Preparación de un Informe

Antes de comenzar a escribir

Analizar el problema:

Que información se quiere presentar

Para que grupo de lectores se está escribiendo Que información de base manejan éstos

Cual es la secuencia mas lógica de presentación

- Diagramar detalladamente el informe
- Planear figuras y tablas
- Pensar

Reglas generales

CCC (Claro, Conciso, Completo) Ponerse en el lugar del lector

Título
Nombre del/os autor/es
Dirección
Fecha de entrega

Resumen

Texto principal: Introducción Cuerpo del Informe

- Detalles experimentales
- Resultados: Figuras, Tablas
- Discusión:
 Ajuste con modelos, Fig.,
 Tablas

Conclusiones

Agradecimientos Apéndices (si fuera necesario) Referencias

Título: "corto pero completo" sin abreviaturas poco conocidas

Título

PHYSICAL REVIEW B

VOLUME 59, NUMBER 21

1 JUNE 1999-I

Coexistence of ferromagnetism and superconductivity in the hybrid ruthenate-cuprate compound RuSr₂GdCu₂O₈ studied by muon spin rotation and dc magnetization

KACIIMAN

PRL **101**, 110201 (2008)

PHYSICAL REVIEW LETTERS

week ending 12 SEPTEMBER 2008

Landau Levels and Riemann Zeros

Germán Sierra¹ and Paul K. Townsend²

¹Instituto de Física Teórica, CSIC-UAM, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

²Department of Applied Mathematics and Theoretical Physics Centre for Mathematical Sciences,

University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom

(Received 27 May 2008; published 12 September 2008)

PHYSICAL REVIEW B 77, 045431 (2008)

Alloying in Ge(Si)/Si(001) self-assembled islands during their growth and capping: XPS and AFM study

M. De Seta, G. Capellini,* and F. Evangelisti

Dipartimento di Fisica "E. Amaldi," Università Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy (Received 7 August 2007; revised manuscript received 21 December 2007; published 29 January 2008)

1 totol of lolds

Título: "corto pero completo" sin abreviaturas poco conocidas

Título
Nombre del/os autor/es
Dirección
Fecha de entrega

Computer methods in applied mechanics and engineering

Comput. Methods Appl. Mech. Engrg. 197 (2008) 2353-2371

www.elsevier.com/locate/cma

A variational framework for fluid-solid interaction problems based on immersed domains: Theoretical bases

P.J. Blanco^a, R.A. Feijóo^{a,*}, E.A. Dari^b

^a LNCC, Laboratório Nacional de Computação Científica, Av. Getúlio Vargas 333, Quitandinha, 25651-075 Petrópolis, RJ, Brazil
^b CAB, Centro Atómico Bariloche, Av. Bustillo Km. 9.5, San Carlos de Bariloche, 8400 Rio Negro, Argentina

Received 10 October 2007; received in revised form 13 December 2007; accepted 21 January 2008

Título
Nombre del/os autor/es
Dirección
Fecha de entrega

Título: "corto pero completo" sin abreviaturas poco conocidas

PHYSICAL REVIEW A 80, 012510 (2009)

Quantum dynamics of a plane pendulum

Monika Leibscher^{1,*} and Burkhard Schmidt^{2,†}

¹Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany

²Institut für Mathematik, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany

(Received 27 March 2009; published 17 July 2009)

Dogultadage

PHYSICAL REVIEW A 79, 053839 (2009)

Trapping of a microsphere pendulum resonator in an optical potential

J. M. Ward, ^{1,2} Y. Wu (郑宇强), ^{2,3} V. G. Minogin, ^{1,3,4} and S. Nic Chormaic ^{2,3}

¹Department of Applied Physics and Instrumentation, Cork Institute of Technology, Cork, Ireland ²Photonics Centre, Tyndall National Institute, Prospect Row, Cork, Ireland ³Department of Physics, University College Cork, Cork, Ireland ⁴Institute of Spectroscopy, Russian Academy of Sciences, 142190 Troitsk, Moscow Region, Russia (Received 16 November 2008; published 19 May 2009)

Título
Nombre del/os autor/es
Dirección
Fecha de entrega

Resumen

Texto principal: Introducción Cuerpo del Informe

- Detalles experimentales
- Resultados: Figuras, Tablas
- Discusión:
 Ajuste con modelos, Fig.,
 Tablas

Conclusiones

Agradecimientos Apéndices (si fuera necesario) Referencias

Resumen:

- "ayuda" para decidir si se lee o no el resto del informe
- completo e inteligible en si mismo

guía para su escritura:

Establecer el tema del informe como primera frase

Describir el tratamiento que se le dará al tema (experimental, teórico, breve, preliminar)

resumir los resultados y conclusiones del informe (dar resultados numéricos cuando sea pertinente)

Indicar los métodos usados para obtener los resultados

Definir abreviaturas y símbolos usados

NO citar referencias, ecuaciones, tablas, etc. del texto

NO incluir ecuaciones, tablas, figuras o notas al pie

Extensión sugerida 5% del total del informe

Título
Nombre del/os autor/es
Dirección
Fecha de entrega

Resumen

Texto principal:

Introducción

Cuerpo del Informe

- Detalles experimentales
- Resultados: Figuras, Tablas
- Discusión:
 Ajuste con modelos, Fig.,
 Tablas

Conclusiones

Agradecimientos Apéndices (si fuera necesario) Referencias

Introducción:

guía para su escritura:

- •Precisar el tema del informe tan pronto como posible
- •Incluir alguna base histórica *solamente* si fuera necesaria para entender los puntos importantes del informe.
- •Indicar la óptica del informe (límites entre los que se tratará el tema, rango de parámetros, experimental, teórico)
- •Establecer cual es la motivación y propósito del trabajo.
- •Indicar la organización del informe

Título
Nombre del/os autor/es
Dirección
Fecha de entrega

Resumen

Texto principal: Introducción

Cuerpo del Informe

- Detalles experimentales
- Resultados: Figuras, Tablas
- Discusión:
 Ajuste con modelos, Fig.,
 Tablas

Conclusiones

Agradecimientos Apéndices (si fuera necesario) Referencias

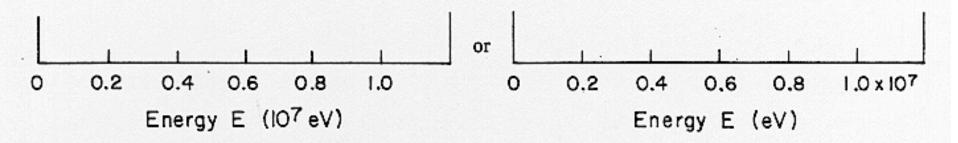
Cuerpo del informe:

Incluir toda la información necesaria para establecer los puntos principales del trabajo.

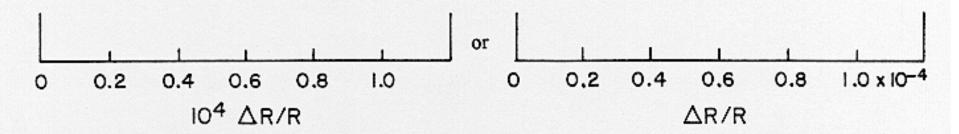
Eliminar material superfluo.

Poner el énfasis adecuado a las ideas principales.

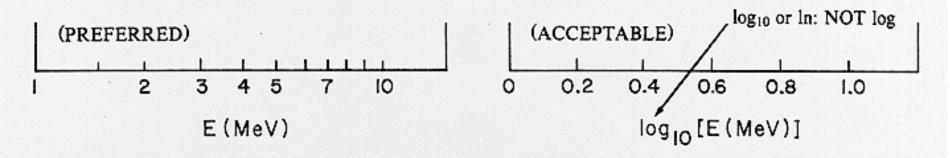
La presentación debe tener un orden lógico.


Los resultados deben ser cuantitativos

Hacer buen uso de tablas y figuras


Son los hechos presentados adecuados para sustentar las conclusiones del informe?

AXIS LABELS ON GRAPHS


The preferred style for quantities with units is:

For dimensionless quantities:

Styles for logarithmic scales:

Do not use multiplication signs with units. The following styles are ambiguous and are NOT ACCEPTABLE:

$$R \times 10^3 \Omega$$
 $R(\times 10^3 \Omega)$ $R \times 10^3 (\Omega)$ $\Delta R/R \times 10^3$ $R(\Omega \times 10^3)$ $R(\Omega) \times 10^3$ $\delta \times 10^3$ $\delta \times 10^3$

Put the units in parentheses and space them off. Use small spaces (not hyphens or dots) between the parts of compound units:

$$E^{2} (\text{MeV}^{2})$$
 $p^{2} [(\text{MeV}/c)^{2}]$ $\rho (\Omega \text{ cm})$ $p (\text{g cm s}^{-1})$

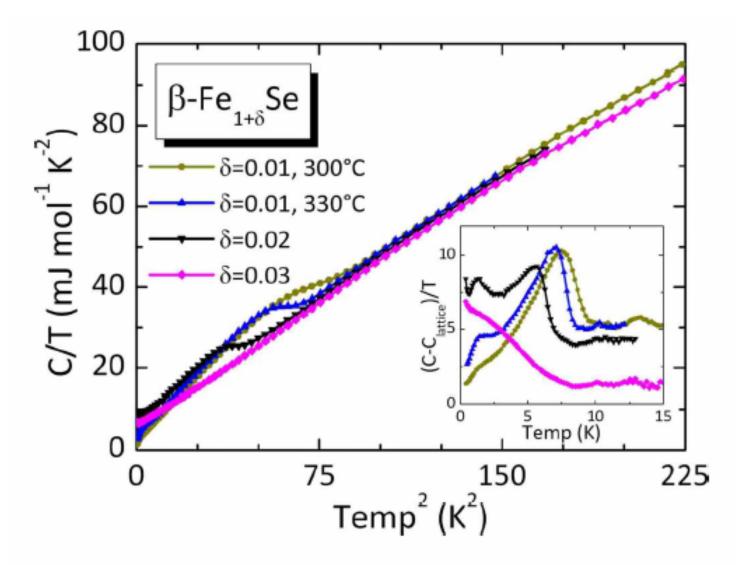


FIG. 4. (Color online) Low-temperature specific heat of β -Fe_{1.01}Se-300 °C, β -Fe_{1.01}Se-330 °C, β -Fe_{1.02}Se-380 °C, and β -Fe_{1.03}Se-400 °C. The inset shows the data after subtraction of a lattice contribution (see text).

TABLE I. Refined structural parameters for two samples of β -FeSe at 298 K from powder neutron data. Space group P4/nmm (No. 129). Atomic positions: Fe: 2a (3/4,1/4,0), Se: 2c (1/4,1/4,z). Lattice parameters are in units of Å and thermal parameters are in units of 10^{-2} Å². Fe_{1.06}Se contains small secondary phases of Fe and Fe₃O₄. The β -Fe_{1.01}Se sample employed contains very small amounts of Fe, Fe₇Se₈, and α -FeSe.

		Fe _{1.06} Se	Fe _{1.01} Se
	а	3.7747(1)	3.7734(1)
	С	5.5229(1)	5.5258(1)
Fe	U_{11}	0.87(2)	0.63(3)
	U_{33}	2.02(4)	2.41(5)
	Occ.	0.987(6)	0.997(3)
Se	$U_{ m iso}$	1.35(3)	1.31(3)
	Z	0.2669(2)	0.2672(1)
	χ^2	1.727	2.117
	R_{wp}	6.42%	6.56%
	$R_{ m p}$	5.15%	5.30%
	$R(\dot{F}^2)$	6.04%	7.42%

Unit	Symbol	Physical Quantity
Base units		
ampere	Α	electric current
candela	cd	luminous intensity
kelvin	K	thermodynamic temperature
kilogram	kg	mass
meter	m	length
mole	mol	amount of substance
second	S	time
<u>Supplementary</u> <u>units</u>		
radian	rad	plane angle
steradian	sr	solid angle

From The ACS Style Guide (J. S. Dodd, editor, 1986)

Título
Nombre del/os autor/es
Dirección
Fecha de entrega

Resumen

Texto principal: Introducción Cuerpo del Informe

- Detalles experimentales
- Resultados: Figuras, Tablas
- Discusión:
 Ajuste con modelos, Fig.,
 Tablas

Conclusiones

Agradecimientos Apéndices (si fuera necesario) Referencias

Conclusiones:

deben incluir:

Resumen

Convicciones basadas en evidencias presentadas, que surjan lógicamente del material presentado.

Recomendaciones

Redondeo de la idea general del informe

PHYSICAL REVIEW B 79, 014522 (2009)

- ¹⁸Each doping level was tried in four different interstitial sites: 2b (interlayer tetrahedral sites), 2c (z=-z(Se), Cu2Sb-like), 2c ($z\sim0.5$, interstitials in square pyramids), 4e (interstitials in distorted octahedra).
- ¹⁹This actually has a wide compositional range. See the known phase diagrams [Refs. 11 and 12].
- ²⁰A. Tari, The Specific Heat of Matter at Low Temperatures (Imperial College, London, 2003).
- ²¹Oxygen-contaminated samples do show magnetic behavior in the Mössbauer spectra (insets of Fig. 6).
- ²² S. Kitao, Y. Kobayashi, S. Higashitaniguchi, M. Saito, Y. Kamihara, M. Hirano, T. Mitsui, H. Hosono, and M. Seto, J. Phys. Soc. Jpn. 77, 103706 (2008).
- ²³T. M. McQueen, M. Regulacio, A. J. Williams, Q. Huang, J. W. Lynn, Y. S. Hor, D. V. West, M. A. Green, and R. J. Cava, Phys. Rev. B 78, 024521 (2008).
- ²⁴M. Tegel, I. Schellenberg, R. Poettgen, and D. Johrendt, arXiv:0805.1208 (unpublished).

Standard
Journal Article

Sanghera MK, Trulson ME, and German DC Jr. Electrophysiological properties of mouse dopamine neurons: in vivo and in vitro studies. *Neuroscience* 12: 793–801, 1984.

Subtitle in a Series (Journal Articles) **Fowler WS and Cornish ER III.** Lung function studies. VIII. Analysis of alveolar ventilation by pulmonary N2 clearance curves. *J Clin Invest* 31: 40–50, 1952.

Books

whole book:

Spector WS. Handbook of Physiological Biology Data. Philadelphia, PA: Saunders. 1956.

chapter in a

book:

Bencosme SA and Morrin PAF. Ultrastructural pathology of the glomerulus. In: *Ultrastructure of the Kidney* (2nd ed.), edited by Dalton AJ and Hagenau F. New York: Academic, 1967, vol. 2, chapt. 15, p. 143–227.

single page:

Spector WS. Handbook of Physiological Biology Data. Philadelphia, PA: Saunders, 1956, p. 55.

edited book:

Spector WS. Handbook of Physiological Biology Data, edited by Dalton AJ and Hagenau F. Philadelphia, PA: Saunders, 1956.

book with editor Spector WS (Editor). Handbook of Physiological Biology Data. Philadelphia, but no authors:

PA: Saunders, 1956.

edition of a book:

Vander AJ, Sherman JH, and Luciano DS. Human Physiology: The Mechanism of Body Function (3rd ed.). Philadelphia, PA: McGraw-Hill, 1980.

Philosophical Transactions of the Royal Society B: Biological Sciences Physical Review Physical Review A: Atomic, Molecular, and Optical Physics 1 4 1 Physical Review B: Solid State Physical Review C: Nuclear Physics Physical Review D: Particles and Fields Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics Physica Status Solidi A: Applied Research

Physical Review Letters Physica Status Solidi

Physica Status Solidi B: Basic Research

Physica (Utrecht)

Physics and Chemistry of Solids

Physics Letters

Physics Letters A

Physics Letters B

Physics (New York)

Physics of Fluids

Physics of Metals and Mettalography (USSR) (translation of Fizika Metallov i Metallovedenie)

Physics Teacher

Physics Today

Physikalische Zeitschrift