diation from an isolated system, in terms of the behavior of
the fields near null infinity. The Bondi mass was of impor-
tance in proving that gravity waves carry away mass-ener-
gy: the Bondi mass decreases monotonically whenever
gravitational radiation is emitted. A modification of Wit-
ten’s proof (see Horowitz and Strominger'®) has demon-
strated the positivity of the Bondi mass.

Bondi er al.® give an explicit expression for a quantity
called the mass aspect of a mass M (a Schwarzschild metric)
moving with constant velocity. The mass aspect is a func-
tion of the observer’s polar angle, measured from the direc-
tion of motion of the moving object. The average of the
mass aspect over all solid angle is computed and equals yM.

However, there is no direct conflict between the value of
the Bondi mass (yM ) for a moving Schwarzschild solution
and our result, Eq. (10). The Bondi mass equals yM only
when averaged over all solid angle. Our problem, a
Schwarzschild object passing by a test particle, is quite dif-
ferent: most of the scattering may take place when the test
particle is closest to the Schwarzschild object and the value
of the polar angle is near 90°.
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This paper offers two simple examples of pairs of variables which are correlated, and whose
covariance is easily evaluated. Examples are given of error propagation in which these

correlations play an important role.

I. INTRODUCTION

One of the most important aspects of the error analysis
that we teach in introductory physics laboratories is error
propagation. For example, we teach our students that if
they measure two independent variables s and ¢, with un-
certainties o, and o,, and use their measurements to calcu-
late some quantity ¢(s,z ) that depends on s and ¢, then the
uncertainty o, in their answer is given by the quadratic
sum

2 2
o= (Lfor+ (&L)oe (n
ds at

Unfortunately, as most texts emphasize, this formula is
really justified only if the measurements of s and ¢ are un-
correlated. This leaves the students {and teachers) in some
confusion as to when they should use Eq. (1).

In more advanced courses and books it is shown that,

whether or not s and ¢ are correlated, o, is given by the
formula

2 2
glz(ﬁ) 2,099 9 (ﬂ) 2
T ) T e e ) @)

663 Am. J. Phys. 53 (7), July 1985

where o, is the covariance of s and ¢. If s and ¢ are uncorre-
lated, then o, = 0 and (2) gives back (1). If o, #0 then,
depending on the signs of o, and of the two derivatives, the
correct value of g, as given by (2) can be larger or smaller
than that given by (1).

Unfortunately it is rare in an elementary or intermediate
laboratory that one has the opportunity to use the formula
(2), because one seldom knows the covariance o,,. The most
that is generally done with (2) is to derive an upper bound
on g, as follows: According to the Schwartz inequality,"
|o, | <o,0,. Therefore, it follows from (2) that

o,< a,. (3)

_?il ‘_51
a1 o

That is, the uncertainty o, is never worse than the linear
sum (3).

To illustrate the relative merits of Egs. (1) to (3), I de-
scribe here two elementary examples where the covariance
that appears in (2) is clearly nonzero and can be explicitly
evaluated. Further, when one uses the correct formula (2)
one can get answers that are strikingly different from both
(1) and (3).
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In Sec. II, I describe the strong negative correlation of
two angles measured on certain bubble-chamber photo-
graphs, and in Sec. III the correlation of the least-squares
coefficients 4 and B. I do not claim that either example is
previously unknown; quite the contrary, the correlation of
the least-squares coefficients is certainly well known to
people who use least-squares fitting regularly, and is de-
scribed in several advanced textbooks.? However, I have
not found any simple examples of correlated variables (in
the context of error propagation) in an elementary text.’
From several inquiries I have received in connection with
my own “Error Analysis” (Ref. 1), it appears to me that
several teachers and students would find the following ex-
amples helpful.

II. TWO CORRELATED ANGLES

My first example of two correlated variables comes from
the introductory modern physics laboratory, Physics 215,
which is taken by sophomores at the University of Colora-
do. In this laboratory, students are given bubble-chamber
photographs of the production and decay of neutral K me-
sons. The events are chosen to lie in the plane of the photo-
graph to avoid problems with three-dimensional geometry.
A typical event is sketched in Fig. 1, which shows the pro-
cess

K*+n—>K%°+p (4)
followed by
Klsr* + 7. (5)

In the picture the dashed line 4B shows the path of the K°
(continued past the vertex B where it decays). This path is,
of course, invisible in the photograph and has to be drawn
by the student, by joining the two vertices.

The curvature of the charged tracks in Fig. 1 is due to a
known magnetic field and lets the students measure the
momenta of the charged particles. Using these measure-
ments, the students can then carry out various interesting
exercises: They can make a partial check that momentum is
conserved in the K° decay, by verifying that the total mo-
mentum of the two pions has zero component perpendicu-
lar to the K° path; and they can calculate the K® mass,
using the masses and measured momenta of the pions. Both
of these exercises use measurements of the two angles
shown as 6 and ¢ in Fig. 1.

Under typical conditions, the measurements of  and ¢
are strongly correlated. The uncertainty in  and ¢ comes
mainly from the uncertainty in the direction of the K° path,
which must be found by joining the vertices 4 and B. In a
typical picture the distance between the vertices is of order
1 cm, while the tracks have a lateral blurring of about 1

Fig. 1. The production of a K meson at A and its subsequent decay into
two pions at B. The angles & and ¢ are measured from the direction of the
K? to the initial directions of the two pions.
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mm. Under these conditions the direction of the K" track is
uncertain by two or three degrees. On the other hand, the
initial directions of the two pions are reasonably clearly
defined, so that the total angle between them, & + ¢, suffers
from very little uncertainty. Thus any underestimate of 9 is
accompanied by an equal overestimate of ¢ and vice versa;
that is, # and ¢ have a strong negative correlation.

To simplify our discussion, let us assume that the uncer-
tainty in the direction of the K° track is the only source of
uncertainty in the experiment. This is actually a good ap-
proximation: As I have already argued, the initial direction
of the pions can be accurately determined, and the only
other measurements are the pions’ momenta, which can be
found with very little uncertainty. With this assumption
the correlation between 6 and ¢ is complete; that is,

Ogp= —0p=—0} (6)

and the correlation coefficient, r = 094/ 00,18 — 1.

In the light of this correlation, let us examine the two
exercises mentioned above. First, conservation of momen-
tum in the K° decay requires that the total transverse mo-
mentum p, of the final pions should be zero:

D, =p,sinf—p_sing=0, (7)
where p_ and p_ denote the momenta of the 7+ and 7.
Naturally the students’ measured values for p, are not ex-
actly zero, and the question that they must ask is this: Is the
measured value of p, consistent with the expected value
p. =0, given the uncertainty o, in p,?

A correct evaluation of g, uses (2) to give

ap )2 dp, dp (817 )2
2 _ (OPY 2 o o PP OP: P Y2
7 (ae * T 90 36 7 T \3p) ¢
or, using (6),
2 (81’, Bp,)2 )
o,=|l———)05
\ge I

=(p, cos O +p_cos )0,
In all of the events used in our laboratory, both 6 and ¢ are

less than 90°, so that both p, cos 6 and p_ cos ¢ are posi-
tive. Thus

0, =(p,cos8 +p_cosé)o,. (8)

This shows that the uncertainty in p, is equal to its maxi-
mum possible value, as given by the linear sum (3).

If the students estimate the uncertainty o, using the
quadratic sum (1) they will get an answer which is too small
by a factor of order 2. In my section of this laboratory
none of the studerts noticed that & and ¢ are correlated (nor
did I until much later*) and several of the better students
found that their values of p, were somewhat larger than
their estimated value of g, . It is presumably fair to at-
tribute at least part of this trend to their having overlooked
044 and their consequent underestimation of g, .

The effect of the correlation in 8 and ¢ is more dramatic
in the determination of the K® mass. This is calculated from
the relativistic relation

(mc?f? = E* — (pcf, (%)
where E and p are the K® energy and momentum, which are

found by assurhing conservation of energy and momentum
in the K° decay. That is, E is the sum of the pions’ energies,

E=E +E_ (10)
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while p is the total longitudinal momentum of the two
pions,

p=p,cosB +p_ cosd. (11)
We are assuming that the pion momentap, andp_ canbe
measured with negligible uncertainty. The same is there-
fore true of the pion energies, and the only uncertainty in
the K° mass m comes from the angles & and ¢ in Eq. (11) for
the K° momentum p.

Given that @and ¢ are correlated we must find the uncer-
tainty in p using Eq. (2), which gives

2 2

a0 30 3¢ ¢
or,sinceggy = —0 5= —0},
ol=(p,sinf@—p_singfos. (12)

The term in parentheses will be recognized as p,, the trans-
verse momentum of the two pions, which, if we assume
conservation of momentum, is zero.

This result does not, of course, mean that o, is really
zero. In the first place, all of our formulae are correct only
to lowest order in g,,. Thus the fact that the right-hand side
of (12) is zero implies only that o, is zero to lowest order in
o4, and that we should probably not have neglected the
smaller uncertainties in the other measurements. As a
practical matter, the important conclusion is that o, is
much smaller than one would expect on the basis of naive
use of the quadratic sum to estimate o,,. In my section of
the laboratory, several students found values for the K°
mass that were appreciably better than they expected. Once
again, it is presumably fair to attribute this to their over-
looking the correlation of & and ¢ and their consequent
overestimation of the uncertainty concerned.’

ITII. CORRELATION OF LEAST-SQUARES
COEFFICIENTS

In my second example, the two correlated variables are
not themselves measured directly. Instead they are the
least-squares estimates for the coefficients 4 and B in a
linear relation

y=A+ Bx (13)
based on N measured pairs (x;, y,), with 7 = 1,..., N. In the
simplest case, which I consider here, the measured
numbers Xx,,...,x, have negligible uncertainty, while
Y- Yy are all equally uncertain, with common standard

deviation o,. In this case, the best estimates for 4 and B are
well known to be®

A = [(Zx})\Zy;) — (2x,)(Zx; y;)]/4 (14)
and

B=[N(2x, ;) — (2x,)(3y,)]/4, (15)
where

4 =N (2x}) — (2x,)?

= N3 (x, — X% (16)

The uncertainties in these estimates are given by

ol =03x2/4 (17)
and

o} =0lN/A (18)
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underestimate ——
of B

overestimate —__ |
of A _T

0 5 10 5 X
Fig. 2. Four measured points (x,,y;,) and the least-squares best line
y = A + Bx(solid line). The error bars show the uncertainties + o, in the

measured values y,,..., 4. The dashed line shows how an underestimate of
the slope B entails an overestimate of the intercept 4.

In a typical application the estimates (14) and (15} are
used to predict a value of y for some chosen value of x. I
shall denote this predicted value by

§=A4+ Bx. (19)

Note that the caret distinguishes the predicted value, j, as
defined by (19). Here, and from now on, A and B denote the
estimates (14) and (15) [as opposed to the hypothetical
“true” values in (13)].

The uncertainty in the predicted value j can be found in
several ways: Perhaps the most straightforward is to substi-
tute (14) and (15) into (19) to express J in terms of the mea-
sured quantities y,,..., yy. The uncertainty in y can then be
found by error propagation—formula {1}—from the uncer-
tainties in the uncorrelated measurements y,,..., yy.” Per-
haps the neatest method is due to Birge,® who pointed out
that for the special case that x = 0, o; is just 0, ; by making
asuitable translation of origin, one can therefore find o;, for
any value of x.

The method of finding o} that I wish to discuss here is
this: Having once found the two coefficients 4 and B with
their uncertainties, it is natural to regard 4 and B as given,
known quantities, and to calculate o;, directly from (19) in
terms of the uncertainties in 4 and B. However, the two
quantities 4 and B are correlated, as we now discuss, and
one needs to know the covariance o, as well as o, and o
before one can find oy, correctly.’

It is easy to understand why 4 and B are correlated.
Figure 2 shows a typical set of data and the least-squares
best fit (solid line). It is quite evident that, with these data,
an underestimate of the slope B {dashed line) will entail an
overestimate of the intercept A, and vice versa. That is, the
quantities 4 and B have (in this case) a strong negative cor-
relation.

The covariance o,; is easily evaluated. We imagine
making a whole series of measurements of the N variables
Yis-os Yy (always for the same set x,..., x, ). Given that the

measurements of y,,..., y, are themselves uncorrelated,
o= Y, 94 OB o2

B = i

P Oy

(This formula corresponds to the better-known formula for
the variance,

< (Jd4)?
7 2 - (—) 7 2.,
A i;l ayi Yi
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and is derived in exactly the same way—see, for example,
Ref. 1, pp. 176-177.) Substituting (14) and (15) for 4 and B
and putting all of the o, equal to o, we find, after a little
algebra,

O = — 0 2(3x,)/A. (20)

Knowing 0, 05, and 0,5, we can now calculate o us-
ing formula (2). After some more algebra, this gives

0l =0% +2x0,, +x%0}
=0,y (x—x,)/4 (21)

0 Zx—x)
N ZE—x)p
These answers have several interesting features. First, if we

choose a value of x far away from all of the measured
points, then

Sx—x =3I x—XP=N(x—Xx)?

and (21) gives

(22)

0}l=0lN(x—X/4 =0%(x — %>~
Therefore

0y, =~0|x —X|.

This is just what we should expect: When x is far away from
the measured points we are extrapolating the linein Fig. 2 a
long way. In this case the dominant uncertainty is the un-
certainty in the slope B, and this contributes an uncertainty
og|x — X| to the predicted value p.

More interesting, for our present purposes, is the case
that we wish to predict y for a value of x close to the mea-
sured points x,..., x5. Whatever the value of x, the right-
hand fraction in (22) is never less than 1:

Zx—x)

AL 23

3x—x) 2
Thus {22) implies that

a,50,/\N, 24)

a result one might have anticipated. (The prediction J is
based on NV measurements of y, so cannot possibly be more
certain than o,/ VN .) The fraction (23) is equal to 1 if (and
only if ) x = X, and o;, is therefore minimum at x = x. That
is, the most favorable place to predict y is the centroid,
x =X, of the original measurements, again as one might
have guessed.

Finally, if we were to overlook the correlation of 4 and B,
formula (1) would give

o}=0}+x0} (25)
_ 9, 2 +x)) 26)
N ZFE—x)?

Comparison of this (incorrect) answer with (22) shows that
by forgetting the correlation we have dropped the cross
terms — 2xx; from the sum in the numerator of (22). It is
easy to see that one can construct examples in which the
effect of this omission is very large. For example, let us
consider the data of Fig. 2 and predict the value of y at
x =X = 13 (the most favorable place to predict y). In this
case the correct uncertainty (22) is

o5 = ay/\/z =03,
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an answer which a glance at the graph shows to be reasona-
ble. If we were to forget the correlation and use (26) we
would get the absurd answer

o; =24.

Evidently the correlation of 4 and B is an important effect
in this instance.

A simple concrete example of these considerations is giv-
en by an experiment on simple harmonic motion in our
elementary physics laboratory at Colorado. In this labora-
tory, students first find the spring constant & of a spring by
loading it with four or five different masses and plotting the
length y of the spring against the mass m of the load. Since
the force of the spring is £ (y — y,), where y, is its un-
stretched length, it follows that mg = k (y — y,) or

y=Yo+(8/k)m. (27)

Therefore, the graph of y against m should be a straight
line, very similar to that of Fig. 2, with intercept equal to
the unstretched length y, and slope g/k.

In this experiment the data satisfy the assumptions of
this section almost perfectly. The measurements of the
length y are all equally uncertain, by a millimeter or two,
while the masses m are standard masses and so have very
small uncertainties. Thus a natural way to find the spring
constant and the unstretched length is to make a least-
squares fit to the line (27).'° This gives the slope, and hence
k, with a small uncertainty; but, because of the need to
extrapolate back to zero load, the unstretched length y, has
alarger uncertainty than the original measurements of y.!*

Having found the spring constant &, students pick one of
their masses m and study its oscillations on the end of the
spring. For this purpose they need to know the length y of
the spring when loaded with the mass m. This length has
already been measured directly, but can be found more
accurately from their fit to the line (27), by calculating § for
the chosen mass m. For our present purposes, the impor-
tant point about this calculation is this: The final uncertain-
ty o5, as given correctly by (22), is smaller than the uncer-
tainty o, in the original measurements. But an incorrect
evaluation of o, based on {25) (i.e., neglecting the correla-
tion of 4 and B ) would give the absurd answer that g, is
larger than o,
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“] am indebted to my colleague Bill Ford for drawing my attention to this
correlation.

5There is another way to calculate the K° momentum which bypasses the
whole problem of correlation between 8 and ¢. If one assumes conserva-
tion of all components of momentum, then p=p, + p_ and hence
PP=p* +2p,p_cos(@ + ¢)+p° . Since this involves only 6 + ¢
{not 0 or ¢ separately), the large uncertainties in 8 and ¢ should have no
impact on the value of p, just as long as & + ¢ can be accurately mea-
sured. The instructions for this experiment have recently been rewritten
to suggest finding p this way.

®See, for example, Ref. 1, pp. 156-159.

"See, for example, Beers, Ref. 3, p. 43.

8R. T. Birge, Phys. Rev. 40, 207 (1932), see p. 226.

This approach (regarding 4 and B as given) is encouraged by the many
texts (including my own) that list formulas for 4, B, o, and o5. The only
text that I have found with a clear warning that one needs to remember
the correlation o, is Meyer, Ref. 2, p. 367: “It is common, if sometimes
inadequate, to quote 4 + ¢, and B + o as ‘results,” but we should keep
the existence of correlations in mind.”

107t should be admitted that in our elementary laboratory the students do
not actually use the method of least squares. Nevertheless, this is an
almost perfect simple application of the method.

""The unstretched length y, cannot be measured directly because of the
need to open up the spring’s coils, which are in contact when the spring
is unloaded. For the same reason, one cannot use small loads and must
therefore extrapolate an appreciable distance back to zero load.
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The energy balance in the superposition of light waves with a lossless beam splitter is analyzed
along with its connection with some general relations between the parameters describing beam-
splitter effects on the two incoming waves. These general relations are derived either from the
electromagnetic theory or from energy conservation considerations. The apparent paradox of a
symmetric beam splitter producing complementary outputs is explained.

I. INTRODUCTION

When dealing with light interference phenomena the
student is often confused with questions related to energy
balance. Surprisingly enough, these kinds of questions are
not usually dealt with in textbooks.

The most typical example of a striking situation appears
when considering the superposition of two copropagating
plane waves and the resultant irradiance deviates from the
sum of the component irradiances. As a matter of fact this
situation can easily be achieved in the laboratory by using,
for instance, a Michelson-type interferometer with a colli-
mated light beam as input. The experiment is particularly
useful for the verification of the fundamental formula

I=1,+1,+2yI,I, cos ¢

giving the irradiance of the superposed beams, since the
irradiances 7, and I, of the two beams can easily be deter-
mined by alternative screening of the interferometer arms,
and the phase difference ¢ of the waves varied by displacing
the movable mirror. However, at first sight, the variation of
the output beam power with ¢ poses an energy balance
problem that must be explained to the students.

As shown in Fig. 1, the first point to be noticed is the
existence of a second light output returning to the source
from the interferometer. This second output can also be
detected and any hypothetical influence on the source
avoided if, for instance, the input beam direction is some-
what skew with respect to the interferometer horizontal
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plane.’ In such a way the relative behavior of the two inter-
ference outputs can be analyzed as a function of the optical
path difference between the interferometer arms. It is a
frequent idea that the two outputs are complementary to
one another. Nevertheless, if the experiment is carried out
such an expectation will probably not prove to be so. The
relative behavior of the outputs depends on the kind of
beam splitter used in the interferometer. Complementary
outputs are certainly observed with any lossless beam split-
ter, but not when energy is lost in the beam-splitter coating.

Itis the aim of this paper to analyze the energy balance in
the superposition of light waves with a lossless beam split-
ter and its connection with some general relations between
the parameters describing beam-splitter effects on the two
incoming waves. These general properties, satisfied for in-
cident angles producing complete superposition at the out-
puts, are derived either from energy conservation consider-
ations (Sec. III) or from the electromagnetic theory (Sec.
IV). The particular case of a symmetric beam splitter is
considered in some detail (Sec. V), since a symmetric device
yielding complementary outputs may be somewhat sur-
prising.

Early work on the subject deals with multiple-beam in-
terference from a semireflecting film. As earlier as 1906
Hamy? established the relation that must exist between
phase changes on transmission and reflection in order to
obtain complementary patterns in transmitted or reflected
light. It is this same relation that is required for comple-
mentary outputs in the beam-splitter interferometer. The
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