-71 2 (8)	107 ± 6 s		€ 100° € 100
		137	11/2-	-74073(13)	24 ± 0.1 m		€ 100
		138	0	-74.94 (3)	$10 \pm 2 s$		€ 100 € 100
		138m	0	-74.92 (3)	3.24 ± 0.05 m		6
		139	(5/2)+	-77.5 (14)	4.15 ± 0.05 m		ε 100
		139m	(11/2)-	-77.312 (14)	$180 \pm 20 \text{ ms}$		<i>IT</i> 99.94: <i>ε</i> 0.06
		140	1+	-78.21 (4)	$9.2 \pm 0.2 \text{ s}$		ϵ 100; ϵ 100
		141	5/2+	-80.523 (14)	$20.90\pm0.05~\mathrm{m}$		ϵ 100
		142	1+	-81.16 (3)	$40.5\pm0.5~{ m s}$		ϵ 100
				(-)			Continued on next nage

				Table	10.1 – Continued from previo	ous page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		142m	(8)-	-80.27 (3)	$2.0\pm0.2~\mathrm{ms}$		<i>IT</i> 100
		143	5/2+	-82.96 (3)	$265 \pm 7 \mathrm{d}$		ϵ 100
		144	5-	-81.416 (3)	$363 \pm 14 \text{ d}$		$\epsilon \ 100$
		145	5/2+	-81.267 (3)	$17.7\pm0.4~\mathrm{y}$		ϵ 100; α 2.8e-07
		146	3-	-79.454 (4)	$5.53\pm0.05~\mathrm{y}$		ϵ 66; eta^- 34
		147	7/2+	-79.0416 (18)	$2.6234\pm2.0\text{E-4 y}$		eta^- 100
		148	1-	-76.865 (6)	$5.368 \pm 0.002 \text{ d}$		eta^- 100
		148m	5-,6-	-76.727 (6)	$41.29 \pm 0.11 \text{ d}$		eta^- 95.8; IT 4.2
		149	7/2+	-76.063 (3)	53.08 ± 0.05 h		eta^- 100
		150	(1-)	-73.596 (20)	2.68 ± 0.02 h		β^- 100
		151	5/2+	-73.389 (5)	28.40 ± 0.04 h		β^- 100
		152	1+	-71.26 (3)	$4.12 \pm 0.08 \text{ m}$		β^- 100
		152m	(8)	-71.11 (3)	$13.8 \pm 0.2 \text{ m}$		$egin{array}{cccccccccccccccccccccccccccccccccccc$
		153	5/2-	-70.678 (11)	5.25 ± 0.02 m		β^{-} 100
		154	(3,4)	-68.49 (4)	$2.68\pm0.07~\mathrm{m}$		β^{-} 100; β^{-} 100
		155	5/2-	-66.97 (3)	$41.5\pm0.2~\mathrm{s}$		β^{-} 100
		156	4-	-64.21 (3)	$26.70\pm0.1~{\rm s}$		β^{-} 100
		157	(5/2-)	-62.37 (11)	$10.56\pm0.1~{ m s}$		β^- 100
		158	0	-59.12 (11)	$4.8\pm0.5~{ m s}$		β^- 100
		159	0	-56.82 (15)	$1.5\pm0.2~{ m s}$		β^{-} 100
62	Sm	129	(1/2+,3/2+	-)-41.3 (7)	$0.55\pm0.1~{ m s}$		ϵ 100; $\epsilon p > 0.00$
		131	0	-49.6 (3)	$1.2\pm0.2~{ m s}$		ϵ 100; $\epsilon p > 0.00$
		132	0+	-54.7 (3)	$4.0\pm0.3~{ m s}$		ϵ 100; ϵp
		133	(5/2+)	-56.83 (20)	$2.89\pm0.16~{\rm s}$		ϵ 100; ϵp $>$ 0.00; ϵ ; IT ; ϵp
		134	0+	-61.22 (20)	$9.5\pm0.8~{ m s}$		$\epsilon \ 100$
		135	(3/2+,5/2+	-)-62.86 (15)	$10.3\pm0.5~{ m s}$		ϵp 0.02; ϵ 100
		136	0+	-66.811 (12)	$47\pm2~{ m s}$		ϵ 100
		137	(9/2-)	-68.03 (4)	$45\pm1\mathrm{s}$		ϵ 100
		138	0+	-71.498 (12)	3.1 ± 0.2 m		ϵ 100
		139	1/2+	-72.38 (11)	$2.57\pm0.1~\mathrm{m}$		ϵ 100
		139m	11/2-	-71.923 (11)	$10.7\pm0.6~\mathrm{s}$		$IT 93.7; \epsilon 6.3$
		140	0+	-75.456 (12)	14.82 ± 0.12 m		$\epsilon 100$
		141	1/2+	-75.934 (9)	$10.2 \pm 0.2 \text{ m}$		$\epsilon 100$
		141m	11/2-	-75.758 (9)	$22.6 \pm 0.2 \text{ m}$		ϵ 99.69; <i>IT</i> 0.31
		142	0+	-78.987 (4)	$72.49 \pm 0.05 \text{ m}$		ε 100 100
		143 142m	3/2+ 11/2	-79.517(3)	$8.75 \pm 0.06 \text{ m}$		$\epsilon 100$
		145m	11/2-	-76.703(3)	60 ± 2.8 20 ± 2.8		$11 99.76; \epsilon 0.24$
		1431112	23/2(-)	-70.723 (3) 81 9657 (25)	30 ± 3 ms	$3.07\% \pm 0.07\%$	11 100
		144	$\frac{0+}{7/2}$	-01.9037 (23) 80.6515 (25)	$340 \pm 3 d$	J.07 /0 ± 0.07 /0	- 100
		145	// <i>2-</i>	-80.0010 (20)	340 ± 30 10 $3E+7 \pm 0.5E+7$ w		e 100 o 100
		$140 \\ 147$	0+ 7/2-	-79 2657 (18)	$10.0E^{+7} \pm 0.0E^{+7}$ y $1.060E^{-11} \pm 0.011E^{-11}$ y	$14.99\% \pm 0.18\%$	α 100
		147	0+	-79 3358 (18)	7E+15 + 3E+15 v	$11.99\% \pm 0.10\%$ $11.94\% \pm 0.1\%$	α 100
		149	7/2-	-77 135 (18)	stable	$13.82\% \pm 0.07\%$	a 100
		150	0+	-770504(17)	stable	$7.38\% \pm 0.01\%$	
		151	5/2-	-74.5755 (17)	$90 \pm 8 \text{ v}$		β^{-} 100
		152	0+	-74.7622 (17)	stable	$26.75\% \pm 0.16\%$	p 100
		153	3/2+	-72.5593 (17)	46.284 ± 0.004 h		β^- 100
		153m	11/2-	-72.4609 (17)	$10.6\pm0.3~\mathrm{ms}$		<i>IT</i> 100
		154	0+	-72.4549 (19)	stable	$22.75\% \pm 0.29\%$	
		155	3/2-	-70.1905 (19)	$22.3\pm0.2~\text{m}$		β^- 100
		156	0+	-69.363 (9)	9.4 ± 0.2 h		β^- 100
-							

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Table 1	0.1 – Continued from prev	ious page	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Z E	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			157	(3/2-)	-66.73 (5)	$8.03\pm0.07~\mathrm{m}$		eta^- 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			158	0+	-65.2 (8)	5.30 ± 0.03 m		eta^- 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			159	5/2-	-62.25 (7)	$11.37\pm0.15~{\rm s}$		eta^- 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			160	0+	-60.42 (20)	$9.6\pm0.3~\mathrm{s}$		eta^- 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			161	0	-56.75 (14)	$4.8\pm0.4~{ m s}$		eta^- 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			162	0+	-54.8 (5)	$2.4\pm0.5~{ m s}$		β^- 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63 Eu	Eu	131	3/2+	-38.7 (4)	$17.8 \pm 1.9 \text{ ms}$		<i>p</i> 89; <i>ε</i> 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			134	0	-49.72 (20)	$0.5 \pm 0.2 \text{ s}$		ϵ 100; $\epsilon p > 0.00$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			135	0	-54.1 (3)	$1.5 \pm 0.2 \mathrm{s}$		ϵ 100; ϵp
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			136	(7+)	-56.1 (20)	$3.3 \pm 0.3 \mathrm{s}$		ϵ 100; ϵp 0.09; ϵ 100; $\epsilon n 0.09$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			137	(11/2-)	-60.02 (20)	$11\pm 2~{ m s}$		$\epsilon 100$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			138	(6-)	-61.75 (3)	$12.1\pm0.6~\mathrm{s}$		ϵ 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			139	(11/2)-	-65.398 (13)	$17.9\pm0.6~\mathrm{s}$		$\epsilon \ 100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			140	1+	-66.99 (5)	$1.51\pm0.02~{\rm s}$		ϵ 100; <i>IT</i> 100; ϵ < 1.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			141	5/2+	-69.926 (13)	$40.7\pm0.7~{\rm s}$		$\epsilon 100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			141m	11/2-	-69.829 (13)	$2.7\pm0.3~{ m s}$		IT 87; ϵ 13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			142	1+	-71.31 (3)	$2.34\pm0.12~s$		ϵ 100; ϵ 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			143	5/2+	-74.242 (11)	$2.59\pm0.02~\text{m}$		$\epsilon \ 100$
145 $5/2+$ $-77.992 (4)$ $5.93 \pm 0.04 d$ $\epsilon 100$ 1464- $-77.117 (6)$ $4.61 \pm 0.03 d$ $\epsilon 100$ 147 $5/2+$ $-77.544 (3)$ $24.1 \pm 0.6 d$ $\epsilon 100; \alpha 0.0022$ 1485- $-76.299 (10)$ $54.5 \pm 0.5 d$ $\epsilon 100; \alpha 9.4e-07$ 149 $5/2+$ $-76.44 (4)$ $93.1 \pm 0.4 d$ $\epsilon 100$ 1505- $-74.791 (6)$ $36.9 \pm 0.9 \text{ y}$ $\epsilon 100$ 150m0- $-74.75 (6)$ $12.8 \pm 0.1 \text{ h}$ $\epsilon 11; IT \le 5.0E-8; \beta^- 89$			144	1+	-75.619 (11)	$10.2\pm0.1~{\rm s}$		ϵ 100
146477.117 (6) $4.61 \pm 0.03 \text{ d}$ $\epsilon 100$ 147 $5/2+$ -77.544 (3) $24.1 \pm 0.6 \text{ d}$ $\epsilon 100; \alpha 0.0022$ 148576.299 (10) $54.5 \pm 0.5 \text{ d}$ $\epsilon 100; \alpha 9.4e-07$ 149 $5/2+$ -76.44 (4) $93.1 \pm 0.4 \text{ d}$ $\epsilon 100$ 150574.791 (6) $36.9 \pm 0.9 \text{ y}$ $\epsilon 100$ 150m074.75 (6) $12.8 \pm 0.1 \text{ h}$ $\epsilon 11; IT \le 5.0E-8; \beta^- 89$			145	5/2+	-77.992 (4)	$5.93\pm0.04~\text{d}$		ϵ 100
147 $5/2+$ -77.544 (3) $24.1 \pm 0.6 \text{ d}$ $\epsilon 100; \alpha 0.0022$ 1485- -76.299 (10) $54.5 \pm 0.5 \text{ d}$ $\epsilon 100; \alpha 9.4e-07$ 149 $5/2+$ -76.44 (4) $93.1 \pm 0.4 \text{ d}$ $\epsilon 100$ 1505- -74.791 (6) $36.9 \pm 0.9 \text{ y}$ $\epsilon 100$ 150m0- -74.75 (6) $12.8 \pm 0.1 \text{ h}$ $\epsilon 11; IT \le 5.0E-8; \beta^- 89$ 151 $5/2+$ -74.6517 (18) $\geq 1.7E+18 \text{ y}$ $47.81\% \pm 0.03\%$			146	4-	-77.117 (6)	$4.61\pm0.03~\text{d}$		ϵ 100
148576.299 (10) $54.5 \pm 0.5 \text{ d}$ $\epsilon 100; \alpha 9.4\text{e-}07$ 149 $5/2+$ -76.44 (4) $93.1 \pm 0.4 \text{ d}$ $\epsilon 100$ 150574.791 (6) $36.9 \pm 0.9 \text{ y}$ $\epsilon 100$ 150m074.75 (6) $12.8 \pm 0.1 \text{ h}$ $\epsilon 11; IT \le 5.0\text{E-}8; \beta^- 89$ 151 $5/2+$ -74.6517 (18) $> 1.7\text{E} + 18 \text{ y}$ $47.81\% \pm 0.03\%$			147	5/2+	-77.544 (3)	$24.1\pm0.6~d$		ϵ 100; α 0.0022
149 $5/2+$ -76.44 (4) 93.1 ± 0.4 d ϵ 1001505- -74.791 (6) 36.9 ± 0.9 y ϵ 100150m0- -74.75 (6) 12.8 ± 0.1 h ϵ 11; $IT \le 5.0$ E-8; β^- 89151 $5/2+$ -74.6517 (18) > 1.7 E+18 y $47.81\% \pm 0.03\%$			148	5-	-76.299 (10)	$54.5\pm0.5~\mathrm{d}$		ϵ 100; α 9.4e-07
150 5- -74.791 (6) $36.9 \pm 0.9 \text{ y}$ ϵ 100 150m 0- -74.75 (6) $12.8 \pm 0.1 \text{ h}$ ϵ 11; $TT \le 5.0\text{E-8; }\beta^- 89$ 151 $5/2+$ -74.6517 (18) > 1.7E+18 \text{ y} $47.81\% \pm 0.03\%$ ϵ			149	5/2+	-76.44 (4)	$93.1\pm0.4~\mathrm{d}$		ϵ 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			150	5-	-74.791 (6)	$36.9\pm0.9~\mathrm{y}$		ϵ 100
$151 5/2 \pm -74.6517.(18) > 1.7E \pm 18$ $T = -47.810/2 \pm 0.020/2$			150m	0-	-74.75 (6)	12.8 ± 0.1 h		ϵ 11; $IT \leq$ 5.0E-8; β^- 89
$151 5/2\tau \qquad 74.051/(10) \qquad \geq 1.7\pm10$ y $47.01/0 \pm 0.05/0 \qquad \alpha$			151	5/2+	-74.6517 (18)	\geq 1.7E+18 y	$47.81\% \pm 0.03\%$	α
152 372.8871 (18) 13.528 \pm 0.014 y ϵ 72.1; β^- 27.9			152	3-	-72.8871 (18)	13.528 ± 0.014 y		ϵ 72.1; eta^- 27.9
152m 072.8415 (18) 9.3116 \pm 0.0013 h β^- 72; ϵ 28			152m	0-	-72.8415 (18)	9.3116 ± 0.0013 h		eta^- 72; ϵ 28
$152m2 872.7392 (18) 96 \pm 1 m IT 100$			152m2	2 8-	-72.7392 (18)	$96 \pm 1 \text{ m}$		<i>IT</i> 100
153 $5/2+$ -73.3661 (18) stable 52.19% $\pm 0.06\%$			153	5/2+	-73.3661 (18)	stable	$52.19\% \pm 0.06\%$	
154 371.737 (18) 8.601 \pm 0.01 y ϵ 0.02; β^{-} 99.98			154	3-	-71.737 (18)	$8.601 \pm 0.01 \text{ y}$		ϵ 0.02; β^- 99.98
154m 871.5916 (18) 46.3 ± 0.4 m IT 100			154m	8-	-71.5916 (18)	$46.3 \pm 0.4 \text{ m}$		<i>IT</i> 100
$155 5/2+ -71.8169 (18) \qquad 4.753 \pm 0.014 \text{ y} \qquad \beta^{-1} 100$			155	5/2+	-71.8169 (18)	4.753 ± 0.014 y		β^{-} 100
156 0+ -70.085 (6) 15.19 \pm 0.08 d β^{-100}			156	0+	-70.085 (6)	15.19 ± 0.08 d		β^{-} 100
$157 5/2+ -69.46 (5) \qquad 15.18 \pm 0.03 \text{ h} \qquad \beta 100$			157	5/2+	-69.46 (5)	15.18 ± 0.03 h		β 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			158	(1-) E (2)	-67.2(8)	$45.9 \pm 0.2 \text{ m}$		β 100 β 100
$159 5/2+ -60.046 (7) \qquad 16.1 \pm 0.1 \text{m} \qquad \beta 100$			159	5/2+ 1	-66.046(7)	$18.1 \pm 0.1 \text{ m}$		β 100 β 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			160	1	-05.23(0)	30 ± 4.8		β 100 β = 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			161	0	-01.0 (0)	20 ± 38 10.6 ± 1.6		$\beta = 100$
$102 0 -36.07 (0) 10.0 \pm 1.5 $			162	0	-56.8 (10)	10.0 ± 1.8 7.7 ± 0.4 s		β 100 β^{-} 100
$103 0 -50.6 (10) 7.7 \pm 0.48 0 0 -50.0 (10) 7.7 \pm 0.48 0 0 -50.0 (10) -50.0 (10) -50.0 (10) 0 -50.0 (10) 0 -50.0 (10) -50.0$			164	0	-53.4(10)	7.7 ± 0.48 4.2 ± 0.28		β 100 β^{-} 100
$104 \ 0 \ -50.4(4) \ 4.2 \pm 0.2 \ 5 \ \beta^{-100}$			165	0	-50.8 (5)	4.2 ± 0.25 2.3 ± 0.25		β 100 β^{-} 100
$64 C4 135 (5/2+) -44 (5) \qquad 11 \pm 0.2 s \qquad (100 \pm 0.18)$	64 C	ъ	105	(5/2+)	-44 (5)	$2.5 \pm 0.2 s$ $1.1 \pm 0.2 s$		β 100 cm 18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04 00	Ju	137	(3/21) (7/2)	-512(4)	1.1 ± 0.23 $22 \pm 0.2s$		e 100, ep 10
$138 0 + \qquad -55.66(20) \qquad 4.7 + 0.9 \text{ s} \qquad \epsilon 100$			138	(7, 2)	-55.66 (20)	2.2 ± 0.23 4.7 ± 0.9 s		e 100, ep
$139 (9/2-) \qquad -57.63 (20) \qquad 5.8 \pm 0.9 \text{ s} \qquad (20) \qquad $			130	(9/2)	-57.63 (20)	4.7 ± 0.93 5.8 ± 0.98		$\epsilon = 0.00$
$\frac{(7/2)}{(0.00)} = 0.000 (20) (20) (20) (20) = 0.000 (20) (20) (20) (20) (20) (20) (20) ($			107	(27 4-)	07.00 (20)	0.0 ± 0.7 5		$e_p > 0.00, e > 0.00, e_p > 0.00; e_p > 0.00; \epsilon > 0.00$
140 0+ -61.78 (3) 15.8 \pm 0.4 s ϵ 100			140	0+	-61.78 (3)	$15.8\pm0.4~\text{s}$		$\epsilon \ 100$
141 1/2+ -63.224 (20) 14 \pm 4 s ϵ 100; ϵp 0.03			141	1/2+	-63.224 (20)	$14\pm4~{ m s}$		ϵ 100; ϵp 0.03
141m $11/2$ 62.846 (20)24.5 \pm 0.5 s ϵ 89; IT 11			141m	11/2-	-62.846 (20)	$24.5\pm0.5~s$		ϵ 89; IT 11
142 0+ -66.96 (3) $70.2 \pm 0.6 \text{ s}$ $\epsilon \ 100$			142	0+	-66.96 (3)	$70.2\pm0.6~{\rm s}$		ε 100

				Table	10.1 – Continued from previ	ous page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		143	(1/2)+	-68.23 (20)	$39 \pm 2 \mathrm{s}$		ε 100
		143m	(11/2-)	-68.08 (20)	$110.0\pm1.4~{\rm s}$		$\epsilon \ 100$
		144	0+	-71.76 (3)	4.47 ± 0.06 m		$\epsilon \ 100$
		145	1/2+	-72.927 (19)	23.0 ± 0.4 m		ϵ 100
		145m	11/2-	-72.178 (19)	$85 \pm 3 \mathrm{s}$		IT 94.3; ϵ 5.7
		146	0+	-76.087 (4)	$48.27 \pm 0.1 \text{ d}$		ϵ 100
		147	7/2-	-75.357 (3)	38.06 ± 0.12 h		ϵ 100
		148	0+	-76.2696 (25)	70.9 ± 1 y		lpha 100
		149	7/2-	-75.127 (4)	$9.28\pm0.1~\mathrm{d}$		α 0.00043; ϵ 100
		150	0+	-75.763 (6)	$1.79E+6 \pm 0.08E+6 y$		α 100
		151	7/2-	-74.188 (3)	$123.9 \pm 1 \mathrm{d}$	0.001 + 0.0101	ϵ 100; $\alpha \approx 8.0$ E-7
		152	0+	-74.7065 (17)	$1.08E14 \pm 0.08E14$ y	$0.2\% \pm 0.01\%$	α 100
		153	3/2-	-72.8821 (17)	$240.4 \pm 1 \text{ d}$	2 100/ 1 0 0 2 0/	ϵ 100
		154	0+	-73.7055 (17)	stable	$2.18\% \pm 0.03\%$	
		155	3/2-	-72.0694 (17)		$14.8\% \pm 0.12\%$	100
		155m	11/2-	-71.9484 (17)	$31.97 \pm 0.27 \text{ ms}$	00 450/ 1 0 000/	11 100
		156	0+	-72.5345(17)	stable	$20.47\% \pm 0.09\%$	
		157	3/2- 0+	-70.823(17)	stable	$15.05\% \pm 0.02\%$ $24.84\% \pm 0.07\%$	
		150	0+	-70.0091(17)	18.470 ± 0.004 h	$24.04\% \pm 0.07\%$	<i>a</i> = 100
		160	5/2- 0	-00.3009(17)	10.479 ± 0.004 II	$21.860/ \pm 0.100/$	β 100
		160	0+ 5/2	-07.9409 (10)	> 3.12 + 19 y	$21.00 / 0 \pm 0.19 / 0$	$\frac{2p}{p^2}$ 100
		167	0+	-64.28(4)	8.4 ± 0.2 m		β 100 β^{-} 100
		162	(5/2-	-61.47 (7)	68 ± 3 s		β^{-} 100 β^{-} 100
		164	,//2+)	E0.0 (4)	4E 2 c		2- 100
		104	0+	-39.9 (4)	43 ± 35 103 \pm 16 c		β 100 β^{-} 100
		165	0 0+	-54.5 (6)	10.5 ± 1.05		β 100 β^{-} 100
65	Th	139	0+ 0	-48 (3)	4.0 ± 1.3 1.6 ± 0.2 s		β 100 $\epsilon : \epsilon n^2$
05	10	140	(7+)	-50 5 (8)	1.0 ± 0.23 2.0 ± 0.5 s		$e^{-}, e^{-}, $
		140	(5/2-)	-54 54 (11)	35 ± 0.2 s		ε 100· ε 100
		142	(0 <i>7 -)</i> 1+	-56.6 (7)	5.0 ± 0.2 0 597 ± 17 ms		$\epsilon 100; \epsilon 100$
		142m	5-	-56.3 (7)	303 ± 17 ms		IT 100
		143	(11/2-)	-60.42 (5)	12 ± 1 s		ε 100: ε
		144	(-62.37 (3)	$\approx 1 s$		€ 100, e
		144m	(6-)	-61.97 (3)	$4.25\pm0.15~\mathrm{s}$		<i>IT</i> 66: <i>ϵ</i> 34
		146	1+	-67.76 (4)	8 ± 4 s		ϵ 100: ϵ 100
		146m	(10+)	-66.98 (4)	$1.18\pm0.02~\mathrm{ms}$		IT 100
		147	(1/2+)	-70.743 (8)	1.64 ± 0.03 h		$\epsilon \ 100$
		147m	(11/2-)	-70.692 (8)	$1.83\pm0.06~\mathrm{m}$		$\epsilon \ 100$
		148	2-	-70.54 (13)	$60 \pm 1 \text{ m}$		$\epsilon \ 100$
		148m	(9)+	-70.45 (13)	$2.20\pm0.05~\mathrm{m}$		$\epsilon \ 100$
		149	1/2+	-71.489 (4)	$4.118\pm0.025~h$		α 16.7; ϵ 83.3
		149m	11/2-	-71.453 (4)	4.16 ± 0.04 m		ϵ 99.98; α 0.02
		150	(2-)	-71.105 (7)	3.48 ± 0.16 h		ϵ 100; $lpha < 0.05$
		150m	9+	-70.631 (7)	5.8 ± 0.2 m		ϵ
		151	1/2(+)	-71.623 (4)	17.609 ± 0.014 h		ϵ 99.99; $lpha$ 0.0095
		151m	(11/2-)	-71.523 (4)	$25\pm3~{ m s}$		IT 93.4; ϵ 6.6
		152	2-	-70.72 (4)	$17.5\pm0.1~\text{h}$		α < 7.0E-7; ϵ 100
		152m	8+	-70.21 (4)	$4.2\pm0.1~\text{m}$		IT 78.8; ϵ 21.2
		153	5/2+	-71.313 (4)	$2.34\pm0.01~d$		ϵ 100
		154	0	-70.15 (5)	$21.5\pm0.4~h$		ϵ 100; β^- < 0.10; ϵ 98.2;
							IT 1.8; ϵ 78.2; IT 21.8; $\beta^- < 0.10$
							Continued on next page

				Table 1	0.1 – Continued from prev	ious page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		155	3/2+	-71.247 (12)	$5.32\pm0.06~d$		$\epsilon \ 100$
		156	3-	-70.09 (4)	$5.35\pm0.1~\mathrm{d}$		$\epsilon \ 100$
		156m	(7-)	-70.04 (4)	$24.4\pm1~h$		<i>IT</i> 100
		156m2	2 (0+)	-70.002 (4)	5.3 ± 0.2 h		$IT <$ 100.00; $\epsilon >$ 0.00
		157	3/2+	-70.7629 (17)	71 ± 7 y		$\epsilon \ 100$
		158	3-	-69.4697 (19)	$180\pm11~{ m y}$		ϵ 83.4; β^- 16.6
		158m	0-	-69.3594 (19)	$10.70 \pm 0.17 \text{ s}$		ϵ < 0.01; <i>IT</i> 100; β^- <
		150	2 /2 .	(0 5215 (10)	-(-1.1.	1000/	0.60
		159	3/2+ 2	-09.3313(18)	stable $72.2 \pm 0.2.4$	100%	<i>a</i> = 100
		160	2/2	-67.0334(10)	72.3 ± 0.2 d		β 100 β^{-} 100
		167	3/2+ 1	-67.4007(19)	$0.09 \pm 0.02 \text{ u}$ 7.60 ± 0.15 m		β 100 β^{-} 100
		162	1- 2/2	-03.07 (4) 64 594 (4)	7.00 ± 0.13 m		β 100 β^{-} 100
		163	(5+)	-04.394(4)	19.5 ± 0.5 m 3.0 ± 0.1 m		β 100 β^{-} 100
		165	(3+)	-02.08 (10)	3.0 ± 0.1 m		β 100 β^{-} 100
		165	(3/2+) (2-)	-57.88 (7)	2.11 ± 0.1 m 25.1 ± 2.1 s		β 100 β^{-} 100
		167	(2^{-}) $(3/2^{+})$	-55.9 (4)	$25.1 \pm 2.1 \text{ s}$ 19 4 + 2 7 s		β 100 β^{-} 100
		168	(3/21)	-52 6 (5)	82 ± 13 s		β^{-} 100 β^{-} 100
66	Dv	139	$(\frac{1}{7})$	-37.6 (5)	0.2 ± 1.03		ρ 100 ε.ε.
00	Dy	141	(9/2-)	-45 2 (3)	0.0 ± 0.2 s		ε 100· εn
		142	(>, _) 0+	-49.9 (7)	2.3 ± 0.3 s		$\epsilon n 0.06; \epsilon 100$
		143	(1/2+)	-52.169 (13)	5.6 ± 1.8		$\epsilon 100:\epsilon n$
		143m	(11/2-)	-51.858 (13)	3.0 ± 0.3 s		$\epsilon 100; \epsilon p$
		144	(, _) 0+	-56.57 (7)	9.1 ± 0.4 s		$\epsilon 100; \epsilon p$
		145	(1/2+)	-58.243 (7)	6 ± 2 s		$\epsilon 100; \epsilon p \approx 50.00$
		145m	(11/2-)	-58.124 (7)	$14.1\pm0.7~{ m s}$		$\epsilon p \approx 50.00; \epsilon 100$
		146	0+	-62.555 (7)	$29\pm3\mathrm{s}$		ϵ 100
		146m	(10+)	-59.619 (7)	$150\pm20~\mathrm{ms}$		<i>IT</i> 100
		147	(1/2+)	-64.195 (8)	$67\pm7~{ m s}$		ϵ 100; ϵp 0.05
		147m	(11/2-)	-63.444 (8)	$55.2\pm0.5~{\rm s}$		ε 68.9; <i>IT</i> 31.1
		148	0+	-67.86 (9)	$3.3\pm0.2\ \text{m}$		ϵ 100
		149	(7/2-)	-67.703 (9)	$4.20\pm0.14~\text{m}$		$\epsilon \ 100$
		149m	(27/2-)	-65.042 (9)	$0.490\pm0.015~\mathrm{s}$		IT 99.3; ϵ 0.7
		150	0+	-69.311 (5)	$7.17\pm0.05~\text{m}$		ϵ 64; α 36
		151	7/2(-)	-68.752 (4)	17.9 ± 0.3 m		ϵ 94.4; $lpha$ 5.6
		152	0+	-70.118 (5)	$2.38\pm0.02~h$		ϵ 99.9; $lpha$ 0.1
		153	7/2(-)	-69.143 (4)	$6.4\pm0.1~\mathrm{h}$		ϵ 99.99; $lpha$ 0.0094
		154	0+	-70.393 (8)	$3.0E+6 \pm 1.5E+6$ y		α 100
		155	3/2-	-69.152 (12)	9.9 ± 0.2 h		ϵ 100
		156	0+	-70.522 (6)	stable	$0.056\% \pm 0.003\%$	
		157	3/2-	-69.42 (6)	8.14 ± 0.04 h		$\epsilon 100$
		15/m	11/2-	-69.221 (6)	$21.6 \pm 1.6 \text{ ms}$		<i>IT</i> 100
		158	0+	-70.405 (3)	stable	$0.095\% \pm 0.003\%$	100
		159	3/2-	-69.1661 (21)	$144.4 \pm 0.2 \text{ d}$	0.0000/ 1.0.0100/	ϵ 100
		160	0+ ⊑ /2 ·	-69.6/11(19)	stable	$2.329\% \pm 0.018\%$	
		101	3/2+ 0+	-00.0041 (19)	stable	$10.007\% \pm 0.042\%$	
		10Z	U+ 5 / 2	-00.1/90 (19)	stable	$23.475\% \pm 0.035\%$	
		103 144	0/2-	-00.3793 (19) 65 0662 (10)	stable	24.070% \pm 0.042% 28.26% \pm 0.0540/	
		10 1 165	$\frac{0+}{7/2}$	-00.7000 (17) 63 6100 (10)	Stable 2.324 ± 0.001 h	$20.20\% \pm 0.004\%$	<i>B</i> ⁻ 100
		103 165m	//∠+ 1/2.	-03.0109 (19) -63 5027 (10)	2.334 ± 0.001 m 1 257 ± 0.006 m		μ 100 IT 97 76: β^- 2.24
		166	1/ <i>2-</i> 0±	-03.3027 (19) -62 5831 (20)	$1.257 \pm 0.000 \text{ III}$ 81.6 ± 0.1 h		β^{-} 100
		167	(1/2)	-59 93 (6)	6.20 ± 0.01 m		β^{-} 100
		107	(1/2-)	-59.95 (0)	0.20 ± 0.00 III		Continued on next nage
							Continueu on next puge

				Table 1	0.1 – Continued from previ	ous page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode
		168	0+	-58.56 (14)	8.7 ± 0.3 m		β^- 100
		169	(5/2)-	-55.6 (3)	$39 \pm 8 \mathrm{s}$		eta^- 100
67	Но	140	(6-,0-,8+)	-29.2 (5)	$6 \pm 3 \text{ ms}$		$p \ 100$
		141	7/2-	-34.3 (5)	$4.1\pm0.3~\mathrm{ms}$		$p \ 100$
		142	(7-,8+)	-37.2 (5)	$0.4\pm0.1~{ m s}$		ϵ 100; $\epsilon p > 0.00$
		144	(5-)	-44.609 (8)	$0.7\pm0.1~{ m s}$		ϵ 100; ϵp
		145	(11/2-)	-49.12 (7)	$2.4\pm0.1~ m s$		$\epsilon \ 100$
		146	(10+)	-51.238 (7)	$3.6\pm0.3~{ m s}$		$\epsilon \ 100$
		147	(11/2-)	-55.757 (5)	$5.8\pm0.4~ m s$		$\epsilon \ 100$
		148	(1+)	-57.99 (8)	$2.2\pm1.1~ m s$		ϵ 100; ϵ 100; ϵp 0.08
		148m	(10+)	-57.3 (8)	$2.35\pm0.04~\mathrm{ms}$		<i>IT</i> 100
		149	(11/2-)	-61.664 (14)	$21.1\pm0.2~{ m s}$		$\epsilon \ 100$
		149m	(1/2+)	-61.616 (14)	$56 \pm 3 \mathrm{s}$		$\epsilon \ 100$
		150	2-	-61.946 (14)	$72\pm4~ m s$		$\epsilon \ 100$
		150m	(9)+	-61.446 (14)	$24.1\pm0.5~\mathrm{s}$		ϵ 100;
		151	(11/2-)	-63.623 (8)	$35.2\pm0.1~\mathrm{s}$		ϵ 78; α 22
		151m	(1/2+)	-63.582 (8)	$47.2\pm1.3~\mathrm{s}$		$lpha$ 80; ϵ 20
		152	2-	-63.608 (13)	$161.8\pm0.3~\mathrm{s}$		ϵ 88; α 12
		152m	9+	-63.448 (13)	$50.0\pm0.4~\mathrm{s}$		ϵ 89.2; α 10.8
		153	11/2-	-65.013 (5)	2.01 ± 0.03 m		ϵ 99.95; $lpha$ 0.05
		153m	1/2+	-64.944 (5)	9.3 ± 0.5 m		ϵ 99.82; α 0.18
		154	2-	-64.639 (8)	$11.76 \pm 0.19 \text{ m}$		α 0.02; ϵ 99.98; ϵ 100; α <
		1 = =	= /0	((04 (10)	10 1 1		1.0E-3
		155	5/2+	-66.04 (18)	$48 \pm 1 \text{ m}$		$\epsilon 100$
		156	4-	-65.47 (6)	$56 \pm 1 \text{ m}$		ϵ 100
		156m	1- 7/2	-65.42 (6)	9.5 ± 1.5 s		$TT 100; \epsilon 75; TT 25$
		157	7/2-	-66.832 (23)	$12.6 \pm 0.2 \text{ m}$		$\epsilon 100$
		158	5+	-66.18 (3)	11.3 ± 0.4 m		ϵ 100
		158m	2-	-66.12 (3)	$28 \pm 2 \text{ m}$		$TT > 81.00; \epsilon < 19.00$
		158m2	$\frac{2}{2}(9+)$	-66 (3)	$21.3 \pm 2.3 \text{ m}$		$\epsilon \geq 93.00; TT \leq 7.00$
		159	1/2-	-67.328 (3)	33.05 ± 0.11 m		ϵ 100
		159m	1/2+	-07.123(3)	8.30 ± 0.08 s		11 100
		160	3+ 2	-00.381(15)	$23.6 \pm 0.3 \text{ m}$		ϵ 100
		160m	2^{-}	-00.321(13)	3.02 ± 0.03 M		11 73; ε 27 IT 100
		1601112	2 (9+)	-00.211(13)	3 ± 0.8		11 100
		101	1/2-	-07.190(3)	2.46 ± 0.03 m		ϵ 100
		161111	1/2+	-00.985 (5)	0.70 ± 0.07 s		- 100
		102 162m	1+	-00.04(4)	15.0 ± 1 m		ε 100 IT 62: < 28
		162111	$\frac{1}{7}$	-05.954 (4) 66 3760 (10)	$4570 \pm 25 \text{ m}$		- 100
		163 162m	1/2	-00.3709(19)	4370 ± 23 y 1.00 \pm 0.02 c		ε 100 IT 100
		16311	1/2+	-00.079(19) 64.9801(23)	1.09 ± 0.03 S		11 100
		104 16/m	1+ 6-	-64.8403 (23)	27 ± 1 m $375 \pm 15-0.5$ m		$E 00, \beta$ 40
		165	$7/2_{-}$	-64 8977 (20)	stable	100%	11 100
		166	0-	-63.07 (20)	26.824 ± 0.012 h	10070	β^{-} 100
		100 166m	0- 7-	-63.064 (20)	$120E3 \pm 0.012$ H		β 100 β^{-} 100
		167	,- 7/2-	-62 28 (6)	3.003 ± 0.1015 y		β^{-} 100
		168	,,∠- 3+	-60.06 (3)	2.000 ± 0.010 m		β^{-} 100
		168m	(6+)	()	2.77 ± 0.07 m 132 ± 4 s		P = 100 $IT > 99 50 \cdot \beta^{-} < 0.50$
		169	7/2-	·/ -58 796 (20)	$472 \pm 0.1 \text{ m}$		$\beta^{-} 100$
		170	(6+)	-56 24 (5)	2.76 ± 0.05 m		β^{-} 100
		170m	(1+)	-56 12 (5)	43 + 2 s		β^{-} 100
		171	(7/2)	-54 5 (6)	53 ± 23		β^{-} 100
		1/1	(1) -)	01.0 (0)	00 ± 2 0		

				Table 10).1 – Continued from pre	vious page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode
		172	0	-51.48 (20)	$25\pm3~{ m s}$		β^- 100
68	Er	145m	(11/2-)	-39.2 (4)	$1.0\pm0.3~{ m s}$		ϵ 100; ϵp
		146	0+	-44.322 (7)	$1.7\pm0.6~{ m s}$		ϵp 100; ϵ 100
		147	(1/2+)	-46.61 (4)	$2.5\pm0.2~\mathrm{s}$		ϵ 100; $\epsilon p > 0.00$; ϵ 100; $\epsilon p > 0.00$
		148	0+	-51.479 (10)	$4.6\pm0.2~\mathrm{s}$		<i>ϵ</i> 100
		149	(1/2+)	-53.74 (3)	$4\pm2~{ m s}$		ϵ 100; ϵp 7
		149m	(11/2-)	-53 (3)	$8.9\pm0.2~{ m s}$		ϵ 96.5; IT 3.5; ϵp 0.18
		150	0+	-57.831 (17)	$18.5\pm0.7~\mathrm{s}$		ϵ 100
		151	(7/2-)	-58.266 (16)	$23.5\pm2\mathrm{s}$		$\epsilon \ 100$
		151m	(27/2-)	-55.68 (16)	$0.58\pm0.02~\mathrm{s}$		<i>IT</i> 95.3; <i>e</i> 4.7
		152	0+	-60.5 (9)	$10.3\pm0.1~{\rm s}$		α 90; ϵ 10
		153	(7/2-)	-60.476 (9)	$37.1\pm0.2~\mathrm{s}$		α 53; ϵ 47
		154	0+	-62.606 (5)	$3.73\pm0.09~\text{m}$		ϵ 99.53; $lpha$ 0.47
		155	7/2-	-62.209 (6)	5.3 ± 0.3 m		α 0.02; ϵ 99.98
		156	0+	-64.213 (24)	$19.5\pm1~\text{m}$		ϵ 100; α 1.7e-05
		157	3/2-	-63.41 (3)	$18.65\pm0.1~\mathrm{m}$		$\epsilon \ 100$
		157m	(9/2+)	-63.26 (3)	$76\pm 6~\mathrm{ms}$		<i>IT</i> 100
		158	0+	-65.3 (3)	$2.29\pm0.06~h$		$\epsilon \ 100$
		159	3/2-	-64.56 (4)	$36\pm1~\text{m}$		ϵ 100
		160	0+	-66.058 (25)	$28.58\pm0.09~h$		ϵ 100
		161	3/2-	-65.199 (9)	$3.21\pm0.03~h$		$\epsilon \ 100$
		162	0+	-66.3329 (19)	stable	$0.139\%\pm 0.005\%$	
		163	5/2-	-65.166 (5)	75.0 ± 0.4 m		ϵ 100
		164	0+	-65.941 (3)	stable	$1.601\%\pm 0.003\%$	
		165	5/2-	-64.52 (3)	10.36 ± 0.04 h		ϵ 100
		166	0+	-64.9245 (21)	stable	$33.503\% \pm 0.036\%$	
		167	7/2+	-63.2897 (21)	stable	$22.869\% \pm 0.009\%$	
		167m	1/2-	-63.0819 (21)	$2.269 \pm 0.006 \text{ s}$		IT 100
		168	0+	-62.9897 (21)	stable	$26.978\% \pm 0.018\%$	
		169	1/2-	-60.9216 (21)	9.392 ± 0.018 d	14.010/ + 0.00/0/	β^{-} 100
		170	0+ ⊑ /2	-60.108 (24)		$14.91\% \pm 0.036\%$	0= 100
		171	5/2- 0.	-57.7185 (24)	7.516 ± 0.002 n		β 100 β 100
		172	(7/2)	-30.483 (4) 52 (5 (20)	49.3 ± 0.3 m		β 100
		173	(//2-)	-53.65 (20)	$1.4 \pm 0.1 \text{ m}$		β 100
		174	(0/2)	-31.9(3)	$5.2 \pm 0.2 \text{ m}$		β 100 β = 100
60	Tm	175	(9/2+)	-40.7(4)	$1.2 \pm 0.3 \mathrm{m}$		
09	1 111	140 146m	(3-) (8+)	-31.2(4)	$200 \pm 10 \text{ ms}$		p , ϵ
		140m 147	(0+) 11/2-	-35,974 (7)	200 ± 10 ms 0.58 ± 0.03 s		p, e
		1/18	$(10\pm)$	-38.765(10)	0.50 ± 0.053		e 100
		140	(10+) (11/2-)	-43 9 (3)	$0.7 \pm 0.2 \text{ s}$ 0.9 ± 0.2 s		$\epsilon 100 \cdot \epsilon n 0.2$
		150	(11/2)	-46.49 (20)	2.20 ± 0.06 s		€ 100, ep 0.2
		150 150m	(0) (10+)	-45.82 (20)	5.20 ± 0.003		IT 100
		15011	(10^{+}) (11^{-})	-50 778 (20)	4.17 ± 0.011 s		$\epsilon 100: \epsilon 100$
		152	(2)-	-51 77 (7)	80 ± 18		ε 100; ε 100 ε 100: ε 100
		153	$(\frac{-}{11})$	-53.991 (14)	1.48 ± 0.01 s		$\alpha 91: \epsilon 9$
		153m	(1/2+)	-53.948 (14)	2.5 ± 0.2 s		α 92: ϵ 8
		154	(2-)	-54.427 (14)	$\frac{2.5 \pm 0.25}{8.1 \pm 0.38}$		α 54: ϵ 46: α 58: ϵ 42: IT
		155	11/2-	-56.626 (10)	21.6 ± 0.2 s		ϵ 99.11; α 0.89
		155m	1/2+	-56.585 (10)	$45 \pm 3 \mathrm{s}$		$\epsilon > 98.00; \alpha < 2.00$
		156	2-	-56.84 (15)	$83.8 \pm 1.8 \text{ s}$		ϵ 99.94; α 0.06
		157	1/2+	-58.71 (3)	3.63 ± 0.09 m		$\epsilon 100$
			,				Cautional an want wara

Z EI A J ^T Aller(Y) $T_{1/2}$, Γ Abundance Decay Mode 158 2: -587 (3) 984 0.06 m -100; ? 159 5/2+ -60.57 (3) 9.13 \pm 0.16 m -100; ? 160 1- -60.3 (3) 94 \pm 0.3 m -100 161 1- -60.3 (3) 30.2 \pm 0.8 m -100 161 7/2+ -61.9 (3) 30.2 \pm 0.8 m -100 163 1/2+ -62.727 (6) 1.810 \pm 0.005 h -100; $TT \approx 80.00; c \approx$ 166 1+ -61.904 (24) 2.0 \pm 0.1 m -000 166 1- -62.929 (3) 30.06 \pm 0.03 h <100 166 1- -61.378 (12) 7.70 \pm 0.03 h <100 166 1- -61.312 (3) 93.1 \pm 0.2 d <99.95; σ 0.01 167 1/2+ -62.52(2) 5.25 \pm 0.02 d <100 170 1- -59.952 (21) 128.6 \pm 0.3 d β 99.8; r 0.03 171 1/2+ <t-< th=""><th></th><th></th><th></th><th></th><th>Table</th><th>10.1 – Continued from pret</th><th>vious page</th><th></th></t-<>					Table	10.1 – Continued from pret	vious page	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			158	2-	-58.7 (3)	$3.98\pm0.06~\mathrm{m}$		ϵ 100; ϵ ?
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			159	5/2+	-60.57 (3)	$9.13\pm0.16~\mathrm{m}$		$\epsilon \ 100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			160	1-	-60.3 (3)	9.4 ± 0.3 m		$\epsilon \ 100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			160m	5	-60.23 (3)	$74.5\pm1.5~{\rm s}$		IT 85; ϵ 15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			161	7/2+	-61.9 (3)	30.2 ± 0.8 m		$\epsilon \ 100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			162	1-	-61.47 (3)	$21.70\pm0.19~\text{m}$		ϵ 100; IT 81; ϵ 19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			163	1/2+	-62.727 (6)	$1.810\pm0.005~h$		$\epsilon \ 100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			164	1+	-61.904 (24)	$2.0\pm0.1~\text{m}$		ϵ 100; IT \approx 80.00; ϵ \approx 20.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			165	1/2+	-62.929 (3)	30.06 ± 0.03 h		$\epsilon \ 100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			166	2+	-61.887 (12)	$7.70\pm0.03~\mathrm{h}$		$\epsilon \ 100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			166m	(6-)	-61.778 (12)	$340\pm25~\mathrm{ms}$		<i>IT</i> 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			167	1/2+	-62.5429 (23)	$9.25 \pm 0.02 \text{ d}$		ϵ 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			168	3+	-61.312 (3)	93.1 ± 0.2 d		ϵ 99.99: β^{-} 0.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			169	1/2+	-61.2745 (21)	stable	100%	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			170	1-	-59.7952 (21)	128.6 ± 0.3 d	20070	β^{-} 99.87: ϵ 0.13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			171	1/2+	-59.2103 (23)	$1.92 \pm 0.01 \text{ v}$		β^{-} 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			172	2-	-57 374 (6)	63.6 ± 0.2 h		β^{-} 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			173	(1/2+)	-56 253 (5)	8.24 ± 0.08 h		β^{-} 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			174	$(1)^{-1}$	-53 86 (4)	54 ± 0.00 m		β^{-} 100 β^{-} 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			174 174m	(±) 0±	-53 61 (4)	2.9 ± 0.01 s		$JT 99: \beta^- < 1.00$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			17411	$(1/2_{\perp})$	-52.01(4)	2.29 ± 0.013 15.2 ± 0.5 m		$\beta^{-} 100$
170(4+)49.50 (10)1.5 ± 0.1 m β = 100177(7/2.) 47.5 (3) 90 ± 6 s β = 10070Yb149(1/2+,3/2+)-33.2 (5) 0.7 ± 0.2 s ep 100; e 100151(1/2+) -41.5 (3) 1.6 ± 0.1 s e 100; $ep > 0.00; e$ 100;152 $0+$ -46.31 (21) 3.03 ± 0.06 s e 100; $ep >$ 153 $7/2 -47.06$ (20) 4.2 ± 0.2 s e 40; a 60154 $0+$ -49.932 (17) 0.409 ± 0.002 s a 92.6; e 7.4155 $(7/2-)$ -50.503 (17) 1.793 ± 0.019 s a 89; e 11156 $0+$ -53.265 (9) 26.1 ± 0.7 s e 90; a 10157 $7/2 -53.43$ (10) 38.6 ± 1 s e 99.5; a 0.5158 $0+$ -56.009 (8) 1.49 ± 0.13 m $a \approx 2.1E-3; e$ 100159 $5/2(-)$ -55.836 (18) 1.67 ± 0.09 m e 100160 $0+$ -58.163 (16) 4.8 ± 0.2 m e 100161 $3/2 -57.838$ (15) 4.2 ± 0.2 m e 100162 $0+$ -59.298 (15) 18.87 ± 0.19 m e 100163 $3/2 -57.838$ (15) 4.2 ± 0.2 m e 100164 $0+$ -61.016 (15) 75.8 ± 1.7 m e 100165 $5/2 -60.29$ (3) 9.9 ± 0.3 m e 100166 $0+$ -61.5804 (21) 32.018 ± 0.005 d e 100166 $0+$ -61.5804 (21) 32.018 ± 0.005 d e 100 </th <th></th> <th></th> <th>175</th> <th>(1/2+)</th> <th>-32.31(3)</th> <th>$19 \pm 0.1 \text{ m}$</th> <th></th> <th>β 100 β^{-} 100</th>			175	(1/2+)	-32.31(3)	$19 \pm 0.1 \text{ m}$		β 100 β^{-} 100
70Yb149 $(1/2+,3/2+)-33.2$ (5) 0.7 ± 0.2 s p 100151 $(1/2+,3/2+)-33.2$ (5) 0.7 ± 0.2 s e p 100; e e 151 $(1/2+,3/2+)-33.2$ (5) 0.7 ± 0.2 s e p 100; e e 151 $(1/2+,3/2+)-33.2$ (5) 0.7 ± 0.2 s e p 100; e e 152 $0+$ -46.31 (21) 3.03 ± 0.06 s e $100; ep$ e 153 $7/2 47.06$ (20) 4.2 ± 0.2 s e $40; \alpha$ 60 154 $0+$ -49.932 (17) 0.409 ± 0.002 s α a g ; e 7.4 155 $(7/2-)$ -50.503 (17) 1.793 ± 0.019 s α a g ; e 11 156 $0+$ -53.265 (9) 26.1 ± 0.7 s e $90; \alpha$ 10 157 $7/2 -53.43$ (10) 38.6 ± 1 s e $99; c$ 0.5 158 $0+$ -56.009 (8) 1.49 ± 0.13 m $\alpha \approx 2.1E-3; e$ 100 169 $5/2(-)$ -55.836 (18) 1.67 ± 0.09 m e 100 160 $0+$ -58.163 (16) 4.8 ± 0.2 m e 100 161 $3/2 -57.838$ (15) 4.2 ± 0.2 m e 100 163 $3/2 -59.298$ (15) 11.05 ± 0.35 m e 100 164 $0+$ -61.016 (15) 75.8 ± 1.7 m e 100 163 $3/2 -59.298$ (5) 17.5 ± 0.2 m e 100 16			170	$(\frac{1}{2})$	-49.57(10)	1.9 ± 0.1 m		β 100 β^{-} 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	Vh	1/7	$(7/2^{-})$ (1/2+3/2)	$-\frac{1}{2}$, 3 (5)	0.7 ± 0.2 s		β 100 cm 100
151 $(1/2+)$ $41.5(6)$ 1.6 ± 0.1 s T $t=100, tp$ T T T $t=0.00, tp$ T	70	10	151	(1/2+,3/2+)	-/1 5 (3)	$0.7 \pm 0.2 \text{ s}$ $1.6 \pm 0.1 \text{ s}$		$\epsilon_p = 100, \epsilon_1 = 100$
152 $0+$ $-46.31 (21)$ $3.03 \pm 0.06 \text{ s}$ $\epsilon 100; \epsilon p$ 153 $7/2$ - $-47.06 (20)$ $4.2 \pm 0.2 \text{ s}$ $\epsilon 40; \alpha 60$ 154 $0+$ $-49.932 (17)$ $0.409 \pm 0.002 \text{ s}$ $\alpha 92.6; \epsilon 7.4$ 155 $(7/2-)$ $-50.503 (17)$ $1.793 \pm 0.019 \text{ s}$ $\alpha 89; \epsilon 11$ 156 $0+$ $-53.265 (9)$ $26.1 \pm 0.7 \text{ s}$ $\epsilon 99; \alpha 10$ 157 $7/2 -53.43 (10)$ $38.6 \pm 1 \text{ s}$ $\epsilon 99.5; \alpha 0.5$ 158 $0+$ $-56.009 (8)$ $1.49 \pm 0.13 \text{ m}$ $\alpha \approx 2.1E-3; \epsilon 100$ 159 $5/2(-)$ $-55.836 (18)$ $1.67 \pm 0.09 \text{ m}$ $\epsilon 100$ 160 $0+$ $-58.163 (16)$ $4.8 \pm 0.2 \text{ m}$ $\epsilon 100$ 161 $3/2 -57.838 (15)$ $4.2 \pm 0.2 \text{ m}$ $\epsilon 100$ 162 $0+$ $-59.825 (15)$ $18.87 \pm 0.19 \text{ m}$ $\epsilon 100$ 163 $3/2 -59.298 (15)$ $11.05 \pm 0.35 \text{ m}$ $\epsilon 100$ 163 $3/2 -59.298 (15)$ $11.05 \pm 0.35 \text{ m}$ $\epsilon 100$ 164 $0+$ $-61.016 (15)$ $75.8 \pm 1.7 \text{ m}$ $\epsilon 100$ 165 $5/2 -60.29 (3)$ $9.9 \pm 0.3 \text{ m}$ $\epsilon 100$ 166 $0+$ $-61.5804 (21)$ \mathbf{stable} $0.123\% \pm 0.003\%$ 169 $7/2+$ $-60.3761 (21)$ $32.018 \pm 0.005 \text{ d}$ $\epsilon 100$ 169 $1/2 -60.3519 (21)$ $46 \pm 2 \text{ s}$ $IT 100$			151	(1/2+)	-41.5 (5)	1.0 ± 0.13		ϵ 100, $\epsilon p > 0.00$, ϵ 100, $IT \approx 0.40; \epsilon p$
153 $7/2$ - $-47.06 (20)$ $4.2 \pm 0.2 \text{ s}$ $\epsilon 40; \alpha 60$ 1540+ $-49.932 (17)$ $0.409 \pm 0.002 \text{ s}$ $\alpha 92.6; \epsilon 7.4$ 155 $(7/2 -)$ $-50.503 (17)$ $1.793 \pm 0.019 \text{ s}$ $\alpha 89; \epsilon 11$ 1560+ $-53.265 (9)$ $26.1 \pm 0.7 \text{ s}$ $\epsilon 90; \alpha 10$ 157 $7/2 -53.43 (10)$ $38.6 \pm 1 \text{ s}$ $\epsilon 99.5; \alpha 0.5$ 1580+ $-56.009 (8)$ $1.49 \pm 0.13 \text{ m}$ $\alpha \approx 2.1\text{E-}3; \epsilon 100$ 159 $5/2(-)$ $-55.836 (18)$ $1.67 \pm 0.09 \text{ m}$ $\epsilon 100$ 1600+ $-58.163 (16)$ $4.8 \pm 0.2 \text{ m}$ $\epsilon 100$ 161 $3/2 -57.838 (15)$ $4.2 \pm 0.2 \text{ m}$ $\epsilon 100$ 1620+ $-59.295 (15)$ $18.87 \pm 0.19 \text{ m}$ $\epsilon 100$ 163 $3/2 -59.298 (15)$ $11.05 \pm 0.35 \text{ m}$ $\epsilon 100$ 1640+ $-61.016 (15)$ $75.8 \pm 1.7 \text{ m}$ $\epsilon 100$ 165 $5/2 -60.29 (3)$ $9.9 \pm 0.3 \text{ m}$ $\epsilon 100$ 1660+ $-61.594 (7)$ $56.7 \pm 0.1 \text{ h}$ $\epsilon 100$ 167 $5/2 -60.589 (5)$ $17.5 \pm 0.2 \text{ m}$ $\epsilon 100$ 1680+ $-61.5804 (21)$ $32.018 \pm 0.005 \text{ d}$ $\epsilon 100$ 169 $7/2 +$ $-60.3761 (21)$ $32.018 \pm 0.005 \text{ d}$ $\epsilon 100$ 169 $1/2 -60.3519 (21)$ $46 \pm 2 \text{ s}$ $IT 100$			152	0+	-46.31 (21)	$3.03\pm0.06~s$		ϵ 100; ϵp
154 $0+$ $-49.932 (17)$ $0.409 \pm 0.002 \text{ s}$ α 92.6; ϵ 7.4155 $(7/2-)$ $-50.503 (17)$ $1.793 \pm 0.019 \text{ s}$ α 89; ϵ 11156 $0+$ $-53.265 (9)$ $26.1 \pm 0.7 \text{ s}$ ϵ 90; α 10157 $7/2 -53.43 (10)$ $38.6 \pm 1 \text{ s}$ ϵ 99.5; α 0.5158 $0+$ $-56.009 (8)$ $1.49 \pm 0.13 \text{ m}$ $\alpha \approx 2.1E-3; \epsilon$ 100159 $5/2(-)$ $-55.836 (18)$ $1.67 \pm 0.09 \text{ m}$ ϵ 100160 $0+$ $-58.163 (16)$ $4.8 \pm 0.2 \text{ m}$ ϵ 100161 $3/2 -57.838 (15)$ $4.2 \pm 0.2 \text{ m}$ ϵ 100162 $0+$ $-59.825 (15)$ $18.87 \pm 0.19 \text{ m}$ ϵ 100163 $3/2 -59.298 (15)$ $11.05 \pm 0.35 \text{ m}$ ϵ 100164 $0+$ $-61.016 (15)$ $75.8 \pm 1.7 \text{ m}$ ϵ 100165 $5/2 -60.29 (3)$ $9.9 \pm 0.3 \text{ m}$ ϵ 100166 $0+$ $-61.594 (7)$ $56.7 \pm 0.1 \text{ h}$ ϵ 100167 $5/2 -60.589 (5)$ $17.5 \pm 0.2 \text{ m}$ ϵ 100168 $0+$ $-61.5804 (21)$ \mathbf{stable} $0.123\% \pm 0.003\%$ 169 $7/2+$ $-60.3519 (21)$ $32.018 \pm 0.005 \text{ d}$ ϵ 100169 $1/2 -60.3519 (21)$ $46 \pm 2 \text{ s}$ IT 100			153	7/2-	-47.06 (20)	$4.2\pm0.2~\mathrm{s}$		ϵ 40; α 60
155 $(7/2-)$ $-50.503(17)$ $1.793 \pm 0.019 \text{ s}$ $\alpha 89; \epsilon 11$ 156 $0+$ $-53.265(9)$ $26.1 \pm 0.7 \text{ s}$ $\epsilon 90; \alpha 10$ 157 $7/2 -53.43(10)$ $38.6 \pm 1 \text{ s}$ $\epsilon 99.5; \alpha 0.5$ 158 $0+$ $-56.009(8)$ $1.49 \pm 0.13 \text{ m}$ $\alpha \approx 2.1E-3; \epsilon 100$ 159 $5/2(-)$ $-55.836(18)$ $1.67 \pm 0.09 \text{ m}$ $\epsilon 100$ 160 $0+$ $-58.163(16)$ $4.8 \pm 0.2 \text{ m}$ $\epsilon 100$ 161 $3/2 -57.838(15)$ $4.2 \pm 0.2 \text{ m}$ $\epsilon 100$ 162 $0+$ $-59.825(15)$ $18.87 \pm 0.19 \text{ m}$ $\epsilon 100$ 163 $3/2 -59.298(15)$ $11.05 \pm 0.35 \text{ m}$ $\epsilon 100$ 163 $3/2 -59.298(15)$ $11.05 \pm 0.35 \text{ m}$ $\epsilon 100$ 164 $0+$ $-61.016(15)$ $75.8 \pm 1.7 \text{ m}$ $\epsilon 100$ 165 $5/2 -60.29(3)$ $9.9 \pm 0.3 \text{ m}$ $\epsilon 100$ 166 $0+$ $-61.594(7)$ $56.7 \pm 0.1 \text{ h}$ $\epsilon 100$ 167 $5/2 -60.589(5)$ $17.5 \pm 0.2 \text{ m}$ $\epsilon 100$ 168 $0+$ $-61.5804(21)$ $32.018 \pm 0.005 \text{ d}$ $\epsilon 100$ 169 $7/2+$ $-60.3761(21)$ $32.018 \pm 0.005 \text{ d}$ $\epsilon 100$ 169 $1/2 -60.3519(21)$ $46 \pm 2 \text{ s}$ $IT 100$			154	0+	-49.932 (17)	$0.409\pm0.002~s$		$lpha$ 92.6; ϵ 7.4
156 $0+$ $-53.265 (9)$ $26.1 \pm 0.7 \text{ s}$ $\epsilon 90; \alpha 10$ 157 $7/2 -53.43 (10)$ $38.6 \pm 1 \text{ s}$ $\epsilon 99.5; \alpha 0.5$ 158 $0+$ $-56.009 (8)$ $1.49 \pm 0.13 \text{ m}$ $\alpha \approx 2.1E-3; \epsilon 100$ 159 $5/2(-)$ $-55.836 (18)$ $1.67 \pm 0.09 \text{ m}$ $\epsilon 100$ 160 $0+$ $-58.163 (16)$ $4.8 \pm 0.2 \text{ m}$ $\epsilon 100$ 161 $3/2 -57.838 (15)$ $4.2 \pm 0.2 \text{ m}$ $\epsilon 100$ 162 $0+$ $-59.825 (15)$ $18.87 \pm 0.19 \text{ m}$ $\epsilon 100$ 163 $3/2 -59.298 (15)$ $11.05 \pm 0.35 \text{ m}$ $\epsilon 100$ 163 $3/2 -59.298 (15)$ $11.05 \pm 0.35 \text{ m}$ $\epsilon 100$ 164 $0+$ $-61.016 (15)$ $75.8 \pm 1.7 \text{ m}$ $\epsilon 100$ 165 $5/2 -60.29 (3)$ $9.9 \pm 0.3 \text{ m}$ $\epsilon 100$ 166 $0+$ $-61.594 (7)$ $56.7 \pm 0.1 \text{ h}$ $\epsilon 100$ 167 $5/2 -60.589 (5)$ $17.5 \pm 0.2 \text{ m}$ $\epsilon 100$ 168 $0+$ $-61.5804 (21)$ \mathbf{stable} $0.123\% \pm 0.003\%$ 169 $7/2+$ $-60.3519 (21)$ $46 \pm 2 \text{ s}$ $IT 100$			155	(7/2-)	-50.503 (17)	$1.793 \pm 0.019 \; s$		$lpha$ 89; ϵ 11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			156	0+	-53.265 (9)	$26.1\pm0.7~\mathrm{s}$		ϵ 90; α 10
158 $0+$ $-56.009 (8)$ $1.49 \pm 0.13 \text{ m}$ $\alpha \approx 2.1\text{E-3}; \epsilon 100$ 159 $5/2(-)$ $-55.836 (18)$ $1.67 \pm 0.09 \text{ m}$ $\epsilon 100$ 160 $0+$ $-58.163 (16)$ $4.8 \pm 0.2 \text{ m}$ $\epsilon 100$ 161 $3/2 -57.838 (15)$ $4.2 \pm 0.2 \text{ m}$ $\epsilon 100$ 162 $0+$ $-59.825 (15)$ $18.87 \pm 0.19 \text{ m}$ $\epsilon 100$ 163 $3/2 -59.298 (15)$ $11.05 \pm 0.35 \text{ m}$ $\epsilon 100$ 164 $0+$ $-61.016 (15)$ $75.8 \pm 1.7 \text{ m}$ $\epsilon 100$ 165 $5/2 -60.29 (3)$ $9.9 \pm 0.3 \text{ m}$ $\epsilon 100$ 166 $0+$ $-61.594 (7)$ $56.7 \pm 0.1 \text{ h}$ $\epsilon 100$ 167 $5/2 -60.589 (5)$ $17.5 \pm 0.2 \text{ m}$ $\epsilon 100$ 168 $0+$ $-61.5804 (21)$ \mathbf{stable} $0.123\% \pm 0.003\%$ 169 $7/2+$ $-60.3761 (21)$ $32.018 \pm 0.005 \text{ d}$ $\epsilon 100$ 169 $1/2 -60.3519 (21)$ $46 \pm 2 \text{ s}$ $IT 100$			157	7/2-	-53.43 (10)	$38.6 \pm 1 \text{ s}$		ϵ 99.5; α 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			158	0+	-56.009 (8)	$1.49\pm0.13~\text{m}$		$\alpha \approx$ 2.1E-3; ϵ 100
160 $0+$ $-58.163(16)$ $4.8 \pm 0.2 \text{ m}$ $\epsilon 100$ 161 $3/2 -57.838(15)$ $4.2 \pm 0.2 \text{ m}$ $\epsilon 100$ 162 $0+$ $-59.825(15)$ $18.87 \pm 0.19 \text{ m}$ $\epsilon 100$ 163 $3/2 -59.298(15)$ $11.05 \pm 0.35 \text{ m}$ $\epsilon 100$ 164 $0+$ $-61.016(15)$ $75.8 \pm 1.7 \text{ m}$ $\epsilon 100$ 165 $5/2 -60.29(3)$ $9.9 \pm 0.3 \text{ m}$ $\epsilon 100$ 166 $0+$ $-61.594(7)$ $56.7 \pm 0.1 \text{ h}$ $\epsilon 100$ 167 $5/2 -60.589(5)$ $17.5 \pm 0.2 \text{ m}$ $\epsilon 100$ 168 $0+$ $-61.5804(21)$ \mathbf{stable} $0.123\% \pm 0.003\%$ 169 $7/2+$ $-60.3761(21)$ $32.018 \pm 0.005 \text{ d}$ $\epsilon 100$ 169 $1/2 -60.3519(21)$ $46 \pm 2 \text{ s}$ $IT 100$			159	5/2(-)	-55.836 (18)	$1.67\pm0.09~\mathrm{m}$		$\epsilon \ 100$
161 $3/2$ - $-57.838 (15)$ $4.2 \pm 0.2 \text{ m}$ $\epsilon 100$ 162 $0+$ $-59.825 (15)$ $18.87 \pm 0.19 \text{ m}$ $\epsilon 100$ 163 $3/2$ - $-59.298 (15)$ $11.05 \pm 0.35 \text{ m}$ $\epsilon 100$ 164 $0+$ $-61.016 (15)$ $75.8 \pm 1.7 \text{ m}$ $\epsilon 100$ 165 $5/2$ - $-60.29 (3)$ $9.9 \pm 0.3 \text{ m}$ $\epsilon 100$ 166 $0+$ $-61.594 (7)$ $56.7 \pm 0.1 \text{ h}$ $\epsilon 100$ 167 $5/2$ - $-60.589 (5)$ $17.5 \pm 0.2 \text{ m}$ $\epsilon 100$ 168 $0+$ $-61.5804 (21)$ \mathbf{stable} $0.123\% \pm 0.003\%$ 169 $7/2+$ $-60.3761 (21)$ $32.018 \pm 0.005 \text{ d}$ $\epsilon 100$ 169 $1/2$ - $-60.3519 (21)$ $46 \pm 2 \text{ s}$ $IT 100$			160	0+	-58.163 (16)	4.8 ± 0.2 m		$\epsilon \ 100$
162 $0+$ $-59.825 (15)$ $18.87 \pm 0.19 \text{ m}$ $\epsilon 100$ 163 $3/2 -59.298 (15)$ $11.05 \pm 0.35 \text{ m}$ $\epsilon 100$ 164 $0+$ $-61.016 (15)$ $75.8 \pm 1.7 \text{ m}$ $\epsilon 100$ 165 $5/2 -60.29 (3)$ $9.9 \pm 0.3 \text{ m}$ $\epsilon 100$ 166 $0+$ $-61.594 (7)$ $56.7 \pm 0.1 \text{ h}$ $\epsilon 100$ 167 $5/2 -60.589 (5)$ $17.5 \pm 0.2 \text{ m}$ $\epsilon 100$ 168 $0+$ $-61.5804 (21)$ stable $0.123\% \pm 0.003\%$ 169 $7/2+$ $-60.3761 (21)$ $32.018 \pm 0.005 \text{ d}$ $\epsilon 100$ 169 $1/2 -60.3519 (21)$ $46 \pm 2 \text{ s}$ $IT 100$			161	3/2-	-57.838 (15)	4.2 ± 0.2 m		$\epsilon \ 100$
163 $3/2$ - $-59.298 (15)$ $11.05 \pm 0.35 \text{ m}$ $\epsilon 100$ 164 $0+$ $-61.016 (15)$ $75.8 \pm 1.7 \text{ m}$ $\epsilon 100$ 165 $5/2$ - $-60.29 (3)$ $9.9 \pm 0.3 \text{ m}$ $\epsilon 100$ 166 $0+$ $-61.594 (7)$ $56.7 \pm 0.1 \text{ h}$ $\epsilon 100$ 167 $5/2$ - $-60.589 (5)$ $17.5 \pm 0.2 \text{ m}$ $\epsilon 100$ 168 $0+$ $-61.5804 (21)$ stable $0.123\% \pm 0.003\%$ 169 $7/2+$ $-60.3761 (21)$ $32.018 \pm 0.005 \text{ d}$ $\epsilon 100$ 169 $1/2$ - $-60.3519 (21)$ $46 \pm 2 \text{ s}$ $IT 100$			162	0+	-59.825 (15)	$18.87\pm0.19~\mathrm{m}$		$\epsilon \ 100$
164 $0+$ -61.016 (15) $75.8 \pm 1.7 \text{ m}$ ϵ 100 165 $5/2 -60.29$ (3) $9.9 \pm 0.3 \text{ m}$ ϵ 100 166 $0+$ -61.594 (7) $56.7 \pm 0.1 \text{ h}$ ϵ 100 167 $5/2 -60.589$ (5) $17.5 \pm 0.2 \text{ m}$ ϵ 100 168 $0+$ -61.5804 (21)stable $0.123\% \pm 0.003\%$ 169 $7/2+$ -60.3761 (21) $32.018 \pm 0.005 \text{ d}$ ϵ 100 169 $1/2 -60.3519$ (21) $46 \pm 2 \text{ s}$ IT 100			163	3/2-	-59.298 (15)	$11.05\pm0.35~\mathrm{m}$		$\epsilon \ 100$
165 $5/2$ - -60.29 (3) $9.9 \pm 0.3 \text{ m}$ ϵ 1001660+ -61.594 (7) $56.7 \pm 0.1 \text{ h}$ ϵ 100167 $5/2$ - -60.589 (5) $17.5 \pm 0.2 \text{ m}$ ϵ 1001680+ -61.5804 (21) \mathbf{stable} $0.123\% \pm 0.003\%$ 169 $7/2$ + -60.3761 (21) $32.018 \pm 0.005 \text{ d}$ ϵ 100169 $1/2$ - -60.3519 (21) $46 \pm 2 \text{ s}$ IT 100			164	0+	-61.016 (15)	75.8 ± 1.7 m		ϵ 100
166 $0+$ -61.594 (7) 56.7 ± 0.1 h ϵ 100 167 $5/2 -60.589$ (5) 17.5 ± 0.2 m ϵ 100 168 $0+$ -61.5804 (21)stable $0.123\% \pm 0.003\%$ 169 $7/2+$ -60.3761 (21) 32.018 ± 0.005 d ϵ 100 169 $1/2 -60.3519$ (21) 46 ± 2 s IT 100			165	5/2-	-60.29 (3)	9.9 ± 0.3 m		ϵ 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			166	0+	-61.594 (7)	56.7 ± 0.1 h		ϵ 100
168 $0+$ -61.5804 (21)stable $0.123\% \pm 0.003\%$ 169 $7/2+$ -60.3761 (21) 32.018 ± 0.005 d ϵ 100169 $1/2-$ -60.3519 (21) 46 ± 2 s IT 100			167	5/2-	-60.589 (5)	$17.5\pm0.2~\mathrm{m}$		ϵ 100
169 $7/2+$ -60.3761 (21) 32.018 ± 0.005 d ϵ 100169m $1/2 -60.3519$ (21) 46 ± 2 s IT 100			168	0+	-61.5804 (21)	stable	$0.123\% \pm 0.003\%$	
169m $1/2$ - -60.3519 (21) $46 \pm 2 s$ IT 100 170 100 100 100 100 100 100			169	7/2+	-60.3761 (21)	$32.018 \pm 0.005 \text{ d}$		ϵ 100
			169m	1/2-	-60.3519 (21)	$46\pm2\mathrm{s}$		<i>IT</i> 100
$170 0+ -60.7636 \ (21) stable 2.982\% \pm 0.039\%$			170	0+	-60.7636 (21)	stable	$2.982\% \pm 0.039\%$	
171 1/259.3068 (21) stable $14.09\% \pm 0.14\%$			171	1/2-	-59.3068 (21)	stable	$14.09\% \pm 0.14\%$	
$171 \text{m} 7/2 + -59.2115 (21) \qquad 5.25 \pm 0.24 \text{ ms} \qquad IT 100$			171m	7/2+	-59.2115 (21)	$5.25\pm0.24~\mathrm{ms}$		<i>IT</i> 100
172 0+ -59.255 (21) stable $21.68\% \pm 0.13\%$			172	0+	-59.255 (21)	stable	$21.68\% \pm 0.13\%$	
173 5/257.551 (21) stable $16.103\% \pm 0.063\%$			173	5/2-	-57.551 (21)	stable	$16.103\%\pm 0.063\%$	
174 0+ -56.9443 (21) stable $32.026\% \pm 0.08\%$			174	0+	-56.9443 (21)	stable	$32.026\%\pm 0.08\%$	
175 (7/2-) -54.6954 (21) $4.185 \pm 0.001 \text{ d}$ $\beta^{-} 100$			175	(7/2-)	-54.6954 (21)	$4.185 \pm 0.001 \text{ d}$		β^- 100
175m 1/254.1805 (21) 68.2 ± 0.3 ms IT 100			175m	1/2-	-54.1805 (21)	$68.2\pm0.3~\mathrm{ms}$		<i>IT</i> 100

				Table	10.1 – Continued from previo	ous page	
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		176	0+	-53.4885 (23)	stable	$12.996\% \pm 0.083\%$	
		176m	8-	-52.4387 (23)	$11.4\pm0.3~{ m s}$		<i>IT</i> 100
		177	(9/2+)	-50.9836 (23)	1.911 ± 0.003 h		β^- 100
		177m	(1/2-)	-50.6521 (23)	$6.41\pm0.02~{ m s}$		<i>IT</i> 100
		178	0+	-49.693 (10)	74 ± 3 m		β^- 100
		179	(1/2-)	-46.4 (3)	8.0 ± 0.4 m		β^- 100
	_	180	0+	-44.4 (4)	2.4 ± 0.5 m		β^- 100
71	Lu	150	(2+)	-24.6 (5)	$45 \pm 3 \text{ ms}$		<i>p</i> 70.9; <i>ε</i> 29.1
		151	11/2-	-30.1 (4)	$80.6 \pm 2 \text{ ms}$		<i>p</i> 63.4; <i>ε</i> 36.6
		152	(4-,5-,6-)	-33.42 (20)	$0.7\pm0.1~{ m s}$		ϵ 100; ϵp 15
		153	11/2-	-38.41 (21)	$0.9 \pm 0.2 \mathrm{s}$		$\alpha \approx 70.00; \epsilon \approx 30.00$
		155	11/2-	-42.55 (20)	$68 \pm 1 \text{ ms}$		α 90; ϵ 10
		155m	1/2+	-42.53 (20)	$138 \pm 8 \text{ ms}$		α 76; ϵ 24
		155m2	2 (25/2-)	-40.769 (20)	$2.69 \pm 0.03 \text{ ms}$		α 100
		156	(2)-	-43.75 (7)	$494 \pm 12 \text{ ms}$		$\alpha \approx 95.00; \epsilon \approx 5.00; \alpha 100$
		157	(1/2+,3/2+)-46.459 (15)	$6.8 \pm 1.8 \text{ s}$		$\alpha > 0.00$
		15/m	(11/2-)	-46.433 (15)	$4.79 \pm 0.12 \mathrm{s}$		ϵ 94; α 6
		158	0	-47.213 (15)	$10.6 \pm 0.3 \text{ s}$		ϵ 99.09; α 0.91
		159	0	-49.71 (4)	$12.1 \pm 1 \text{ s}$		ϵ 100; α 0.1
		160	0	-50.27 (6)	36.1 ± 0.3 s		ϵ 100; $\alpha \leq$ 1.0E-4; $\epsilon \leq$
		161	1 / 2 .	E2 E((2))	77 ± 2 c		$100.00; \alpha$
		101	1/2+	-32.36(3)	77 ± 28		$\epsilon 100$
		161111	(9/2-)	-32.4(3)	7.3 ± 0.4 IIIS		11
		102	1-	-32.84 (8)	1.37 ± 0.02 III		$\epsilon \leq 100.00; \epsilon < $
		163	1/2(+)	-54 79 (3)	3.97 ± 0.13 m		< 100
		164	1(-)	-54 64 (3)	3.14 ± 0.03 m		< 100 < 100
		165	1/2+	-56 44 (3)	10.74 ± 0.00 m		€ 100 € 100
		166	6-	-56.02 (3)	2.65 ± 0.1 m		€ 100 € 100
		166m	3(-)	-55 99 (3)	1.41 ± 0.1 m		e 58: IT 42
		166m2	20-	-55 98 (3)	2.12 ± 0.1 m		$\epsilon > 80.00$: $IT < 20.00$
		167	7/2+	-57.5 (3)	$51.5 \pm 1 \text{ m}$		$\epsilon 100: \epsilon \cdot IT$
		168	6(-)	-57.07 (5)	5.5 ± 0.1 m		€ 100
		168m	3+	-56 87 (5)	$67 \pm 0.4 \text{ m}$		$TT < 0.80; \epsilon > 99.60$
		169	7/2+	-58.083 (4)	34.06 ± 0.05 h		€ 100
		169m	1/2-	-58.054 (4)	$160 \pm 10 \text{ s}$		<i>IT</i> 100
		170	0+	-57.305 (17)	2.012 ± 0.02 d		<i>€</i> 100
		170m	(4)-	-57.212 (17)	$0.67 \pm 0.1 \text{ s}$		<i>IT</i> 100
		171	7/2+	-57.829 (3)	$8.24 \pm 0.03 \ d$		$\epsilon 100$
		171m	1/2-	-57.757 (3)	$79\pm2\mathrm{s}$		<i>IT</i> 100
		172	4-	-56.737 (3)	$6.70 \pm 0.03 \text{ d}$		$\epsilon 100$
		172m	1-	-56.695 (3)	3.7 ± 0.5 m		<i>IT</i> 100
		173	7/2+	-56.8811 (22)	$1.37\pm0.01~{ m v}$		ϵ 100
		174	(1)-	-55.5707 (22)	$3.31\pm0.05~{ m v}$		ϵ 100
		174m	(6)-	-55.3999 (22)	142 ± 2 d		IT 99.38; ϵ 0.62
		175	7/2+	-55.1661 (19)	stable	$97.401\% \pm 0.013\%$,
		176	7-	-53.3828 (19)	$3.76E+10\pm0.07E+10~v$	$2.599\% \pm 0.013\%$	β^- 100
		176m	1-	-53.26 (19)	3.664 ± 0.019 h		β^{-} 99.9; ϵ 0.09
		177	7/2+	-52.3843 (20)	$6.647 \pm 0.004 \text{ d}$		β^- 100
		177m	23/2-	-51.4141 (20)	$160.44 \pm 0.06 \text{ d}$		β^{-} 78.6; IT 21.4
		177m2	2 (39/2-)	-49.6443 (20)	6 +3-2 m		$IT ?; \beta^{-} 100$
		178	1(+)	-50.338 (3)	28.4 ± 0.2 m		β^- 100
		178m	(9-)	-50.214 (3)	$23.1\pm0.3~\text{m}$		β^- 100
		179	7/2+	-49.059 (5)	$4.59\pm0.06~\mathrm{h}$		β^- 100
				` '			

				Table	10.1 – Continued from previ	ous page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode
		179m	1/2+	-48.467 (5)	$3.1\pm0.9~\mathrm{ms}$		<i>IT</i> 100
		180	5+	-46.68 (7)	5.7 ± 0.1 m		eta^- 100
		181	(7/2+)	-44.7 (3)	3.5 ± 0.3 m		eta^- 100
		182	0	-41.88 (20)	2.0 ± 0.2 m		β^- 100
		183	(7/2+)	-39.5 (3)	$58\pm4~{ m s}$		eta^- 100
		184	(3+)	-36.4 (4)	$19\pm2\mathrm{s}$		β^- 100
72	Hf	154	0+	-32.7 (5)	$2\pm1~{ m s}$		ϵ 100; $lpha$?
		155	0	-34.1 (4)	$0.84\pm0.03~{ m s}$		$\epsilon \ 100$
		156	0+	-37.85 (21)	$23 \pm 1 \text{ ms}$		α 100
		157	7/2-	-38.75 (20)	$110\pm 6~\mathrm{ms}$		α 86; ϵ 14
		158	0+	-42.103 (17)	$2.85\pm0.07~{\rm s}$		ϵ 55.7; $lpha$ 44.3
		159	7/2-	-42.853 (17)	$5.6\pm0.4~\mathrm{s}$		α 35; ϵ 65
		160	0+	-45.938 (9)	$13.6\pm0.2~\mathrm{s}$		ϵ 99.3; α 0.7
		161	0	-46.316 (23)	$18.2\pm0.5~\mathrm{s}$		$\epsilon >$ 99.87; $lpha <$ 0.13
		162	0+	-49.167 (9)	$39.4\pm0.9~\mathrm{s}$		ϵ 99.99; α 0.008
		163	0	-49.29 (3)	$40.0\pm0.6~{\rm s}$		ϵ 100; $\alpha <$ 1.0E-4
		164	0+	-51.829 (19)	$111\pm 8~{ m s}$		$\epsilon \ 100$
		165	(5/2-)	-51.64 (3)	$76 \pm 4 \mathrm{~s}$		$\epsilon \ 100$
		166	0+	-53.86 (3)	6.77 ± 0.3 m		$\epsilon \ 100$
		167	(5/2)-	-53.47 (3)	$2.05\pm0.05~\mathrm{m}$		$\epsilon \ 100$
		168	0+	-55.36 (3)	$25.95\pm0.2~\mathrm{m}$		$\epsilon \ 100$
		169	5/2-	-54.72 (3)	3.24 ± 0.04 m		$\epsilon \ 100$
		170	0+	-56.25 (3)	$16.01\pm0.13~\text{h}$		$\epsilon \ 100$
		171	7/2+	-55.43 (3)	12.1 ± 0.4 h		$\epsilon \ 100$
		171m	1/2-	-55.41 (3)	$29.5\pm0.9~{\rm s}$		$IT \leq$ 100.00; ϵ
		172	0+	-56.403 (24)	$1.87\pm0.03~{ m y}$		$\epsilon \ 100$
		173	1/2-	-55.41 (3)	23.6 ± 0.1 h		$\epsilon \ 100$
		174	0+	-55.845 (3)	$2.0E + 15 \pm 0.4E + 15 \text{ y}$	$0.16\% \pm 0.01\%$	α 100
		175	5/2(-)	-54.483 (3)	$70 \pm 2 d$		$\epsilon \ 100$
		176	0+	-54.5769 (21)	stable	$5.26\% \pm 0.07\%$	
		177	7/2-	-52.885 (21)	stable	$18.6\% \pm 0.09\%$	
		177m	23/2+	-51.5695 (21)	$1.09\pm0.05~{ m s}$		<i>IT</i> 100
		177m2	2 37/2-	-50.145 (21)	$51.4\pm0.5~\mathrm{m}$		<i>IT</i> 100
		178	0+	-52.4396 (21)	stable	$27.28\% \pm 0.07\%$	
		178m	8-	-51.2922 (21)	$4.0\pm0.2~{ m s}$		<i>IT</i> 100
		178m2	2 16+	-49.9935 (21)	$31 \pm 1 \text{ y}$		<i>IT</i> 100
		179	9/2+	-50.4673 (21)	stable	$13.62\% \pm 0.02\%$	
		179m	1/2-	-50.0923 (21)	$18.67\pm0.04~{\rm s}$		<i>IT</i> 100
		179m2	2 25/2-	-49.3616 (21)	$25.05 \pm 0.25 \text{ d}$		<i>IT</i> 100
		180	0+	-49.7838 (21)	stable	$35.08\% \pm 0.16\%$	
		180m	8-	-48.6423 (21)	$5.47\pm0.04~\mathrm{h}$		IT 99.7; eta^- 0.3
		181	1/2-	-47.4072 (21)	$42.39 \pm 0.06 \text{ d}$		eta^- 100
		181m	(25/2-)	-45.6653 (21)	$1.5\pm0.5~\mathrm{ms}$		<i>IT</i> 100
		182	0+	-46.054 (6)	$8.90E+6 \pm 0.09E+6 \text{ y}$		β^- 100
		182m	(8-)	-44.881 (6)	$61.5\pm1.5~\mathrm{m}$		eta^- 54; IT 46
		183	(3/2-)	-43.29 (3)	$1.018\pm0.002~h$		eta^- 100
		184	0+	-41.5 (4)	$4.12\pm0.05~h$		eta^- 100
		184m	(8-)	-40.23 (4)	$48\pm10~{ m s}$		<i>IT</i> 100
		185	0	-38.36 (20)	$3.5\pm0.6~\mathrm{m}$		eta^- 100
		186	0+	-36.4 (3)	$2.6\pm1.2~\text{m}$		eta^- 100
73	Ta	155	11/2-	-24 (5)	2.9 +1.5-1.1 ms		$p\ 100$
		156	(2-)	-25.8 (4)	$144\pm24\ ms$		p 100; ϵ
		156m	9+	-25.7 (4)	$0.36\pm0.04~s$		ϵ 95.8; p 4.2

				Table 1	0.1 – Continued from pr	evious page	
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode
		157	1/2+	-29.63 (21)	$10.1\pm0.4~\mathrm{ms}$		lpha 96.6; p 3.4
		157m	11/2-	-29.61 (21)	$4.3\pm0.1~\mathrm{ms}$		lpha 100
		157m2	2 (25/2-)	-28.04 (21)	$1.7\pm0.1~\mathrm{ms}$		lpha 100
		158	(2-)	-31.02 (20)	$55\pm15~\mathrm{ms}$		$lpha pprox$ 91.00; $\epsilon pprox$ 9.00
		158m	(9+)	-30.88 (20)	$36.7\pm1.5~\mathrm{ms}$		$lpha$ 95; ϵ 5
		159	1/2+	-34.445 (20)	$0.83\pm0.18~{ m s}$		ϵ 66; α 34
		159m	11/2-	-34.381 (20)	$0.56\pm0.06~{\rm s}$		$lpha$ 55; ϵ 45
		160	0	-35.87 (7)	$1.55\pm0.04~{\rm s}$		ϵ 66; α 34;
		162	0	-39.78 (5)	$3.57\pm0.12~{\rm s}$		ϵ 99.93; $lpha$ 0.07
		163	0	-42.54 (4)	$10.6\pm1.8~{\rm s}$		$\epsilon pprox$ 99.80; $lpha pprox$ 0.20
		164	(3+)	-43.28 (3)	$14.2\pm0.3~\mathrm{s}$		$\epsilon \ 100$
		165	0	-45.854 (16)	$31.0\pm1.5~\mathrm{s}$		$\epsilon 100$
		166	(2)+	-46.1 (3)	$34.4\pm0.5~\mathrm{s}$		$\epsilon \ 100$
		167	(3/2+)	-48.35 (3)	$80\pm4~ m s$		$\epsilon \ 100$
		168	(2-,3+)	-48.39 (3)	$2.0\pm0.1~\text{m}$		$\epsilon \ 100$
		169	(5/2+)	-50.29 (3)	$4.9\pm0.4\ m$		$\epsilon \ 100$
		170	(3+)	-50.14 (3)	$6.76\pm0.06~\mathrm{m}$		$\epsilon \ 100$
		171	(5/2-)	-51.72 (3)	$23.3\pm0.3~\text{m}$		$\epsilon \ 100$
		172	(3+)	-51.33 (3)	36.8 ± 0.3 m		$\epsilon \ 100$
		173	5/2-	-52.4 (3)	$3.14\pm0.13~h$		$\epsilon \ 100$
		174	3+	-51.74 (3)	$1.14\pm0.08~\mathrm{h}$		$\epsilon \ 100$
		175	7/2+	-52.41 (3)	$10.5\pm0.2~\text{h}$		$\epsilon \ 100$
		176	(1)-	-51.37 (3)	$8.09\pm0.05~h$		$\epsilon \ 100$
		177	7/2+	-51.719 (4)	$56.56\pm0.06~\mathrm{h}$		$\epsilon \ 100$
		178	(1+)	-50.503 (15)	$9.31\pm0.03~\text{m}$		ϵ 100; ϵ 100
		178m	15-	-49.035 (15)	$58\pm4~\mathrm{ms}$		<i>IT</i> 100
		178m2	2 (21-)	-47.6 (15)	$290\pm12~\mathrm{ms}$		<i>IT</i> 100
		179	7/2+	-50.3617 (21)	$1.82\pm0.03~\mathrm{y}$		$\epsilon 100$
		179m	(25/2+)	-49.0445 (21)	$9.0\pm0.2~\mathrm{ms}$		IT 100
		179m2	2 (37/2+)	-47.7222 (21)	$54.1\pm1.7~\mathrm{ms}$		IT 100
		180	1+	-48.9365 (23)	8.154 ± 0.006 h		ϵ 86; β^- 14
		180m	9-	-48.8594 (23)	> 1.2E+15 y	$0.01201\%\pm 0.00032\%$	$\epsilon ?; eta^- ?$
		181	7/2+	-48.4419 (19)	stable	$99.98799\% \pm 0.00032\%$	
		182	3-	-46.4335 (19)	$114.74 \pm 0.12 \text{ d}$		eta^- 100
		182m	5+	-46.4172 (19)	$283 \pm 3 \text{ ms}$		<i>IT</i> 100
		182m2	2 10-	-45.9139 (19)	15.84 ± 0.1 m		<i>IT</i> 100
		183	7/2+	-45.2964 (19)	$5.1 \pm 0.1 \mathrm{d}$		β^- 100
		184	(5-)	-42.84 (3)	8.7 ± 0.1 h		β^{-} 100
		185	(7/2+)	-41.396 (14)	$49.4 \pm 1.5 \text{ m}$		β^- 100
		185m	(21/2)	-40.138 (14)	> 1 ms		
		186	(2-,3-)	-38.61 (6)	$10.5 \pm 0.3 \text{ m}$		β^- 100; β^- 100
		187	(7/2+)	-36.77 (20)	2.3 ± 0.6 m		β^- 100
		187m	(27/2-)	-34.98 (20)	$22 \pm 9 \mathrm{s}$		β^- ?; IT?
		187m2	2 (41/2+)	-33.83 (20)	$> 5 \mathrm{m}$		β^- ?; IT ?
		188	0	-33.66 (20)	$19.6 \pm 2 \mathrm{s}$		β^{-}
		190	0	-28.7 (4)	$5.3 \pm 0.7 \mathrm{s}$		β^{-} 100
- 4	T 4 7	192	(1,2)	-23.1 (6)	$2.2 \pm 0.7 \text{ s}$		β^{-} 100
74	W	157	(7/2-)	-19.3 (5)	$275 \pm 40 \text{ ms}$		ϵ
		158	0+	-23.7 (5)	$1.25 \pm 0.21 \text{ ms}$		$\alpha 100$
		159	0	-25.2 (4)	$7.3 \pm 2.7 \text{ ms}$		$\alpha \approx$ 99.90; $\epsilon \approx 0.10$
		160	0+	-29.36 (21)	$91 \pm 5 \text{ ms}$		α 87
		161	0	-30.41 (20)	$409 \pm 18 \text{ ms}$		α 73; ϵ 27
		162	0+	-34.001 (18)	$1.36 \pm 0.07 \text{ s}$		<i>ϵ</i> 54.8; <i>α</i> 45.2

				Table 1	0.1 – Continued from prev	ious page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		163	7/2-	-34.91 (5)	$2.67\pm0.1~{\rm s}$		ϵ 86; α 14
		164	0+	-38.235 (10)	$6.3\pm0.2~\mathrm{s}$		ϵ 96.2; α 3.8
		165	(5/2-)	-38.861 (25)	$5.1\pm0.5~{ m s}$		ϵ 100; $lpha < 0.20$
		166	0+	-41.886 (10)	$19.2\pm0.6~\mathrm{s}$		ϵ 99.96; $lpha$ 0.04
		167	(+)	-42.089 (19)	$19.9\pm0.5~{\rm s}$		ϵ 99.96; $lpha$ 0.04
		168	0+	-44.897 (15)	$50.9\pm1.9~\mathrm{s}$		ϵ 100; α 0.0032
		169	(5/2-)	-44.918 (15)	$74\pm 6~{ m s}$		$\epsilon \ 100$
		170	0+	-47.294 (15)	$2.42\pm0.04~\text{m}$		$\epsilon \ 100$
		171	(5/2-)	-47.09 (3)	$2.38\pm0.04~\text{m}$		$\epsilon \ 100$
		172	0+	-49.1 (3)	$6.6\pm0.9~\mathrm{m}$		$\epsilon \ 100$
		173	5/2-	-48.73 (3)	7.6 ± 0.2 m		$\epsilon \ 100$
		174	0+	-50.23 (3)	33.2 ± 2.1 m		$\epsilon \ 100$
		175	(1/2-)	-49.63 (3)	35.2 ± 0.6 m		$\epsilon \ 100$
		176	0+	-50.64 (3)	$2.5\pm0.1~\mathrm{h}$		$\epsilon \ 100$
		177	1/2-	-49.7 (3)	132 ± 2 m		$\epsilon \ 100$
		178	0+	-50.411 (15)	$21.6\pm0.3~\mathrm{d}$		$\epsilon \ 100$
		179	7/2-	-49.296 (15)	37.05 ± 0.16 m		ϵ 100
		179m	1/2-	-49.074 (15)	6.40 ± 0.07 m		<i>IT</i> 99.71; ϵ 0.29
		180	0+	-49.6365 (24)	\geq 6.6E+17 y	$0.12\% \pm 0.01\%$	$2\epsilon \ 100$
		181	9/2+	-48.253 (5)	$121.2 \pm 0.2 d$		ϵ 100
		182	0+	-48.2475 (8)	stable	$26.5\% \pm 0.16\%$	
		183	1/2-	-46.3671 (8)	> 1.3E+19 y	$14.31\% \pm 0.04\%$	α
		183m	11/2+	-46.0576 (8)	$5.2\pm0.3~{ m s}$		<i>IT</i> 100
		184	0+	-45.7075 (9)	stable	$30.64\% \pm 0.02\%$	
		185	3/2-	-43.3899 (9)	75.1 ± 0.3 d		eta^- 100
		185m	11/2+	-43.1925 (9)	1.67 ± 0.03 m	00.100/ 1.0.100/	<i>IT</i> 100
		186	0+	-42.5109 (15)	> 2.3E+19 y	$28.43\% \pm 0.19\%$	$2\beta^-$
		186m	(16+)	-38.9681 (15)	> 3 ms		IT
		187	3/2-	-39.9061 (15)	24.000 ± 0.004 h		β^{-} 100
		188	(2, (2))	-38.67 (3)	$69.78 \pm 0.05 \text{ d}$		β^{-} 100
		189	(3/2-)	-35.48 (20)	$10.7 \pm 0.5 \text{ m}$		β 100
		190	(10)	-34.3(16)	$30.0 \pm 1.5 \text{ m}$		β 100
	n	190m	(10-)	-31.92 (16)	$\leq 3.1 \text{ ms}$		11 100
75	ке	161m	$\frac{11}{2}$	-20.75 (21)	$14.7 \pm 0.3 \text{ ms}$		α 93; p 7
		162	(2-)	-22.35 (20)	$107 \pm 13 \text{ ms}$		α 94; ϵ 6
		162m	(9+)	-22.10(20)	$77 \pm 9 \text{ ms}$		α 91; ϵ 9
		105 162m	1/2+ 11/2	-26.006(19)	$390 \pm 72 \text{ Ins}$		ϵ 68; α 32
		163111	11/2- 0	-23.695(19)	$214 \pm 5 \text{ ms}$ 0.85 + 0.14 0.11 c		α 66; ϵ 34
		104 164m	0	-27.52(7)	$0.85 \pm 0.14 \pm 0.11$ s		$\alpha \approx 58.00; \epsilon \approx 42.00$
		165	(1/2)	-27.45(7)	$0.00 \pm 0.10 \pm 0.11 \text{ s}$		11 ; $\alpha \approx 3.00$
		165m	(1/2+) (11/2)	-30.049 (23)	~ 15 21 ± 0.3 c		α ; ϵ
		165111	(11/ <i>2-</i>)	-30.001(23)	2.1 ± 0.38 2.25 ± 0.21 c		$\epsilon $ 87; α 13
		167	(0/2)	-31.89 (7)	2.23 ± 0.218 59 ± 0.3 c		$\epsilon > 70.00, \alpha < 24.00$
		168	$(7/2^{-})$ (7_{+})	-35 79 (3)	$5.9 \pm 0.5 s$		$\alpha \sim 1.00, \epsilon \sim 99.00, \alpha 100$
		160	(7+) (9/2-)	-38.41 (11)	4.4 ± 0.15 8.1 ± 0.5 s		$\epsilon 100, \alpha \sim 3.0$ E^{-3}
		107	()/2-)	-50.41 (11)	$0.1 \pm 0.0 $		$\alpha \approx 0.20$
		170	(5+)	-38.92 (3)	$9.2\pm0.2~\mathrm{s}$		<i>ϵ</i> 100
		171	(9/2-)	-41.25 (3)	$15.2 \pm 0.4 \text{ s}$		ϵ 100
		172	(2)	-41.52 (5)	$55\pm5~{ m s}$		ϵ 100; ϵ 100
		173	(5/2-)	-43.55 (3)	1.98 ± 0.26 m		ϵ 100
		174	(LE 4)	-43.67 (3)	2.40 ± 0.04 m		ϵ 100
		175	(5/2-)	-45.29 (3)	$5.89 \pm 0.05 \text{ m}$		<u>ε 100</u>

				Table	10.1 – Continued from previou	us page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		176	(3+)	-45.06 (3)	5.3 ± 0.3 m		ϵ 100
		177	5/2-	-46.27 (3)	14 ± 1 m		$\epsilon \ 100$
		178	(3+)	-45.65 (3)	13.2 ± 0.2 m		$\epsilon 100$
		179	5/2+	-46.585 (24)	19.5 ± 0.1 m		$\epsilon 100$
		180	(1)-	-45.837 (21)	2.44 ± 0.06 m		$\epsilon 100$
		181	5/2+	-46.523 (13)	19.9 ± 0.7 h		$\epsilon \ 100$
		182	7+	-45.45 (10)	64.0 ± 0.5 h		ϵ 100; ϵ 100
		183	5/2+	-45.811 (8)	70.0 ± 1.4 d		$\epsilon 100$
		183m	(25/2)+	-43.903 (8)	$1.04\pm0.04~\mathrm{ms}$		<i>IT</i> 100
		184	3(-)	-44.225 (4)	35.4 ± 0.7 d		ϵ 100
		184m	8(+)	-44.037 (4)	$169 \pm 8 d$		IT 74.5; ϵ 25.5
		185	5/2+	-43.8225 (12)	stable	$37.4\% \pm 0.02\%$	
		186	1-	-41.9306 (12)	3.7186 ± 5.0 E-4 d		ϵ 7.47; eta^- 92.53
		186m	(8+)	-41.7816 (12)	$2.0E+5 \pm 0 \text{ y}$		<i>IT</i> 100
		187	5/2+	-41.2184 (15)	$4.33E+10 \pm 0.07E+10 \text{ y}$	$62.6\% \pm 0.02\%$	eta^- 100; $lpha <$ 1.0E-4
		188	1-	-39.0189 (15)	17.003 ± 0.003 h		eta^- 100
		188m	(6)-	-38.8468 (15)	$18.59\pm0.04~\mathrm{m}$		<i>IT</i> 100
		189	5/2+	-37.981 (8)	24.3 ± 0.4 h		β^{-} 100
		190	(2)-	-35.57 (15)	3.1 ± 0.3 m		β^- 100
		190m	(6-)	-35.36 (15)	3.2 ± 0.2 h		eta^- 54.4; IT 45.6
		191	(3/2+,1/2+	+)-34.352 (10)	9.8 ± 0.5 m		β^{-} 100
		192	0	-31.77 (20)	$16 \pm 1 \text{ s}$		β^- 100
		194	0	-27.4 (3)	$5\pm1\mathrm{s}$		β^{-} 100; β^{-} 100; β^{-} 100
		195	0	-25.6 (4)	$6 \pm 1 s$		β^{-}
	0	196	0	-22.5 (5)	3+1-2s		β^{-} 100
76	Os	162	0+	-14.5 (5)	$2.1 \pm 0.1 \text{ ms}$		$\alpha \approx 99.00$
		163	(7/2-)	-16.1 (4)	$5.5 \pm 0.6 \text{ ms}$		α 100; ϵ
		164	0+	-20.46 (21)	$21 \pm 1 \text{ ms}$		α 98; ϵ 2
		165	(7/2-)	-21.65 (20)	$71 \pm 3 \text{ ms}$		$\alpha > 60.00; \epsilon < 40.00$
		160	(7/2)	-25.437(18)	$199 \pm 3 \text{ ms}$		α /2; ϵ 18
		167	(7/2-)	-26.5(7)	0.81 ± 0.06 s		α 57; ϵ 43
		100	(5/2)	-29.992(10)	2.1 ± 0.18 2.42 ± 0.14 c		α 43; ϵ 57
		109	(3/2-)	-30.72(3)	5.43 ± 0.145 7.27 ± 0.18		ϵ 80.3; α 13.7
		170	(5/2)	-33.921(11)	7.37 ± 0.165		$\epsilon 90.3; \alpha 9.3$
		171	(3/2-)	-34.293(19)	$0.3 \pm 0.2 \text{ s}$		ϵ 90.2; α 1.0
		172	(5/2)	-37.243(13) -37.438(15)	19.2 ± 0.98 22.4 ± 0.98		ϵ 99.8, α 0.2
		173	$(3/2^{-})$	-39 997 (11)	22.4 ± 0.98 44 ± 4 s		$e^{99.98} \propto 0.02$
		174	$(5/2_{-})$	-40 111 (13)	14 ± 15 14 + 0.1 m		e 100
		176	(3/2)	-42 1 (3)	36 ± 0.5 m		< 100 < 100
		177	1/2-	-41 949 (16)	30 ± 0.2 m		€ 100 € 100
		178	0+	-43 547 (16)	5.0 ± 0.2 m		$\epsilon 100 \circ \alpha$
		179	1/2-	-43.02 (18)	$6.5 \pm 0.3 \text{ m}$		€ 100, a € 100
		180	0+	-44 355 (20)	21.5 ± 0.4 m		€ 100 € 100
		181	1/2-	-43.55 (3)	$105 \pm 3 \text{ m}$		€ 100 € 100
		181m	7/2-	-43.5 (3)	2.7 ± 0.1 m		$\epsilon 100: IT < 3.00$
		182	0+	-44.609 (22)	21.84 ± 0.2 h		$\epsilon 100$
		183	9/2+	-43.66 (5)	13.0 ± 0.5 h		$\epsilon 100$
		183m	1/2-	-43.49 (5)	9.9 ± 0.3 h		ε 85: IT 15
		184	0+	-44.2566 (13)	> 5.6E13 v	$0.02\% \pm 0.01\%$	α
		185	1/2-	-42.8098 (13)	93.6 ± 0.5 d		ϵ 100
		186	0+	-43.0023 (15)	$2.0E+15 \pm 1.1E+15 \text{ v}$	$1.59\% \pm 0.03\%$	lpha 100
		187	1/2-	-41.2209 (15)	stable	$1.96\% \pm 0.02\%$	

				Table	10.1 – Continued from previ	ious page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		188	0+	-41.1392 (15)	stable	$13.24\% \pm 0.08\%$	
		189	3/2-	-38.9883 (16)	stable	$16.15\% \pm 0.05\%$	
		189m	9/2-	-38.9575 (16)	$5.81\pm0.06~\mathrm{h}$		<i>IT</i> 100
		190	0+	-38.7093 (16)	stable	$26.26\% \pm 0.02\%$	
		190m	(10)-	-37.0039 (16)	$9.9 \pm 0.1 \text{ m}$		<i>IT</i> 100
		191	9/2-	-36.3967 (16)	15.4 ± 0.1 d		β^- 100
		191m	3/2-	-36 3223 (16)	13.10 ± 0.05 h		JT 100
		192	0+	-35 884 (3)	stable	$40.78\% \pm 0.19\%$	11 100
		192 192m	(10-)	-33 868 (3)	$59 \pm 01s$	10.7070 ± 0.1770	$IT > 87.00 \cdot \beta^{-} < 13.00$
		19211	(10)	-33 396 (3)	30.11 ± 0.01 h		β^{-} 100
		10/	0	-33.070(3)	60 ± 0.2 w		β 100 β^{-} 100
		105	0	-32.437(3)	0.0 ± 0.2 y ~ 9 m		β 100 β^{-}
		195	0	-29.7(3)	$\sim 9 \text{ m}$		p a=100
		190	0+	-20.20(4)	34.9 ± 0.2 III		β 100 $\beta = 100$
		197	0	-23.51(20)	2.8 ± 0.6 m		β 100
		199	0	-20.5 (4)	5 +4-2 s		β 100
	Ŧ	200	0+	-18.9 (5)	6 +4-3 s		β 100
77	lr	166	(2-)	-13.2 (20)	$10.5 \pm 2.2 \text{ ms}$		α 93; p 7
		166m	(9+)	-13.03 (20)	$15.1 \pm 0.9 \text{ ms}$		α 98.2; p 1.8
		167	1/2+	-17.078 (19)	$35.2 \pm 2 \text{ ms}$		p 32; ϵ 20; α 48
		16/m	11/2-	-16.903 (19)	$25.7\pm0.8~\mathrm{ms}$		$lpha$ 80; ϵ 20; p 0.4
		168	0	-18.72 (7)	222 +60-40 ms		$\alpha \leq 100.00; \epsilon; p; \alpha$ 77; $\epsilon \leq 23.00; p$
		169	(1/2+)	-22.083 (24)	$0.353\pm0.004~\mathrm{s}$		$lpha$ 45; ϵ ; p
		169m	(11/2-)	-21.93 (24)	$0.281\pm0.004~\mathrm{s}$		$lpha$ 72; ϵ ; p
		170	(3-)	-23.36 (9)	0.87 +0.18-0.12 s		ϵ 94.8; α 5.2; α 38; $IT \leq$
							62.00; $\epsilon \leq$ 62.00
		171	(1/2+)	-26.43 (4)	3.2 +1.3-0.7 s		$lpha$ > 0.00; p ; ϵ ; $lpha$ 58; p \leq 42.00; ϵ \leq 42.00
		172	(3+)	-27.38 (3)	$4.4\pm0.3~ m s$		ϵ 98; $lpha pprox$ 2.00
		172m	(7+)	-27.24 (3)	$2.0\pm0.1~ m{s}$		ϵ 77; α 23
		173	(3/2+,5/2+)	-30.27 (12)	$9.0\pm0.8~{ m s}$		$\epsilon >$ 93.00; $lpha <$ 7.00
		173m	(11/2-)	-30.044 (12)	$2.4\pm0.9~ m s$		ϵ ; α 7
		174	(3+)	-30.87 (3)	$7.9\pm0.6~{ m s}$		ϵ 99.5; α 0.5
		174m	(7+)	-30.68 (3)	$4.9\pm0.3~{ m s}$		ϵ 97.5; α 2.5
		175	(5/2-)	-33.386 (13)	$9\pm2\mathrm{s}$		ϵ 99.15; α 0.85
		176	0	-33.861 (20)	$8.7\pm0.5~{ m s}$		<i>α</i> 3.1; <i>ε</i> 96.9
		177	5/2-	-36.047 (20)	$30\pm2~{ m s}$		ϵ 99.94; α 0.06
		178	0	-36.252 (20)	$12\pm2\mathrm{s}$		ϵ 100
		179	(5/2)-	-38.077 (11)	$79\pm1\mathrm{s}$		ϵ 100
		180	(4,5)	-37.977 (22)	$1.5\pm0.1~\mathrm{m}$		$\epsilon \ 100$
		181	5/2-	-39.47 (3)	$4.90\pm0.15~\mathrm{m}$		$\epsilon \ 100$
		182	3+	-39.052 (21)	$15\pm1~{ m m}$		$\epsilon \ 100$
		183	5/2-	-40.2 (3)	$57 \pm 4 \text{ m}$		$\epsilon \ 100$
		184	5-	-39.61 (3)	3.09 ± 0.03 h		$\epsilon \ 100$
		185	5/2-	-40.34 (3)	$14.4\pm0.1~{ m h}$		ϵ 100
		186	5+	-39.173 (17)	$16.64\pm0.03~\text{h}$		ϵ 100; ϵ $pprox$ 75.00; IT $pprox$
		187	2/2	20 522 (4)	10.5 ± 0.2 b		25.00
		107 187m	$0/2^{+}$	-39.332 (0)	$10.5 \pm 0.5 \text{ II}$		
		107 III 199	2/∠- 1	-37.340 (0) 28 251 (10)	50.5 ± 0.0 IIIS $A1 = \pm 0 = 5$		- 100 - 100
		100	1- 0	-30.331(10)	$41.0 \pm 0.0 \text{ m}$		
		10011	2/2	-37.420(10)	4.2 ± 0.2 IIIS		e (; 11
		107	3/2+ 11/2	-30.437 (13)	$13.2 \pm 0.1 \text{ a}$		€ 100 <i>UT</i> 100
		189m	11/2-	-30.004(13)	$13.3 \pm 0.3 \text{ ms}$		
		189m2	2 (23/2)+	-36.123 (13)	$3.7 \pm 0.2 \text{ ms}$		11 100

			Table	10.1 – Continued from previ	ous page	
Ζ	El	$\mathbf{A} = \mathbf{J}^{\pi}$	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode
		190 4-	-36.7555 (20)	$11.78 \pm 0.1 \text{ d}$		ε 100
		190m (1-)	-36.7294 (20)	$1.120\pm0.003~\mathrm{h}$		<i>IT</i> 100
		190m2 (11)-	-36.3791 (20)	$3.087\pm0.012~h$		ϵ 91.4; IT 8.6
		191 3/2+	-36.7107 (19)	stable	$37.3\% \pm 0.2\%$	
		191m 11/2-	-36.5394 (19)	$4.899 \pm 0.023 \text{ s}$		<i>IT</i> 100
		191m2 0	-34.664 (19)	$5.5\pm0.7~{ m s}$		<i>IT</i> 100
		192 4+	-34.8375 (19)	$73.829 \pm 0.011 \text{ d}$		eta^- 95.24; ϵ 4.76
		192m 1-	-34.7808 (19)	$1.45\pm0.05~\mathrm{m}$		eta^- 0.02; IT 99.98
		192m2 (11-)	-34.6694 (19)	$241\pm9~\mathrm{y}$		<i>IT</i> 100
		193 3/2+	-34.5382 (19)	stable	$62.7\% \pm 0.2\%$	
		193m 11/2-	-34.458 (19)	$10.53 \pm 0.04 \text{ d}$		<i>IT</i> 100
		194 1-	-32.5337 (19)	$19.28\pm0.13~h$		eta^- 100
		194m 4+	-32.3866 (19)	$31.85\pm0.24~\mathrm{ms}$		<i>IT</i> 100
		194m2 (10,11)	-32.3437 (19)	$171 \pm 11 \text{ d}$		eta^- 100
		195 3/2+	-31.6942 (19)	2.5 ± 0.2 h		eta^- 100
		195m 11/2-	-31.5942 (19)	3.8 ± 0.2 h		eta^- 95; IT 5
		196 (0-)	-29.44 (4)	$52 \pm 1 \mathrm{s}$		eta^- 100
		196m (10,11-)	-29.03 (4)	$1.40\pm0.02~\mathrm{h}$		eta^- 100; $IT <$ 0.30
		197 3/2+	-28.266 (20)	$5.8\pm0.5~\mathrm{m}$		eta^- 100
		197m 11/2-	-28.151 (20)	8.9 ± 0.3 m		eta^- 99.75; IT 0.25
		198 0	-25.82 (20)	$8\pm1~ m s$		eta^- 100
		199 0	-24.4 (4)	6 +5-4 s		β^{-}
		202 (1-,2-)	-17 (4)	$11 \pm 3 \mathrm{s}$		eta^- 100
78	Pt	168 0+	-11.04 (21)	$2.02\pm0.1~\mathrm{ms}$		lpha 100
		169 (7/2-)	-12.36 (20)	$7.0\pm0.2~\mathrm{ms}$		lpha 100
		170 0+	-16.304 (19)	$13.8\pm0.5~\mathrm{ms}$		α 98; ϵ
		171 (7/2-)	-17.47 (7)	$45.5\pm2.5~\mathrm{ms}$		α 90; ϵ 10
		172 0+	-21.103 (11)	$97.6\pm1.3~\mathrm{ms}$		ϵ 6; α 94
		173 (5/2-)	-21.94 (6)	$382\pm2~\mathrm{ms}$		$lpha$ 100; ϵ ?
		174 0+	-25.313 (11)	$0.889\pm0.017~\mathrm{s}$		α 76; ϵ 24
		175 7/2-	-25.69 (19)	$2.53 \pm 0.06 \text{ s}$		α 64; ϵ 36
		176 0+	-28.935 (13)	$6.33 \pm 0.15 \text{ s}$		ϵ 60; α 40
		177 5/2-	-29.371 (15)	$10.6 \pm 0.4 \text{ s}$		α 5.7; ϵ 94.3
		178 0+	-31.999 (11)	$20.7 \pm 0.7 \text{ s}$		ϵ 92.3; α 7.7
		179 1/2-	-32.27 (8)	$21.2 \pm 0.4 \text{ s}$		ϵ 99.76; α 0.24
		180 0+	-34.436 (11)	$56 \pm 2s$		$\epsilon 100; \alpha \approx 0.30$
		181 1/2-	-34.375(15)	52.0 ± 2.2 s		ϵ 100; $\alpha \approx 0.08$
		182 0+	-36.17(16)	$2.67 \pm 0.12 \text{ m}$		ϵ 99.96; α 0.04
		103 1/2-	-35.775(10)	$6.5 \pm 1 \text{ m}$		ϵ 100; $\alpha \approx 1.3E-3$
		103111 (7/2)-	-33.730(10)	43 ± 38		ϵ 100; α < 4.0E-4; 11
		104 0+	-37.332 (16)	17.3 ± 0.2 m		ϵ 100; $\alpha \approx$ 1.0E-3
		104111 0-	-55.492(10)	$1.01 \pm 0.03 \text{ ms}$		11 100
		$103 \frac{9}{2+}$	-30.00(4)	$70.9 \pm 2.4 \text{ m}$		$\epsilon < 100.00$
		100III 1/2-	-30.36 (4)	33.0 ± 0.05 h		$\epsilon 99; 11 < 2.00$
		100 0+ 187 2/2	-37.004 (22)	2.00 ± 0.00 II 2.35 \pm 0.02 h		ϵ 100; $\alpha \approx$ 1.4E-4
		107 3/2- 188 01	-30.71 (3) _37 890 (4)	2.50 ± 0.00 II 10.2 \pm 0.2 J		$\epsilon 100$
		100 0+ 180 2/2	-36 /85 (11)	$10.2 \pm 0.3 \text{ u}$ $10.87 \pm 0.12 \text{ h}$		ϵ 100; α 2.00-00
		107 3/2- 100 0	-30.403 (11)	10.07 ± 0.12 II 6 5E + 11 \pm 0 2E + 11 $+$	$0.0120/ \pm 0.0020/$	ε 100 ο 100
		190 0+ 101 2/2	-37.323 (0) _35.701 (5)	$0.51\pm11 \pm 0.51\pm11$ y 2 82 \pm 0.02 A	$0.012 / 0 \pm 0.002 / 0$	α 100 < 100
		$\frac{171}{100} - \frac{3}{2}$	-33.701(3)	$2.00 \pm 0.02 \text{ u}$	$0.782\% \pm 0.024\%$	e 100
		192 U+ 103 1/2	-30.272 (3) _31 1816 (30)	Stable $50 \pm 6 m$	$0.702 / 0 \pm 0.024 / 0$	c 100
		$170 1/2^{-1}$	-34 2218 (20)	30 ± 0.9		e 100 IT 100
		193111 13/2+	-34.3310 (20)	4.33 ± 0.03 a		

				Table 1	0.1 – Continued from previ	ious page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		194	0+	-34.7625 (9)	stable	$32.86\% \pm 0.4\%$	
		195	1/2-	-32.7962 (9)	stable	$33.78\% \pm 0.24\%$	
		195m	13/2+	-32.5369 (9)	$4.010 \pm 0.005 \text{ d}$		IT 100
		196	0+	-32.6468 (9)	stable	$25.21\% \pm 0.34\%$	
		197	1/2-	-30.4219 (9)	19.8915 ± 0.0019 h		eta^- 100
		197m	13/2+	-30.0223 (9)	95.41 ± 0.18 m		<i>IT</i> 96.7; β^{-} 3.3
		198	0+	-29.9056 (22)	stable	$7.36\% \pm 0.13\%$	
		199	5/2-	-27.3903 (22)	$30.80 \pm 0.21 \text{ m}$		β^- 100
		199m	(13/2)+	-26.9663 (22)	$13.6\pm0.4~{ m s}$		IT 100
		200	0+	-26.601 (20)	12.6 ± 0.3 h		β^- 100
		201	(5/2-)	-23.74 (5)	$2.5 \pm 0.1 \text{ m}$		β^{-} 100
		202	0+	-22.6 (20)	$44 \pm 15 h$		β^{-} 100
		203	(1/2-)	-19.7 (3)	$10 \pm 3 \text{ s}$		β^{-} 100
70		204	0+	-18.1 (4)	$10.3 \pm 1.4 \text{ s}$		β^{-} 100
79	Au	171m	(11/2-)	-7.317 (21)	$1.02 \pm 0.1 \text{ ms}$		α 54; p 46
		172	0	-9.37 (8)	22 +6-4 ms		$lpha$ 100; ϵ ; p ; $p < 0.02; \epsilon$; $lpha$ 100
		173	(1/2+)	-12.822 (24)	$25\pm1~\mathrm{ms}$		$lpha$ 94; ϵ ; p
		173m	(11/2-)	-12.608 (24)	$14.0\pm0.9~\mathrm{ms}$		$lpha$ 92; p ; ϵ
		174	0	-14.24 (9)	$139 \pm 3 \text{ ms}$		lpha > 0.00
		177	(1/2+,3/2+)	-21.547 (11)	$1.53\pm0.07~\mathrm{s}$		$lpha$ 40; ϵ
		177m	11/2-	-21.389 (11)	$1.00\pm0.2~\mathrm{s}$		α 66; ϵ
		178	0	-22.33 (6)	$2.6 \pm 0.5 \text{ s}$		$\alpha \geq 40.00; \epsilon \leq 60.00$
		179	(1/2+,3/2+))-24.98 (13)	$7.1 \pm 0.3 \mathrm{s}$		ϵ 78; α 22
		180	$\left(\begin{array}{c} 0 \\ 0 \\ \end{array} \right)$	-25.596 (21)	$8.1 \pm 0.3 \text{ s}$		$\epsilon \leq 98.20; \alpha \geq 1.80$
		181	(3/2-)	-27.871 (20)	$13.7 \pm 1.4 \text{ s}$		ϵ 97.3; α 2.7
		182	(2+)	-28.301 (20)	$15.5 \pm 0.4 \text{ s}$		ϵ 99.87; α 0.13
		183	(5/2)-	-30.187 (10)	42.8 ± 1.8		$\alpha 0.55; \epsilon 99.45$
		104 194m	3+ 2+	-30.319(22)	20.6 ± 0.9 S		ϵ 100; $\alpha \leq 0.02$
		104111	2+ 5/2	-30.23(22)	47.0 ± 1.4 S		ϵ 70; 11 50; $\alpha \le 0.02$
		105	5/2-	-51.67 (5)	4.25 ± 0.00 m		E 99.74, α 0.20, $\epsilon < 100.00$, IT
		186	3-	-31.715 (21)	10.7 ± 0.5 m		α 0.0008; ϵ 100
		187	1/2(+)	-33.01 (3)	8.3 ± 0.2 m		ϵ 100; α 0.003
		18/m	9/2(-)	-32.88 (3)	$2.3 \pm 0.1 \mathrm{s}$		<i>IT</i> 100
		188	1(-)	-32.301 (20)	8.84 ± 0.06 m		$\epsilon 100$
		189	1/2+	-33.582 (20)	28.7 ± 0.3 m		ϵ 100; α < 3.0E-5
		189M	11/2-	-33.335(20)	$4.39 \pm 0.11 \text{ m}$		$\epsilon 100$
		190	1-	-32.005(10)	42.0 ± 1 III 2.18 \pm 0.08 h		$\epsilon 100; \alpha < 1.0E-6; 11 100$
		191 101m	$\frac{3}{2+}$	-33.01(4)	0.02 ± 0.11		$\epsilon 100$
		19111	(11/ <i>2-)</i> 1	-33.33(4)	0.92 ± 0.11 S		11 100 < 100
		192 102m	1- (5)+	-32.770(10)	29 ± 0.09 m		E 100 IT 100
		$192m^{2}$	$(3)^+$	-32 344 (16)	29 ± 0 ms		IT 100 IT 100
		1921112	$\frac{3}{2+}$	-33 406 (9)	17.65 ± 0.15 h		<pre>// 100 </pre>
		193m	11/2-	-33 116 (9)	39 ± 0.38		$TT 99 97 \epsilon \approx 0.03$
		194	1-	-32,262 (10)	38.02 ± 0.1 h		ε 100
		194m	(5+)	-32.154 (10)	$600 \pm 8 \text{ ms}$		IT 100
		194m2	2 (11-)	-31.786 (10)	$420 \pm 10 \text{ ms}$		IT 100
		195	3/2+	-32.5694 (14)	$186.098 \pm 0.047 \text{ d}$		ϵ 100
		195m	11/2-	-32.2508 (14)	$30.5\pm0.2~\mathrm{s}$		<i>IT</i> 100
		196	2-	-31.14 (3)	6.1669 ± 6.0 E-4 d		ϵ 93; eta^- 7
		196m	5+	-31.055 (3)	$8.1\pm0.2~{\rm s}$		<i>IT</i> 100
		196m2	2 12-	-30.544 (3)	9.6 ± 0.1 h		IT 100

				Table 1	0.1 – Continued from prev	ious page	
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathrm{T}_{1/2},\Gamma$	Abundance	Decay Mode
		197	3/2+	-31.1409 (7)	stable	100%	
		197m	11/2-	-30.7317 (7)	$7.73\pm0.06~{\rm s}$		<i>IT</i> 100
		198	2-	-29.5819 (7)	$2.6948 \pm 0.0012 \text{ d}$		eta^- 100
		198m	(12-)	-28.7702 (7)	$2.272 \pm 0.016 \text{ d}$		<i>IT</i> 100
		199	3/2+	-29.0948 (7)	$3.139 \pm 0.007 \text{ d}$		eta^- 100
		200	(1-)	-27.27 (5)	48.4 ± 0.3 m		eta^- 100
		200m	12-	-26.31 (5)	18.7 ± 0.5 h		eta^- 84; IT 16
		201	3/2+	-26.401 (3)	26.0 ± 0.8 m		eta^- 100
		202	(1-)	-24.4 (17)	$28.4 \pm 1.2 ext{ s}$		eta^- 100
		203	3/2+	-23.143 (3)	$60\pm 6~{ m s}$		eta^- 100
		204	(2-)	-20.75 (20)	$39.8\pm0.9~\mathrm{s}$		eta^- 100
		205	(3/2+)	-18.9 (3)	$32.5\pm1.4~\mathrm{s}$		eta^- 100
		205m	(11/2-)	-18 (3)	$6\pm2~{ m s}$		IT ; eta^-
80	Hg	174	0+	-6.646 (20)	2.1 +1.8-0.7 ms		α 99.6
		175	(7/2-)	-7.97 (7)	$10.6\pm0.4~\mathrm{ms}$		lpha 100
		176	0+	-11.778 (12)	$20.3\pm1.4~\mathrm{ms}$		lpha 94
		177	(7/2-)	-12.78 (8)	$118\pm8~\mathrm{ms}$		lpha 100
		178	0+	-16.311 (12)	$266.5\pm2.4~\mathrm{ms}$		$lphapprox$ 70.00; \epsilonpprox 30.00
		179	(7/2-)	-16.92 (3)	$1.05\pm0.03~{ m s}$		$\epsilon p pprox 0.15; lpha$ 55; ϵ 45
		180	0+	-20.251 (13)	$2.58\pm0.01~{\rm s}$		ϵ 52; α 48
		181	1/2-	-20.661 (15)	$3.6\pm0.1~{ m s}$		ϵ 73; α 27; ϵp 0.01; $\epsilon \alpha$ 9e- 06
		182	0+	-23.577 (10)	$10.83\pm0.06~\mathrm{s}$		ϵ 84.8; α 15.2
		183	1/2-	-23.806 (7)	$9.4\pm0.7~ m s$		$\epsilon p \ 0.00026; \epsilon \ 88.3; \alpha \ 11.7$
		184	0+	-26.349 (10)	$30.87\pm0.26~\mathrm{s}$		ϵ 98.89; α 1.11
		185	1/2-	-26.176 (16)	$49.1 \pm 1 { m s}$		ϵ 94: α 6
		185m	13/2+	-26.076 (16)	$21.6 \pm 1.5 \mathrm{~s}$		IT 54; ϵ 46; $\alpha \approx 0.03$
		186	0+	-28.54 (11)	$1.38\pm0.06~\mathrm{m}$		ϵ 99.98; α 0.02
		187	3/2(-)	-28.118 (14)	$2.4\pm0.3\ m$		ϵ 100; α < 3.7E-4; ϵ 100; α < 3.7E-4
		188	0+	-30.202 (12)	$3.25\pm0.15~\mathrm{m}$		ϵ 100; α 3.7e-05
		189	3/2-	-29.63 (3)	$7.6\pm0.1~\text{m}$		ϵ 100; α < 3.0E-5; ϵ 100; α < 3.0E-5
		190	0+	-31.371 (16)	$20.0\pm0.5~\mathrm{m}$		$\alpha < 3.4$ E-7; $\epsilon 100$
		191	3/2(-)	-30.594 (23)	$49 \pm 10 \text{ m}$		ϵ 100: α 5e-06: ϵ 100
		192	0+	-32.012 (16)	4.85 ± 0.2 h		$\epsilon 100$
		193	3/2(-)	-31.063 (16)	$3.80\pm0.15~\mathrm{h}$		$\epsilon 100$
		193m	13/2(+)	-30.922 (16)	11.8 ± 0.2 h		€ 92.8; <i>IT</i> 7.2
		194	0+	-32.193 (13)	$444\pm77~{ m v}$		$\epsilon 100$
		195	1/2-	-31 (23)	10.53 ± 0.03 h		ϵ 100
		195m	13/2+	-30.824 (23)	$41.6\pm0.8~\mathrm{h}$		ϵ 45.8; IT 54.2
		196	0+	-31.827 (3)	stable	$0.15\% \pm 0.01\%$	
		197	1/2-	-30.541 (3)	64.14 ± 0.05 h		$\epsilon \ 100$
		197m	13/2+	-30.242 (3)	$23.8 \pm 0.1 \text{ h}$		$IT 91.4: \epsilon 8.6$
		198	0+	-30.9548 (5)	stable	$9.97\% \pm 0.2\%$, ,
		199	1/2-	-29.5464 (4)	stable	$16.87\% \pm 0.22\%$	
		199m	13/2+	-29.0139 (4)	42.67 ± 0.09 m		IT 100
		200	0+	-29,5035 (4)	stable	$23.1\% \pm 0.19\%$	
		201	3/2-	-27.6629 (6)	stable	$13.18\% \pm 0.09\%$	
		202	0+	-27,3456 (6)	stable	$29.86\% \pm 0.26\%$	
		203	5/2-	-25,2698 (17)	46.594 ± 0.012 d		β^{-} 100
		204	0+	-24,6902 (5)	stable	$6.87\% \pm 0.15\%$	/
		205	1/2-	-22,288 (4)	5.14 ± 0.09 m		β^{-} 100
		205m	$\frac{13}{2+}$	-20 731 (4)	1.09 ± 0.04 ms		IT 100
		200111	10/21	20.701 (1)	1.07 ± 0.04 110		

				Table 1	0.1 – Continued from pred	vious page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		206	0+	-20.946 (20)	$8.32 \pm 0.07 \text{ m}$		β^- 100
		207	(9/2+)	-16.22 (15)	$2.9\pm0.2~\text{m}$		β^- 100
		208	0+	-13.27 (3)	41 +5-4 m		β^- 100
		209	0	-8.54 (15)	35 +9-6 s		β^- 100
81	T1	176	(3-,4-,5-)	0.58 (8)	5.2 +3-1.4 ms		p 100
		177	(1/2+)	-3.33 (23)	$18\pm5\mathrm{ms}$		α 73: n 27
		178	0	-4.79 (10)	254 + 11 - 9 ms		$\alpha \approx 53.00; \epsilon \approx 47.00$
		179	(1/2+)	-8.3 (4)	0.23 ± 0.04 s		$\alpha < 100.00: \epsilon \cdot p \cdot \epsilon \cdot IT$
			(1/-)				$\alpha < 100.00; p$
		180	(4-,5-)	-9.26 (6)	$1.09\pm0.01~{ m s}$		ϵ 94; α 6; $\epsilon SF \approx 1.0\text{E-4}$
		181	(1/2+)	-12.799 (9)	$3.2 \pm 0.3 { m s}$		ϵ : $\alpha < 10.00$
		181m	(9/2-)	-11.963 (9)	$1.40\pm0.03~\mathrm{ms}$		$TT 99.6: \alpha 0.4$
		182	(7+)	-13.35 (8)	$3.1 \pm 1 \mathrm{s}$		ϵ 97.5: α < 5.00
		183	(1/2+)	-16.589 (9)	6.9 ± 0.7 s		$\alpha:\epsilon > 0.00$
		183m	(9/2-)	-15.959 (9)	53.3 ± 0.3 ms		$TT:\epsilon:\alpha 2$
		184	0	-16 89 (5)	10.1 ± 0.5 s		$\epsilon 97.9: \alpha 2.1$
		185	(1/2+)	-19 76 (5)	$10.1 \pm 0.5 \text{ s}$ $19.5 \pm 0.5 \text{ s}$		e
		185m	(9/2-)	-19.3 (5)	193 ± 0.08 s		$\alpha \cdot IT$
		186	(7+)	-19.87 (3)	275 ± 1.8		$\alpha \approx 6.0\text{F}-3.6.100$
		186m	(10-)	-19 5 (3)	29 ± 0.2 s		UT = 100
		187	(10) (1/2+)	-22 443 (8)	2.> ± 0.2 0 ≈ 51 s		$\epsilon 100: \alpha \approx 0.03$
		187m	$(1/2^{+})$ $(9/2^{-})$	-22 109 (8)	15.60 ± 0.12 s		$\epsilon < 99.90$ $IT < 99.90$
		107111	()/2-)	-22.107 (0)	$15.00 \pm 0.12.5$		$\alpha 0.15$
		188	(2-)	-22 35 (3)	71 + 2 s		ε 100: ε 100
		188m	(2)	-22.08 (3)	$41 \pm 4 \text{ ms}$		$\epsilon \cdot IT 100$
		189	(1/2+)	-24.602(11)	2.3 ± 0.2 m		e 100
		189m	(9/2-)	-24 344 (11)	$1.0 \pm 0.1 \text{ m}$ $1.4 \pm 0.1 \text{ m}$		$\epsilon < 100 00$ $IT < 4.00$
		190	(2/2)	-24 311 (14)	$26 \pm 0.3 \text{ m}$		$\epsilon 100:\epsilon 100$
		192	(2-)	-25.87 (3)	2.0 ± 0.0 m 9.6 ± 0.4 m		€ 100, € 100 € 100
		192m	(2^{+})	-25 72 (3)	10.8 ± 0.2 m		€ 100 € 100
		193	1/2(+)	-27.3 (8)	10.0 ± 0.2 m 21.6 ± 0.8 m		€ 100 € 100
		193m	(9/2-)	-26.93 (8)	21.0 ± 0.0 m 2.11 ± 0.15 m		$TT < 75.00: \epsilon > 25.00$
		194	()/ <u>/</u>) ?-	-26.83 (14)	2.11 ± 0.15 m 33.0 ± 0.5 m		$11 \le 75.00, e \ge 25.00$
		195	∠ 1/2⊥	-28 155 (14)	1.16 ± 0.05 h		ε 100, α ≤ 1.0E-7, ε 100 ε 100
		195 195m	9/2-	-20.100(14)	36 ± 0.4 s		E 100 IT 100
		196	27 <u>2</u> -	-27.073(14) -27.497(12)	1.84 ± 0.03 h		c 100
		196m	∠- (7⊥)	-27.497(12)	1.04 ± 0.00 h 1.41 ± 0.02 h		e 96 2. IT 3.8
		197	(7^{+}) 1/2+	-28 341 (16)	1.41 ± 0.02 h 2.84 ± 0.04 h		e 100
		197m	9/2-	-20.341(10) -27733(16)	0.54 ± 0.01 s		E 100 IT 100
		198	27 <u>2</u> -	-27.193 (10)	53 ± 0.513		c 100
		198m	Z= 7⊥	-26.95 (8)	1.87 ± 0.03 h		c 55 9. <i>IT 11</i> 1
		108m'	(10)	-20.95(0)	1.07 ± 0.00 m		E 55.9, 11 44.1
		100	$\frac{1}{2}$ (10 ⁻)	-20.75(0)	7.42 ± 0.08 h		<pre>// 100 </pre>
		100m	1/2+ 0/2	-20.00(3)	7.42 ± 0.00 m		
		200	2	-27.01(0)	26.4 ± 0.2 ms		<pre>// 100 </pre>
		200	2- 7	-27.047(0) 26.294(6)	$20.1 \pm 0.1 \text{ m}$		E 100
		20011 201	/⊤ 1/ ? ⊥	-20.294 (0) -27 182 (15)	31.0 ± 0.7115 $30421 \pm 0.0017 A$		- 100 - 100
		201 201∽	1/2 1 (0/2)	-27.103 (13)	$2.0421 \pm 0.0017 \text{ u}$		
		20111	(2/4-) 2-	-20.204(13) -25.085(14)	2.01 ± 0.07 IIIS 12 21 ± 0.02 J		- 100 - 100
		202	∠- 1 /2 :	-20.700 (14)	$12.31 \pm 0.00 \text{ u}$	$20.5240/ \pm 0.0010/$	e 100
		203	1/2+ 2	-20.702 (10)	$3.782 \pm 0.012 + $	$27.524 / 0 \pm 0.001 / 0$	β^{-} 07.08 2.02
		204 205	∠- 1 /2 :	-24.3400 (13)	3.703 ± 0.012 y	$70.400/ \pm 0.010/$	p 97.08; ϵ 2.92
		203	1/2+ 0	-23.0213(13)	Stable	/U.40/0 ± U.U1/0	<i>a</i> ⁻ 100
		200	(12)	-22.234 (14) 10 (100 (14)	$4.202 \pm 0.011 \text{ m}$		β 100 TT 100
		206m	(12-)	-19.0109 (14)	$3.74 \pm 0.03 \text{ m}$		

	Table 10.1 – Continued from previous page										
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode				
		207	1/2+	-21.034 (5)	$4.77 \pm 0.03 \text{ m}$		β^- 100				
		207m	11/2-	-19.686 (5)	$1.33\pm0.11~ m s$		<i>IT</i> 100				
		208	5+	-16.7523 (20)	$3.053\pm0.004~\text{m}$		eta^- 100				
		209	(1/2+)	-13.638 (8)	$2.161\pm0.007~\text{m}$		eta^- 100				
		210	(5+)	-9.247 (12)	$1.30\pm0.03~\mathrm{m}$		eta^- 100; $eta^- n$ 0.007				
		213	0	1.76 (6)	$101\pm0~{ m s}$		β^{-}				
82	Pb	179	(9/2-)	2.05 (8)	3.5 +1.4-0.8 ms		lpha 100				
		180	0+	-1.935 (13)	$4.2\pm0.5~\mathrm{ms}$		lpha 100				
		181	(9/2-)	-3.1 (8)	$36\pm2~\mathrm{ms}$		lpha 100; $lpha <$ 100.00				
		182	0+	-6.821 (13)	$55\pm5~\mathrm{ms}$		$\epsilon pprox 2.00$; $lpha pprox 98.00$				
		183	(3/2-)	-7.57 (3)	$535 \pm 30 \text{ ms}$		$\alpha \approx 90.00$				
		183m	(13/2+)	-7.47 (3)	$415 \pm 20 \text{ ms}$		lpha 100				
		184	0+	-11.052 (13)	$490 \pm 25 \text{ ms}$		$lpha$ 80; ϵ 20				
		185	3/2-	-11.541 (16)	$6.3 \pm 0.4 \mathrm{s}$		ϵ ; α 34; α 50; ϵ				
		186	0+	-14.682 (11)	$4.82 \pm 0.03 \text{ s}$		ϵ 60; α 40				
		187	(13/2+)	-14.99 (6)	18.3 ± 0.3 s		ϵ 88; α 12				
		18/m	(3/2-)	-14.957 (6)	15.2 ± 0.3 s		ϵ 90.5; α 9.5				
		188	(2, (2))	-17.816 (11)	25.1 ± 0.1 s		ϵ 90.7; α 9.3				
		189	(3/2-)	-17.88(3)	39 ± 8 s		ϵ 100; $\alpha < 1.00$				
		189m	(13/2+)	-17.04(3)	50 ± 38		ϵ 100; $\alpha < 1.00$				
		190	(2/2)	-20.418(12)	71 ± 18 1 22 ± 0.08 m		α 0.4; ϵ 99.6				
		191	(3/2-)	-20.25 (4)	$1.55 \pm 0.06 \mathrm{m}$		ϵ 99.99; α 0.01; ϵ 100; $\alpha \approx$ 0.02				
		192	0+	-22.556 (13)	$3.5\pm0.1~\mathrm{m}$		ϵ 99.99; α 0.0059				
		194	0+	-24.209 (17)	$10.7\pm0.6~\mathrm{m}$		$lpha$ 7.3e-06; ϵ 100				
		195	3/2-	-23.714 (23)	pprox 15 m		$\epsilon \ 100$				
		195m	13/2+	-23.511 (23)	15.0 ± 1.2 m		$\epsilon \ 100$				
		196	0+	-25.361 (14)	$37 \pm 3 \text{ m}$		ϵ ; $lpha \leq$ 3.0E-5				
		197	3/2-	-24.749 (6)	8.1 ± 1.7 m		ϵ 100				
		197m	13/2+	-24.429 (6)	42.9 ± 0.9 m		ϵ 81; IT 19				
		198	0+	-26.051 (15)	2.4 ± 0.1 h		ϵ 100				
		199	3/2-	-25.232 (10)	$90 \pm 10 \text{ m}$		$\epsilon 100$				
		199m	(13/2+)	-24.807 (10)	12.2 ± 0.3 m		$\epsilon \approx 7.00; TT \approx 93.00$				
		200	0+ 5 / 2	-26.256 (11)	21.5 ± 0.4 h		ϵ 100				
		201	5/2- 12/2	-25.258 (22)	9.33 ± 0.03 h		ϵ 100				
		201m	13/2+	-24.629 (22)	60.8 ± 1.88		11 100				
		202 202m	0+	-23.937(3)	$32.3E+3 \pm 2.6E+3$ y 3.54 ± 0.02 h		ϵ 100 <i>LT</i> 00 Et = 0 E				
		202111	9- 5/2-	-23.707 (3)	5.54 ± 0.02 II 51.92 ± 0.03 h		11 90.5; € 9.5 c 100				
		203 203m	$\frac{3}{2}$	-23.962 (7)	6.21 ± 0.05 m		E 100 IT 100				
		203m2	10/21	-20.902 (7)	$480 \pm 7 \text{ ms}$		IT 100 IT 100				
		203112	0+	-21.000(7)	> 1.4F + 17 v	14% + 01%	11 100 0				
		204 204m	9_	-22 9246 (12)	$\frac{2}{66}$ 93 + 0.1 m	1.470 ± 0.170	<i>IT</i> 100				
		205	5/2-	-237709(12)	$1.73E+7 \pm 0.07E+7 v$		ε 100				
		205m	13/2+	-22.7571(12)	$5.55 \pm 0.02 \text{ ms}$		IT 100				
		206	0+	-23,7862 (12)	stable	$24.1\% \pm 0.1\%$					
		207	1/2-	-22.4527 (12)	stable	$22.1\% \pm 0.1\%$					
		207m	13/2+	-20.8193 (12)	$0.806\pm0.005~\mathrm{s}$		<i>IT</i> 100				
		208	0+	-21.7492 (12)	stable	$52.4\% \pm 0.1\%$					
		209	9/2+	-17.6153 (18)	3.253 ± 0.014 h		eta^- 100				
		210	0+	-14.7291 (15)	$22.20\pm0.22~\mathrm{y}$		β^- 100; α 1.9e-06				
		211	9/2+	-10.491 (3)	36.1 ± 0.2 m		eta^- 100				
		212	0+	-7.553 (22)	$10.64\pm0.01~h$		eta^- 100				
							Continued on wort many				

	Table 10.1 – Continued from previous page										
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode				
		213	(9/2+)	-3.201 (7)	10.2 ± 0.3 m		eta^- 100				
		214	0+	-0.1816 (23)	26.8 ± 0.9 m		eta^- 100				
		215	0	4.5 (3)	$147\pm12~{ m s}$		β^{-}				
83	Bi	184	0	1.19 (8)	$13 \pm 2 \text{ ms}$		lpha 100; $lpha$ 100				
		186	(3+)	-3.17 (8)	$15.0 \pm 1.7 \text{ ms}$		lpha 100; $lpha$ 100				
		187	(9/2-)	-6.385 (10)	$37 \pm 2 \text{ ms}$		lpha 100				
		188	(10-)	-7.2 (5)	$265 \pm 15 \text{ ms}$		α 100; ϵ ?; α 100; ϵ ?				
		189	(9/2-)	-10.06 (5)	$674 \pm 11 \text{ ms}$		$\alpha > 50.00; \epsilon < 50.00$				
		189m	(1/2+)	-9.88 (5)	$5.0 \pm 0.1 \text{ ms}$		$\alpha > 50.00; \epsilon < 50.00$				
		190	(3+)	-10.59 (3)	$6.3 \pm 0.1 \mathrm{s}$		α 90; ϵ 10; α 70; ϵ 30				
		191	(9/2-)	-13.24 (7)	$12.4 \pm 0.3 \text{ s}$		α 51; ϵ 49				
		191m	(1/2+)	-12.999 (7)	$125 \pm 13 \text{ ms}$		α 68; 11 32; ϵ				
		192	(3+)	-13.55 (3)	$34.6 \pm 0.9 \text{ s}$		ϵ 88; α 12				
		192m	(10-)	-13.4(3)	$39.6 \pm 0.4 \text{ s}$		ϵ 90; α 10				
		193	(9/2-)	-15.873 (10)	63.6 ± 3 s		ϵ 96.5; α 3.5				
		193m	(1/2+)	-15.565 (10)	3.2 ± 0.5 s		α 84; ϵ 16				
		194	(3+)	-15.968 (15)	95 ± 3 s		ϵ 99.54; α 0.46; ϵ 100;				
		105	(0/2)	18 026 (5)	182 ± 4.5		ϵ 99.0; α 0.2				
		195 195m	(9/2-) (1/2+)	-16.020(3) 17.625(5)	105 ± 45 $87 \pm 1c$		ϵ 99.97; α 0.03				
		195111	(1/2+)	-17.023(3)	37 ± 13 208 ± 12		ϵ 67; α 55				
		190 106m	(3+)	-10.009(24) 17.84(24)	300 ± 12.5		ϵ 100, α 0.0012				
		190m	(7+) 2 (10-)	-17.04(24) -17.738(24)	0.0 ± 0.5 s		ϵ , 11 ϵ 74.2: IT 25.8: $\alpha = 0.00038$				
		190112	(9/2)	-19.687 (8)	933 ± 05 m		ϵ 100. α 0.0001				
		197m	$(1/2^{-})$	-19.187 (8)	5.04 ± 0.16 m		α 55: ϵ 45: $T < 0.30$				
		198	(1/2+) (2+3+)	-19.37 (3)	10.3 ± 0.10 m		$\epsilon 100; \epsilon 100$				
		198m	10-	-19 12 (3)	77 ± 0.5 s		IT 100				
		199	9/2-	-20799(12)	$27 \pm 1 \text{ m}$		ε 100				
		199m	(1/2+)	-20.132(12)	27 ± 1 m 24.70 ± 0.15 m		ϵ 99: $IT < 2.00: \alpha \approx 0.01$				
		200	(1/2+) 7+	-20.371(24)	$36.4 \pm 0.5 \text{ m}$		$\epsilon 100: \epsilon < 100.00$				
		200m	(10-)	-19.943 (24)	0.40 ± 0.05 s		IT 100				
		201	9/2-	-21.416 (15)	$103 \pm 3 \text{ m}$		$\epsilon 100$				
		201m	1/2+	-20.569 (15)	$57.5 \pm 2.1 \text{ m}$		$\epsilon > 91.10$: $IT < 8.60$: $\alpha \approx$				
				()			0.30				
		202	5+	-20.742 (15)	$1.71\pm0.04~\mathrm{h}$		ϵ 100				
		203	9/2-	-21.524 (13)	$11.76\pm0.05~\mathrm{h}$		ϵ 100				
		203m	1/2+	-20.426 (13)	$305\pm5~\mathrm{ms}$		<i>IT</i> 100				
		204	6+	-20.646 (9)	$11.22\pm0.1~\mathrm{h}$		ϵ 100				
		204m	10-	-19.84 (9)	$13.0\pm0.1~\mathrm{ms}$		<i>IT</i> 100				
		204m2	2 17+	-17.812 (9)	$1.07\pm0.03~\mathrm{ms}$		<i>IT</i> 100				
		205	9/2-	-21.065 (5)	$15.31\pm0.04~\mathrm{d}$		ϵ 100				
		206	6+	-20.029 (8)	$6.243 \pm 0.003 \text{ d}$		$\epsilon \ 100$				
		207	9/2-	-20.0553 (24)	$31.55\pm0.04~\mathrm{y}$		$\epsilon \ 100$				
		208	5+	-18.8709 (24)	$3.68E+5 \pm 0.04E+5 \text{ y}$		$\epsilon \ 100$				
		208m	10-	-17.2998 (24)	$2.58\pm0.04~ms$		<i>IT</i> 100				
		209	9/2-	-18.2593 (15)	stable	100%					
		210	1-	-14.7926 (14)	$5.012 \pm 0.005 \text{ d}$		eta^- 100; $lpha$ 0.00013				
		210m	9-	-14.5213 (14)	$3.04E$ + $6 \pm 0.06E$ + $6 y$		lpha 100				
		211	9/2-	-11.859 (5)	$2.14\pm0.02~\text{m}$		$lpha$ 99.72; eta^- 0.28				
		212	1(-)	-8.1201 (20)	$60.55\pm0.06~\text{m}$		eta^- 64.06; $lpha$ 35.94				
		212m	(8-,9-)	-7.8701 (20)	$25.0\pm0.2~\text{m}$		$lpha$ 67; eta^- 33; $eta^- lpha$ 30				
		212m2	2 —>16	-6.2101 (20)	7.0 ± 0.3 m		eta^- 100				
		213	9/2-	-5.23 (5)	$45.59\pm0.06~\text{m}$		eta^- 97.8; $lpha$ 2.2				
		214	1-	-1.201 (11)	$19.9\pm0.4~\text{m}$		β^{-} 99.98; α 0.02				

	Table 10.1 – Continued from previous page										
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode				
		215	(9/2-)	1.649 (15)	7.6 ± 0.2 m		β^- 100				
		215m	>23/2-	2.996 (15)	$36.9\pm0.6~\mathrm{s}$		IT 76.2; β^- 23.8				
		216	(6-,7-)	5.874 (11)	$2.25\pm0.05~\text{m}$		$eta^- \leq$ 100.00; $eta^- \leq$ 100.00				
		217	(9/2-)	8.89 (20)	$98.5\pm0.8~{\rm s}$		eta^- 100				
		218	0	13.2 (4)	$33\pm1\mathrm{s}$		eta^- 100				
84	Ро	187	(1/2- ,5/2-)	2.83 (3)	$1.40\pm0.25\ ms$		lpha 100				
		189	(7/2-)	-1.42 (19)	$3.5\pm0.5~\mathrm{ms}$		lpha 100				
		190	0+	-4.564 (13)	$2.46\pm0.05~\mathrm{ms}$		lpha 100				
		191	(3/2-)	-5.055 (12)	$22\pm1~\mathrm{ms}$		α 99				
		191m	(13/2+)	-5.015 (12)	$93 \pm 3 \text{ ms}$		α 96				
		192	0+	-8.071 (11)	$32.2\pm0.3~\mathrm{ms}$		$\alpha \approx$ 99.50; $\epsilon \approx 0.50$				
		193	(13/2+)	-8.36 (3)	$245\pm22~\mathrm{ms}$		$\alpha \le 100.00; \alpha \le 100.00$				
		194	0+	-11.006 (13)	$0.392\pm0.004~\mathrm{s}$		$\alpha 100; \epsilon$				
		195	(3/2-)	-11.07 (4)	$4.64\pm0.09~ m s$		α 75; ϵ 25				
		195m	(13/2+)	-10.84 (4)	$1.92\pm0.02~s$		$\alpha \approx 90.00; \epsilon \approx 10.00;$ IT < 0.01				
		196	0+	-13,474 (13)	5.8 ± 0.2 s		$\alpha \approx 98.00; \epsilon \approx 2.00$				
		197	(3/2-)	-13.36 (5)	84 ± 16 s		ϵ 56: α 44				
		197m	(3/2+)	-13.15 (5)	32 + 28		α 84: ϵ 16: <i>IT</i> 0.01				
		198	(10) - (10)	-15.474 (17)	1.77 ± 0.03 m		α 57: ϵ 43				
		199	(3/2-)	-15 215 (23)	5.47 ± 0.15 m		ϵ 92 5: α 7 5				
		199m	(3/2+)	-14 905 (23)	$4.17 \pm 0.05 \text{ m}$		$IT 25: \epsilon 735: \alpha 24$				
		200	(10, 21) 0+	-16 955 (14)	$11.51 \pm 0.08 \text{ m}$		$\epsilon 88.9: \alpha 11.1$				
		201	3/2-	-16 525 (6)	$15.6 \pm 0.1 \text{ m}$		€ 98 87: α 1 13				
		201 201m	$\frac{3}{2}$	-16 101 (6)	8.96 ± 0.12 m		$TT 56 2 \epsilon 41 4 \alpha 2 4$				
		20111	0+	-17925(15)	44.6 ± 0.4 m		ε 98.08: α 1.92				
		202	5/2-	-17 311 (9)	$36.7 \pm 0.5 \text{ m}$		$\epsilon 99.89; \alpha 0.11$				
		203m	13/2+	-16 669 (9)	45 ± 2 s		IT 100: ε				
		204	0+	-18 346 (11)	3519 ± 0.012 h		ε 99 33: α 0 67				
		201	5/2-	-17 509 (20)	1.74 ± 0.08 h		ε 99 96: α 0.04				
		205 205m2	2 19/2-	-16 048 (20)	57.4 ± 0.00 ms		IT 100				
		200112	0+	-18 185 (3)	$88 \pm 0.1 d$		$\alpha 5 45: \epsilon 94 55$				
		200	5/2-	-17 146 (7)	5.0 ± 0.1 d		€ 99 98: 0 0 02				
		207 207m	19/2-	-15 763 (7)	2.79 ± 0.08 s		IT 100				
		207 111	1772 0±	-174703(18)	2.77 ± 0.003		$a = 100 \cdot c = 0.004$				
		200	1/2-	-16 3667 (18)	$102 \pm 5 v$		$\alpha 9952 < 0.48$				
		210	1/2 0+	-15 9538 (12)	$138376 \pm 0.002 d$		α 100				
		210	0+ 9/2+	-12.9330(12)	0.516 ± 0.002 d		α 100 α 100				
		211 211m	(25/2+)	-12.4000(10) -10.9713(13)	25.2 ± 0.6 s		$TT = 0.02$ ~ 00.98				
		211m 212m	(23/2+) (18+)	-7.4482(13)	25.2 ± 0.08		$\alpha 99.93 IT 0.07$				
		212111	(10+) 9/2+	-0.54(3)	1.781 ± 0.004 ms		α 99.95, 11 0.07 α 100: β^{-} 0.00023				
		215	9/2+	-0.34(3) 1 778(3)	0.145 ± 0.002 c		a 100, p 0.00023				
		210	(0, 2)	5 886 (6)	1.53 ± 0.05 c		<i>a</i> 100				
		217	(7/2+)	9.000 (0) 8.3578 (23)	1.05 ± 0.05 s		α				
		210	0+	0.3376 (23) 10 78 (6)	5.096 ± 0.012 III 112 + 58 28 a		a^{2} 99.96; p^{2} 0.02				
		221	0	19.70(0)	550 ± 420 s		ρ : ρ^{-2}				
9 5	۸ ۴	101	(1/2)	22.40(7)	550 ± 450 S		ρ :				
65	At	191	(1/2+)	3.002(10) 2.017(16)	1.7 + 1.1 - 0.5 ms		α 100				
		191M	(// <i>2-)</i>	3.717 (10) 2.02 (6)	$2.1 \pm 0.4 - 0.3 \text{ ms}$		α 100 \sim 100				
		192	(1/2)	2.72 (0) 0.07 (5)	$11.3 \pm 0.0 \text{ ms}$		α 100; α 100				
		193	(1/2+)	-0.07(5)	20 + 5 - 4 ms		α 100 100				
		193m	(7/2-)	-U.U6 (5)	$21 \pm 5 \text{ ms}$		$\alpha 100$				
		193m2	2 (13/2+)	0 (AP)	27 +4-3 ms		11 76; α 24				

	Table 10.1 – Continued from previous page									
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode			
		194	(9-10-)	-0.7 (3)	$310\pm8~\mathrm{ms}$		α;α			
		195	1/2+	-3.476 (9)	$328\pm20~ms$		lpha 100; $lpha$ 100			
		196	(3+)	-3.92 (6)	$0.388\pm0.007~\mathrm{s}$		$\alpha \approx 95.10; \epsilon \approx 4.90$			
		197	(9/2-)	-6.34 (5)	$0.388\pm0.006~{\rm s}$		α 96.1; ϵ 3.9			
		197m	(1/2+)	-6.29 (5)	$2.0\pm0.2~\mathrm{s}$		$\alpha < 100.00; \epsilon : IT < 4.0E$ -			
							3			
		198	(3+)	-6.65 (15)	$3.8\pm0.4~\mathrm{s}$		α 90: ϵ 10			
		198m	(10-)	-6.548 (15)	$1.04\pm0.15~ m s$		α 84: ϵ 16			
		199	(9/2-)	-8.822 (6)	$7.03\pm0.15~\mathrm{s}$		α 90; ϵ 10			
		200	(3+)	-8.988 (24)	$43 \pm 1 \mathrm{s}$		α 52; ϵ 48			
		200m	(7+)	-8.876 (24)	$47 \pm 1 \mathrm{s}$		$\epsilon \leq 57.00$; α 43			
		200m2	2(10-)	-8.644 (24)	7.3 +2.6-1.5 s		$\epsilon < 89.50$: $IT < 89.50$:			
		2001112	(10)	0.011 (21)	7.0 12.0 1.0 0		$\alpha \approx 10.50$			
		201	(9/2-)	-10.789 (8)	85.2 ± 1.6 s		α 71: ϵ 29			
		202	(2+.3+)	-10.59 (3)	$184 \pm 1 \text{ s}$		ϵ 63: α 37: ϵ 91.3: α 8.7			
		202m	(10-)	-10.2 (3)	0.46 ± 0.05 s		IT 99.9: α 0.1			
		203	9/2-	-12.164 (12)	7.4 ± 0.2 m		ϵ 69: α 31			
		204	7+	-11.876 (24)	9.12 ± 0.11 m		α 3.91: ϵ 96.09			
		204m	10-	-11 289 (24)	$108 \pm 10 \text{ ms}$		<i>IT</i> 100			
		205	9/2-	-12 971 (15)	26.9 ± 0.8 m		$\epsilon 90. \alpha 10$			
		200	(5)+	-12 429 (15)	20.9 ± 0.0 m 30.6 ± 0.8 m		ε 99 1· α 0 9			
		200	$9/2_{-}$	-13,227(10)	1.81 ± 0.03 h		c 91 4: 0 8 6			
		207	57 <u>2</u> - 6+	-13.227(12) -12.47(9)	1.61 ± 0.00 h 1.63 ± 0.03 h		c 99.45: c 0.55			
		200	0+ 9/2_	-12.47(9)	5.41 ± 0.05 h		$e^{99.43}, \alpha 0.33$			
		209	(5)	-12.003(3)	81 ± 0.05 m		$e 99.9, \alpha 4.1$			
		210	$(3)^{+}$	-11.975(0) 11.648(3)	7.11 ± 0.007 h		ϵ 99.02; α 0.10			
		211	$\frac{9}{2}$	-11.040 (3) 8 6280 (24)	7.214 ± 0.007 m		ϵ 50.2; α 41.0			
		212	(1-)	-0.0209 (24)	0.314 ± 0.002 S		α 100; $\epsilon < 0.03; \beta < 2.0E-6$			
		212m	(9-)	-8.4059 (24)	0.119 ± 0.003 s		$\alpha > 99.00$: $IT < 1.00$			
		212	9/2-	4 396 (5)	32.3 ± 0.4 ms		$\alpha 99 99: \beta^- 0.007$			
		218	0	8 098 (12)	15 ± 0.3 s		$\alpha 9999: \beta^{-} 01$			
		210	0	10.397(4)	56 ± 38		$\beta^- \approx 3.00$; $\alpha \approx 97.00$			
		220	3	14 35 (5)	3.71 ± 0.04 m		$\beta^- \approx 3.00, \alpha \approx 37.00$ $\beta^- 92: \alpha 8$			
		220	0	16.81(20)	23 ± 0.2 m		β^{-} 100			
		221	0	20.6(3)	54 ± 10 s		β^{-} 100 β^{-} 100			
		222	0	20.0(3) 23.4(4)	54 ± 103 50 ± 7 s		β^{-} 100 β^{-} 100			
		223	0	25.4(4) 27.71(6)	30 ± 73 76 ± 0 s		β^{-100}			
86	Rn	103	(3/2)	9.045(23)	1.15 ± 0.27 ms		β : $\simeq 100$			
00	MI	195	$(3/2^{-})$	5.04.5	$6 \pm 3 - 2$ ms		≈ 100			
		195 105m	12/2	5.00 (5)	5 + 3 - 2 ms		α 100 \sim 100			
		195111	13/2+	5.12(5) 1 07(14)	44 + 1200 mg		α 100			
		190	(2/2)	1.97(14) 1.48(6)	$4.4 \pm 1.5 - 0.9$ ms		α 99.9, $\epsilon \approx 0.10$			
		197	(3/2-)	1.40(0) 1.221(12)	$55 \pm 2 \text{ mg}$					
		190	(2/2)	-1.231(13) 1 51(6)	0.59 ± 0.02 c		α ; ϵ			
		199	$(3/2^{-})$	-1.31(0)	0.39 ± 0.03 s					
		200	(13/2+)	-1.33(0)	0.31 ± 0.02 S		$\alpha 97; \epsilon 5$			
		200	(2, (2))	-4.003(13)	$1.03 \pm 0.2 \pm 0.11$ S		α 86; ϵ 14			
		201	(3/2-)	-4.07(3)	7.0 ± 0.4 s		$\alpha;\epsilon;\alpha;\epsilon$			
		202	(2, (2))	-0.275(18)	9.7 ± 0.1 s		α /8; ϵ 22			
		203	$(3/2^{-})$	-0.10(24)	44 ± 28		α bb; ϵ 34			
		203m	(13/2+)	-3.198 (24)	20.9 ± 0.3 S		α /3; ϵ 23			
		204 205	U+ 5 / 2	-7.904 (13) 7.71 (E)	74.3 ± 1.4 S		α /2.4; ϵ 2/.6			
		205	5/2-	-7.71(3)	$1/0 \pm 4.8$		α 24.6; ϵ 75.4			
		206	0+ 5 / 2	-9.116 (15)	5.67 ± 0.17 m		α 62; ϵ 38			
		207	5/2-	-8.635 (8)	9.25 ± 0.17 m		ϵ 79; α 21			

	Table 10.1 – Continued from previous page									
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode			
		208	0+	-9.66 (11)	$24.35\pm0.14~\text{m}$		$lpha$ 62; ϵ 38			
		209	5/2-	-8.929 (20)	$28.5 \pm 1 \text{ m}$		ϵ 83; α 17			
		210	0+	-9.601 (4)	$2.4\pm0.1~\mathrm{h}$		$lpha$ 96; ϵ 4			
		211	1/2-	-8.756 (7)	14.6 ± 0.2 h		ϵ 72.6; α 27.4			
		212	0+	-8.66 (3)	23.9 ± 1.2 m		lpha 100			
		213	(9/2+)	-5.699 (6)	$19.5\pm0.1~\mathrm{ms}$		lpha 100			
		218	0+	5.2166 (24)	$35\pm5~\mathrm{ms}$		lpha 100			
		219	5/2+	8.831 (3)	$3.96\pm0.01~\mathrm{s}$		lpha 100			
		220	0+	10.6075 (22)	$55.6\pm0.1~{ m s}$		lpha 100			
		221	7/2+	14.474 (6)	25 ± 2 m		eta^- 78; $lpha$ 22			
		222	0+	16.3731 (23)	$3.8235 \pm 3.0E-4 d$		lpha 100			
		223	7/2	20.396 (10)	24.3 ± 0.4 m		eta^- 100			
		224	0+	22.435 (15)	$107 \pm 3 \text{ m}$		eta^- 100			
		225	7/2-	26.556 (21)	4.66 ± 0.04 m		eta^- 100			
		226	0+	28.739 (16)	7.4 ± 0.1 m		eta^- 100			
		227	0	32.875 (18)	$20.8\pm0.7~\mathrm{s}$		eta^- 100			
		228	0+	35.249 (22)	$65 \pm 2 \mathrm{s}$		eta^- 100			
	_	229	0	39.362 (13)	12.0 +1.2-1.3 s		eta^- 100			
87	Fr	199	0	6.76 (4)	12 +10-4 ms		$lpha > 0.00; \epsilon$			
		200	(3+)	6.12 (8)	$49 \pm 4 \text{ ms}$		α 100			
		201	(9/2-)	3.6 (7)	$62 \pm 5 \text{ ms}$		α 100; α 100			
		202	(3+)	3.163 (15)	$0.30 \pm 0.05 \text{ s}$		α 100; α 100			
		203	(9/2-)	0.877 (6)	$0.55 \pm 0.01 \text{ s}$		$\alpha \leq 100.00$			
		204	(3+)	0.607 (25)	1.8 ± 0.3 s		$\epsilon 8; \alpha 92$			
		204m	(7+)	0.648 (25)	1.6 +0.5-0.3 s		α 90; ϵ 10			
		204m 205	(0/2)	0.923(23)	0.8 ± 0.2 s		α 74; ϵ 26			
		205	(9/2-)	-1.31(8)	3.97 ± 0.04 S		α 98.5; ϵ 1.5			
		206	(2+,3+)	-1.24 (3)	≈ 16 S		$\alpha \approx 84.00; \epsilon \approx 16.00; \alpha \approx$			
		206m	(10_{-})	-0.71 (3)	0.7 ± 0.1 s		$UT 95: \alpha 5$			
		20011	9/2-	-2.84 (5)	14.8 ± 0.1 s		$\alpha 95. \epsilon 5$			
		208	7+	-2 67 (5)	591 ± 0.13		$\alpha 89: \epsilon 11$			
		200	9/2-	-3 769 (15)	50.5 ± 0.7 s		α 89: ϵ 11			
		210	6+	-3 332 (15)	3.18 ± 0.06 m		α 71: ϵ 29			
		210	9/2-	-4 14 (12)	3.10 ± 0.02 m		α 87: ϵ 13			
		212	5+	-3.516 (9)	20.0 ± 0.6 m		ϵ 57: α 43			
		213	9/2-	-3.553 (5)	34.82 ± 0.14 s		α 99.44: ϵ 0.56			
		214	(1-)	-0.959 (9)	$5.0 \pm 0.2 \text{ ms}$		α 100			
		214m	(8-)	-0.837 (9)	$3.35\pm0.05~\mathrm{ms}$		α 100			
		218	1-	7.058 (5)	$1.0\pm0.6~\mathrm{ms}$		α 100			
		218m	0	7.144 (5)	$22.0\pm0.5~\mathrm{ms}$		$\alpha < 100.00; IT$			
		219	9/2-	8.618 (7)	$20 \pm 2 \text{ ms}$		$\alpha 100$			
		220	1+	11.48 (4)	$27.4\pm0.3~\mathrm{s}$		α 99.65; β^{-} 0.35			
		221	5/2-	13.278 (5)	$286.1\pm1~{\rm s}$		$\alpha \ 100; \beta^- < 0.10$			
		222	2-	16.349 (21)	14.2 ± 0.3 m		β^- 100			
		223	3/2(-)	18.384 (24)	$22.00\pm0.07~\text{m}$		β^- 99.99; α 0.006			
		224	1-	21.65 (5)	$3.33\pm0.1~\text{m}$		β^- 100			
		225	3/2-	23.82 (3)	$3.95\pm0.14~\text{m}$		β^- 100			
		226	1-	27.37 (10)	$49\pm1s$		β^- 100			
		227	1/2+	29.65 (10)	$2.47\pm0.03~\text{m}$		eta^- 100			
		228	2-	33.29 (20)	$38\pm1~{ m s}$		$\beta^- \le 100.00$			
		229	(1/2+)	35.82 (4)	$50.2\pm2~\mathrm{s}$		eta^- 100			
		230	0	39.5 (3)	$19.1\pm0.5~s$		β^- 100			

	Table 10.1 – Continued from previous page									
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode			
		231	(1/2+)	42.3 (3)	$17.6\pm0.6~{\rm s}$		β^- 100			
		232	(5)	46.1 (21)	$5.5\pm0.6~{ m s}$		eta^- 100			
88	Ra	201	(13/2+)	11.84 (12)	1.6 +7.7-0.7 ms		$lpha$ 100; ϵ			
		202	0+	9.09 (24)	16 +30-7 ms		lpha 100			
		203	(3/2-)	8.66 (8)	31 +17-9 ms		lpha 100; $lpha$ 100			
		204	0+	6.056 (15)	57 +11-5 ms		lpha 100			
		205	(3/2-)	5.84 (7)	210 +60-40 ms		$\alpha \leq 100.00; \epsilon; \alpha \leq 100.00; \epsilon$			
		206	0+	3.565 (18)	$0.24\pm0.02~s$		α 100			
		207	(3/2- ,5/2-)	3.54 (6)	1.35 +0.22-0.13 s		$\alpha \approx$ 86.00; $\epsilon \approx$ 14.00			
		207m	(13/2+)	4.09 (6)	$59\pm4~\mathrm{ms}$		$IT \ge$ 85.00; $\alpha \le$ 15.00			
		208	0+	1.714 (15)	$1.3\pm0.2~{ m s}$		α 95; ϵ 5			
		209	5/2-	1.85 (5)	$4.6\pm0.2~{ m s}$		$lpha pprox$ 90.00; $\epsilon pprox$ 10.00			
		210	0+	0.459 (15)	$3.7\pm0.2~{ m s}$		$lpha pprox$ 96.00; $\epsilon pprox$ 4.00			
		211	5/2(-)	0.832 (8)	$13\pm2\mathrm{s}$		$\epsilon <$ 7.00; $\alpha >$ 93.00			
		212	0+	-0.204 (11)	$13.0\pm0.2~\mathrm{s}$		$lpha pprox 85.00; \epsilon pprox 15.00$			
		213	1/2-	0.358 (20)	$2.73\pm0.05~m$		$lpha$ 80; ϵ 20			
		213m	(17/2-)	2.128 (20)	$2.20\pm0.05~ms$		IT pprox 99.40; $lpha pprox$ 0.60			
		214	0+	0.096 (5)	$2.46\pm0.03~{\rm s}$		$lpha$ 99.94; ϵ 0.06			
		215	(9/2+)	2.533 (8)	$1.55\pm0.07~\mathrm{ms}$		lpha 100			
		219	(7/2)+	9.393 (8)	$10 \pm 3 \text{ ms}$		lpha 100			
		220	0+	10.272 (9)	$18\pm2~\mathrm{ms}$		lpha 100			
		221	5/2+	12.963 (5)	$28\pm2\mathrm{s}$		$lpha$ 100; ^{14}C 1e-12			
		222	0+	14.32 (5)	$38.0\pm0.5~\mathrm{s}$		$lpha$ 100; ^{14}C 3e-08			
		223	3/2+	17.235 (3)	$11.43 \pm 0.05 \text{ d}$		^{14}C 8.9e-08; $lpha$ 100			
		224	0+	18.8213 (22)	$3.6319 \pm 0.0023 \text{ d}$		$lpha$ 100; ^{14}C 4e-09			
		225	1/2+	21.995 (3)	14.9 ± 0.2 d		eta^- 100			
		226	0+	23.6686 (23)	$1600\pm7~{ m y}$		$lpha$ 100; ^{14}C 3.2e-09			
		227	3/2+	27.1785 (23)	42.2 ± 0.5 m		eta^- 100			
		228	0+	28.946 (3)	$5.75\pm0.03~\mathrm{y}$		eta^- 100			
		229	5/2+	32.555 (15)	4.0 ± 0.2 m		β^{-}			
		230	0+	34.516 (10)	$93 \pm 2 \text{ m}$		eta^- 100			
		231	(5/2+)	38.226 (20)	$104.1\pm0.8~{\rm s}$		eta^- 100			
		232	0+	40.498 (12)	4.2 ± 0.8 m		eta^- 100			
		233	0	44.6 (4)	$30\pm5~{ m s}$		eta^- 100			
		234	0+	47.2 (5)	$30\pm10~{ m s}$		eta^- 100			
89	Ac	206	(3+)	13.53 (5)	22 +9-5 ms		lpha 100; $lpha$ 100			
		207	(9/2-)	11.15 (5)	27 +11-6 ms		lpha 100			
		208	(3+)	10.76 (6)	95 +24-16 ms		$\alpha \approx$ 99.00; $\epsilon \approx 1.00$			
		208m	(10-)	11.27 (6)	25 +9-5 ms		$\epsilon pprox 10.00$; $lpha pprox 90.00$			
		209	(9/2-)	8.84 (5)	$0.10\pm0.05~{ m s}$		$\alpha \approx$ 99.00; $\epsilon \approx 1.00$			
		210	0	8.79 (6)	$0.35\pm0.05~{ m s}$		$lpha$ 91; $\epsilon \approx$ 9.00			
		211	0	7.2 (7)	$0.21\pm0.03~{ m s}$		lpha 100			
		212	0	7.27 (7)	$0.93\pm0.05~{ m s}$		$lpha \approx$ 57.00; $\epsilon \approx$ 43.00			
		213	0	6.16 (5)	$738 \pm 16 \text{ ms}$		$lpha \leq 100.00$			
		214	(5+)	6.445 (15)	$8.2\pm0.2~{ m s}$		$lpha \geq$ 89.00; $\epsilon \leq$ 11.00			
		215	9/2-	6.031 (12)	$0.17\pm0.01~{ m s}$		$lpha$ 99.91; ϵ 0.09			
		220	(3-)	13.743 (6)	$26.4\pm0.2~\mathrm{ms}$		$lpha$ 100; ϵ 0.0005			
		221	(3/2-)	14.52 (5)	$52\pm2~\mathrm{ms}$		lpha 100			
		222	1-	16.621 (5)	$5.0\pm0.5~{ m s}$		$lpha$ 99; ϵ 1; $lpha \ge$ 88.00; $IT \le$ 10.00; $\epsilon \ge$ 0.70			
		223	(5/2-)	17.826 (7)	$2.10\pm0.05~\text{m}$		α 99; ϵ 1			
		224	0-	20.232 (4)	$2.78 \pm 0.17 \text{ h}$		ϵ 90.9; α 9.1; $\beta^- < 1.60$			
		-					Continued on next page			

	Table 10.1 – Continued from previous page									
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode			
		225	(3/2-)	21.638 (5)	$10.0 \pm 0.1 \text{ d}$		$lpha$ 100; ^{14}C 4e-12			
		226	(1)	24.31 (3)	$29.37\pm0.12~\mathrm{h}$		eta^- 83; ϵ 17; $lpha$ 0.006			
		227	3/2-	25.8512 (24)	$21.772 \pm 0.003 \text{ y}$		eta^- 98.62; $lpha$ 1.38			
		228	3+	28.9 (3)	$6.15\pm0.02~\mathrm{h}$		eta^- 100			
		229	(3/2+)	30.75 (3)	62.7 ± 0.5 m		eta^- 100			
		230	(1+)	33.8 (3)	$122\pm3~{ m s}$		β^- 100; β^-SF 1.2e-06			
		231	(1/2+)	35.92 (10)	$7.5\pm0.1~\mathrm{m}$		eta^- 100			
		232	(1+)	39.15 (10)	$119\pm5\mathrm{s}$		eta^- 100			
		233	(1/2+)	41.48 (10)	$145\pm10~{ m s}$		eta^- 100			
		234	0	45.05 (20)	$44\pm7~ m s$		eta^- 100			
		235	0	47.6 (3)	$60 \pm 4 \mathrm{~s}$		eta^- 100			
90	Th	208	0+	16.68 (3)	1.7 +1.7-0.6 ms		lpha 100			
		209	(5/2-)	16.54 (9)	2.5 +1.7-0.7 ms		α			
		210	0+	14.059 (19)	$16\pm4~\mathrm{ms}$		$lpha$ 99; $\epsilon pprox 1.00$			
		211	0	13.91 (7)	0.04 +0.03-0.01 s		α			
		212	0+	12.097 (16)	$31.7 \pm 1.3 \text{ ms}$		$lpha$ 100; $\epsilon pprox 0.30$			
		213	0	12.12 (7)	$144\pm21~\mathrm{ms}$		$lpha \leq 100.00$			
		214	0+	10.711 (16)	$87 \pm 10 \text{ ms}$		lpha 100			
		215	(1/2-)	10.922 (9)	$1.2\pm0.2~{ m s}$		lpha 100			
		216	0+	10.294 (12)	$26.0 \pm 0.2 \text{ ms}$		$lpha$ 100; $\epsilon pprox 0.01$			
		221	(7/2+)	16.937 (9)	$1.68 \pm 0.06 \text{ ms}$		α 100			
		222	0+	17.202 (12)	2.8 ± 0.3 ms		α 100			
		223	(5/2)+	19.385 (9)	$0.60 \pm 0.02 \text{ s}$		α 100			
		224	0+	19.995 (11)	$0.81 \pm 0.1 \text{ s}$		α 100			
		225	(3/2+)	22.309 (5)	8.75 ± 0.04 m		$\alpha \approx 90.00; \epsilon \approx 10.00$			
		226	0+	23.196 (5)	$30.57 \pm 0.1 \text{ m}$		$\alpha 100$			
		227	1/2+	25.806 (3)	$18.68 \pm 0.09 \text{ d}$		$\alpha 100$			
		228	0+	26.7663 (22)	$1.9116 \pm 0.0016 \text{ y}$		$\alpha 100; {}^{20}O 1e-11$			
		229	5/2+	29.588 (3)	$7932 \pm 28 \text{ y}$		α 100			
		229m	(3/2+)	29.588 (3)	$2 \pm 1 \text{ m}$		II (
		230	0+	30.8633 (18)	$7.54E+4 \pm 0.03E+4 \text{ y}$		α 100; ²¹ Ne 6e-11; SF \leq 4E-12			
		231	5/2+	33.8166 (18)	$25.52\pm0.01~\mathrm{h}$		eta^- 100; $lpha pprox$ 4E-11			
		232	0+	35.4526 (22)	$1.40E10 \pm 0.01E10$ y	100%	lpha 100; SF 1.1e-09			
		233	1/2+	38.7376 (22)	$21.83\pm0.04~\mathrm{m}$		eta^- 100			
		234	0+	40.615 (4)	$24.10 \pm 0.03 \text{ d}$		eta^- 100			
		235	(1/2+)	44.26 (5)	7.2 ± 0.1 m		eta^- 100			
		236	0+	46.45 (20)	37.3 ± 1.5 m		eta^- 100			
		237	(5/2+)	50.2 (4)	4.7 ± 0.6 m		eta^- 100			
	_	238	0+	52.6 (3)	9.4 ± 2 m		eta^- 100			
91	Pa	212	0	21.61 (7)	5.1 +6.1-1.9 ms		α 100			
		213	0	19.66 (7)	5.3 +4-1.6 ms		α 100			
		214	0	19.49 (8)	$17 \pm 3 \text{ ms}$		$\alpha \leq 100.00$			
		215	0	17.87 (9)	$14 \pm 2 \text{ ms}$		α 100			
		216	0	17.8 (7)	0.15 +0.06-0.04 s		$\alpha \approx 98.00; \epsilon \approx 2.00$			
		217	0	17.07 (5)	$3.6 \pm 0.8 \text{ ms}$		$\alpha 100$			
		217m	0	18.92 (5)	$1.2 \pm 0.2 \text{ ms}$		α 73; 11 27			
		222	U	22.12 (7)	$2.9 \pm 0.6 - 0.4 \text{ ms}$		α 100			
		223	U	22.32 (7)	$5.1 \pm 0.6 \text{ ms}$		α 100			
		224	0	23.861(8)	0.85 ± 0.02 s		α 100			
		225	0	24.34(7)	$1.7 \pm 0.2 \text{ s}$		α 100 \sim 74 \sim 26			
		226 227	U (F (2)	20.032 (11)	$1.0 \pm 0.2 \text{ m}$		α /4; ϵ 26			
		<i>LLI</i>	(3/2-)	20.831 (7)	38.3 ± 0.3 m		$\frac{\alpha 85; \epsilon 15}{Continued on the second $			
							Continuea on next page			

	Table 10.1 – Continued from previous page									
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode			
		228	3+	28.921 (4)	22.4 ± 1 h		α 1.85; ϵ 98.15			
		229	(5/2+)	29.898 (3)	$1.50\pm0.05~\mathrm{d}$		ϵ 99.52; α 0.48			
		230	(2-)	32.174 (3)	$17.4 \pm 0.5 \text{ d}$		ϵ 92.2; eta^- 7.8; $lpha$ 0.0032			
		231	3/2-	33.4259 (22)	$3.276E+4 \pm 0.011E+4 \text{ y}$		α 100; $SF \leq$ 2E-11			
		232	(2-)	35.942 (8)	1.32 ± 0.02 d		eta^- 100; ϵ			
		233	3/2-	37.4915 (21)	$26.975 \pm 0.013 \text{ d}$		β^- 100			
		234	4+	40.342 (5)	$6.70\pm0.05~\mathrm{h}$		β^- 100			
		234m	(0-)	40.416 (5)	$1.159\pm0.011~\mathrm{m}$		eta^- 99.84; IT 0.16			
		235	(3/2-)	42.33 (5)	$24.44\pm0.11~\text{m}$		eta^- 100			
		236	1(-)	45.35 (20)	$9.1\pm0.1~{ m m}$		eta^- 100			
		237	(1/2+)	47.64 (10)	8.7 ± 0.2 m		eta^- 100			
		238	(3-)	50.77 (6)	$2.27\pm0.09~\mathrm{m}$		eta^- 100			
		239	(3/2)	53.34 (20)	$1.8\pm0.5~{ m h}$		β^- 100			
92	U	217	0	22.71 (9)	16 +21-6 ms		$lpha \leq 100.00$			
		225	0	27.376 (12)	$95\pm15~\mathrm{ms}$		lpha 100			
		226	0+	27.328 (13)	$0.35\pm0.15~{ m s}$		lpha 100			
		227	(3/2+)	29.021 (17)	1.1 ± 0.1 m		lpha 100			
		228	0+	29.224 (15)	9.1 ± 0.2 m		$lpha >$ 95.00; $\epsilon <$ 5.00			
		229	(3/2+)	31.21 (6)	$58 \pm 3 \text{ m}$		$\epsilon pprox 80.00; lpha pprox 20.00$			
		230	0+	31.614 (5)	20.8 ± 0 d		$lpha$ 100; SF < 1E-10; ^{22}Ne 5e-12			
		231	(5/2-)	33.808 (3)	$4.2\pm0.1~\mathrm{d}$		ϵ 100; $lpha pprox$ 4.0E-3			
		232	0+	34.6048 (22)	$68.9\pm0.4~\mathrm{y}$		lpha 100; SF 3e-12			
		233	5/2+	36.921 (3)	$1.592E+5 \pm 0.002E+5 \text{ y}$		$lpha$ 100; $^{24}_{\circ\circ}Ne$ 9e-10; $SF <$			
							6E-11; $^{28}Mg < 1$.E-13			
		234	0+	38.148 (18)	$2.455E+5 \pm 0.006E+5 \text{ y}$	$0.0054\% \pm 0.0005\%$	Ne 9e-12; α 100; SF 1.6e- 09; Mg 1e-11			
		235	7/2-	40.9218 (18)	$7.04E+8 \pm 0.01E+8$ y	$0.7204\%\pm 0.0006\%$	$\begin{array}{ll} \alpha & 100; & SF & \text{7e-09}; \\ & & ^{28}Mg & \text{8e-10}; & Ne & \approx \\ & & \text{8 E-10} \end{array}$			
		235m	1/2+	40 9219 (18)	$\approx 26 \text{ m}$		UT 100			
		236	0+	42.4476 (18)	$2.342E7 \pm 0.004E7 v$		α 100: SF 9.4e-08			
		237	1/2+	45.3932 (19)	$6.75 \pm 0.01 \text{ d}$		β^{-} 100			
		238	0+	47.31 (19)	$4.468E9 \pm 0.003E9 v$	$99.2742\% \pm 0.001\%$	α 100: SF 5.5e-05			
		239	5/2+	50.575 (19)	23.45 ± 0.02 m	· · · · · · · · · · · · · · · · · · ·	β^{-} 100			
		240	0+	52.716 (5)	$14.1\pm0.1~{ m h}$		β^- 100			
		242	0+	58.62 (20)	$16.8\pm0.5~\mathrm{m}$		β^- 100			
93	Np	226	0	32.74 (9)	$35\pm10~\mathrm{ms}$		α 100			
	I	227	0	32.56 (7)	$0.51\pm0.06~{ m s}$		α 100			
		228	0	33.59 (5)	$61.4\pm1.4~ m s$		ϵ 60; α 40			
		229	0	33.78 (9)	4.0 ± 0.2 m		α 68; ϵ 32			
		230	0	35.24 (5)	4.6 ± 0.3 m		$\epsilon < 97.00; \alpha > 3.00$			
		231	(5/2)	35.62 (5)	48.8 ± 0.2 m		ϵ 98; α 2			
		232	(4+)	37.35 (10)	14.7 ± 0.3 m		ϵ 100; α 0.0002			
		233	(5/2+)	37.95 (5)	$36.2\pm0.1~\mathrm{m}$		ϵ 100; α < 1.0E-3			
		234	(0+)	39.958 (9)	$4.4\pm0.1~ m{d}$		ε 100 <u>–</u>			
		235	$\frac{1}{5/2+}$	41.0458 (20)	$396.1 \pm 1.2 \text{ d}$		ϵ 100; α 0.0026			
		236	(6-)	43.37 (5)	$153\text{E+3}\pm5\text{E+3}\text{ y}$		ϵ 86.3; β^- 13.5; α 0.16; β^- 50; ϵ 50			
		237	5/2+	44.8746 (18)	$2.144\text{E+6} \pm 0.007\text{E+6} \text{ v}$		α 100; SF < 2E-10			
		238	2+	47.4576 (18)	$2.117 \pm 0.002 \text{ d}$		$\beta^- 100$			
		239	5/2+	49.3137 (21)	$2.356 \pm 0.003 \text{ d}$		β^- 100			
		240	(5+)	52.316 (15)	$61.9\pm0.2~\text{m}$		β^{-} 100; β^{-} 99.88; <i>IT</i> 0.12			
		241	5/2+	54.26 (7)	$13.9\pm0.2~\text{m}$		β^- 100			
							Continued on next page			

	Table 10.1 – Continued from previous page									
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	${f T_{1/2}}, {f \Gamma}$	Abundance	Decay Mode			
		242	(1+)	57.42 (20)	2.2 ± 0.2 m		eta^- 100; eta^- 100			
		243	(5/2-)	59.88 (3)	$1.85\pm0.15~\mathrm{m}$		eta^- 100			
		244	(7-)	63.2 (3)	2.29 ± 0.16 m		eta^- 100			
94	Pu	228	0+	36.08 (3)	1.1 +2-0.5 s		lpha 100			
		229	(3/2+)	37.39 (5)	67 +41-19 s		ϵ 50; α 50; SF < 7.00			
		230	0+	36.933 (15)	$102 \pm 10 \text{ s}$		$\alpha \leq 100.00$			
		231	(3/2+)	38.28 (3)	8.6 ± 0.5 m		$\epsilon \leq$ 99.80; $lpha > 0.20$			
		232	0+	38.365 (18)	33.8 ± 0.7 m		ϵ 90; α 10			
		233	0	40.05 (5)	20.9 ± 0.4 m		ϵ 99.88; α 0.12			
		234	0+	40.349 (7)	8.8 ± 0.1 h		$\alpha \approx 6.00; \epsilon \approx 94.00$			
		235	(5/2+)	42.184 (21)	25.3 ± 0.5 m		ϵ 100; α 0.0028			
		236	0+ 7/2	42.8968 (22)	2.858 ± 0.008 y		α 100; SF 1.9e-07			
		237	1/2-	45.0946 (22)	45.64 ± 0.04 d		ϵ 100; α 0.0042			
		23/m	1/2+	45.2406 (22)	0.18 ± 0.028					
		238	0+ 1 /2 -	40.1001(18)	$87.7 \pm 0.1 \text{ y}$		α 100; SF 1.9e-07			
		239	1/2+	40.3912(10) 50 1283(18)	$24110 \pm 30 \text{ y}$ 6561 $\pm 7 \text{ y}$		$SF = 5e-10; \alpha = 100$			
		240	$5/2 \pm$	52 9581 (18)	$14325 \pm 0.006 \text{ y}$		α^{-} 100, SF 5.78-00			
		271	5/21	52.7501 (10)	14.020 ± 0.000 y		2F-14			
		242	0+	54.7196 (19)	$3.75E+5 \pm 0.02E+5 v$		$\alpha 100: SF 0.00055$			
		243	7/2+	57.757 (3)	4.956 ± 0.003 h		β^- 100			
		244	0+	59.807 (5)	$8.00E$ +7 \pm 0.09E+7 y		SF 0.12; $lpha$ 99.88			
		245	(9/2-)	63.179 (14)	10.5 ± 0.1 h		β^- 100			
		246	0+	65.396 (15)	$10.84\pm0.02~\mathrm{d}$		eta^- 100			
		247	0	69.11 (20)	$2.27\pm0.23~\mathrm{d}$		eta^- 100			
95	Am	230	0	()	pprox 17 s		$\epsilon \ 100$			
		232	0	43.4 (3)	$79\pm2\mathrm{s}$		$\epsilon pprox$ 97.00; $lpha pprox$ 3.00			
		233 0		43.17 (10)	3.2 ± 0.8 m		$lpha >$ 3.00; ϵ			
		234	0	44.53 (21)	2.32 ± 0.08 m		ϵ 100; α			
		235	5/2-	44.63 (5)	10.3 ± 0.6 m		ϵ 99.6; α 0.4			
		236	5-	46.04 (11)	$3.6 \pm 0.2 \text{ m}$		α ; ϵ ; α ; ϵ			
		237	5/2(-)	46.57 (6)	$73.6 \pm 0.8 \text{ m}$		ϵ 99.97; α 0.03			
		238	1+	48.42 (5)	$98 \pm 2 \text{ m}$		$\alpha 0.0001; \epsilon 100$			
		239	(5/2)-	49.3931 (24)	11.9 ± 0.1 h		ϵ 99.99; α 0.01			
		240	(3-) E / 2	51.513(14)	50.8 ± 0.3 h		ϵ 100; α 0.00019			
		241	5/2- 1	52.9373 (18) EE 471 (18)	432.6 ± 0.6 y		α 100; SF 4e-10			
		242 242m	1- 5-	55 5196 (18)	10.02 ± 0.02 II 141 ± 2 y		β 02.7, ϵ 17.3 IT 99.55: α 0.45: SE <			
		242111	5-	55.5190 (10)	141 ± 2 y		4 7F-9			
		242m2	2(2+.3-)	57.671 (18)	$14.0 \pm 1 \text{ ms}$		SF 100: $IT : \alpha < 5.0E-3$			
		243	5/2-	57.1774 (23)	7370 ± 40 v		α 100: SF 3.7e-09			
		244	(6-)	59.8823 (21)	10.1 ± 0.1 h		β^{-} 100; $SF < 100.00$			
		244m	1+	59.9684 (21)	$26 \pm 1 \text{ m}$		$\epsilon 0.04; \beta^- 99.96$			
		245	(5/2)+	61.901 (3)	$2.05\pm0.01~\mathrm{h}$		β^- 100			
		246	(7-)	64.996 (18)	39 ± 3 m		eta^- 100; eta^- 100; IT $<$			
							0.02			
		247	(5/2)	67.16 (10)	23.0 ± 1.3 m		eta^- 100			
	_	248	0	70.56 (20)	$\approx 10 \text{ m}$		β^- 100			
96	Cm	233	(3/2+)	47.29 (7)	23 +13-6 s		ϵ 80; α 20			
		234	0+	46.723 (18)	51 ± 12 s		$SF \approx 40.00; \ \epsilon \approx 20.00;$ $\alpha \approx 40.00$			
		238	0+	49,444 (12)	2.4 ± 0.1 h		$\alpha \sim 40.00$ $\epsilon > 90.00; \alpha < 10.00$			
		239	(7/2-)	51.15 (5)	$\approx 2.9 \text{ h}$		$\epsilon 100; \alpha < 0.10$			
			、· /	× /			Continued on next page			

	Table 10.1 – Continued from previous page								
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode		
		240	0+	51.7195 (23)	$27 \pm 1 \text{ d}$		<i>SF</i> 3.9e-06; $\alpha > 99.50$;		
							$\epsilon < 0.50$		
		241	1/2+	53.7047 (22)	32.8 ± 0.2 d		ϵ 99; α 1		
		242	0+	54.8066 (18)	$162.8 \pm 0.2 \text{ d}$		$ \alpha $ 100; SF 6.2e-06; ${}^{34}Si$ 1e-14		
		243	5/2+	57.1849 (21)	$29.1\pm0.1 \text{ y}$		ϵ 0.29; SF 5.3e-09; α 99.71		
		244	0+	58 455 (18)	18.1 ± 0.1 v		α 100: SF 0 00014		
		244m	6+	59 4952 (18)	$34 \pm 2 \text{ ms}$		IT 100		
		245	7/2+	61.006 (21)	8423 ± 74 v		α 100: SF 6.1e-07		
		246	0+	62.6197 (21)	4706 ± 40 v		$\alpha 99 97: SF 0.03$		
		247	9/2-	65.535 (4)	$1.56E+7 \pm 0.05E+7 v$		α 100		
		248	0+	67.394 (5)	$3.48E+5 \pm 0.06E+5$ v		SF 8.39: α 91.61		
		249	1/2+	70.751 (5)	$64.15 \pm 0.03 \text{ m}$		β^{-} 100		
		250	0+	72.99 (11)	\approx 8.3E+3 v		$SF \approx 74.00; \ \alpha \approx 18.00;$		
			-				$\beta^- \approx 8.00$		
		251	(1/2+)	76.65 (23)	16.8 ± 0.2 m		β^- 100		
		252	0+	79.1 (3)	< 2 d				
97	Bk	234	0	0	1.4E2 +1.4E2-0.5E2 s		$lpha \geq$ 80.00; $\epsilon \leq$ 20.00		
		237	0	53.1 (22)	$pprox 1 \mathrm{m}$		ϵ ?; α ?		
		238	0	54.3 (3)	$144\pm5~{ m s}$		ϵ 100; ϵSF 0.048		
		240	0	55.66 (15)	$4.8\pm0.8~\mathrm{m}$		ϵ ; ϵSF 0.002		
		241	(7/2+)	56.11 (20)	4.6 ± 0.4 m		α ; ϵ		
		242	0	57.74 (20)	7.0 ± 1.3 m		$\epsilon \leq 100.00$		
		243	(3/2-)	58.692 (5)	$4.5\pm0.2~\mathrm{h}$		$\epsilon pprox$ 99.85; $lpha pprox$ 0.15		
		244	(4-)	60.717 (14)	$4.35\pm0.15~\mathrm{h}$		ϵ 99.99; α 0.006		
		245	3/2-	61.8168 (23)	$4.95\pm0.03~\mathrm{d}$		ϵ 99.88; α 0.12		
		246	2(-)	63.97 (6)	$1.80\pm0.02~\mathrm{d}$		$\epsilon \ 100$		
		247	(3/2-)	65.492 (6)	$1380\pm250~{ m y}$		$lpha \leq 100.00$		
		248	0	68.08 (7)	> 9 y		$lpha$; eta^- 70; ϵ 30		
		249	7/2+	69.851 (3)	$330 \pm 4 d$		eta^- 100; $lpha$ 0.0014; SF 4.7e-08		
		250	2-	72.953 (4)	$3.212\pm0.005~h$		eta^- 100		
		251	(3/2-)	75.23 (11)	55.6 ± 1.1 m		eta^- 100		
98	Cf	237	(3/2+)	57.94 (9)	$0.8\pm0.2~{ m s}$		SF 70; $lpha$ 30		
		238	0+	57.2 (4)	$21\pm2~\mathrm{ms}$		SF 100		
		239	0	58.14 (21)	39 +37-12 s		ϵ ; $lpha$		
		240	0+	58.01 (3)	$64 \pm 9 \mathrm{~s}$		lpha 98.5; SF 1.5		
		241	(7/2-)	59.33 (17)	3.78 ± 0.7 m		$\epsilon \approx$ 75.00; $\alpha \approx$ 25.00		
		242	0+	59.386 (13)	3.7 ± 0.5 m		ϵ 20; $SF \leq$ 0.01; $lpha$ 80		
		243	(1/2+)	60.9 (11)	10.7 ± 0.5 m		$\epsilon pprox 86.00; \alpha pprox 14.00$		
		244	0+	61.473 (3)	19.4 ± 0.6 m		$\alpha \leq 100.00$		
		245	1/2+	63.388 (3)	45.0 ± 1.5 m		ϵ 64.7; α 35.3		
		246	0+	64.0931 (21)	35.7 ± 0.5 h		$lpha$ 100; ϵ < 4.0E-3; SF 0.00024		
		247	(7/2+)	66.104 (15)	3.11 ± 0.03 h		ϵ 99.97; α 0.04		
		248	0+	67.241 (5)	$333.5 \pm 2.8 \text{ d}$		lpha 100; SF 0.0029		
		249	9/2-	69.7269 (22)	351 ± 2 y		lpha 100; SF 5e-07		
		250	0+	71.173 (21)	$13.08 \pm 0.09 \text{ y}$		α 99.92; SF 0.08		
		251	1/2+	74.137 (4)	898 ± 44 y		lpha 100; SF		
		252	0+	76.035 (5)	2.645 ± 0.008 y		α 96.91; SF 3.09		
		253	(7/2+)	79.302 (6)	$17.81 \pm 0.08 \mathrm{d}$		β^- 99.69; α 0.31		
		254	0+	81.342 (12)	$60.5 \pm 0.2 \text{ d}$		SF 99.69; α 0.31		
		255	(7/2+)	84.81 (20)	85 ± 18 m		$\beta^- 100$		

	Table 10.1 – Continued from previous page								
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode		
		256	0+	87 (3)	12.3 ± 1.2 m		<i>SF</i> 100; $\beta^- < 1.00$; $\alpha \approx$ 1.0E-6		
99	Es	241	0	63.84 (23)	8 +6-5 s		ϵ ; α		
		242	0	64.9 (3)	$17.8\pm1.6~\mathrm{s}$		α 57; ϵ 43		
		243	(7/2+)	64.75 (21)	$23 \pm 3 \mathrm{s}$		α 61; ϵ 39; $SF < 1.00$		
		244	0	66.02 (18)	$37 \pm 4 \mathrm{s}$		ϵ 96; α 4		
		245	(3/2-)	66.44 (20)	$1.1\pm0.1~{ m m}$		α 40; ϵ 60		
		246	0	67.9 (22)	$7.5\pm0.5~\mathrm{m}$		ϵ 90.1; α 9.9		
		247	(7/2+)	68.578 (19)	$4.55\pm0.26~\mathrm{m}$		$\epsilon \approx 93.00; \alpha \approx 7.00; \alpha$		
		248	(2-,0+)	70.3 (5)	27 ± 5 m		ϵ 99.7; $\alpha \approx 0.25$		
		249	7/2+	71.18 (3)	102.2 ± 0.6 m		ϵ 99.43; α 0.57		
		250	(6+)	73.23 (10)	$8.6\pm0.1~h$		$\epsilon >$ 97.00; $lpha <$ 3.00; $\epsilon \leq$ 100.00		
		251	(3/2-)	74.514 (6)	33 ± 1 h		ϵ 99.5; α 0.5		
		252	(5-)	77.3 (5)	$471.7 \pm 1.9 \text{ d}$		α 78: ϵ 22		
		253	$\frac{1}{7/2}$ +	79.015 (3)	$20.47 \pm 0.03 \text{ d}$		SF 8.7e-06; α 100		
		254	(7+)	81.993 (4)	$275.7\pm0.5~d$		$SF < 3.0$ E-6; α 100; β^{-} 0.00017		
		254m	2+	82.077 (4)	$39.3\pm0.2~\text{h}$		β^{-} 98; $IT < 3.00; \alpha 0.32; \epsilon 0.08; SF < 0.05$		
		255	(7/2+)	84.091 (11)	$39.8 \pm 1.2 \text{ d}$		β^{-} 92; α 8; SF 0.0041		
		256	(1+,0-)	87.19 (10)	25.4 ± 2.4 m		β^{-} 100; β^{-} 100		
		257	0	89.4 (4)	7.7 ± 0.2 d		eta^- ; SF		
100	Fm	243	(7/2+)	69.26 (22)	$231\pm9~ms$		$\epsilon < 10.00; \alpha 91; SF 9$		
		244	0+	68.98 (20)	$3.12\pm0.08\ ms$		SF > 97.00; ϵ < 2.00; α < 1.00		
		245	0	70.19 (20)	$4.2\pm1.3~\mathrm{s}$		$\alpha \leq 100.00$		
		246	0+	70.187 (15)	$1.54\pm0.04~{ m s}$		$lpha$ 93.2; SF 6.8; $\epsilon \leq 1.30$		
		247	(7/2+)	71.58 (12)	$31\pm1\mathrm{s}$		$lpha \ge$ 84.00; $\epsilon \le$ 16.00		
		247m	(1/2+)	71.63 (12)	$5.1\pm0.2~{ m s}$		lpha 84		
		248	0+	71.894 (9)	$36\pm2\mathrm{s}$		$lpha$ 93; ϵ 7; SF 0.1		
		249	(7/2+)	73.521 (6)	$2.6\pm0.7~\mathrm{m}$		ϵ 67; α 33		
		250	0+	74.074 (8)	30 ± 3 m		$lpha > 90.00; \ \epsilon < 10.00; SF 0.0069; IT 100$		
		251	(9/2-)	75.954 (15)	$5.30\pm0.08~h$		ϵ 98.2; α 1.8		
		252	0+	76.819 (6)	$25.39\pm0.04~h$		SF 0.0023; $lpha$ 100		
		253	(1/2)+	79.35 (3)	$3.00\pm0.12~\mathrm{d}$		ϵ 88; α 12		
		254	0+	80.905 (3)	$3.240\pm0.002~h$		lpha 99.94; SF 0.06		
		255	7/2+	83.802 (5)	$20.07\pm0.07~h$		lpha 100; SF 2.4e-05		
		256	0+	85.487 (7)	$157.6\pm1.3~\mathrm{m}$		SF 91.9; $lpha$ 8.1		
		257	(9/2+)	88.591 (6)	$100.5\pm0.2~\mathrm{d}$		lpha 99.79; SF 0.21		
		259	0	93.7 (3)	$1.5\pm0.3~{ m s}$		SF 100		
		260	0+	95.8 (5)	$pprox 4 \mathrm{ms}$		SF 100		
101	Md	245m	(7/2)	75.6 (3)	0.35 +0.23-0.16 s		ϵ ; α		
		246	0	76.2 (3)	$0.9\pm0.2~{ m s}$		$\alpha < 23.00; SF ?; \epsilon ?;$ $\alpha 100; \epsilon > 77.00$		
		247	(7/2-)	75.94 (21)	$1.2\pm0.1\mathrm{s}$		α 99.9; $SF < 0.10; \alpha$ 79; SF 21		
		248	0	77.14 (24)	13 +15-4 s		$lpha$ 58; ϵ 42		
		249	(7/2-)	77.32 (22)	$21.7\pm2~\mathrm{s}$		$lpha >$ 60.00; $\epsilon \leq$ 40.00; $lpha$?		
		250	0	78.6 (3)	25 +10-5 s		ϵ 93; α 7		
		251	(7/2-)	78.967 (19)	$4.3\pm0.6~\mathrm{m}$		ϵ 90; α 10		
		252	0	80.51 (13)	2.3 ± 0.8 m		$\epsilon \leq 100.00$		
		253	(7/2-)	81.18 (3)	6 +12-3 m		$\epsilon \stackrel{-}{\leq} 100.00; \alpha$		
				~ /			<i>Continued on next page</i>		

_			-	lable	10.1 – Continued from previ	ous page	
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$T_{1/2}, \Gamma$	Abundance	Decay Mode
		254	0	83.52 (10)	$28 \pm 8 \text{ m}$		$\epsilon \leq$ 100.00; $\epsilon \leq$ 100.00
		255	(7/2-)	84.844 (7)	27 ± 2 m		ϵ 92; α 8; $SF < 0.15$
		256	(1-)	87.61 (7)	$77 \pm 2 \text{ m}$		ϵ 90.8; α 9.2; SF < 3.00
		257	(7/2-)	88.998 (3)	5.52 ± 0.05 h		ϵ 85; α 15; $SF < 1.00$
		258	0	91.689 (5)	$51.5 \pm 0.3 \text{ d}$		$lpha$ 100; SF ; $\epsilon \geq$ 70.00; SF
		259	0	93.63 (20)	$96 \pm 3 \text{ m}$		SF 100; $lpha <$ 1.30
		260	0	96.6 (3)	31.8 ± 0.5 d		$SF \geq$ 42.00; $\alpha \leq$ 25.00;
			(- (-)				$\epsilon \leq$ 23.00; $eta^- \leq$ 10.00
102	No	251	(7/2+)	82.76 (11)	$0.80 \pm 0.01 \text{ s}$		$lpha$ 84; $SF < 0.30; \epsilon$
		251m	(1/2+)	82.87 (11)	1.02 ± 0.03 s		α 100
		252	0+	82.868 (9)	$2.47 \pm 0.02 \text{ s}$		$\epsilon < 1.10; \alpha$ 70.7; SF 29.3;
		050	(0, 10)	0.4.0(1.7)	1 (0 + 0.15		11 100.1
		253	(9/2-)	84.361 (7)	$1.62 \pm 0.15 \text{ m}$		$\alpha \approx 80.00; \epsilon$
		254	0+	84.725 (10)	51 ± 10 s		α 90; ϵ 10; SF 0.17; IT >
		255	1 / 2 .	96 907 (1E)	2 = 2 + 0.21 m		80.00
		255	1/2+	80.807 (13) 87 825 (8)	3.52 ± 0.21 m 2.01 ± 0.05 s		ϵ 70; α 50 SE 0.52; \approx 00.47
		250	(7/2)	07.023 (0) 90.251 (7)	2.91 ± 0.05 s		$SF 0.33; \alpha 99.47$
		257	(7/2+)	90.231(7) 91.48(20)	25 ± 58		$\alpha \leq 100.00; SF \leq 1.50$
		250	0+	91.40(20) 94.11(10)	$1.2 \pm 0.2 \text{ ms}$		$SF \leq 100.00$
		209	0	94.11(10) 95.61(20)	$50 \pm 5 \text{m}$		α 75; ϵ 25; $SF < 10.00$
		200	0+ 0+	95.01(20) 100 1 (4)	$\sim 5 \text{ ms}$		SF 100 SF 100
103	Ī٣	202	0+	100.1(4) 88.7(3)	$\sim 3 \text{ ms}$ 0.27 ±0.18-0.08 s		31^{-100}
105	LI	252	$(7/2_{-})$	88 67 (23)	$0.27 \pm 0.16 \pm 0.08$ s		$\alpha \sim 98.70$ SF ~ 1.30
		200	(772-)	00.07 (23)	0.37 +0.07-0.00 \$		$\alpha \sim 98.70, ST \sim 1.30,$ $\alpha 92. SF 8$
		254	0	89 9 (3)	$184 \pm 18s$		α 71 7: ϵ 28.3
		255	1/2-	89.947 (18)	31.1 ± 1.3 s		α 85: ϵ 15
		255m	7/2-	89.984 (18)	2.53 ± 0.13 s		$TT 60: \alpha 40$
		256	0	91.75 (8)	27 ± 3 s		α 85: ϵ 15: $SF < 0.03$
		257	0	92.61 (4)	$\approx 4 \text{ s}$		$\alpha < 100.00$
		258	0	94.85 (10)	$4.1\pm0.3~{ m s}$		$SF < 5.00; \alpha > 95.00$
		259	0	95.85 (7)	$6.2\pm0.3~\mathrm{s}$		α 78; SF 22
		260	0	98.27 (12)	$180\pm30~{ m s}$		$lpha$ 80; ϵ < 40.00; SF <
							10.00
		261	0	99.56 (20)	$39\pm12\ \mathrm{m}$		SF100
		262	0	101.96 (20)	$pprox 4 ext{ h}$		$SF <$ 10.00; ϵ ; $lpha$
104	Rf	255	(9/2-)	94.24 (12)	2.3 +0.8-0.5 s		α 52; SF 48; ϵ ? 1.00
		256	0+	94.218 (18)	$6.4\pm0.2~\mathrm{ms}$		SF 99.68; $lpha$ 0.32
		257	(1/2+)	95.868 (11)	$4.7\pm0.3~{ m s}$		α < 100.00; SF \leq 1.40;
							ϵ > 0.00; ϵ > 0.00; α <
							100.00; $SF \le 1.40$
		258	0+	96.34 (3)	14.7 +1.2-1 ms		<i>SF</i> 69; α 31
		259	0	98.36 (7)	$3.2\pm0.6~\mathrm{s}$		$lpha$ 92; SF 8; ϵ 15
		260	0+	99.15 (20)	$21 \pm 1 \text{ ms}$		$SF \leq$ 100.00; $lpha$?
		261	0	101.32 (4)	$1.9\pm0.4~{ m s}$		$\epsilon < 15.00; SF < 11.00;$
		2(2	0.	102 4 (2)	22 + 0.4		SF 73; α 27; α > 74.00
		262	0+	102.4(3)	2.3 ± 0.4 s		$SF \le 100.00; \alpha < 3.00$
105	٦L	263	0	104.84(18)	$10 \pm 2 \text{ m}$		SF 100; α
105	Db	200	0	99.7 (4) 100 5 (2)	$1.6 \pm 0.6 - 0.4 \text{ s}$		α 80; SF \approx 20.00
		236	U	100.5 (3)	$1.9\pm0.4~{ m S}$		$\alpha \approx 70.00; \ \epsilon \approx 30.00;$ SF \approx 0.02
		257	(9/2+)	100.3 (23)	1 82 +0 27-0 21 s		$\alpha 94: SF \approx 6.00: SF :$
			(2, 4)	100.0 (20)	1.02 10.27 0.210		α 100
							Continued on next page

				Table	10.1 – Continued from previou	us page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		258	0	101.8 (3)	4.2 +0.4-0.3 s		α 65; ϵ 35; SF < 1.00;
							$\epsilon \ 100$
		259	0	101.99 (5)	$0.51\pm0.16~{ m s}$		α
		260	0	103.36 (9)	$1.52\pm0.13~\mathrm{s}$		$lpha \geq$ 90.40; $SF \leq$ 9.60; $\epsilon <$
							2.50
		261	0	104.25 (11)	$1.8\pm0.4~{ m s}$		$\alpha \geq$ 82.00; $SF \leq$ 18.00
		262	0	106.28 (18)	$35\pm5~{ m s}$		lpha pprox 67.00; SF
		263	0	107.11 (17)	27 +10-7 s		SF 55; $lpha$ 41; ϵ 3
		267	0	114.2 (5)	73 ± 0 m		SF100
		268	0	117 (5)	32 +11-7 h		SF100
		270	0	122 (6)	23 ± 0 h		SF 100; $lpha$
106	Sg	258	0+	105.3 (4)	2.9 +1.3-0.7 ms		$SF \leq$ 100.00; $lpha$?
		259	(1/2+)	106.49 (12)	0.32 +0.08-0.06 s		lpha 96; SF 4; $lpha$ <100
		260	0+	106.544 (21)	$3.6\pm0.9~\mathrm{ms}$		lpha 50; SF 50; SF 71; $lpha$ 29
		261	0	108.007 (19)	$0.23\pm0.06~\mathrm{s}$		lpha 100; $SF <$ 1.00
		262	0+	108.37 (20)	6.9 +3.8-1.8 ms		$SF \ge$ 78.00; $\alpha \le$ 22.00
		263	0	110.19 (10)	$1.0\pm0.2~{ m s}$		lpha > 70.00; $SF <$ 30.00;
							IT ; α
		264	0+	110.8 (3)	37 +27-11 ms		SF 100; $lpha <$ 36.00
		265	0	112.81 (12)	16.2 +4.7-3.5 s		$\alpha \ge 65.00; SF \le 35.00;$
		266	0+	113.7 (3)	21 +20-12 s		$SF > 50.00; \alpha > 18.00$
		271	0	124.4 (6)	2.4 +4.3-1 m		$\alpha \approx 50.00; SF \approx 50.00$
107	Bh	260	0	113.3 (3)	35 +19-9 ms		$\alpha \leq 100.00$
		261	0	113.22 (23)	11.8 +3.9-2.4 ms		lpha 100
		262	0	114.5 (3)	$22\pm4~\mathrm{ms}$		lpha < 100.00; $lpha <$ 100.00
		264	0	115.75 (18)	0.44 +0.6-0.16 s		$lpha \leq 100.00$
		265	0	116.36 (23)	0.9 +0.7-0.3 s		lpha
		266	0	118.23 (20)	1.7 +8.2-0.8 s		lpha 100
		267	0	118.9 (3)	17 +14-6 s		lpha 100
		270	0	124.2 (4)	6E+1 +29E+1-3E+1 s		α
		272	0	128.6 (5)	10 +12-4 s		lpha 100
		274	0	133.3 (6)	0.9 +4.2-0.4 m		lpha 100; SF
108	Hs	265	0	121.17 (5)	$1.9\pm0.2~\mathrm{ms}$		$SF \leq$ 1.00; $lpha <$ 100.00
		266	0+	121.13 (20)	2.3 +1.3-0.6 ms		α 100; $SF < 1.40$
		267	(3/2+)	122.65 (10)	52 +13-8 ms		$\alpha \geq 80.00; SF < 20.00;$
		2(0	0.	100 0 (0)	0.4.10.00		α 100
		268	0+	122.8(3)	0.4 + 1.8 - 0.2 s		α 100 100
		269	0	124.61 (12)	$3.6 \pm 0.8 \pm 0.4$ s		α 100; α 100
		270	0+	125.1(3)	22 ± 0.8		α 100
100	3.44	2/5	0	136.3 (6)	$0.15 \pm 0.27 \pm 0.06$ s		α 100
109	NIt	266	0	128 (3)	1.7 + 1.8 - 1.6 ms		$\alpha \leq 100.00$
		268	0	128.91 (23)	21 + 8 - 5 ms		α 100
		270	0	130.84 (20)	$5.0 \pm 2.4 - 0.3 \text{ ms}$		α 100
		274	0	137.1 (4)	$0.44 \pm 0.81 - 0.17$ s		α 100; SF
		275	0	138.4(6)	$9.7 \pm 0 \text{ ms}$		α 100
		276	0	140.9 (5)	0.72 +0.87-0.25 \$		α 100
110	D .	278	0	145.1(6)	8 +3/-4 S		α 100; SF
110	Ds	270m	0	135.88 (21)	6.0 +8.2-2.2 ms		$\alpha > 70.00; TT \le 30.00$
		271	0	135.95 (10)	1.63 +0.44-0.29 ms		α 100; $\alpha > 0.00$; TT ?
		279	U	148.6 (6)	0.18 +0.05-0.03 s		$SF \approx 90.00; \alpha \approx 10.00$
111	ъ	281	U	152.4 (7)	20 +20-7 s		SF 85; α 15; SF 100
111	Kg	272	U	142.8 (3)	3.8 + 1.4 - 0.8 ms		α 100
		274	U	144.74 (21)	$6.4 \pm 0 \text{ ms}$		$\alpha 100$
		278	U	150.4 (4)	4.2 +/.6-1./ ms		α 100; SF

	Table 10.1 – Continued from previous page								
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode		
		279	0	151.3 (6)	0.17 +0.81-0.08 s		α 100		
		280	0	153.4 (5)	3.6 +4.3-1.3 s		lpha 100		
		281	0	154.6 (9)	26 +25-8 s		SF 100; $lpha$		
		282	0	156.7 (6)	0.5 +2.5-0.2 s		lpha 100; SF		
112	Cn	283	0	160.7 (6)	4.0 +1.3-0.7 s		$lpha$ \geq 90.00; SF \leq 10.00;		
							SF 50; $lpha$ 50		
		284	0	161.5 (8)	101 +41-22 ms		SF100		
		285	0	164.1 (7)	30 +30-10 s		lpha 100		
113	13	282	0	163.6 (4)	0.07 +0.13-0.03 s		lpha 100		
		283	0	164 (6)	$100\pm0~{ m ms}$		lpha 100		
		284	0	166 (5)	0.48 +0.58-0.17 s		lpha 100		
		285	0	166.9 (9)	5.5 +5-1.8 s		lpha 100; SF		
		286	0	168.9 (6)	20 +94-9 s		lpha 100; SF		
114	14	286	0+	171 (7)	0.16 +0.07-0.03 s		SFpprox 60.00; $lpha$ $pprox$ 40.00		
		287	0	173.2 (6)	0.51 +0.18-0.1 s		lpha 100		
		288	0+	174 (8)	0.52 +0.22-0.13 s		lpha 100		
		289	0	176.5 (7)	0.97 +0.97-0.32 s		lpha 100; $lpha$ 100		
115	15	287	0	177.2 (6)	$32 \pm 0 \text{ ms}$		lpha 100		
		288	0	179 (6)	$87\pm0~\mathrm{ms}$		α 100		
		289	0	179.8 (9)	0.22 +0.26-0.08 s		lpha 100; SF		
		290	0	181.6 (6)	16 +76-7 ms		lpha 100; SF		
116	16	290	0+	184.4 (7)	15 +26-6 ms		α 100		
		291	0	186.6 (6)	$6.3\pm0~\mathrm{ms}$		α 100		
		292	0+	187.2 (9)	18 +16-6 ms		α 100		
		293	0	189.6 (7)	53 +62-19 ms		lpha 100		
117	17	293	0	193.4 (9)	14 +11-4 ms		lpha 100; SF		
		294	0	195.1 (7)	0.08 +0.37-0.04 s		lpha 100		

Chapter 11

Properties of fissile nuclides

Fission-related properties for fissile nuclides and elements are listed in the following tables. For each nuclide the following properties are listed:

- Number of neutrons per fission (ν), MF=1, MT=452[†].
- Fission cross section evaluated at $E = 25.3 \text{ meV} (2200 \text{ m/s})^{\ddagger}$.
- Resonance resonance integral[‡].
- Components of energy release from fission, MF=1, MT=458:

 E_{FR} : Kinetic energy of fission products [MeV].

 E_{NP} : Kinetic energy of prompt fission neutrons [MeV].

 E_{ND} : Kinetic energy of delayed fission neutrons [MeV].

 E_{GP} : Total energy released by emission of prompt γ rays [MeV].

 E_{GD} : Total energy released by emission of prompt γ rays [MeV].

 E_B : Total energy released by delayed β emission [MeV].

 E_{NU} : Energy carried away by neutrinos [MeV].

 E_R : Total energy less energy carried away by neutrinos ($E_T - ENU$) [MeV].

 E_T : Total energy released in fission (equal to Q value) [MeV].

• Parameters for neutron-induced Watt fission spectrum*:

 $\phi(E) = C \exp(-E/A_1)) \sinh \sqrt{B_1 E}$

• Parameters for neutron-induced Maxwell fission spectrum*:

$$\phi(E) = C\sqrt{E}\exp(-E/C_1)$$

• Parameters for spontaneous Watt fission spectrum*:

$$\phi(E) = C \exp(-E/A_2) \sinh \sqrt{B_2 E}$$

Sources:

[†]ENDF/B VII (http://www-nds.iaea.org/ndspub/download-endf/).

[‡]Thermal Cross Sections & Resonance Integrals, from S.F. Mughabghab, Atlas of Neutron Resonances.

(http://www.nndc.bnl.gov/atlas/atlasvalues.html)

*X-5 Monte Carlo Team. MCNP-A General Monte Carlo N-Particle Transport Code, Version 5 - Vol I, App. H. 2003.

	$^{227}_{90}$ Th	$^{228}_{90}{ m Th}$	$^{229}_{90}{ m Th}$	$^{230}_{90}$ Th	$^{232}_{90}$ Th
ν	2.0647	2.02115	2.0872	-	2.1047
$\sigma_f(2200m/s)$ [b]	202 ± 13	< 0.3	30.8 ± 1.5	-	$5.2\text{e-}05\pm4\text{e-}05$
<i>RI</i> [b]	-	-	405 ± 75	965 ± 22	-
E_{FR} [MeV]	-	-	-	163.36 ± 4.37	160.39 ± 0.92
E_{NP} [MeV]	-	-	-	4.700 ± 0.376	4.41 ± 0.12
E_{ND} [MeV]	-	-	-	0.0005 ± 0.0005	0.0220 ± 0.0044
E_{GP} [MeV]	-	-	-	6 ± 2	7.1 ± 0.9
E_{GD} [MeV]	-	-	-	8.1526 ± 0.6522	8.2 ± 0.1
E_B [MeV]	-	-	-	8.3834 ± 0.7126	8.38 ± 0.10
E_{NU} [MeV]	-	-	-	11.27 ± 0.68	11.3 ± 1.1
E _R [MeV]	-	-	-	190.5965 ± 1.2288	188.47 ± 0.31
E_T [MeV]	-	-	-	201.8665 ± 1.0093	199.74 ± 0.28
A_1 [MeV]	-	-	-	-	1.0888
$B_1 [{ m MeV^-1}]$	-	-	-	-	1.6871
C_1 [MeV]	-	-	-	-	-
A_2 [MeV]	-	-	-	-	-
B_2 [MeV ⁻¹]	-	-	-	-	-

	$^{233}_{90}$ Th	$^{234}_{90}{ m Th}$	$^{231}_{91}$ Pa	$^{232}_{91}{ m Pa}$	$^{233}_{91}$ Pa
ν	2.0644	-	2.2441	2.2858	2.1608
$\sigma_f(2200m/s)$ [b]	15 ± 2	< 0.01	0.02 ± 0.001	1502 ± 28	< 0.1
<i>RI</i> [b]	-	-	-	1075 ± 22	3
E_{FR} [MeV]	-	-	-	-	-
E_{NP} [MeV]	-	-	-	-	-
E_{ND} [MeV]	-	-	-	-	-
E_{GP} [MeV]	-	-	-	-	-
E_{GD} [MeV]	-	-	-	-	-
E_B [MeV]	-	-	-	-	-
E_{NU} [MeV]	-	-	-	-	-
${ m E_R}$ [MeV]	-	-	-	-	-
E_T [MeV]	-	-	-	-	-
A_1 [MeV]	-	-	-	-	-
$B_1 [{ m MeV^-1}]$	-	-	-	-	-
C_1 [MeV]	-	-	-	-	1.3294
A_2 [MeV]	-	-	-	-	-
$B_2 [{ m MeV}^-1]$	-	-	-	-	-

	$^{232}_{92}{f U}$	$^{233}_{92}{f U}$	$^{234}_{92}\mathbf{U}$	$^{235}_{92}{f U}$	$^{236}_{92}{f U}$
ν	3.13	2.4968	2.3649	2.4367	2.3712
$\sigma_f(2200m/s)$ [b]	76.8 ± 4.8	529.1 ± 1.2	0.067 ± 0.014	582.6 ± 1.1	0.066 ± 0.013
<i>RI</i> [b]	365	775 ± 17	0.56	275 ± 5	4.1 ± 1
E_{FR} [MeV]	-	168.2 ± 0.5	167 ± 2	169.13 ± 0.49	168 ± 2
E_{NP} [MeV]	-	4.9 ± 0.1	4.85 ± 0.43	4.916 ± 0.070	4.70 ± 0.29
E_{ND} [MeV]	-	0.03100 ± 0.00465	0.005 ± 0.001	0.00740 ± 0.00111	0.010 ± 0.002
E_{GP} [MeV]	-	7.72 ± 0.52	7.5 ± 1.0	6.6 ± 0.5	7.3 ± 1.0
E_{GD} [MeV]	-	5.01 ± 0.06	6.13 ± 0.75	6.33 ± 0.05	7.42 ± 0.75
E_B [MeV]	-	5.16 ± 0.06	6.2 ± 0.5	6.50 ± 0.05	7.6 ± 0.5
E_{NU} [MeV]	-	6.93 ± 0.09	8.4 ± 1.1	8.75 ± 0.07	10.2 ± 1.1
${ m E_R}$ [MeV]	-	191.04 ± 0.23	191.84 ± 1.28	193.48 ± 0.15	194.49 ± 1.11
E_T [MeV]	-	197.97 ± 0.21	200.22 ± 0.65	202.23 ± 0.13	204.64 ± 0.12
A_1 [MeV]	-	0.977	-	0.988	-
B_1 [MeV ⁻¹]	-	2.546	-	2.249	-
C_1 [MeV]	-	-	1.2955	-	1.2955
A_2 [MeV]	-	-	-	-	-
B_2 [MeV ⁻¹]	-	-	-	-	-
	$^{237}_{92}$ U	$^{238}_{92}{f U}$	$^{239}_{92}{f U}$	$^{240}_{92}{f U}$	$^{241}_{92}{f U}$
----------------------------	-----------------	---------------------	--------------------	---------------------	--------------------
ν	2.43	2.492088	2.30626	2.492088	2.23426
$\sigma_f(2200m/s)$ [b]	< 0.35	3E-06	14 ± 3	-	-
<i>RI</i> [b]	14	1.63 ± 0.16	-	-	-
E_{FR} [MeV]	-	169.8 ± 0.5	-	169.57 ± 0.49	-
E_{NP} [MeV]	-	4.8 ± 0.1	-	5.21 ± 0.10	-
E_{ND} [MeV]	-	0.0180 ± 0.0027	-	0.0180 ± 0.0027	-
E_{GP} [MeV]	-	6.68 ± 0.53	-	6.53 ± 0.53	-
E_{GD} [MeV]	-	8.25 ± 0.07	-	8.25 ± 0.07	-
E_B [MeV]	-	8.48 ± 0.08	-	8.48 ± 0.08	-
E_{NU} [MeV]	-	11.39 ± 0.11	-	11.39 ± 0.11	-
E_R [MeV]	-	198.032 ± 0.316	-	198.06 ± 0.32	-
E_T [MeV]	-	209.4 ± 0.3	-	209.4 ± 0.3	-
A_1 [MeV]	-	0.88111	-	-	-
$B_1 [{ m MeV^-1}]$	-	3.4005	-	-	-
C_1 [MeV]	1.2996	-	-	-	-
A_2 [MeV]	-	-	-	-	-
B_2 [MeV ⁻¹]	-	-	-	-	-

	$^{235}_{93}$ Np	$^{236}_{93}{ m Np}$	$^{237}_{93}$ Np	$^{238}_{93}{ m Np}$	$^{239}_{93}$ Np
ν	2.66385	3.12	2.63581	2.515	-
$\sigma_f(2200m/s)$ [b]	-	3007 ± 90	0.02 ± 0.001	2088 ± 30	-
<i>RI</i> [b]	-	86	4.7 ± 0.23	883 ± 70	-
E_{FR} [MeV]	-	-	171 ± 2	-	-
E_{NP} [MeV]	-	-	5.94 ± 0.48	-	-
E_{ND} [MeV]	-	-	0.00500 ± 0.00125	-	-
E_{GP} [MeV]	-	-	7.13 ± 1.00	-	-
E_{GD} [MeV]	-	-	6.28 ± 0.75	-	-
E_B [MeV]	-	-	6.4 ± 0.5	-	-
E_{NU} [MeV]	-	-	8.6 ± 1.1	-	-
E _R [MeV]	-	-	196.37 ± 1.36	-	-
E_T [MeV]	-	-	205.0 ± 0.8	-	-
A_1 [MeV]	-	-	-	-	-
$B_1 [{ m MeV^-1}]$	-	-	-	-	-
C_1 [MeV]	-	-	1.315	-	-
A_2 [MeV]	-	-	-	-	-
B_2 [MeV ⁻¹]	-	-	-	-	-

	$^{236}_{94}$ Pu	$^{237}_{94}$ Pu	$^{238}_{94}$ Pu	$^{239}_{94}$ Pu	$^{240}_{94}$ Pu
ν	2.814	-	2.895	2.880712	2.803
$\sigma_f(2200m/s)$ [b]	170 ± 35	2455 ± 295	17.9 ± 0.4	748.1 ± 2	0.056 ± 0.03
<i>RI</i> [b]	990 ± 30	-	33 ± 5	303 ± 10	3.16
E_{FR} [MeV]	-	179.75 ± 1.80	174 ± 2	175.6 ± 0.1	174 ± 2
E_{NP} [MeV]	-	3.400 ± 0.272	5.92 ± 0.34	6.07 ± 0.10	6.48 ± 0.36
E_{ND} [MeV]	-	0.0005 ± 0.0005	0.0020 ± 0.0004	0.00280 ± 0.00042	0.0044 ± 0.0008
E_{GP} [MeV]	-	1.29390 ± 0.41404	7.13 ± 1.00	6.74 ± 0.22	6.18 ± 1.00
E_{GD} [MeV]	-	5.6487 ± 0.4519	5.31 ± 0.75	5.17 ± 0.06	6.49 ± 0.75
E_B [MeV]	-	5.8086 ± 0.4937	5.4 ± 0.5	5.31 ± 0.06	6.6 ± 0.5
E_{NU} [MeV]	-	7.8083 ± 0.4685	7.3 ± 1.1	7.14 ± 0.09	8.9 ± 1.1
E_R [MeV]	-	195.9 ± 1.1	197.38 ± 1.13	198.8438 ± 0.2285	199.47 ± 1.12
E_T [MeV]	-	203.71 ± 1.02	204.66 ± 0.24	205.98 ± 0.21	208.35 ± 0.23
A_1 [MeV]	-	-	-	0.966	-
$B_1 [{ m MeV^-1}]$	-	-	-	2.842	-
C_1 [MeV]	-	-	1.33	-	-
A_2 [MeV]	-	-	-	-	-
B_2 [MeV ⁻¹]	-	-	-	-	-

	$^{241}_{94}$ Pu	$^{242}_{94}$ Pu	$^{243}_{94}$ Pu	$^{244}_{94}$ Pu	$^{246}_{94}$ Pu
ν	2.9453	2.81	3.01	-	3.0382
$\sigma_f(2200m/s)$ [b]	1011.1 ± 6.2	< 0.2	196 ± 16	-	-
<i>RI</i> [b]	570 ± 15	0.12	550 ± 80	-	-
E_{FR} [MeV]	175.36 ± 0.68	174 ± 2	-	176.81 ± 2.89	-
E_{NP} [MeV]	5.99 ± 0.13	6.76 ± 0.54	4 -	3.900 ± 0.312	-
E_{ND} [MeV]	0.005 ± 0.001	0.010 ± 0.00	- 20	0.0005 ± 0.0005	-
E_{GP} [MeV]	7.64 ± 0.69	5.22 ± 1.00	- 0	-	-
E_{GD} [MeV]	6.40 ± 0.09	7.72 ± 0.75	5 -	10.9120 ± 0.8729	9 -
E_B [MeV]	6.58 ± 0.09	7.9 ± 0.5	-	11.221 ± 0.954	-
E_{NU} [MeV]	8.85 ± 0.12	10.6 ± 1.1	-	15.084 ± 0.905	-
${ m E_R}$ [MeV]	$ $ 201.9801 \pm 0.2773	$3 201.58 \pm 1.3$	37 -	202.85 ± 1.42	-
E_T [MeV]	210.83 ± 0.25	212.15 ± 0.8	- 82	217.93 ± 1.09	-
A_1 [MeV]	-	-	-	-	-
$B_1 [{ m MeV^-1}]$	-	-	-	-	-
C_1 [MeV]	1.3597	-	-	-	-
A_2 [MeV]	-	0.833668	-	-	-
B_2 [MeV ⁻¹]	-	4.431658	-	-	-
	$^{241}_{95}\mathbf{Am}$	$^{242}_{95}\mathbf{Am}$	$^{242}_{95}\mathrm{Am}$	$^{243}_{95}\mathbf{Am}$	$^{244}_{95}\mathrm{Am}$
ν	3.08027	3.2718	3.2705	3.272833	3.1518
$\sigma_f(2200m/s)$ [b]	3.2 ± 0.09	2100 ± 200	6200 ± 200	0.1983 ± 0.0043	2300 ± 300
<i>RI</i> [b]	14.4 ± 1	-	1570 ± 80	8.5 ± 0.5	-
E_{FR} [MeV]	176 ± 2	-	-	176 ± 2	-
E_{NP} [MeV]	6.53 ± 0.36	-	-	7.53 ± 0.59	-
E_{ND} [MeV]	0.0020 ± 0.0004	-	-	0.0040 ± 0.0008	-
E_{GP} [MeV]	8 ± 1	-	-	6 ± 1	-
E_{GD} [MeV]	5.51 ± 0.75	-	-	6.62 ± 0.75	-
E_B [MeV]	5.6 ± 0.5	-	-	6.8 ± 0.5	-
E_{NU} [MeV]	7.54 ± 1.10	-	-	9.06 ± 1.10	-
${ m E_R}$ [MeV]	201.9601 ± 1.1259	-	-	203.62 ± 1.41	-
E_T [MeV]	209.50 ± 0.24	-	-	212.68 ± 0.88	-
A_1 [MeV]	-	-	-	-	-
$B_1 [{ m MeV^-1}]$	-	-	-	-	-
C_1 [MeV]	-	-	-	-	-
A_2 [MeV]	-	-	-	-	-
B_2 [MeV ⁻¹]	-	-	-	-	-
	$^{244}_{95}$ Am $^{22}_{6}$	$^{241}_{96}$ Cm	$^{242}_{96}$ Cm	$^{243}_{96}$ Cm	$^{244}_{96}$ Cm
	2 1 5 1 9		2 11	2 / 2 2 0 1	2 24425

	$_{95}^{244}$ Am	²⁴¹ ₉₆ °Cm	²⁴² ₉₆ ²⁴² Cm	$_{96}^{245}$ Cm	₉₆ ²⁴⁴ Cm
ν	3.1518	-	3.44	3.43201	3.24435
$\sigma_f(2200m/s)$ [b]	1600 ± 300	-	<5	617 ± 20	1.04 ± 0.2
<i>RI</i> [b]	-	-	12.9 ± 0.7	1570 ± 100	12.5 ± 2.5
E_{FR} [MeV]	-	186.61 ± 1.87	186.22 ± 1.99	-	-
E_{NP} [MeV]	-	4.7 ± 0.4	5.2 ± 0.4	-	-
E_{ND} [MeV]	-	0.0005 ± 0.0005	0.0005 ± 0.0005	-	-
E_{GP} [MeV]	-	1.14140 ± 0.36524	-	-	-
E_{GD} [MeV]	-	4.8804 ± 0.3904	5.487 ± 0.439	-	-
E_B [MeV]	-	5.01860 ± 0.42658	5.64280 ± 0.47964	-	-
E_{NU} [MeV]	-	6.7463 ± 0.4048	7.5855 ± 0.4551	-	-
E_R [MeV]	-	202.35 ± 1.12	202.55 ± 1.15	-	-
E_T [MeV]	-	209.1 ± 1.0	210.13 ± 1.05	-	-
A_1 [MeV]	-	-	-	-	-
$B_1 [{ m MeV^-1}]$	-	-	-	-	-
C_1 [MeV]	-	-	-	-	-
A_2 [MeV]	-	-	0.891	-	0.906
B_2 [MeV ⁻¹]	-	-	4.046	-	3.848

	$^{245}_{96}$ Cm	$^{246}_{96}$ Cm	$^{247}_{96}$ Cm	$^{248}_{96}$ Cm	$^{249}_{96}$ Cm
ν	3.5964	3.61416	3.8034	-	3.3488
$\sigma_f(2200m/s)$ [b]	2144 ± 58	0.14 ± 0.05	81.9 ± 4.4	0.37 ± 0.05	-
<i>RI</i> [b]	840 ± 40	10.2 ± 0.4	760 ± 50	2.7 ± 0.6	-
E_{FR} [MeV]	-	-	-	183.65 ± 2.96	-
E_{NP} [MeV]	-	-	-	5.2 ± 0.4	-
E_{ND} [MeV]	-	-	-	0.0005 ± 0.0005	-
E_{GP} [MeV]	-	-	-	-	-
E_{GD} [MeV]	-	-	-	9.8068 ± 0.7845	-
E_B [MeV]	-	-	-	10.08400 ± 0.85717	-
E_{NU} [MeV]	-	-	-	13.5560 ± 0.8134	-
E_R [MeV]	-	-	-	208.74 ± 1.38	-
E_T [MeV]	-	-	-	222.29 ± 1.11	-
A_1 [MeV]	-	-	-	-	-
$B_1 [{\rm MeV^-1}]$	-	-	-	-	-
C_1 [MeV]	-	-	-	-	-
A_2 [MeV]	-	-	-	-	-
B_2 [MeV ⁻¹]	-	-	-	-	-

	$^{250}_{96}$ Cm	$^{249}_{97}{ m Bk}$	$^{250}_{97}{ m Bk}$	$^{249}_{98}{ m Cf}$	$^{250}_{98}{ m Cf}$
ν	3.39994	3.3464	3.572	3.8869	3.63
$\sigma_f(2200m/s)$ [b]	-	-	960 ± 150	1642 ± 33	-
<i>RI</i> [b]	-	-	-	2380 ± 85	-
E_{FR} [MeV]	-	-	-	-	-
E_{NP} [MeV]	-	-	-	-	-
E_{ND} [MeV]	-	-	-	-	-
E_{GP} [MeV]	-	-	-	-	-
E_{GD} [MeV]	-	-	-	-	-
E_B [MeV]	-	-	-	-	-
E_{NU} [MeV]	-	-	-	-	-
${ m E_R}$ [MeV]	-	-	-	-	-
E_T [MeV]	-	-	-	-	-
A_1 [MeV]	-	-	-	-	-
$B_1 [{ m MeV^-1}]$	-	-	-	-	-
C_1 [MeV]	-	-	-	-	-
A_2 [MeV]	-	-	-	-	-
B_2 [MeV ⁻¹]	-	-	-	-	-

	$^{251}_{98}$ Cf	$^{252}_{98}{ m Cf}$	$^{253}_{98}{ m Cf}$	$^{254}_{98}\mathbf{Cf}$	$^{253}_{99}{ m Es}$
ν	4.14	4.06	-	3.8508	-
$\sigma_f(2200m/s)$ [b]	4895 ± 250	32 ± 4	1300 ± 240	-	-
<i>RI</i> [b]	5900 ± 100	110 ± 30	2000 ± 400	-	-
E_{FR} [MeV]	-	-	-	-	-
E_{NP} [MeV]	-	-	-	-	-
E_{ND} [MeV]	-	-	-	-	-
E_{GP} [MeV]	-	-	-	-	-
E_{GD} [MeV]	-	-	-	-	-
E_B [MeV]	-	-	-	-	-
E_{NU} [MeV]	-	-	-	-	-
${ m E_R}$ [MeV]	-	-	-	-	-
E_T [MeV]	-	-	-	-	-
A_1 [MeV]	-	-	-	-	-
$B_1 [{\rm MeV^-1}]$	-	-	-	-	-
C_1 [MeV]	-	-	-	-	-
A_2 [MeV]	-	-	1.025	-	-
$B_2 [{ m MeV^-1}]$	-	-	2.926	-	-

	$^{254}_{99}$ Es	$^{255}_{99}$ Es	$^{255}_{100}$ Fm
ν	4.0832	3.8748	4.3924
$\sigma_f(2200m/s)$ [b]	1970 ± 200	-	3360 ± 170
<i>RI</i> [b]	1200 ± 250	-	-
E_{FR} [MeV]	-	-	-
E_{NP} [MeV]	-	-	-
E_{ND} [MeV]	-	-	-
E_{GP} [MeV]	-	-	-
E_{GD} [MeV]	-	-	-
E_B [MeV]	-	-	-
E_{NU} [MeV]	-	-	-
E _R [MeV]	-	-	-
E_T [MeV]	-	-	-
A_1 [MeV]	-	-	-
$B_1 [{\rm MeV^-1}]$	-	-	-
C_1 [MeV]	-	-	-
A_2 [MeV]	-	-	-
$B_2 [{ m MeV}^-1]$	-	-	-

Chapter 12

Parameters for some typical nuclear power plants.

Parameters from some typical nuclear power plants are listed in the following tables. The nuclear power plant designs selected are PWR. BWR, Magnox, AGR, RBMK, CANDU, and Siemens' PHWR. All data was extracted from the INSC Nuclear power reactors data base.

Sources:

INSC Nuclear Power Reactor Database (http://www.insc.anl.gov/pwrmaps/).

. Clad Temp. [°C]: 323 326 350 465 825 335 3 . Centerline Temp. [°C]: 2250 1900 1843 595 1350 1900 2 . Assemblies	Height [mm]: 994.5 364 4 Outside Diameter [mm]: 14.86 13.6	et Height [mm]: 12.0 16.04 15.2 12 9 et Inside Diameter [mm]: 5.08 2 2 et Diameter [mm]: 10.62 12.15 14.48 11.5 9 1 Thickness [mm]: 0.55 0.42 0.57 2.0 0.381 0.825 0	1: UO2 pellet UO2 pellet	al Criticality 1/1974 3/1983 9/1985 5/1964 9/1976 10/1983 sercial start 6/1974 1/1984 12/1986 4/1965 10/1978 5/1985 and Cladding	Iel: CANDU Magnox (LGR) Output [MWe]: 335 600 1330 235 585 1380 1	Pressurized Pressurized Pressurized Gas-Cooled Advanced Cooled, Heavy-Water Heavy-Water Reactor Reactor Reactor Reactor Reactor Moderated (PHWR) (PHWR) (PHWR) (PHWR) (GCR) (AGR) Reactor Cooled Cooled (PHWR) (PHWR	Table 12.1: Parameters for some typical nuclear power plants. Atucha 1 Embalse Flamanville 1 Point A1 Point B1 Ignalina 1 J
36	364 13.6 335 1900	12 2 11.5 0.825	UO2 Zr/Nb 2.00 2.00	10/1983 5/1985	(LGR) RBMK-1500 1380	Light-Water- Cooled, Graphite- Moderated Reactor	Ignalina 1
62/60/74	4070 11.176 355 2500	9.652 9.550 0.711	UO2 pellet Zry-2 1.85 3.31	12/1984 2/1986) BWR-4 1055	 Boiling Wa- ter Reactor (BWR)	Limerick 1

	Atucha 1	Embalse	Flamanville 1	Hinkley Point A1	Hinkley Point B1	Ignalina 1	Limerick 1
Core Configuration							
Active Core Height [m]:	5.3	5.94	4.267	7.6	8.31	7	3.71
Active Core Diameter [m]:	4.54	6.28	3.37	14.9	9.11	11.8	4.57
Fuel Inventory [tHM]:	38.8	85.73	103.9	352	105.2	178.7	135.52
Average Core Power Density [LM14 /1;ter].	13.74	10.8	103.0r	0.73	2.96	218	50.04
Peak Core Power Density [kWt/liter]:	35.51	23.1	258.0	1.3	4.8	485	112.1
Avg. Assembly Discharge Burnup [MWd/tU]:	0009	7190	33000	5400	27000	15000	40200
Peak Assemby Discharge Burnup [MWd/tU]:	8000	10000			30000	21600	30000
Axial Blankets:					no	yes	yes
Axially Zoned Fuel:					ou	ou	yes
AXIALY ZOREG DULHADIE FOISORS: Average Linear Fuel Rating [kW/m]:	23.22	24.75	17.20	27.0	42.0	no 21.80	yes 16.40
Peak Linear Fuel Rating [kW/m]:	60	58.94		48.00		48.5	47.20
Control System							
Control Rod Material:	Hf	H_2O , Cd, Co	Ag/In/Cd	boron steel low fre-	Steel/Boron	B_4C	B_4C
Control Rod Drive Type:	electric	elec-mech	elec	quency	elec	servo	hydraulic
Number of Coarse Control Rods:	ю	25	53	89	44	175	185 total
Number of Fine Control Rods:	D			24	37	12	6
Number of Safety Rods: Burnable Poison Material:	21	28 B/Gd	12	14	16 none	24	Gd ₂ O ₃
Other Control Systems:	chemical shim	burnable poi- son	B4C/burnable poison	Fixed ab- sorber	Nitrogen		burnable poi- son
Primary Coolant							
Coolant Material: Weight in Primary Circuit [t]: Pressure [kg/cm ²]:	D ₂ O 111 115	D ₂ 0 470 102	H ₂ O 158	CO ₂ 120 14.1	CO ₂ 130 42.4	H ₂ O 2235.6 70	H ₂ O 195 72
Core Inlet Temperature [°C]: Core Outlet Temperature [°C]·	262 296	266 312	292.8 378.7	185 370	280 655	259 284	277
Number of Primary Pumps Total Mass Flow [t/h]:	2 10000	4 8800	4 16420	6 10800	8 13700	8 33000	2 7720

Fuel Loading [tHM/y]: Fraction of Core Reloaded Each Cycle [%:]	Cycle Length [months]: Normal Planned Outage Length [days]:	Stop Valve Temperature [°C]: Reactor Operations	Stop Valve Pressure [kg/cm ²]:	Turbine Rating [MWe]:	Turbine Speed [rev/min]:	Number of Turbines:	Turbines	
61	30/42/60	254	42.6	357	3000	1		Atucha 1
95.0		253	46.2	648	1500	1		Embalse
33.9	12 60	285.3	69.5	1335	1500	1		Flamanville 1
44		360	44.3	93	3000	З		Hinkley Point A1
26 2.00	Ц	495	163	660	3000	1		Hinkley Point B1
64.9		279.5	65	750	3000	2		Ignalina 1
22 34.00	24 60	291	67.8	1150	1800	1		Limerick 1

Chapter 13

Elemental Properties and Periodic Table

13.1 List of Elements by Z

Ζ	Symbol	Name	Ζ	Symbol	Name	Ζ	Symbol	Name
1	Н	Hydrogen	38	Sr	Strontium	75	Re	Rhenium
2	He	Helium	39	Y	Yttrium	76	Os	Osmium
3	Li	Lithium	40	Zr	Zirconium	77	Ir	Iridium
4	Be	Beryllium	41	Nb	Niobium	78	Pt	Platinum
5	В	Boron	42	Mo	Molybdenum	79	Au	Gold
6	С	Carbon	43	Tc	Technetium	80	Hg	Mercury
7	Ν	Nitrogen	44	Ru	Ruthenium	81	ΤĪ	Thallium
8	0	Oxygen	45	Rh	Rhodium	82	Pb	Lead
9	F	Fluorine	46	Pd	Palladium	83	Bi	Bismuth
10	Ne	Neon	47	Ag	Silver	84	Ро	Polonium
11	Na	Sodium	48	Cď	Cadmium	85	At	Astatine
12	Mg	Magnesium	49	In	Indium	86	Rn	Radon
13	Al	Aluminum	50	Sn	Tin	87	Fr	Francium
14	Si	Silicon	51	Sb	Antimony	88	Ra	Radium
15	Р	Phosphorus	52	Te	Tellurium	89	Ac	Actinium
16	S	Sulfur	53	Ι	Iodine	90	Th	Thorium
17	Cl	Chlorine	54	Xe	Xenon	91	Pa	Protactinium
18	Ar	Argon	55	Cs	Cesium	92	U	Uranium
19	Κ	Potassium	56	Ba	Barium	93	Np	Neptunium
20	Ca	Calcium	57	La	Lanthanum	94	Pu	Plutonium
21	Sc	Scandium	58	Ce	Cerium	95	Am	Americium
22	Ti	Titanium	59	Pr	Praseodymium	96	Cm	Curium
23	V	Vanadium	60	Nd	Neodymium	97	Bk	Berkelium
24	Cr	Chromium	61	Pm	Promethium	98	Cf	Californium
25	Mn	Manganese	62	Sm	Samarium	99	Es	Einsteinium
26	Fe	Iron	63	Eu	Europium	100	Fm	Fermium
27	Со	Cobalt	64	Gd	Gadolinium	101	Md	Mendelevium
28	Ni	Nickel	65	Tb	Terbium	102	No	Nobelium
29	Cu	Copper	66	Dy	Dysprosium	103	Lr	Lawrencium
30	Zn	Zinc	67	Ho	Holmium	104	Rf	Rutherfordium
31	Ga	Gallium	68	Er	Erbium	105	Db	Dubnium
32	Ge	Germanium	69	Tm	Thulium	106	Sg	Seaborgium
33	As	Arsenic	70	Yb	Ytterbium	107	Bĥ	Bohrium
34	Se	Selenium	71	Lu	Lutetium	108	Hs	Hassium
35	Br	Bromine	72	Hf	Hafnium	109	Mt	Meitnerium
36	Kr	Krypton	73	Ta	Tantalum	110	Ds	Darmstadtium
37	Rb	Rubidium	74	W	Tungsten	111	Rg	Roentgenium

13.2 Alphabetical List of Elements

Name	Symbol	Ζ	Name	Symbol	Ζ	Name	Symbol	Ζ
Actinium	Ac	89	Gold	Au	79	Praseodymium	Pr	59
Aluminum	Al	13	Hafnium	Hf	72	Promethium	Pm	61
Americium	Am	95	Hassium	Hs	108	Protactinium	Pa	91
Antimony	Sb	51	Helium	He	2	Radium	Ra	88
Argon	Ar	18	Holmium	Ho	67	Radon	Rn	86
Arsenic	As	33	Hydrogen	Н	1	Roentgenium	Rg	111
Astatine	At	85	Indium	In	49	Rhenium	Re	75
Barium	Ba	56	Iodine	Ι	53	Rhodium	Rh	45
Berkelium	Bk	97	Iridium	Ir	77	Rubidium	Rb	37
Beryllium	Be	4	Iron	Fe	26	Ruthenium	Ru	44
Bismuth	Bi	83	Krypton	Kr	36	Rutherfordium	Rf	104
Bohrium	Bh	107	Lanthanum	La	57	Samarium	Sm	62
Boron	В	5	Lawrencium	Lr	103	Scandium	Sc	21
Bromine	Br	35	Lead	Pb	82	Selenium	Se	34
Cadmium	Cd	48	Lithium	Li	3	Seaborgium	Sg	106
Calcium	Ca	20	Lutetium	Lu	71	Silicon	Si	14
Californium	Cf	98	Magnesium	Mg	12	Silver	Ag	47
Carbon	С	6	Manganese	Mn	25	Sodium	Na	11
Cerium	Ce	58	Meitnerium	Mt	109	Strontium	Sr	38
Cesium	Cs	55	Mendelevium	Md	101	Sulfur	S	16
Chlorine	Cl	17	Mercury	Hg	80	Tantalum	Ta	73
Chromium	Cr	24	Molybdenum	Mo	42	Technetium	Tc	43
Cobalt	Со	27	Neodymium	Nd	60	Tellurium	Te	52
Copper	Cu	29	Neon	Ne	10	Terbium	Tb	65
Curium	Cm	96	Neptunium	Np	93	Thallium	Tl	81
Darmstadtium	Ds	110	Nickel	Ni	28	Thorium	Th	90
Dubnium	Db	105	Niobium	Nb	41	Thulium	Tm	69
Dysprosium	Dy	66	Nitrogen	Ν	7	Tin	Sn	50
Einsteinium	Es	99	Nobelium	No	102	Titanium	Ti	22
Erbium	Er	68	Osmium	Os	76	Tungsten	W	74
Europium	Eu	63	Oxygen	О	8	Uranium	U	92
Fermium	Fm	100	Palladium	Pd	46	Vanadium	V	23
Fluorine	F	9	Phosphorus	Р	15	Xenon	Xe	54
Francium	Fr	87	Platinum	Pt	78	Ytterbium	Yb	70
Gadolinium	Gd	64	Plutonium	Pu	94	Yttrium	Y	39
Gallium	Ga	31	Polonium	Ро	84	Zinc	Zn	30
Germanium	Ge	32	Potassium	Κ	19	Zirconium	Zr	40

13.3 Densities and Atomic Masses

Z	Symbol	Atomic mass [u]	Density [g/cm ³]	Ζ	Symbol	Atomic mass [u]	Density [g/cm ³]		
1	Н	1.00794(7)	$8.988 \times 10^{-5} ^{(a)}$	52	Te	127.60(3)	$6.24^{(c)}$		
2	He	4.002602(2)	$1.785 \times 10^{-4} ^{(b)}$	53	Ι	126.90447(3)	$4.93^{(p)}$		
3	Li	6.941(2)	$0.534^{(c)}$	54	Xe	131.293(6)	0.005887		
4	Be	9.012182(3)	$1.848^{(c)}$	55	Cs	132.90545(2)	$1.873^{(c)}$		
5	В	10.811(7)	$2.34^{(d)}$	56	Ba	137.327(7)	$3.5^{(c)}$		
6	С	12.0107(8)	1.8 to $2.1^{(e)}$	57	La	138.9055(2)	$6.145^{(h)}$		
7	Ν	14.0067(2)	$0.0012506^{(f)}$	58	Ce	140.116	$6.770^{(h)}$		
8	0	15.9994(3)	$0.001308^{(g)}$	59	Pr	140.90765(2)	$6.773^{(q)}, 6.64^{(r)}$		
9	F	18.9984032(5)	0.001696	60	Nd	144.24(3)	7.008		
10	Ne	20.1797(6)	8.9990×10^{-4}	61	Pm	(145)	$7.264^{(h)}$		
11	Na	22.989770(2)	$0.971^{(c)}$	62	Sm	150.36(3)	$7.520^{(q)}$, $7.40^{(r)}$		
12	Mg	24.3050(6)	$1.738^{(c)}$	63	Eu	151.964	$5.244^{(h)}$		
13	Al	26.981538(2)	$2.6989^{(c)}$	64	Gd	157.25(3)	$7.901^{(h)}$		
14	Si	28.0855(3)	$2.33^{(h)}$	65	Tb	158.92534(2)	8.230		
15	Р	30.973761(2)	$1.82^{(i)}$	66	Dy	162.50(3)	$8.551^{(h)}$		
16	S	32.065(5)	$2.07^{(c,j)}$	67	Ho	164.93032(2)	$8.795^{(h)}$		
17	Cl	35.453(2)	0.003214	68	Er	167.259(3)	$9.066^{(h)}$		
18	Ar	39.948	0.0017837	69	Tm	168.93421(2)	$9.321^{(h)}$		
19	K	39.0983	$0.862^{(c)}$	70	Yb	173.04(3)	$6.903^{(q)}$, $6.966^{(r)}$		
20	Ca	40.078(4)	$1.55^{(c)}$	71	Lu	174.967	$9.841^{(h)}$		
21	Sc	44.955910(8)	$2.989^{(h)}$	72	Hf	178.49(2)	$13.31^{(c)}$		
22	Ti	47.867	4.54	73	Ta	180.9479	16.654		
23	V	50.9415	6.11(18.7°C)	74	W	183.84	$19.3^{(c)}$		
24	Cr	51.9961(6)	7.18 to $7.20^{(c)}$	75	Re	186.207	$21.02^{(c)}$		
25	Mn	54.938049(9)	7.21 to $7.44^{(k)}$	76	Os	190.23(3)	22.57		
26	Fe	55.845(2)	$7.874^{(c)}$	77	Ir	192.217(3)	$22.42(17^{\circ})$		
27	Co	58.933200(9)	$8.9^{(c)}$	78	Pt	195.078(2)	$21.45^{(c)}$		
28	Ni	58.6934(2)	$8.902^{(h)}$	79	Au	196.96655(2)	$pprox 19.3^{(c)}$		
29	Cu	63.546(3)	$8.96^{(c)}$	80	Hg	200.59(2)	$13.546^{(c)}$		
30	Zn	65.39(2)	$7.133^{(h)}$	81	Tl	204.3833(2)	$11.85^{(c)}$		
31	Ga	69.723	5.904(29.6°C)	82	Pb	207.2	$11.35^{(c)}$		
32	Ge	72.64	$5.323^{(h)}$	83	Bi	208.98038(2)	$9.747^{(c)}$		
33	As	74.92160(2)	$5.73^{(l)}$	84	Ро	(209)	$9.32^{(q)}$		
34	Se	78.96(3)	$4.79^{(m)}$	85	At	(210)			
35	Br	79.904	$3.12^{(n)}$	86	Rn	(222)	0.00973		
36	Kr	83.80	0.003733	87	Fr	(223)			
37	Rb	85.4678(3)	$1.532^{(c)}$	88	Ra	(226)	5		
38	Sr	87.62	2.54	89	Ac	(227)	$10.07^{(n)}$		
39	Y	88.90585(2)	$4.469^{(h)}$	90	Th	232.03801	11.72		
40	Zr	91.224(2)	$6.506^{(c)}$	91	Pa	(231)	15.37		
41	Nb	92.90638(2)	$8.57^{(c)}$	92	U	238.02891(3)	≈ 18.95		
42	Mo	95.94	$10.22^{(c)}$	93	Np	(237)	$20.25^{(c)}$		
43	Tc	(98)	$11.50^{(n)}$	94	Pu	(244)	$19.84^{(h)}$		
44	Ru	101.07(2)	$12.41^{(c)}$	95	Am	(243)	$13.67^{(c)}$		
45	Rh	102.90550(2)	$12.41^{(c)}$	96	Cm	(247)	$13.51^{(n)}$		
46	Pd	106.42	$12.02^{(c)}$	97	Bk	(247)	$14^{(n)}$		
47	Ag	107.8682(2)	$10.50^{(c)}$	98	Cf	(251)			
48	Cd	112.411(8)	$8.65^{(c)}$	99	Es	(252)			
49	In	114.818(3)	$7.31^{(c)}$	100	Fm	(257)			
50	Sn	118.710(7)	$5.75^{(o)}$	101	Md	(258)			
51	Sb	121.760	$6.691^{(c)}$	102	No	(259)			

(a) For gas; density (liquid) = 0.0708 g/cc at b.p.; density (solid)=0.0706 g/cc at -262° C.

(b) For gas; density (liquid)=0.1221 g/cc at b.p.

(c) At 20°C.

(d) For crystal form; density (amorphous)= 2.37 g/cc.

(e) For amorphous carbon; density (graphite) = 1.9 to 2.3 g/cc; density (gem diamond)=3.513 g/cc at 25° C; density (other diamond)=3.15 to 3.53 g/cc.

(f) For gas; density (liquid) = 0.808 g/cc at b.p.; density (solid)= 1.026 g/cc at -252° C.

(g) For gas; density (liquid) = 0.808 g/cc at b.p.; density (solid)= 1.026 g/cc at -252° C.

(h) At 25°C.

(i) For white phosphorus; density (red)=2.20 g/cc; density (black)=2.25 to 2.69 g/cc.

(j) For rhombic sulfur; melting point (monoclinic)=119.0°C; density (monoclinic)=1.957 g/cc at 20°C.

(k) Depending on allotropic form.

(l) For gray arsenic; density (yellow)=1.97 g/cc.

(m) For gray selenium; density (vitreous)=4.28 g/cc.

(n) Calculated.

(o) For gray tin; density (white)=7.13 g/cc.

(p) For solid at 20° C; 0.01127 g/cc for gas.

(q) For α modification.

(r) For β modification.

13.4 Periodic Table

							7			6		σ		4			ω		Ν			ц	
- Jerro	z mass Svmbol	Lanthanide/ Ac	Halogen	Metal Metalloid	Alkali Metal	Francium	Fr	87 223	Caesium	55 132,91 Cs	Rubidium	37 85,468 Rb	Potassium	7	19 39.098	Sodium	11 22.990 Na	Lithium	⊆.	3 6.941	Hydrogen	1 1.0079 H	1 IA
	man-	ctinide			Metal	Radium	Ra	88 226	Barium	56 137.33 Ba	Strontium	38 87.62 Sr	Calcium	G	20 40.078	Magnesium	¹² 24.305 Mg	Beryllium	Be	4 9.0122	2 IIA		
		 				Actinide	Ac-Lr	89-103	Lanthanide	57-71 La-Lu	Yttrium	≺ 88,906	Scandium		21 44.956	βIII							
Actinium	89 227 Ac		Lanthanum	La	130 01	Rutherfordium	Rf	104 261	Halfnium	72 178,49 Hf	Zirconium	40 91.224 Zr	I ICANIUM		22 47.867	4 IVB						(Menc	
Thorium	90 232.04 Th		Cerium	Ce	50 110 12	Dubnium	P	105	Tantalum	73 180.95 Ta	Niobium	41 92.906 Nb	v anadium	<	23 50.942	5 VB						deleev's	
Protactinium	91 231.04 Pa		Praseodymium	Pr	50 140 81	Seaborgium	ann 65 ann	106 266	Tungsten	74 183 84 W	Molybdenum	42 95,94 Mo	Chromum	ב	24 51.996	6 VIB) Perio	
Uranium	92 238.03 U		Neodymium	Nd	60 144 24	Bohrium	Bh	107 264	Rhenium	75 186.21 Re	Technetium	43 Tc	P1 aligatese		25 54,938	7 VIIB						dic Tak	
Neptunium	93 237 Np		Promethium	Pm 149	241 13	Hassium	Hs	108 277	Osmium	76 190.23 Os	Ruthenium	44 101.07 Ru	Iron	гe	26 55.845	8 VIIIB						ole of C	
Plutonium	94 244 Pu		Samarium	mS mener 20	96 021 C3	Meitnerium	Mt	109 268	Iridium	77 192,22 Ir	Rhodium	45 102.91 Rh	Copair	6	27 58.933	9 VIIIB						Chemica	
Americium	95 243 Am		Europium	Eu	63 151 06	Damstadtium	Ds	110 281	Platinum	78 195.08 Pt	Palladium	⁴⁶ 106.42 Pd	NICKE	Z	28 58,693	10 VIIIB						al Elerr	
Curium	96 247 Cm		Gadolinium	Gd	2C 721 1.0	Roentgenium	Rg	111 Z80	Gold	79 196.97 Au	Silver	47 107.87 Ag	cotton	Ē	29 63.546	ШВ						1ents vi	
Berkelium	97 247 BK		Terbium	Tb	7. A	Ununbium	Uub	112 285	Mercury	80 200.59 Hg	Cadmium	48 112,41 Cd	ZINC	- ZN	30 65.39	12 IIB						a TikZ	
Californium	98 Qf		Dysprosium	Dy	66 182 50.	Ununtrium	Uut	113 284	Thallium	81 204.38	Indium	49 114.82 In	Gallium	Ga	31 69,723	Aluminium	13 26.982 Al	Baron	B	5 10,811	13 IIIA		
Einsteinium	99		Holmium	Но	67 16/ 03	Ununquadium	Uuq	114 289	Lead	82 207.2 Pb	Tin	50 118,71 Sn	Germanium	Ge	32 72.64	Silicon	14 28.086 Si	Carbon	C	6 12.011	14 IVA		
Fermium	100 257 Fm		Erbium	60 IO/20	ac 121 02	Ununpentium	Uup	115 288	Bismuth	83 208.98 Bi	Antimony	dS *TZT TG	Arsenic	AS	33 74.922	Phosphorus	15 30.974 P	Nitrogen	z	7 14.007	15 VA		
Mendelevium	101 258 Md		Thulium	Tm	50 160 03	Ununhexium	Uuh	116 293	Polonium	84 209 Po	Tellurium	Te	Seletium	ve	34 78.96	Sulphur	16 <u>32.065</u> S	Oxygen	0	8 15.999	16 VIA		
Nobelium	102 259 NO		Ytterbium	Yb	70 173 00	Ununseptium	Uus	117 292	Astatine	85 210 At	Iodine	53 126.9	Bromine	ц.	35 79.904	Chlorine	17 35.453 Cl	Flourine	П	9 18.998	17 VIIA		
Lawrencium	103 262		Lutetium	Lu	174 07	Ununoctium	Uuo	118 294	Radon	86 222 Rn	Xenon	54 131.29 Xe	Niyptuli	Ζ	36 83.8	Argon	¹⁸ 39.948 Ar	Neon	Ne	10 20.180	Helium	2 4.0025 He	18 VIIIA
			_	_	_			_	_	_			_	_	_	_	_	_	_	_	_	_	