
Efecto Compton

$$h\nu' = h\nu \frac{1}{1 + \varepsilon(1 - \cos\theta)} \qquad \varepsilon = h\nu/m_{\rm e}c^2$$

$$m_e c^2 = 0.511 \,\text{MeV}$$

Energía transferida al electrón

$$E_{K} = h\nu - h\nu' = h\nu \frac{\varepsilon(1 - \cos \theta)}{1 + \varepsilon(1 - \cos \theta)}$$

Fórmula de Klein-Nishina

$$\frac{d_{\rm e}\sigma_{\rm c}^{\rm KN}}{d\Omega} = \frac{r_{\rm e}^2}{2} (1 + \cos^2 \theta) F_{\rm KN}$$

$$F_{KN} = \frac{1}{[1 + \varepsilon(1 - \cos\theta)]^2} \left\{ 1 + \frac{\varepsilon^2(1 - \cos\theta)^2}{[1 + \varepsilon(1 - \cos\theta)](1 + \cos^2\theta)} \right\}$$

$$\sigma_c(E) = \pi Z r_e^2 \lambda \left[(1 - 2\lambda - 2\lambda^2) \ln \left(1 + \frac{2}{\lambda} \right) + \frac{2(1 + 9\lambda + 8\lambda^2 + 2\lambda^3)}{(\lambda + 2)^2} \right]$$

$$\lambda \equiv m_e c^2/E$$

$$r_e = \frac{e^2}{4\pi\epsilon_o m_e c^2}$$

Radio clásico del electrón

Fotón dispersado

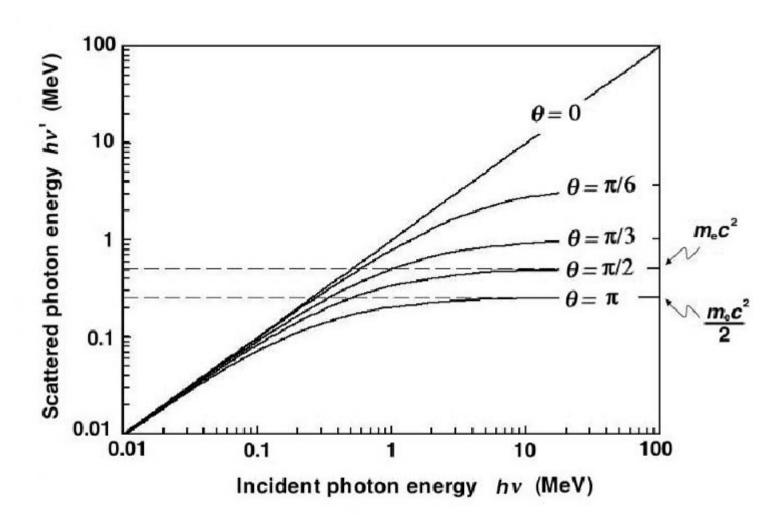


Fig. 7.7. Scattered photon energy $h\nu'$ against the incident photon energy $h\nu$ for various scattering angles θ in the range from 0° to 180°

Electrón dispersado

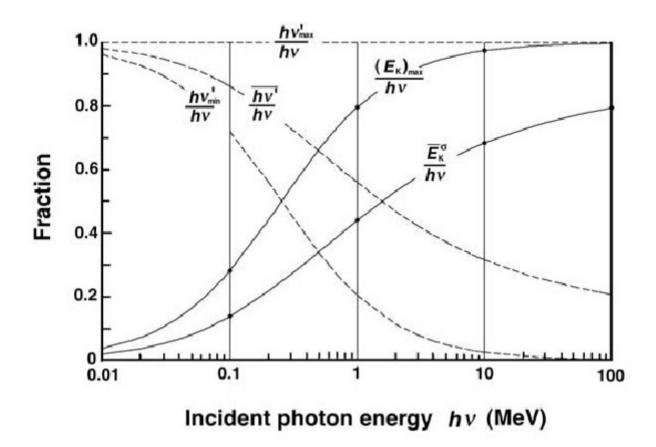


Fig. 7.8. Fraction of incident photon energy $h\nu$ transferred in Compton effect to:

- Maximum energy of recoil electron: $(E_{\rm K})_{\rm max}/(h\nu)$; $\theta=\pi$ [see (7.30)]
- Mean energy of recoil electron: $\overline{E}_{\rm K}^{\sigma}/(h\nu)$ [see (7.54 below)]
- Maximum energy of scattered photon: $h\nu'_{\rm max}/(h\nu)$; $\theta = 0^{\circ}$ [see (7.33)]
- Mean energy of the scattered photon: $h\nu'/(h\nu)$ [see (7.34)]
- Minimum energy of the scattered photon: $h\nu'_{\min}/(h\nu)$; $\theta = \pi$ [see (7.35)]

Factor de forma

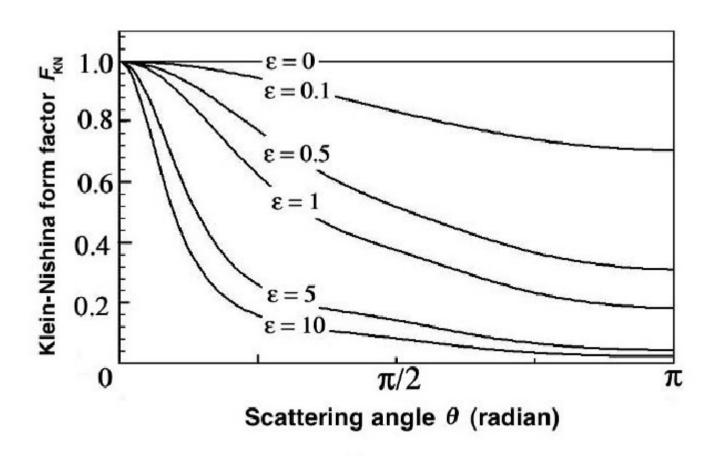


Fig. 7.9. Atomic form factor for Compton effect $F_{\rm KN}$ against scattering angle θ

Fórmula de Klein-Nishina

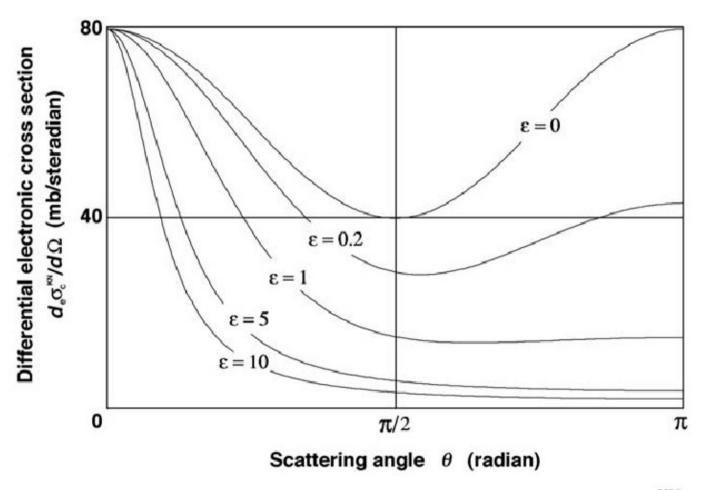


Fig. 7.10. Differential electronic cross section for Compton effect $d_{\rm e}\sigma_{\rm c}^{\rm KN}/d\Omega$ against scattering angle θ for various values of $\varepsilon = h\nu/(m_{\rm e}c^2)$, as given by (7.36). The differential electronic cross section for Compton effect $d_{\rm e}\sigma_{\rm c}^{\rm KN}/d\Omega$ for $\varepsilon = 0$ is equal to the differential electronic cross section for Thomson scattering $d_{\rm e}\sigma_{\rm Th}/d\Omega$ (see Fig. 7.2)

Fórmula de KN en polares

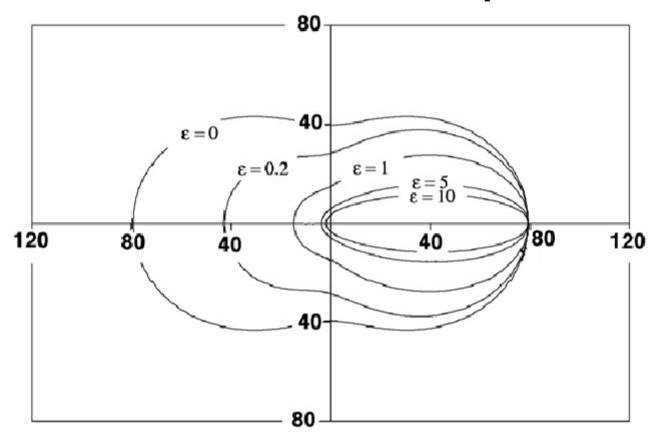


Fig. 7.11. Polar representation of the angular dependence of the differential electronic cross section $d_{\rm e}\sigma_{\rm c}^{\rm KN}/d\Omega$ for Compton scattering, as given by (7.36) and plotted for various values of $\varepsilon = h\nu/(m_{\rm e}c^2)$. The differential electronic cross section for Compton effect $d_{\rm e}\sigma_{\rm c}^{\rm KN}/d\Omega$ for $\varepsilon=0$ is equal to the differential electronic cross section for Thomson scattering $d_{\rm e}\sigma_{\rm Th}/d\Omega$ (see Fig. 7.3)

Distribución de energías de los electrones Compton

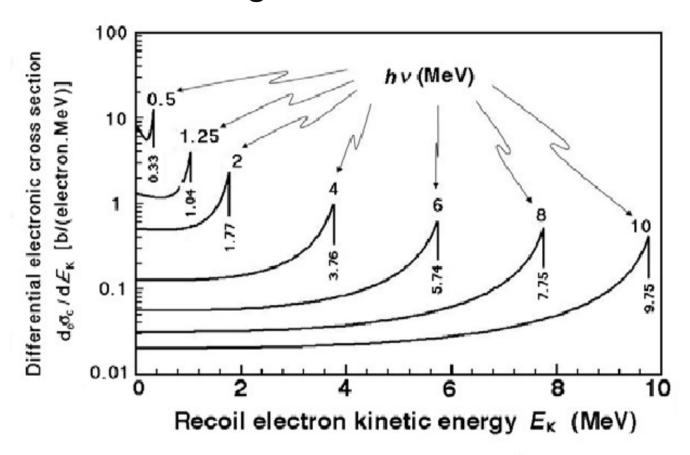
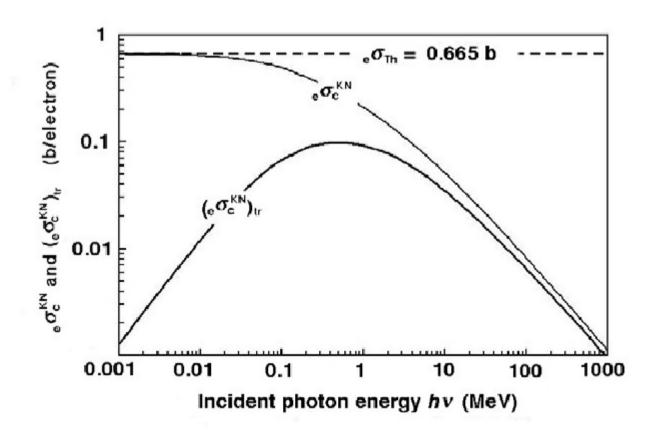



Fig. 7.12. Differential electronic Klein-Nishina cross section per unit kinetic energy $d_e \sigma_c^{KN}/dE_K$ calculated from (7.43) and plotted against the kinetic energy of the Compton recoil electron E_K for various incident photon energies $h\nu$. For a given photon energy the maximum kinetic energy of the recoil electron, calculated from (7.44), is indicated on the graph

Seccion eficaz total KN

Fig. 7.13. Compton electronic cross section ${}_{\rm e}\sigma_{\rm c}^{\rm KN}$ and electronic energy transfer cross section $({}_{\rm e}\sigma_{\rm c}^{\rm KN})_{\rm tr}$ for a free electron against incident photon energy $h\nu$ in the energy range from 0.001 MeV to 1000 MeV, determined from Klein-Nishina Eqs. (7.45) and (7.51), respectively. For very low photon energies ${}_{\rm e}\sigma_{\rm c}^{\rm KN} = {}_{\rm e}\sigma_{\rm Th} = 0.665$ b

Efectos de ligadura

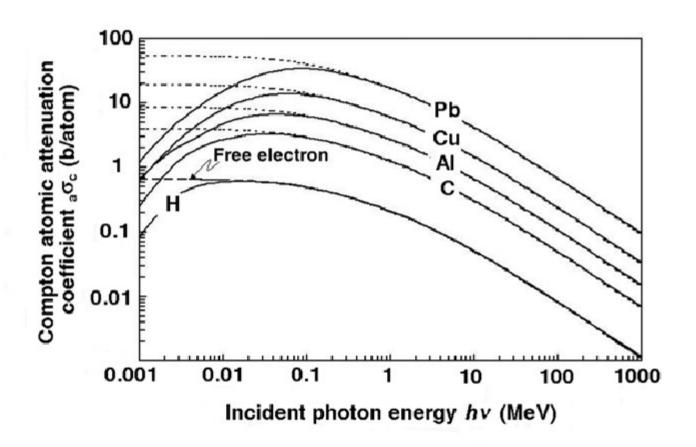


Fig. 7.14. Compton atomic cross sections ${}_{a}\sigma_{c}$ plotted against incident photon energy $h\nu$ for various absorbers, ranging from hydrogen to lead. The dotted curves represent ${}_{a}\sigma_{c}^{KN}$ data calculated with Klein-Nishina free-electron relationships; the solid curves represent the ${}_{a}\sigma_{c}$ data that incorporate the binding effects of the orbital electrons. The dashed curve represents the Klein-Nishina free electron coefficients ${}_{e}\sigma_{c}^{KN}$ for the Compton effect