Pocketbook of Data for Nuclear Engineers

rev. 01 - February 2013

9.4 Periodic Table

(a) For gas; density (liquid) = 0.0708 g/cc at b.p.; density (solid)=0.0706 g/cc at -262° C. (b) For gas; density (liquid)=0.1221 g/cc at b.p. (c) At 20°C. (d) For crystal form; density (amorphous)= 2.37 g/cc.(e) For amorphous carbon; density (graphite) = 1.9 to 2.3 g/cc; density (gem diamond)=3.513 g/cc at 25° C; density (other diamond)=3.15 to 3.53 g/cc. (f) For gas; density (liquid) = 0.808 g/cc at b.p.; density (solid)= 1.026 g/cc at -252° C. (g) For gas; density (liquid) = 0.808 g/cc at b.p.; density (solid)= 1.026 g/cc at -252° C. (h) At 25°C. (i) For white phosphorus; density (red)=2.20 g/cc; density (black)=2.25 to 2.69 g/cc.
(j) For rhombic sulfur; melting point (monoclinic)=119.0°C; density (monoclinic)=1.957 g/cc at 20°C. (k) Depending on allotropic form. (l) For gray arsenic; density (yellow)=1.97 g/cc. (m) For gray selenium; density (vitreous)=4.28 g/cc. (n) Calculated. (o) For gray tin; density (white)=7.13 g/cc. (p) For solid at 20° C; 0.01127 g/cc for gas. (q) For α modification. (r) For β modification.

Contents

Fc	reword	iii									
1	Physical constants and unit conversions	1									
2	Mass attenuation and mass energy absorption coefficients	3									
3	3 Energy diagrams										
4	4 X-ray and gamma standards										
5	Beta decay 5.1 Energetics of beta decay	21 21									
6	CSDA Range for protons	23									
7	How to compute number densities	25									
8	Ground and isomeric states properties	29									
9	Elemental Properties and Periodic Table 9.1 List of Elements by Z 9.2 Alphabetical List of Elements 9.3 Densities and Atomic Masses	97 97 98 99									
	9.4 Periodic Table	101									

i

9.3 Densities and Atomic Masses

Z	Symbol	Atomic mass [u]	Density [g/cm ³]	Z	Symbol	Atomic mass [u]	Density [g/cm ³]
1	Н	1.00794(7)	$8.988 \times 10^{-5} (a)$	52	Te	127.60(3)	6.24 ^(c)
2	He	4.002602(2)	$1.785 \times 10^{-4} (b)$	53	Ι	126.90447(3)	$4.93^{(p)}$
3	Li	6.941(2)	$0.534^{(c)}$	54	Xe	131.293(6)	0.005887
4	Be	9.012182(3)	$1.848^{(c)}$	55	Cs	132.90545(2)	$1.873^{(c)}$
5	В	10.811(7)	$2.34^{(d)}$	56	Ba	137.327(7)	$3.5^{(c)}$
6	С	12.0107(8)	$1.8 \text{ to } 2.1^{(e)}$	57	La	138.9055(2)	$6.145^{(h)}$
7	Ν	14.0067(2)	$0.0012506^{(f)}$	58	Ce	140.116	$6.770^{(h)}$
8	0	15.9994(3)	$0.001308^{(g)}$	59	Pr	140.90765(2)	$6.773^{(q)}, 6.64^{(r)}$
9	F	18.9984032(5)	0.001696	60	Nd	144.24(3)	7.008
10	Ne	20.1797(6)	8.9990×10^{-4}	61	Pm	(145)	$7.264^{(h)}$
11	Na	22.989770(2)	$0.971^{(c)}$	62	Sm	150.36(3)	$7520^{(q)},740^{(r)}$
12	Mg	24.3050(6)	$1.738^{(c)}$	63	Eu	151 964	$5244^{(h)}$
13	Al	26.981538(2)	$2.6989^{(c)}$	64	Gd	157.25(3)	7 901 ^(h)
14	Si	28.0855(3)	$2.33^{(h)}$	65	Th	158,92534(2)	8 230
15	Р	30.973761(2)	$1.82^{(i)}$	66	Dv	162.50(3)	8 551 ^(h)
16	S	32.065(5)	$2.07^{(c,j)}$	67	Ho	164.93032(2)	8 795 ^(h)
17	C1	35.453(2)	0.003214	68	Fr	167.259(3)	$9.066^{(h)}$
18	Ar	39.948	0.0017837	60	Tm	168 03421(2)	0.321(h)
19	К	39.0983	$0.862^{(c)}$	70	Vh	103.33421(2) 173.04(3)	$6.003^{(q)}$ $6.066^{(r)}$
20	Ca	40.078(4)	$1.55^{(c)}$	70	Lu	174.067	0.903 (*) , 0.900 (*)
21	Sc	44.955910(8)	$2.989^{(h)}$	71	Lu LIf	174.907	9.041(c) 12.21(c)
22	Ti	47.867	4.54	72	111 To	180.0470	16.654
23	V	50.9415	6.11(18.7°C)	73	14	100.9479	10.034 10.2(c)
24	Cr	51.9961(6)	7.18 to $7.20^{(c)}$	74	Po	186.207	19.3 () 21.09(c)
25	Mn	54.938049(9)	7.21 to 7.44 ^(k)	75	Coc Ne	100.207	21.02(7)
26	Fe	55 845(2)	7 874 ^(c)	70	US 1.	190.23(3) 102.217(2)	22.07 99.49(17°)
27	Co	58 933200(9)	8 9(c)	79	11 D+	192.217(3) 105.078(2)	22.42(17) 21 $45(c)$
28	Ni	586934(2)	8 902 ^(h)	70	11	195.076(2) 106.06655(2)	$\sim 10.2(c)$
29	C11	63.546(3)	8 96(c)	29	Ha	190.90050(2)	$\approx 19.3^{(\prime)}$
30	Zn	65.39(2)	$7.133^{(h)}$	00	пg тi	200.09(2)	13.340 ^(*)
31	Ga	69 723	5 904(29 6°C)	01	11 D1-	204.3633(2)	11.60 ⁽¹⁾
32	Ge	72.64	5 323 ^(h)	82	PD D:	207.2	11.33 ^(*)
33	Δe	74.92160(2)	5 73 ^(l)	83	D1 D	208.98038(2)	$9.747^{(3)}$
34	So	78.96(3)	$4.79^{(m)}$	84	PO	(209)	$9.32^{(q)}$
35	Br	70.004	$2.10^{(n)}$	85	At D.	(210)	0.00079
36	Kr	83.80	0.003733	80 97	Kn En	(222)	0.00973
37	Rb	85 4678(3)	1.532(c)	0/	ГГ Da	(223)	F
38	Sr	87.62	2.54	00	Kd A a	(220)	10.07(n)
39	V	88 90585(2)	4 460(h)	09	AC Th	(227)	11.72
40	$\frac{1}{7r}$	01.224(2)	6 506 ^(c)	90	Pa	232.03601 (221)	11.72
40	Nh	02.00638(2)	8 57(c)	02	1 a 11	(231)	~ 18.05
42	Mo	92.90038(2)	10.22(c)	92	Nn	(227)	≈ 16.95 20.25(c)
42	Te	(08)	$10.22^{(n)}$	93	np Du	(237)	$20.23^{(+)}$
43	ПС П.,	(90) 101.07(9)	$11.00^{(1)}$ 19.41(c)	94	Fu Am	(244)	19.64 19.67(c)
44	RU Dh	101.07(2) 102.00550(2)	$12.41^{(r)}$ 19.41(c)	95	Am	(243)	$13.07^{(1)}$ 12.51(n)
45	Kn DJ	102.90550(2)	$12.41^{(-)}$ 12.00(c)	96	Cm	(247)	$13.31^{(n)}$
40	Pa	100.42	12.02 ^(c)	9/	DK Cf	(247)	14(**)
4/	Ag	107.8682(2)	$10.50^{(c)}$	98	CI Ea	(251)	
48	Ca	112.411(8)	8.65 ^(c)	99 100	ES	(252)	
49	In	114.818(3)	7.31 ^(c)	100	rm Md	(257)	
50	Sn	118.710(7)	$5.75^{(0)}$	101	Na	(200)	
51	Sb	121.760	$6.691^{(c)}$	102	INO	(209)	

9.2 Alphabetical List of Elements

Name	Symbol	Z	Name	Symbol	Z	Name	Symbol	Z
Actinium	Ac	89	Gold	Au	79	Praseodymium	Pr	59
Aluminum	Al	13	Hafnium	Hf	72	Promethium	Pm	61
Americium	Am	95	Hassium	Hs	108	Protactinium	Pa	91
Antimony	Sb	51	Helium	He	2	Radium	Ra	88
Argon	Ar	18	Holmium	Ho	67	Radon	Rn	86
Arsenic	As	33	Hydrogen	Н	1	Roentgenium	Rg	111
Astatine	At	85	Indium	In	49	Rhenium	Re	75
Barium	Ba	56	Iodine	Ι	53	Rhodium	Rh	45
Berkelium	Bk	97	Iridium	Ir	77	Rubidium	Rb	37
Beryllium	Be	4	Iron	Fe	26	Ruthenium	Ru	44
Bismuth	Bi	83	Krypton	Kr	36	Rutherfordium	Rf	104
Bohrium	Bh	107	Lanthanum	La	57	Samarium	Sm	62
Boron	В	5	Lawrencium	Lr	103	Scandium	Sc	21
Bromine	Br	35	Lead	Pb	82	Selenium	Se	34
Cadmium	Cd	48	Lithium	Li	3	Seaborgium	Sg	106
Calcium	Ca	20	Lutetium	Lu	71	Silicon	Si	14
Californium	Cf	98	Magnesium	Mg	12	Silver	Ag	47
Carbon	С	6	Manganese	Mn	25	Sodium	Na	11
Cerium	Ce	58	Meitnerium	Mt	109	Strontium	Sr	38
Cesium	Cs	55	Mendelevium	Md	101	Sulfur	S	16
Chlorine	C1	17	Mercury	Hg	80	Tantalum	Ta	73
Chromium	Cr	24	Molybdenum	Mo	42	Technetium	Tc	43
Cobalt	Co	27	Neodymium	Nd	60	Tellurium	Te	52
Copper	Cu	29	Neon	Ne	10	Terbium	Tb	65
Curium	Cm	96	Neptunium	Np	93	Thallium	T1	81
Darmstadtium	Ds	110	Nickel	Ni	28	Thorium	Th	90
Dubnium	Db	105	Niobium	Nb	41	Thulium	Tm	69
Dysprosium	Dy	66	Nitrogen	Ν	7	Tin	Sn	50
Einsteinium	Es	99	Nobelium	No	102	Titanium	Ti	22
Erbium	Er	68	Osmium	Os	76	Tungsten	W	74
Europium	Eu	63	Oxygen	0	8	Uranium	U	92
Fermium	Fm	100	Palladium	Pd	46	Vanadium	V	23
Fluorine	F	9	Phosphorus	Р	15	Xenon	Xe	54
Francium	Fr	87	Platinum	Pt	78	Ytterbium	Yb	70
Gadolinium	Gd	64	Plutonium	Pu	94	Yttrium	Y	39
Gallium	Ga	31	Polonium	Ро	84	Zinc	Zn	30
Germanium	Ge	32	Potassium	К	19	Zirconium	Zr	40

Foreword

The *Pocketbook of Data for Nuclear Engineers* is a compilation of nuclear data available from different sources online (NIST, IAEA-NDS, evaluated data libraries). It was conceived as an extension of BNL *Nuclear Data Cards* to include other important nuclear data used in the Nuclear Physics course at Instituto Balseiro and other courses. The document is typeset in 10 pt font to be printed as a A5 or A6 booklet.

This compilation is supplied "as is" with no warranties implied. It is recommended that the data contained in this pocketbook be checked against the sources before used for any important application. If you think data should be corrected, added or removed from this compilation, please contact the author at: marquezj@cab.cnea.gov.ar

This pocketbook can be distributed freely, and the data should be used citing the original source.

The latest version of this pocketbook can be found at:

http://ib.cnea.gov.ar/~moderna/nuclear/pdne.html

Chapter 9

Elemental Properties and Periodic Table

9.1 List of Elements by Z

Z	Symbol Name Z Symbol Name		Z	Symbol	Name			
1	Н	Hydrogen	38	Sr	Strontium	75	Re	Rhenium
2	He	Helium	39	Y	Yttrium	76	Os	Osmium
3	Li	Lithium	40	Zr	Zirconium	77	Ir	Iridium
4	Be	Beryllium	41	Nb	Niobium	78	Pt	Platinum
5	В	Boron	42	Mo	Molybdenum	79	Au	Gold
6	С	Carbon	43	Tc	Technetium	80	Hg	Mercury
7	Ν	Nitrogen	44	Ru	Ruthenium	81	TÌ	Thallium
8	0	Oxygen	45	Rh	Rhodium	82	Pb	Lead
9	F	Fluorine	46	Pd	Palladium	83	Bi	Bismuth
10	Ne	Neon	47	Ag	Silver	84	Ро	Polonium
11	Na	Sodium	48	Cd	Cadmium	85	At	Astatine
12	Mg	Magnesium	49	In	Indium	86	Rn	Radon
13	Al	Aluminum	50	Sn	Tin	87	Fr	Francium
14	Si	Silicon	51	Sb	Antimony	88	Ra	Radium
15	Р	Phosphorus	52	Te	Tellurium	89	Ac	Actinium
16	S	Sulfur	53	Ι	Iodine	90	Th	Thorium
17	Cl	Chlorine	54	Xe	Xenon	91	Pa	Protactinium
18	Ar	Argon	55	Cs	Cesium	92	U	Uranium
19	K	Potassium	56	Ba	Barium	93	Np	Neptunium
20	Ca	Calcium	57	La	Lanthanum	94	Pu	Plutonium
21	Sc	Scandium	58	Ce	Cerium	95	Am	Americium
22	Ti	Titanium	59	Pr	Praseodymium	96	Cm	Curium
23	V	Vanadium	60	Nd	Neodymium	97	Bk	Berkelium
24	Cr	Chromium	61	Pm	Promethium	98	Cf	Californium
25	Mn	Manganese	62	Sm	Samarium	99	Es	Einsteinium
26	Fe	Iron	63	Eu	Europium	100	Fm	Fermium
27	Co	Cobalt	64	Gd	Gadolinium	101	Md	Mendelevium
28	Ni	Nickel	65	Tb	Terbium	102	No	Nobelium
29	Cu	Copper	66	Dy	Dysprosium	103	Lr	Lawrencium
30	Zn	Zinc	67	Ho	Holmium	104	Rf	Rutherfordium
31	Ga	Gallium	68	Er	Erbium	105	Db	Dubnium
32	Ge	Germanium 69 Tm Thuliur		Thulium	106	Sg	Seaborgium	
33	As	Arsenic 7		Yb	Ytterbium	107	Bĥ	Bohrium
34	Se	Selenium 71 Lu Lute		Lutetium	108	Hs	Hassium	
35	Br	Bromine 72 Hf Hafnium		Hafnium	109	Mt	Meitnerium	
36	Kr	Krypton	73	Ta	Tantalum	110	Ds	Darmstadtium
37	Rb	Rubidium	74	W	Tungsten	111	Rg	Roentgenium

Chapter 1 Physical constants and unit conversions

Wave relationships:	
	$E = h u$, $p = h/\lambda$
Speed of light:	
	$c = \lambda \nu = 2.99792458 \times 10^8 \text{ m/s}$
Planck's constant:	
	$h = 6.626069 \times 10^{-34} \text{ J s} = 4.135667 \times 10^{-15} \text{ eV s}$
	$\hbar c = 1.97326961 \times 10^{-11} \ {\rm MeV} \ {\rm cm}$
Electron charge:	
0	$e = 1.602176 \times 10^{-19} \mathrm{C}$
	$\frac{e^2}{4\pi\epsilon_0} = 1.4399759 \times 10^{-13} \ {\rm MeV} \ {\rm cm}$
Atomic mass unit:	
	$1 u = 931.494 \text{ MeV/c}^2$
Electron mass:	
	$m_e = 0.511 \ \mathrm{MeV/c}^2$
Boltzmann's constant:	
	$k_B = 8.617 \times 10^{-11} \text{ MeV/K}$
	$1 \text{ eV}/k_B = 1.1605 \times 10^4 \text{ K}$
Nuclear Radius:	

 $r \approx 1.3 \text{ fm} \times A^{1/3} = 1.3 \times 10^{-15} \text{ m} \times A^{1/3}$

1

Source: NIST CODATA (http://physics.nist.gov/cuu/Constants/index.html).

Pocketbook of Data for Nuclear Engineers

	Table 8.1 – Continued from previous page											
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode					
		279	0	151.3 (6)	0.17 +0.81-0.08 s		α 100					
		280	0	153.4 (5)	3.6 +4.3-1.3 s		α 100					
		281	0	154.6 (9)	26 +25-8 s		SF 100; α					
		282	0	156.7 (6)	0.5 +2.5-0.2 s		α 100; SF					
112	Cn	283	0	160.7 (6)	4.0 +1.3-0.7 s		$\alpha \ge$ 90.00; $SF \le$ 10.00;					
							SF 50; α 50					
		284	0	161.5 (8)	101 +41-22 ms		SF 100					
		285	0	164.1 (7)	30 +30-10 s		α 100					
113	13	282	0	163.6 (4)	0.07 +0.13-0.03 s		α 100					
		283	0	164 (6)	$100\pm0~{ m ms}$		α 100					
		284	0	166 (5)	0.48 +0.58-0.17 s		α 100					
		285	0	166.9 (9)	5.5 +5-1.8 s		α 100; SF					
		286	0	168.9 (6)	20 +94-9 s		α 100; SF					
114	14	286	0+	171 (7)	0.16 +0.07-0.03 s		$SF \approx$ 60.00; $\alpha \approx$ 40.00					
		287	0	173.2 (6)	0.51 +0.18-0.1 s		α 100					
		288	0+	174 (8)	0.52 +0.22-0.13 s		α 100					
		289	0	176.5 (7)	0.97 +0.97-0.32 s		α 100; α 100					
115	15	287	0	177.2 (6)	$32 \pm 0 \text{ ms}$		α 100					
		288	0	179 (6)	$87 \pm 0 \text{ ms}$		α 100					
		289	0	179.8 (9)	0.22 +0.26-0.08 s		α 100; SF					
		290	0	181.6 (6)	16 +76-7 ms		α 100; SF					
116	16	290	0+	184.4 (7)	15 +26-6 ms		α 100					
		291	0	186.6 (6)	$6.3 \pm 0 \text{ ms}$		α 100					
		292	0+	187.2 (9)	18 +16-6 ms		α 100					
		293	0	189.6 (7)	53 +62-19 ms		α 100					
117	17	293	0	193.4 (9)	14 +11-4 ms		α 100; SF					
		294	0	195.1 (7)	0.08 +0.37-0.04 s		α 100					

Table 8.1 – Continued from previous page											
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode				
		258	0	101.8 (3)	4.2 +0.4-0.3 s		α 65; ϵ 35; SF < 1.00;				
				101.00 (=)			ϵ 100				
		259	0	101.99 (5)	$0.51 \pm 0.16 \text{ s}$		α				
		260	0	103.36 (9)	$1.52 \pm 0.13 \text{ s}$		$\alpha \geq$ 90.40; $SF \leq$ 9.60; $\epsilon <$				
		0(1	0	104.05 (11)	10 104		2.50				
		261	0	104.25 (11)	$1.8 \pm 0.4 \mathrm{s}$		$\alpha \ge 82.00; SF \le 18.00$				
		262	0	106.28 (18)	$35 \pm 5 s$		$\alpha \approx 67.00; SF$				
		263	0	107.11 (17)	27 +10-7 s		SF 55; α 41; ϵ 3				
		267	0	114.2 (5)	$73 \pm 0 \text{ m}$		SF 100				
		268	0	117 (5)	32 +11-7 h		SF 100				
		270	0	122 (6)	23 ± 0 h		SF 100; α				
106	Sg	258	0+	105.3 (4)	2.9 +1.3-0.7 ms		$SF \leq 100.00; \alpha$?				
		259	(1/2+)	106.49 (12)	0.32 +0.08-0.06 s		α 96; SF 4; α <100				
		260	0+	106.544 (21)	$3.6 \pm 0.9 \text{ ms}$		α 50; SF 50; SF 71; α 29				
		261	0	108.007 (19)	$0.23 \pm 0.06 \text{ s}$		$\alpha \ 100; SF < 1.00$				
		262	0+	108.37 (20)	6.9 +3.8-1.8 ms		$SF \ge 78.00; \alpha \le 22.00$				
		263	0	110.19 (10)	$1.0\pm0.2~{ m s}$		$\alpha > 70.00; SF < 30.00;$				
		244	0	110.0 (2)	05 05 11		$TT; \alpha$				
		264	0+	110.8 (3)	37 +27-11 ms		SF 100; $\alpha < 36.00$				
		265	0	112.81 (12)	16.2 +4.7-3.5 s		$\alpha \ge 65.00; SF \le 35.00;$				
		266	0+	113.7 (3)	21 +20-12 s		$SF > 50.00; \alpha > 18.00$				
		271	0	124.4 (6)	2.4 +4.3-1 m		$\alpha \approx 50.00; SF \approx 50.00$				
107	Bh	260	0	113.3 (3)	35 +19-9 ms		$\alpha \leq 100.00$				
		261	0	113.22 (23)	11.8 +3.9-2.4 ms		$\alpha 100$				
		262	0	114.5 (3)	$22 \pm 4 \text{ ms}$		$\alpha < 100.00; \alpha < 100.00$				
		264	0	115.75 (18)	0.44 +0.6-0.16 s		$\alpha \le 100.00$				
		265	0	116.36 (23)	0.9 +0.7-0.3 s		α				
		266	0	118.23 (20)	1.7 +8.2-0.8 s		$\alpha 100$				
		267	0	118.9 (3)	17 +14-6 s		$\alpha 100$				
		270	0	124.2 (4)	6E+1 +29E+1-3E+1 s		α				
		272	0	128.6 (5)	10 +12-4 s		$\alpha 100$				
		274	0	133.3 (6)	0.9 +4.2-0.4 m		α 100; SF				
108	Hs	265	0	121.17 (5)	$1.9 \pm 0.2 \text{ ms}$		$SF \leq 1.00; \alpha < 100.00$				
		266	0+	121.13 (20)	2.3 +1.3-0.6 ms		α 100; $SF < 1.40$				
		267	(3/2+)	122.65 (10)	52 +13-8 ms		$\alpha \ge 80.00; SF < 20.00;$				
		2(0	0.	100 0 (0)	04.1000		α 100				
		268	0+	122.8 (3)	0.4 + 1.8 - 0.2 s		α 100 100				
		269	0	124.61 (12)	3.6 +0.8-1.4 s		α 100; α 100				
		270	0+	125.1 (3)	22 ± 0.8		α 100 100				
00		2/5	0	136.3 (6)	0.15 +0.27-0.06 s		α 100				
109	MIt	200	0	128 (3)	1.7 +1.8-1.6 ms		$\alpha \leq 100.00$				
		268	0	128.91 (23)	21 +8-5 ms		α 100 100				
		270	0	130.84 (20)	$5.0 \pm 2.4 \pm 0.3 \text{ ms}$		α 100 100 GE				
		274	0	137.1 (4)	$0.44 \pm 0.81 \pm 0.17$ s		α 100; SF				
		275	0	138.4 (6)	$9.7 \pm 0 \text{ ms}$		α 100 100				
		276	0	140.9 (5)	0.72 +0.87-0.25 s		α 100				
10	Б	2/8	0	145.1 (6)	8 + 3/-4 s		α 100; SF				
.10	Ds	2/0m	0	135.88 (21)	6.0 +8.2-2.2 ms		$\alpha > 70.00; TT \le 30.00$				
		2/1	0	135.95 (10)	1.63 +0.44-0.29 ms		$\alpha \ 100; \alpha > 0.00; TT?$				
		279	0	148.6 (6)	0.18 +0.05-0.03 s		$SF \approx 90.00; \alpha \approx 10.00$				
	-	281	0	152.4 (7)	20 +20-7 s		SF 85; α 15; SF 100				
11	Rg	272	0	142.8 (3)	3.8 +1.4-0.8 ms		α 100				
		274	0	144.74 (21)	$6.4 \pm 0 \text{ ms}$		α 100				
		278	0	150.4 (4)	4.2 +7.6-1.7 ms		α 100; SF				

Chapter 2

Mass attenuation and mass energy absorption coefficients

In the following figures the total (μ/ρ) and partial mass attenuation coefficients are plotted for Hydrogen, Carbon, Nitrogen, Oxygen, Copper, Tin, Lead, and Uranium. Partial mass attenuation coefficients are plotted for photoelectric absorption, coherent and incoherent (Compton) scattering, and pair production. The mass absorption energy coefficient (μ_{en}/ρ) is also plotted for the same materials.

Sources:

NIST X-COM Database (http://www.nist.gov/pml/data/xcom/index.cfm/)
NIST X-Ray Mass Attenuation Coefficients (http://www.nist.gov/pml/data/xraycoef/index.cfm/)
NIST also distributes a program (XCOM) to tabulate and plot mass attenuation coefficients.

	Table 8.1 – Continued from previous page											
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode					
		254	0	83.52 (10)	$28 \pm 8 \text{ m}$		$\epsilon \leq$ 100.00; $\epsilon \leq$ 100.00					
		255	(7/2-)	84.844 (7)	$27\pm2~m$		ϵ 92; α 8; $SF < 0.15$					
		256	(1-)	87.61 (7)	$77 \pm 2 \text{ m}$		ϵ 90.8; α 9.2; SF < 3.00					
		257	(7/2-)	88.998 (3)	$5.52\pm0.05~\mathrm{h}$		ϵ 85; α 15; $SF < 1.00$					
		258	0	91.689 (5)	$51.5 \pm 0.3 \ d$		α 100; SF ; $\epsilon \geq$ 70.00; SF					
		259	0	93.63 (20)	$96 \pm 3 \text{ m}$		SF 100; $\alpha < 1.30$					
		260	0	96.6 (3)	31.8 ± 0.5 d		$SF \ge 42.00; \ \alpha \le 25.00;$					
							$\epsilon \leq$ 23.00; $\beta^- \leq$ 10.00					
102	No	251	(7/2+)	82.76 (11)	$0.80\pm0.01~{ m s}$		α 84; SF < 0.30; ϵ					
		251m	(1/2+)	82.87 (11)	$1.02\pm0.03~\mathrm{s}$		α 100					
		252	0+	82.868 (9)	$2.47\pm0.02~{\rm s}$		$\epsilon < 1.10; \alpha$ 70.7; SF 29.3;					
							<i>IT</i> 100.1					
		253	(9/2-)	84.361 (7)	$1.62\pm0.15~\mathrm{m}$		$\alpha \approx$ 80.00; ϵ					
		254	0+	84.725 (10)	$51\pm10~{ m s}$		α 90; ϵ 10; SF 0.17; IT $>$					
							80.00					
		255	1/2+	86.807 (15)	3.52 ± 0.21 m		ϵ 70; α 30					
		256	0+	87.825 (8)	$2.91\pm0.05~{\rm s}$		SF 0.53; α 99.47					
		257	(7/2+)	90.251 (7)	$25\pm3~{ m s}$		$\alpha \leq$ 100.00; $SF \leq 1.50$					
		258	0+	91.48 (20)	$1.2\pm0.2~\mathrm{ms}$		$SF \le 100.00$					
		259	0	94.11 (10)	58 ± 5 m		α 75; ϵ 25; $SF < 10.00$					
		260	0+	95.61 (20)	$106 \pm 8 \text{ ms}$		SF 100					
		262	0+	100.1 (4)	$\approx 5 \text{ ms}$		SF 100					
103	Lr	252	0	88.7 (3)	0.27 +0.18-0.08 s		α 100; ϵ					
		253	(7/2-)	88.67 (23)	0.57 +0.07-0.06 s		$\alpha \approx$ 98.70; $SF \approx$ 1.30;					
							α 92; SF 8					
		254	0	89.9 (3)	$18.4\pm1.8~{ m s}$		α 71.7; ϵ 28.3					
		255	1/2-	89.947 (18)	$31.1\pm1.3~{ m s}$		α 85; ϵ 15					
		255m	7/2-	89.984 (18)	$2.53\pm0.13~\mathrm{s}$		IT 60; α 40					
		256	0	91.75 (8)	$27\pm3~{ m s}$		α 85; ϵ 15; $SF < 0.03$					
		257	0	92.61 (4)	$pprox 4 ext{ s}$		$\alpha \leq 100.00$					
		258	0	94.85 (10)	$4.1\pm0.3~{ m s}$		$SF <$ 5.00; $\alpha >$ 95.00					
		259	0	95.85 (7)	$6.2\pm0.3~{ m s}$		α 78; SF 22					
		260	0	98.27 (12)	$180\pm30~{ m s}$		α 80; ϵ < 40.00; SF <					
							10.00					
		261	0	99.56 (20)	39 ± 12 m		SF 100					
		262	0	101.96 (20)	pprox 4 h		$SF <$ 10.00; ϵ ; $lpha$					
104	Rf	255	(9/2-)	94.24 (12)	2.3 +0.8-0.5 s		α 52; SF 48; ϵ ? 1.00					
		256	0+	94.218 (18)	$6.4\pm0.2~\mathrm{ms}$		SF 99.68; α 0.32					
		257	(1/2+)	95.868 (11)	$4.7\pm0.3~{ m s}$		α < 100.00; SF \leq 1.40;					
							ϵ > 0.00; ϵ > 0.00; α <					
							$100.00; SF \le 1.40$					
		258	0+	96.34 (3)	14.7 +1.2-1 ms		SF 69; α 31					
		259	0	98.36 (7)	$3.2\pm0.6~{ m s}$		α 92; SF 8; ϵ 15					
		260	0+	99.15 (20)	$21 \pm 1 \text{ ms}$		$SF \leq 100.00; \alpha$?					
		261	0	101.32 (4)	$1.9\pm0.4~{ m s}$		$\epsilon < 15.00; SF < 11.00;$					
		2/2	ō	100 ((2)	00 1 0 1		SF 73; α 27; α > 74.00					
		262	0+	102.4 (3)	$2.3 \pm 0.4 \text{ s}$		$SF \le 100.00; \alpha < 3.00$					
		263	0	104.84 (18)	$10 \pm 2 \text{ m}$		SF 100; α					
105	Db	255	0	99.7 (4)	1.6 +0.6-0.4 s		α 80; $SF \approx 20.00$					
		256	0	100.5 (3)	$1.9\pm0.4~{ m s}$		$\alpha \approx 70.00; \epsilon \approx 30.00;$					
		057	$(0, (2, \cdot))$	100.2 (22)	1.00 .0.07.0.01		$SF \approx 0.02$					
		257	(9/2+)	100.3 (23)	1.82 +0.27-0.21 S		α 94; SF \approx 6.00; SF ;					
							Continuedt					
							Continueu on next page					

Pocketbook of Data for Nuclear Engineers

Pocketbook of Data for Nuclear Engineers

Pocketbook of Data for Nuclear Engineers

	Table 8.1 – Continued from previous page										
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode				
		256	0+	87 (3)	12.3 ± 1.2 m		SF 100; β^- < 1.00; $\alpha \approx$				
	-			(2.0.4.(2.2.)	o / =		1.0E-6				
99	Es	241	0	63.84 (23)	8 +6-5 s		$\epsilon; \alpha$				
		242	0	64.9 (3)	$17.8 \pm 1.6 \text{ s}$		α 57; ϵ 43				
		243	(7/2+)	64.75 (21)	$23 \pm 3 \mathrm{s}$		α 61; ϵ 39; SF < 1.00				
		244	0	66.02 (18)	37 ± 4 s		ϵ 96; α 4				
		245	(3/2-)	66.44 (20)	$1.1 \pm 0.1 \text{ m}$		α 40; ϵ 60				
		246	0	67.9 (22)	$7.5 \pm 0.5 \text{ m}$		ϵ 90.1; α 9.9				
		247	(7/2+)	68.578 (19)	4.55 ± 0.26 m		$\epsilon \approx 93.00; \alpha \approx 7.00; \alpha$				
		248	(2-,0+)	70.3 (5)	$27 \pm 5 \text{ m}$		ϵ 99.7; $\alpha \approx 0.25$				
		249	1/2+	71.10 (5)	102.2 ± 0.0 III		ϵ 99.43; α 0.57				
		250	(6+)	75.25 (10)	8.0 ± 0.1 II		$\epsilon > 97.00; \alpha < 3.00; \epsilon \leq 100.00$				
		251	$(3/2_{-})$	74 514 (6)	33 ± 1 h		€ 99 5: α 0 5				
		252	(5,2)	77 3 (5)	$4717 \pm 19d$		o 78: c 22				
		253	$\frac{7}{2+}$	79.015 (3)	20.47 ± 0.03 d		$SF = 87e-06: \alpha = 100$				
		254	(7+)	81 993 (4)	2757 ± 0.00 d		$SF < 3.0E-6: \alpha = 100^{\circ}$				
		201	(, ,)	010000	1.00 ± 010 u		$\beta^{-} 0.00017$				
		254m	2+	82.077 (4)	$39.3 \pm 0.2 \text{ h}$		β^{-} 98; $IT < 3.00; \alpha 0.32;$				
							$\epsilon \ 0.08; SF < 0.05$				
		255	(7/2+)	84.091 (11)	$39.8 \pm 1.2 \text{ d}$		β^{-} 92; α 8; SF 0.0041				
		256	(1+,0-)	87.19 (10)	25.4 ± 2.4 m		β^{-} 100; β^{-} 100				
		257	0	89.4 (4)	7.7 ± 0.2 d		β^- ; SF				
100	Fm	243	(7/2+)	69.26 (22)	$231\pm9~ms$		$\epsilon <$ 10.00; α 91; SF 9				
		244	0+	68.98 (20)	$3.12\pm0.08~\mathrm{ms}$		SF > 97.00; ϵ < 2.00; α <				
							1.00				
		245	0	70.19 (20)	$4.2\pm1.3~{ m s}$		$\alpha \leq 100.00$				
		246	0+	70.187 (15)	$1.54\pm0.04~{ m s}$		α 93.2; SF 6.8; $\epsilon \leq 1.30$				
		247	(7/2+)	71.58 (12)	$31 \pm 1 \mathrm{s}$		$\alpha \ge 84.00; \epsilon \le 16.00$				
		247m	(1/2+)	71.63 (12)	$5.1 \pm 0.2 \text{ s}$		α 84				
		248	0+	71.894 (9)	$36 \pm 2 \mathrm{s}$		α 93; ϵ 7; SF 0.1				
		249	(7/2+)	73.521 (6)	$2.6 \pm 0.7 \text{ m}$		ϵ 67; α 33				
		250	0+	74.074 (8)	$30 \pm 3 \text{ m}$		$\alpha > 90.00; \epsilon < 10.00;$ SF 0.0069; IT 100				
		251	(9/2-)	75,954 (15)	5.30 ± 0.08 h		ϵ 98.2: α 1.8				
		252	0+	76.819 (6)	25.39 ± 0.04 h		$SF 0.0023; \alpha 100$				
		253	(1/2)+	79.35 (3)	$3.00 \pm 0.12 \text{ d}$		ϵ 88: α 12				
		254	0+	80.905 (3)	3.240 ± 0.002 h		α 99.94; SF 0.06				
		255	7/2+	83.802 (5)	$20.07\pm0.07~h$		α 100; SF 2.4e-05				
		256	0+	85.487 (7)	$157.6 \pm 1.3 \text{ m}$		SF 91.9; a 8.1				
		257	(9/2+)	88.591 (6)	$100.5\pm0.2~\mathrm{d}$		α 99.79; SF 0.21				
		259	0	93.7 (3)	$1.5\pm0.3~{ m s}$		SF 100				
		260	0+	95.8 (5)	$pprox 4 \ { m ms}$		SF 100				
101	Md	245m	(7/2)	75.6 (3)	0.35 +0.23-0.16 s		ϵ ; α				
		246	0	76.2 (3)	$0.9\pm0.2~{ m s}$		$lpha$ < 23.00; SF ?; ϵ ?;				
		a (=	(= (=)				α 100; $\epsilon > 77.00$				
		247	(7/2-)	75.94 (21)	$1.2\pm0.1~{ m s}$		α 99.9; $SF < 0.10$; α 79; SF 21				
		248	0	77.14 (24)	13 +15-4 s		α 58: ϵ 42				
		249	(7/2-)	77.32 (22)	21.7 ± 2 s		$\alpha > 60.00; \epsilon < 40.00; \alpha$?				
		250	0	78.6 (3)	25 +10-5 s		ϵ 93; α 7				
		251	(7/2-)	78.967 (19)	4.3 ± 0.6 m		ϵ 90; α 10				
		252	0	80.51 (13)	2.3 ± 0.8 m		$\epsilon \le 100.00$				
		253	(7/2-)	81.18 (3)	6 +12-3 m		$\epsilon \leq 100.00; \alpha$				
		-	(, -)	(-)	- 0000		Continued on next nage				

t page

92

	Table 8.1 – Continued from previous page											
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \hat{\mathbf{\Gamma}}$	Abundance	Decay Mode					
		240	0+	51.7195 (23)	$27 \pm 1 d$		SF 3.9e-06; $\alpha > 99.50$;					
							$\epsilon < 0.50$					
		241	1/2+	53.7047 (22)	$32.8 \pm 0.2 \text{ d}$		ϵ 99; α 1					
		242	0+	54.8066 (18)	$162.8\pm0.2~\mathrm{d}$		α 100; SF 6.2e-06; ${}^{34}Si$ 1e-14					
		243	5/2+	57.1849 (21)	$29.1\pm0.1~\text{y}$		ϵ 0.29; SF 5.3e-09; α 99.71					
		244	0+	58.455 (18)	$18.1\pm0.1~{ m v}$		α 100: SF 0.00014					
		244m	6+	59.4952 (18)	$34 \pm 2 \text{ ms}$		<i>IT</i> 100					
		245	7/2+	61.006 (21)	$8423\pm74~{ m y}$		α 100; SF 6.1e-07					
		246	0+	62.6197 (21)	4706 ± 40 y		α 99.97; SF 0.03					
		247	9/2-	65.535 (4)	$1.56E+7 \pm 0.05E+7$ y		α 100					
		248	0+	67.394 (5)	$3.48E+5 \pm 0.06E+5$ y		SF 8.39; a 91.61					
		249	1/2 +	70.751 (5)	64.15 ± 0.03 m		β^{-} 100					
		250	0+	72.99 (11)	\approx 8.3E+3 y		$SF \approx$ 74.00; $\alpha \approx$ 18.00; $\beta^- \approx$ 8.00					
		251	(1/2+)	76.65 (23)	16.8 ± 0.2 m		β^{-} 100					
		252	0+	79.1 (3)	< 2 d		<i>p</i>					
97	Bk	234	0	0	1.4E2 +1.4E2-0.5E2 s		$\alpha > 80.00; \epsilon < 20.00$					
		237	0	53.1 (22)	$\approx 1 \text{ m}$		$\epsilon ?; \alpha ?$					
		238	0	54.3 (3)	$144\pm5~{ m s}$		ϵ 100; ϵSF 0.048					
		240	0	55.66 (15)	$4.8\pm0.8~{ m m}$		ϵ ; ϵSF 0.002					
		241	(7/2+)	56.11 (20)	4.6 ± 0.4 m		$\alpha;\epsilon$					
		242	0	57.74 (20)	7.0 ± 1.3 m		$\epsilon \le 100.00$					
		243	(3/2-)	58.692 (5)	4.5 ± 0.2 h		$\epsilon \approx 99.85; \alpha \approx 0.15$					
		244	(4-)	60.717 (14)	$4.35\pm0.15~\text{h}$		ϵ 99.99; α 0.006					
		245	3/2-	61.8168 (23)	$4.95 \pm 0.03 \text{ d}$		ϵ 99.88; α 0.12					
		246	2(-)	63.97 (6)	$1.80\pm0.02~d$		ϵ 100					
		247	(3/2-)	65.492 (6)	$1380\pm250~{ m y}$		$\alpha \leq 100.00$					
		248	0	68.08 (7)	> 9 y		α ; β^- 70; ϵ 30					
		249	7/2+	69.851 (3)	$330 \pm 4 d$		β^{-} 100; α 0.0014; SF 4.7e-08					
		250	2-	72.953 (4)	$3.212 \pm 0.005 \text{ h}$		β^- 100					
		251	(3/2-)	75.23 (11)	$55.6 \pm 1.1 \text{ m}$		β^- 100					
98	Cf	237	(3/2+)	57.94 (9)	$0.8\pm0.2~{ m s}$		SF 70; α 30					
		238	0+	57.2 (4)	$21 \pm 2 \text{ ms}$		SF 100					
		239	0	58.14 (21)	39 +37-12 s		ϵ ; α					
		240	0+	58.01 (3)	$64 \pm 9 \text{ s}$		α 98.5; SF 1.5					
		241	(7/2-)	59.33 (17)	3.78 ± 0.7 m		$\epsilon pprox 75.00$; $lpha pprox 25.00$					
		242	0+	59.386 (13)	3.7 ± 0.5 m		ϵ 20; $SF \leq$ 0.01; α 80					
		243	(1/2+)	60.9 (11)	10.7 ± 0.5 m		$\epsilon pprox 86.00$; $lpha pprox 14.00$					
		244	0+	61.473 (3)	19.4 ± 0.6 m		$\alpha \leq 100.00$					
		245	1/2+	63.388 (3)	45.0 ± 1.5 m		ϵ 64.7; α 35.3					
		246	0+	64.0931 (21)	$35.7\pm0.5~h$		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
		247	(7/2+)	66.104 (15)	$3.11\pm0.03~h$		ϵ 99.97; α 0.04					
		248	0+	67.241 (5)	$333.5 \pm 2.8 \text{ d}$		α 100; SF 0.0029					
		249	9/2-	69.7269 (22)	351 ± 2 y		α 100; SF 5e-07					
		250	0+	71.173 (21)	$13.08\pm0.09~\mathrm{y}$		α 99.92; SF 0.08					
		251	1/2+	74.137 (4)	$898\pm44~{ m y}$		α 100; SF					
		252	0+	76.035 (5)	$2.645\pm0.008~y$		α 96.91; SF 3.09					
		253	(7/2+)	79.302 (6)	$17.81 \pm 0.08 \text{ d}$		β^- 99.69; α 0.31					
		254	0+	81.342 (12)	$60.5 \pm 0.2 \text{ d}$		SF 99.69; α 0.31					
		255	(7/2+)	84.81 (20)	85 ± 18 m		β^- 100					
							Continued on next page					

6

Pocketbook of Data for Nuclear Engineers

Table 8.1 – Continued from previous page										
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode			
		242	(1+)	57.42 (20)	2.2 ± 0.2 m		eta^- 100; eta^- 100			
		243	(5/2-)	59.88 (3)	$1.85\pm0.15~\mathrm{m}$		β^{-} 100			
		244	(7-)	63.2 (3)	$2.29\pm0.16~\text{m}$		β^- 100			
94	Pu	228	0+	36.08 (3)	1.1 +2-0.5 s		α 100			
		229	(3/2+)	37.39 (5)	67 +41-19 s		ϵ 50; α 50; $SF < 7.00$			
		230	0+	36.933 (15)	$102\pm10~{ m s}$		$\alpha \leq 100.00$			
		231	(3/2+)	38.28 (3)	$8.6\pm0.5~\mathrm{m}$		$\epsilon \leq$ 99.80; $\alpha > 0.20$			
		232	0+	38.365 (18)	33.8 ± 0.7 m		ϵ 90; α 10			
		233	0	40.05 (5)	20.9 ± 0.4 m		ϵ 99.88; α 0.12			
		234	0+	40.349 (7)	$8.8\pm0.1~{ m h}$		$\alpha \approx 6.00; \epsilon \approx 94.00$			
		235	(5/2+)	42.184 (21)	25.3 ± 0.5 m		ϵ 100; α 0.0028			
		236	0+	42.8968 (22)	$2.858 \pm 0.008 \text{ y}$		α 100; SF 1.9e-07			
		237	7/2-	45.0946 (22)	45.64 ± 0.04 d		ϵ 100; α 0.0042			
		237m	1/2+	45.2406 (22)	$0.18\pm0.02~{ m s}$		IT			
		238	0+	46.1661 (18)	$87.7\pm0.1~\mathrm{v}$		α 100; SF 1.9e-07			
		239	1/2 +	48.5912 (18)	24110 ± 30 v		SF 3e-10: α 100			
		240	0+	50.1283 (18)	$6561 \pm 7 \text{ v}$		α 100: SF 5.7e-06			
		241	5/2+	52,9581 (18)	14.325 ± 0.006 v		β^{-} 100: α 0.0025: SF <			
			•,=.				2E-14			
		242	0+	54,7196 (19)	$3.75E+5 \pm 0.02E+5 v$		α 100: SF 0.00055			
		243	7/2+	57.757 (3)	4.956 ± 0.003 h		β^{-} 100			
		244	0+	59.807 (5)	$8.00E+7 \pm 0.09E+7 v$		$SF 0.12; \alpha 99.88$			
		245	(9/2-)	63,179 (14)	10.5 ± 0.1 h		$\beta^{-} 100$			
		246	0+	65.396 (15)	10.84 ± 0.02 d		β^- 100			
		247	0	69.11 (20)	2.27 ± 0.23 d		β^- 100			
95	Am	230	Õ	0	≈ 17 s		e 100			
		232	0	43 4 (3)	79 ± 2 s		$\epsilon \approx 97.00$: $\alpha \approx 3.00$			
		233	Ő	43 17 (10)	$32 \pm 0.8 \text{ m}$		$\alpha > 3.00$ ϵ			
		234	Õ	44 53 (21)	$232 \pm 0.08 \text{ m}$		ε 100: α			
		235	5/2-	44.63 (5)	10.3 ± 0.6 m		6 99 6: a 0 4			
		236	5-	46.04 (11)	$36 \pm 0.2 \text{ m}$		0.6.0.6			
		237	5/2(-)	46 57 (6)	$73.6 \pm 0.8 \text{ m}$		e 99 97: a 0 03			
		238	1+	48 42 (5)	$98 \pm 2 \text{ m}$		$\alpha = 0.0001; \epsilon = 100$			
		220	(5/2)	40 2021 (24)	110 ± 0.1 h		< 00.0001, € 100			
		240	$(3/2)^{-}$	51513(14)	$11.9 \pm 0.1 \text{ H}$ 50.8 ± 0.3 h		< 100 a 0.0010			
		240	(J ⁻) 5/2	51.010(14) 52.0272(18)	$422.6 \pm 0.6 \text{ m}$		e 100, a 0.00019			
		241	3/2- 1	52.9373(10)	452.0 ± 0.0 y		$\alpha = 82.7 + 17.2$			
		242 242m	1-	55.471(10)	10.02 ± 0.02 II 141 ± 2 y		p 82.7, € 17.5			
		242111	5-	55.5190 (18)	141 ± 2 y		$11 99.55; \alpha 0.45; SF < 4.7E-9$			
		242m2	(2 + 3)	57 671 (18)	$14.0 \pm 1.ms$		$SE 100: IT : \alpha < 5.0E 3$			
		2421112	5/2	57 1774 (22)	$7270 \pm 40 \text{ m}$		51,100,11,4 < 5.01-5			
		243	(6)	57.1774(23) 50.8822(21)	10.1 ± 0.1 b		$\alpha = 100, SF = 5.7e^{-0.9}$			
		244 244m	1	59.0025 (21)	10.1 ± 0.11		$\beta 100, SF \leq 100.00$			
		244111	1+ (E / 2) ;	59.9004(21)	20 ± 1 III 2.05 ± 0.01 h		$e 0.04, \beta$ 99.90			
		245	(5/2)+	61.901 (3)	2.05 ± 0.01 h		$\beta = 100$			
		246	(/-)	64.996 (18)	$39 \pm 3 \text{ m}$		β 100; β 100; $TT < 0.02$			
		247	(5/2)	67 16 (10)	23.0 ± 1.2 m		β ⁻ 100			
		24/	(3/2)	70 56 (20)	$23.0 \pm 1.5 \text{ III}$		$\rho = 100$ $\rho = 100$			
06	C	24ð	(2/2)	10.30 (20)	$\approx 10 \text{ m}$		p 100			
70	Cm	233	(3/2+)	4/.27 (/)	23 + 13-0 S		ϵ ou; α zu			
		234	0+	40.723 (18)	51 ± 12 S		$SF \approx 40.00; \epsilon \approx 20.00;$			
		236	0+	19 114 (12)	24 ± 01 h		$\alpha \approx 40.00$			
		230	(7/2)	47.444 (14)	2.4 ± 0.1 m ~ 2.9 h		$\epsilon \geq 90.00; \alpha \leq 10.00$			
		239	(//2-)	51.15 (5)	≈ 2.9 n		ϵ 100; $\alpha < 0.10$			
			(-,-,	01.10 (0)			Continued on next nao			

	Table 8.1 $-$ Continued from previous page											
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \check{\Gamma}$	Abundance	Decay Mode					
		228	3+	28.921 (4)	$22.4 \pm 1 \text{ h}$		α 1.85; ε 98.15					
		229	(5/2+)	29.898 (3)	$1.50 \pm 0.05 \text{ d}$		ε 99.52; α 0.48					
		230	(2-)	32.174 (3)	$17.4 \pm 0.5 \text{ d}$		ϵ 92.2; β^- 7.8; α 0.0032					
		231	3/2-	33.4259 (22)	$3.276E+4 \pm 0.011E+4 v$		α 100; SF < 2E-11					
		232	(2-)	35.942 (8)	$1.32 \pm 0.02 \text{ d}$		β^{-} 100; ϵ					
		233	3/2-	37.4915 (21)	$26.975 \pm 0.013 \text{ d}$		β^{-} 100					
		234	4+	40.342 (5)	6.70 ± 0.05 h		β^{-} 100					
		234m	(0-)	40.416 (5)	1.159 ± 0.011 m		β^{-} 99.84: <i>IT</i> 0.16					
		235	(3/2-)	42.33 (5)	24.44 ± 0.11 m		β^{-} 100					
		236	1(-)	45.35 (20)	$9.1 \pm 0.1 \text{ m}$		β^- 100					
		237	(1/2+)	47.64 (10)	8.7 ± 0.2 m		β^- 100					
		238	(3-)	50.77 (6)	2.27 ± 0.09 m		β^- 100					
		239	(3/2)	53.34 (20)	18 ± 0.5 h		β^- 100					
92	U	217	0	22.71 (9)	$16 \pm 21-6 \text{ ms}$		$\alpha < 100.00$					
	-	225	Õ	27.376 (12)	$95 \pm 15 \mathrm{ms}$		α <u>100</u>					
		226	0+	27.328 (13)	0.35 ± 0.15 s		α 100 α 100					
		227	(3/2+)	29 021 (17)	11 ± 0.1 m		α 100 α 100					
		228	0+	29 224 (15)	$91 \pm 0.2 \text{ m}$		$\alpha > 95.00; \epsilon < 5.00$					
		229	(3/2+)	31 21 (6)	$58 \pm 3 \text{ m}$		$\epsilon \approx 80.00; \alpha \approx 20.00$					
		230	0+	31 614 (5)	$20.8 \pm 0.d$		$\alpha \ 100: SF < 1E-10:$					
		200		011011(0)	1010 ± 0 u		²² Ne 5e-12					
		231	(5/2-)	33.808 (3)	$4.2 \pm 0.1 \text{ d}$		ϵ 100; $\alpha \approx 4.0$ E-3					
		232	0+	34.6048 (22)	$68.9 \pm 0.4 \text{ y}$		α 100; SF 3e-12					
		233	5/2+	36.921 (3)	$1.592E+5 \pm 0.002E+5 \text{ y}$		α 100; ²⁴ Ne 9e-10; SF < 6E-11; ²⁸ Mq < 1.E-13					
		234	0+	38.148 (18)	$2.455E{+}5\pm0.006E{+}5y$	$0.0054\% \pm 0.0005\%$	<i>Ne</i> 9e-12; <i>α</i> 100; <i>SF</i> 1.6e- 09: <i>Ma</i> 1e-11					
		235	7/2-	40.9218 (18)	7.04E+8 \pm 0.01E+8 y	$0.7204\% \pm 0.0006\%$	α 100; SF 7e-09; ${}^{28}Mg$ 8e-10; Ne \approx 8 E 10					
		235m	1/2+	10 0210 (18)	$\sim 26 \text{ m}$		UT 100					
		236	0+	42 4476 (18)	$\sim 20 \text{ m}$ 2 342E7 + 0 004E7 v		$\alpha 100: SE 9.40-08$					
		230	0+ 1/2⊥	45 3032 (10)	$6.75 \pm 0.01 d$		8 ⁻ 100					
		238	1/2+ 0+	47 31 (19)	$4468E9 \pm 0.003E9 v$	$99.2742\% \pm 0.001\%$	p = 100 q = 100; SE = 5 = 05					
		230	5/2+	50 575 (19)	23.45 ± 0.003 m)).2/42/0 ± 0.001/0	β^{-} 100					
		240	0+	52 716 (5)	14.1 ± 0.1 h		$\beta = 100$ $\beta = 100$					
		240	0+	58.62 (20)	$16.8 \pm 0.5 \text{ m}$		β^{-} 100					
93	Nn	276	0	32 74 (9)	35 ± 10 ms		ρ 100 α 100					
10	ΥP	227	0	32.56 (7)	0.51 ± 0.06 s		a 100					
		228	0	33.59 (5)	61.4 ± 1.4 s		c 60: o 40					
		220	0	33 78 (9)	$40 \pm 0.2 \text{ m}$		a 68: c 22					
		230	0	35.24 (5)	4.0 ± 0.2 m		$\epsilon < 97.00; \epsilon > 3.00$					
		231	(5/2)	35.62 (5)	48.8 ± 0.3 m		$e \le 97.00, \alpha \ge 5.00$					
		232	(0, 2) (4+)	37 35 (10)	14.7 ± 0.3 m		< 100: α 0 0002					
		232	$(\frac{1}{5}/2+)$	37.95 (10)	$36.2 \pm 0.1 \text{ m}$		$\epsilon 100; \alpha \le 1.0\text{E-3}$					
		234	(0+)	39,958 (9)	$44 \pm 0.1 d$		€ 100, a <u>≤</u> 1.0E 0					
		235	5/2+	41 0458 (20)	$3961 \pm 12d$		ε 100· α 0.00 2 6					
		236	(6-)	43.37 (5)	$153E+3 \pm 5E+3 y$		ϵ 86.3; β^- 13.5; α 0.16;					
		237	5/2+	44.8746 (18)	$2.144E+6 \pm 0.007E+6 v$		β^{-} 50; ϵ 50 α 100; $SF < 2E-10$					
		238	2+	47.4576 (18)	$2.117 \pm 0.002 \text{ d}$		$\beta^- 100$					
		239	5/2+	49.3137 (21)	$2.356 \pm 0.003 \text{ d}$		β^- 100					
		240	(5+)	52.316 (15)	61.9 ± 0.2 m		β^{-} 100; β^{-} 99.88; <i>IT</i> 0.12					
		241	5/2+	54.26 (7)	$13.9\pm0.2~\text{m}$		$\beta^{-} 100$					
							Continued on next page					

			_	Table	e 8.1 – Continued from previou	us page	
Z	El	A	J^{π}	Δ [MeV]	$T_{1/2}, \Gamma$	Abundance	Decay Mode
		225	(3/2-)	21.638 (5)	$10.0 \pm 0.1 \text{ d}$		α 100; ¹⁴ C 4e-12
		226	(1)	24.31 (3)	29.37 ± 0.12 h		β^{-} 83; ϵ 17; α 0.006
		227	3/2-	25.8512 (24)	$21.772 \pm 0.003 \text{ y}$		β^{-} 98.62; α 1.38
		228	3+	28.9 (3)	6.15 ± 0.02 h		β^- 100
		229	(3/2+)	30.75 (3)	$62.7 \pm 0.5 \text{ m}$		β^- 100
		230	(1+)	33.8 (3)	$122 \pm 3 \text{ s}$		β^{-} 100; $\beta^{-}SF$ 1.2e-06
		231	(1/2+)	35.92 (10)	$7.5 \pm 0.1 \text{ m}$		β^- 100
		232	(1+)	39.15 (10)	$119 \pm 5 \text{ s}$		β^- 100
		233	(1/2+)	41.48 (10)	$145\pm10~{ m s}$		β^- 100
		234	0	45.05 (20)	$44 \pm 7 \mathrm{s}$		β^- 100
		235	0	47.6 (3)	$60 \pm 4 \text{ s}$		β^- 100
90	Th	208	0+	16.68 (3)	1.7 +1.7-0.6 ms		α 100
		209	(5/2-)	16.54 (9)	2.5 +1.7-0.7 ms		α
		210	0+	14.059 (19)	$16 \pm 4 \text{ ms}$		α 99; $\epsilon \approx 1.00$
		211	0	13.91 (7)	0.04 +0.03-0.01 s		α
		212	0+	12.097 (16)	$31.7 \pm 1.3 \text{ ms}$		α 100; $\epsilon \approx 0.30$
		213	0	12.12 (7)	$144 \pm 21 \text{ ms}$		$\alpha \leq 100.00$
		214	0+	10.711 (16)	$87\pm10~\mathrm{ms}$		α 100
		215	(1/2-)	10.922 (9)	$1.2\pm0.2~{ m s}$		α 100
		216	0+	10.294 (12)	$26.0\pm0.2~\mathrm{ms}$		α 100; $\epsilon \approx 0.01$
		221	(7/2+)	16.937 (9)	$1.68\pm0.06~\mathrm{ms}$		α 100
		222	0+	17.202 (12)	$2.8\pm0.3~\mathrm{ms}$		α 100
		223	(5/2)+	19.385 (9)	$0.60\pm0.02~{ m s}$		α 100
		224	0+	19.995 (11)	$0.81\pm0.1~{ m s}$		α 100
		225	(3/2+)	22.309 (5)	$8.75 \pm 0.04 \text{ m}$		$\alpha \approx 90.00; \epsilon \approx 10.00$
		226	0+	23.196 (5)	$30.57 \pm 0.1 \text{ m}$		α 100
		227	1/2+	25.806 (3)	$18.68 \pm 0.09 \text{ d}$		α 100
		228	0+	26.7663 (22)	1.9116 ± 0.0016 y		α 100; ²⁰ O 1e-11
		229	5/2+	29.588 (3)	$7932\pm28~{ m y}$		α 100
		229m	(3/2+)	29.588 (3)	$2 \pm 1 \text{ m}$		IT?
		230	0+	30.8633 (18)	$7.54E+4 \pm 0.03E+4$ y		α 100; ^{24}Ne 6e-11; $SF \leq$ 4E-12
		231	5/2+	33.8166 (18)	$25.52\pm0.01~\text{h}$		β^- 100; $\alpha \approx$ 4E-11
		232	0+	35.4526 (22)	$1.40E10 \pm 0.01E10 \text{ y}$	100%	α 100; SF 1.1e-09
		233	1/2+	38.7376 (22)	$21.83\pm0.04~\mathrm{m}$		β^- 100
		234	0+	40.615 (4)	$24.10 \pm 0.03 \text{ d}$		β^- 100
		235	(1/2+)	44.26 (5)	7.2 ± 0.1 m		β^- 100
		236	0+	46.45 (20)	$37.3 \pm 1.5 \text{ m}$		β^- 100
		237	(5/2+)	50.2 (4)	$4.7\pm0.6~\mathrm{m}$		β^- 100
		238	0+	52.6 (3)	$9.4 \pm 2 \text{ m}$		β^- 100
91	Ра	212	0	21.61 (7)	5.1 +6.1-1.9 ms		α 100
		213	0	19.66 (7)	5.3 +4-1.6 ms		α 100
		214	0	19.49 (8)	$17 \pm 3 \text{ ms}$		$\alpha \leq 100.00$
		215	0	17.87 (9)	$14 \pm 2 \text{ ms}$		α 100
		216	0	17.8 (7)	0.15 +0.06-0.04 s		$\alpha \approx 98.00; \epsilon \approx 2.00$
		217	0	17.07 (5)	$3.6\pm0.8~ms$		α 100
		217m	0	18.92 (5)	$1.2\pm0.2~ms$		α 73; IT 27
		222	0	22.12 (7)	2.9 +0.6-0.4 ms		α 100
		223	0	22.32 (7)	$5.1\pm0.6~\mathrm{ms}$		α 100
		224	0	23.861 (8)	$0.85\pm0.02~s$		α 100
		225	0	24.34 (7)	$1.7\pm0.2~{ m s}$		α 100
		226	0	26.032 (11)	$1.8\pm0.2~\text{m}$		α 74; ϵ 26
		227	(5/2-)	26.831 (7)	$38.3\pm0.3~\text{m}$		α 85; ϵ 15
							Continued on next page

Pocketbook of Data for Nuclear Engineer

	Table 8.1 – Continued from previous page								
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	${ m T_{1/2}}, { m \Gamma}$	Abundance	Decay Mode		
		231	(1/2+)	42.3 (3)	$17.6\pm0.6~{\rm s}$		β^- 100		
		232	(5)	46.1 (21)	$5.5\pm0.6~{ m s}$		β^- 100		
88	Ra	201	(13/2+)	11.84 (12)	1.6 +7.7-0.7 ms		α 100; ϵ		
		202	0+	9.09 (24)	16 +30-7 ms		α 100		
		203	(3/2-)	8.66 (8)	31 +17-9 ms		α 100; α 100		
		204	0+	6.056 (15)	57 +11-5 ms		α 100		
		205	(3/2-)	5.84 (7)	210 +60-40 ms		$\alpha \leq 100.00; \epsilon; \alpha \leq 100.00; \epsilon$		
		206	0+	3.565 (18)	$0.24\pm0.02~s$		α 100		
		207	,5/2-)	3.54 (6)	1.35 +0.22-0.13 s		$\alpha \approx$ 86.00; $\epsilon \approx$ 14.00		
		207m	(13/2+)	4.09 (6)	$59 \pm 4 \text{ ms}$		$IT \ge$ 85.00; $\alpha \le$ 15.00		
		208	0+	1.714 (15)	$1.3\pm0.2~{ m s}$		α 95; ϵ 5		
		209	5/2-	1.85 (5)	$4.6\pm0.2~{ m s}$		$lpha pprox$ 90.00; $\epsilon pprox$ 10.00		
		210	0+	0.459 (15)	$3.7\pm0.2~{ m s}$		$\alpha \approx$ 96.00; $\epsilon \approx$ 4.00		
		211	5/2(-)	0.832 (8)	$13\pm2~{ m s}$		$\epsilon <$ 7.00; $lpha >$ 93.00		
		212	0+	-0.204 (11)	$13.0\pm0.2~\mathrm{s}$		$lpha pprox 85.00$; $\epsilon pprox 15.00$		
		213	1/2-	0.358 (20)	$2.73\pm0.05~\mathrm{m}$		α 80; ϵ 20		
		213m	(17/2-)	2.128 (20)	$2.20\pm0.05~\mathrm{ms}$		$IT pprox$ 99.40; $\alpha pprox$ 0.60		
		214	0+	0.096 (5)	$2.46\pm0.03~{ m s}$		α 99.94; ϵ 0.06		
		215	(9/2+)	2.533 (8)	$1.55\pm0.07~\mathrm{ms}$		α 100		
		219	(7/2)+	9.393 (8)	$10 \pm 3 \text{ ms}$		α 100		
		220	0+	10.272 (9)	$18\pm2~{ m ms}$		α 100		
		221	5/2+	12.963 (5)	$28\pm2~{ m s}$		α 100; ¹⁴ C 1e-12		
		222	0+	14.32 (5)	$38.0\pm0.5~\mathrm{s}$		α 100; ¹⁴ C 3e-08		
		223	3/2+	17.235 (3)	$11.43 \pm 0.05 \text{ d}$		^{14}C 8.9e-08; α 100		
		224	0+	18.8213 (22)	$3.6319 \pm 0.0023 \text{ d}$		α 100; ¹⁴ C 4e-09		
		225	1/2+	21.995 (3)	$14.9 \pm 0.2 \text{ d}$		β^{-} 100		
		226	0+	23.6686 (23)	$1600 \pm 7 \text{ y}$		α 100; ¹⁴ C 3.2e-09		
		227	3/2+	27.1785 (23)	$42.2 \pm 0.5 \text{ m}$		β^- 100		
		228	0+	28.946 (3)	$5.75 \pm 0.03 \text{ y}$		β^- 100		
		229	5/2+	32.555 (15)	4.0 ± 0.2 m		β^{-}		
		230	0+	34.516 (10)	$93 \pm 2 \text{ m}$		β^- 100		
		231	(5/2+)	38.226 (20)	$104.1\pm0.8~{ m s}$		β^- 100		
		232	0+	40.498 (12)	4.2 ± 0.8 m		β^- 100		
		233	0	44.6 (4)	$30 \pm 5 \text{ s}$		β^- 100		
		234	0+	47.2 (5)	$30 \pm 10 \text{ s}$		β^- 100		
89	Ac	206	(3+)	13.53 (5)	22 +9-5 ms		α 100; α 100		
		207	(9/2-)	11.15 (5)	27 +11-6 ms		α 100		
		208	(3+)	10.76 (6)	95 +24-16 ms		$\alpha \approx 99.00; \epsilon \approx 1.00$		
		208m	(10-)	11.27 (6)	25 +9-5 ms		$\epsilon \approx 10.00; \alpha \approx 90.00$		
		209	(9/2-)	8.84 (5)	$0.10 \pm 0.05 \text{ s}$		$\alpha \approx 99.00; \epsilon \approx 1.00$		
		210	0	8.79 (6)	$0.35 \pm 0.05 \text{ s}$		α 91; $\epsilon \approx 9.00$		
		211	0	7.2 (7)	$0.21 \pm 0.03 \text{ s}$		α 100		
		212	0	7.27 (7)	$0.93 \pm 0.05 \text{ s}$		$\alpha \approx 57.00; \epsilon \approx 43.00$		
		213	0	6.16 (5)	$738 \pm 16 \text{ ms}$		$\alpha \leq 100.00$		
		214	(5+)	6.445 (15)	$8.2 \pm 0.2 \mathrm{s}$		$\alpha \geq 89.00; \epsilon \leq 11.00$		
		215	9/2-	6.031 (12)	$0.17 \pm 0.01 \text{ s}$		α 99.91; ϵ 0.09		
		220	(3-)	13.743 (6)	$26.4 \pm 0.2 \text{ ms}$		α 100; ϵ 0.0005		
		221	(3/2-) 1	14.52 (5)	$52 \pm 2 \text{ ms}$		$\alpha 100$		
		LLL	1-	10.021 (3)	3.0 ± 0.3 S		α 99; ϵ 1; $\alpha \geq$ 88.00; $TT \leq$ 10.00; $\epsilon \geq$ 0.70		
		223	(5/2-)	17.826 (7)	$2.10\pm0.05\ m$		α 99; ϵ 1		
		224	0-	20.232 (4)	$2.78\pm0.17~h$		ϵ 90.9; α 9.1; $\beta^- < 1.60$		
							0 1 1 1		

87

10

			_	Table	8.1 – Continued from previo	nus page	
Z	El	A	J^{π}	Δ[MeV]	$T_{1/2}, \Gamma$	Abundance	Decay Mode
		208	0+	-9.66 (11)	24.35 ± 0.14 m		α 62; ϵ 38
		209	5/2-	-8.929 (20)	$28.5 \pm 1 \text{ m}$		ϵ 83; α 17
		210	0+	-9.601 (4)	2.4 ± 0.1 h		α 96; ϵ 4
		211	1/2-	-8.756 (7)	14.6 ± 0.2 h		ϵ 72.6; α 27.4
		212	0+	-8.66 (3)	$23.9 \pm 1.2 \text{ m}$		α 100
		213	(9/2+)	-5.699 (6)	$19.5 \pm 0.1 \text{ ms}$		α 100
		218	0+	5.2166 (24)	$35 \pm 5 \text{ ms}$		α 100
		219	5/2+	8.831 (3)	$3.96 \pm 0.01 \text{ s}$		α 100
		220	0+	10.6075 (22)	$55.6 \pm 0.1 \text{ s}$		α 100
		221	7/2+	14.474 (6)	$25 \pm 2 \text{ m}$		β^- 78; α 22
		222	0+	16.3/31 (23)	$3.8235 \pm 3.0E-4 d$		α 100
		223	7/2	20.396 (10)	$24.3 \pm 0.4 \text{ m}$		β^{-} 100
		224	0+	22.435 (15)	$107 \pm 3 \text{ m}$		β^- 100
		225	7/2-	26.556 (21)	$4.66 \pm 0.04 \text{ m}$		β^{-} 100
		226	0+	28.739 (16)	$7.4 \pm 0.1 \text{ m}$		β^{-} 100
		227	0	32.875 (18)	$20.8 \pm 0.7 \mathrm{s}$		β^{-} 100
		228	0+	35.249 (22)	$65 \pm 2 s$		β^{-} 100
	-	229	0	39.362 (13)	12.0 +1.2-1.3 s		β^{-} 100
87	Fr	199	0	6.76 (4)	12 +10-4 ms		$\alpha > 0.00; \epsilon$
		200	(3+)	6.12 (8)	$49 \pm 4 \text{ ms}$		$\alpha 100$
		201	(9/2-)	3.6 (7)	$62 \pm 5 \text{ ms}$		α 100; α 100
		202	(3+)	3.163 (15)	$0.30 \pm 0.05 \text{ s}$		α 100; α 100
		203	(9/2-)	0.877 (6)	$0.55 \pm 0.01 \text{ s}$		$\alpha \leq 100.00$
		204	(3+)	0.607 (25)	1.8 ± 0.3 s		$\epsilon 8; \alpha 92$
		204m	(/+)	0.648 (25)	1.6 +0.5-0.3 s		α 90; ϵ 10
		204m2	(10-)	0.923 (25)	0.8 ± 0.2 s		α 74; ϵ 26
		205	(9/2-)	-1.31 (8)	3.97 ± 0.04 s		α 98.5; ϵ 1.5
		206	(2+,3+)	-1.24 (3)	≈ 16 S		$\alpha \approx 84.00; \epsilon \approx 16.00; \alpha \approx$ 84.00; $\epsilon \approx 16.00$
		206m	(10-)	-0.71 (3)	0.7 ± 0.1 s		$TT 95: \alpha 5$
		207	9/2-	-2.84 (5)	14.8 ± 0.1 s		a 95: 6 5
		208	7+	-2.67 (5)	59.1 ± 0.3 s		α 89: ϵ 11
		209	9/2-	-3 769 (15)	50.5 ± 0.7 s		α 89: ϵ 11
		210	6+	-3 332 (15)	3.18 ± 0.06 m		α 71: ϵ 29
		211	9/2-	-4.14 (12)	3.10 ± 0.02 m		$\alpha 87: \epsilon 13$
		212	5+	-3.516 (9)	20.0 ± 0.6 m		ϵ 57: α 43
		213	9/2-	-3.553 (5)	34.82 ± 0.14 s		α 99.44: ϵ 0.56
		214	(1-)	-0.959 (9)	$5.0 \pm 0.2 \text{ ms}$		α 100
		214m	(8-)	-0.837 (9)	$3.35\pm0.05~\mathrm{ms}$		α 100
		218	1-	7.058 (5)	$1.0 \pm 0.6 \text{ ms}$		α 100
		218m	0	7.144 (5)	$22.0 \pm 0.5 \mathrm{ms}$		$\alpha < 100.00; IT$
		219	9/2-	8.618 (7)	$20 \pm 2 \text{ ms}$		$\alpha 100$
		220	1+	11.48 (4)	$27.4\pm0.3~{ m s}$		α 99.65; β^{-} 0.35
		221	5/2-	13.278 (5)	$286.1\pm1\mathrm{s}$		$\alpha \ 100; \beta^- < 0.10$
		222	2-	16.349 (21)	$14.2 \pm 0.3 \text{ m}$		β^{-} 100
		223	3/2(-)	18.384 (24)	$22.00\pm0.07~\text{m}$		β^{-} 99.99; α 0.006
		224	1-	21.65 (5)	$3.33\pm0.1~\mathrm{m}$		β^{-} 100
		225	3/2-	23.82 (3)	$3.95\pm0.14~\text{m}$		β^{-} 100
		226	1-	27.37 (10)	$49 \pm 1 \mathrm{s}$		β^{-} 100
		227	1/2 +	29.65 (10)	$2.47\pm0.03~\text{m}$		β^{-} 100
		228	2-	33.29 (20)	$38 \pm 1 \mathrm{s}$		$\beta^{-} < 100.00$
		229	(1/2+)	35.82 (4)	50.2 ± 2 s		β^- 100
		230	Ò	39.5 (3)	$19.1\pm0.5~{ m s}$		β^{-} 100
				x 7			Continued on next need

Continued on next page

_

Pocketbook of Data for Nuclear Engineers

	Table 8.1 – Continued from previous page								
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \dot{\mathbf{\Gamma}}$	Abundance	Decay Mode		
		194	(9-10-)	-0.7 (3)	$310\pm8~ms$		α;α		
		195	1/2+	-3.476 (9)	$328\pm20~\mathrm{ms}$		α 100; α 100		
		196	(3+)	-3.92 (6)	$0.388\pm0.007~\mathrm{s}$		$lpha \approx$ 95.10; $\epsilon \approx$ 4.90		
		197	(9/2-)	-6.34 (5)	$0.388\pm0.006~s$		α 96.1; ϵ 3.9		
		197m	(1/2+)	-6.29 (5)	$2.0\pm0.2~{ m s}$		$\alpha \leq$ 100.00; ϵ ; $IT \leq$ 4.0E-		
				=			3		
		198	(3+)	-6.65 (15)	$3.8\pm0.4~\mathrm{s}$		α 90; ϵ 10		
		198m	(10-)	-6.548 (15)	$1.04 \pm 0.15 \text{ s}$		α 84; ϵ 16		
		199	(9/2-)	-8.822 (6)	$7.03 \pm 0.15 \text{ s}$		α 90; ϵ 10		
		200	(3+)	-8.988 (24)	$43 \pm 1 \text{ s}$		α 52; ϵ 48		
		200m	(7+)	-8.876 (24)	$47 \pm 1 \text{ s}$		$\epsilon \leq 57.00; \alpha 43$		
		200m2	. (10-)	-8.644 (24)	7.3 +2.6-1.5 s		$\epsilon < 89.50; \ IT < 89.50;$		
		201	(0/2)	10 780 (8)	9E 2 16 a		$\alpha \approx 10.50$		
		201	(9/2-)	-10.769 (6)	$03.2 \pm 1.0 \text{ s}$		α /1; ϵ 29		
		202	(2+,5+)	-10.39 (3)	164 ± 1.8		ϵ 65; α 57; ϵ 91.5; α 8.7		
		202111	(10-)	-10.2(3) 12164(12)	0.40 ± 0.03 s		$11 99.9; \alpha 0.1$		
		203	9/2- 7	-12.104 (12)	7.4 ± 0.2 III 9.12 ± 0.11 m		$e^{-0.9}, a^{-0.1}$		
		204 204m	10	-11.070 (24)	9.12 ± 0.11 mc		UT 100		
		20411	$9/2_{-}$	-11.209 (24)	100 ± 10 ms		11 100		
		205	(5)+	-12.971 (15)	$20.9 \pm 0.8 \text{ m}$		ε 90, α 10 ε 99 1: α 0 9		
		200	$(3)^{+}$	-12.429(13) -13.227(12)	1.81 ± 0.03 h		e 99.1, a 0.9		
		207	57 <u>2</u> - 6+	-12.227(12)	1.61 ± 0.03 h		c 99.45; c 0.55		
		200	9/2-	-12.87 (5)	5.41 ± 0.05 h		e 95.9. a 4.1		
		210	(5)+	-11 973 (8)	81 ± 0.05 h		ε 99.82. α 0.18		
		210	9/2-	-11 648 (3)	7214 ± 0.007 h		ε 58.2: α 41.8		
		212	(1-)	-8.6289 (24)	0.314 ± 0.002 s		$\alpha 100; \epsilon \leq 0.03; \beta^- \leq$		
			(-)	0.0107 (11)			2.0E-6		
		212m	(9-)	-8.4059 (24)	$0.119\pm0.003~s$		$\alpha > 99.00; IT < 1.00$		
		217	9/2-	4.396 (5)	$32.3\pm0.4\ ms$		$lpha$ 99.99; β^- 0.007		
		218	0	8.098 (12)	$1.5\pm0.3~{ m s}$		$lpha$ 99.9; eta^- 0.1		
		219	0	10.397 (4)	$56\pm3~{ m s}$		$\beta^- pprox 3.00; \alpha pprox 97.00$		
		220	3	14.35 (5)	$3.71\pm0.04~\text{m}$		β^- 92; α 8		
		221	0	16.81 (20)	$2.3\pm0.2~\text{m}$		β^- 100		
		222	0	20.6 (3)	$54\pm10~{ m s}$		β^- 100		
		223	0	23.4 (4)	$50\pm7~{ m s}$		β^- 100		
		224	0	27.71 (6)	$76\pm0~{ m s}$		β^- ?		
86	Rn	193	(3/2-)	9.045 (23)	$1.15\pm0.27~\mathrm{ms}$		α 100		
		195	3/2-	5.06 (5)	6 +3-2 ms		α 100		
		195m	13/2+	5.12 (5)	5 +3-2 ms		α 100		
		196	0+	1.97 (14)	4.4 +1.3-0.9 ms		α 99.9; $\epsilon \approx 0.10$		
		197	(3/2-)	1.48 (6)	53 +7-5 ms		α 100; α 100		
		198	0+	-1.231 (13)	$65 \pm 3 \text{ ms}$		α ; ϵ		
		199	(3/2-)	-1.51 (6)	$0.59\pm0.03~{ m s}$		α 94; ε 6		
		199m	(13/2+)	-1.33 (6)	$0.31 \pm 0.02 \text{ s}$		α 97; ε 3		
		200	0+	-4.005 (13)	1.03 +0.2-0.11 s		α 86; ϵ 14		
		201	(3/2-)	-4.07 (5)	$7.0 \pm 0.4 \mathrm{~s}$		α ; ϵ ; α ; ϵ		
		202	0+	-6.275 (18)	$9.7 \pm 0.1 \mathrm{s}$		α 78; ε 22		
		203	(3/2-)	-6.16 (24)	$44 \pm 2 \text{ s}$		α 66; ε 34		
		203m	(13/2+)	-5.798 (24)	$26.9 \pm 0.5 \text{ s}$		α 75; ε 25		
		204	0+	-7.984 (15)	$74.5 \pm 1.4 \text{ s}$		α 72.4; ϵ 27.6		
		205	5/2-	-7.71 (5)	$170 \pm 4 \text{ s}$		α 24.6; ϵ 75.4		
		206	0+	-9.116 (15)	5.67 ± 0.17 m		α 62; ϵ 38		
		207	5/2-	-8.635 (8)	9.25 ± 0.17 m		ε 79; α 21		

Continued on next page

_

	Table 8.1 – Continued from previous page							
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode	
		215	(9/2-)	1.649 (15)	7.6 ± 0.2 m		$\beta^{-} 100$	
		215m	>23/2-	2.996 (15)	$36.9\pm0.6~\mathrm{s}$		IT 76.2; β^- 23.8	
		216	(6-,7-)	5.874 (11)	2.25 ± 0.05 m		$\beta^{-} \leq 100.00; \beta^{-} \leq 100.00$	
		217	(9/2-)	8.89 (20)	$98.5\pm0.8~{ m s}$		β^- 100	
		218	0	13.2 (4)	$33 \pm 1 \text{ s}$		β^- 100	
84	Ро	187	(1/2- ,5/2-)	2.83 (3)	$1.40\pm0.25\ ms$		lpha 100	
		189	(7/2-)	-1.42 (19)	$3.5\pm0.5~\mathrm{ms}$		α 100	
		190	0+	-4.564 (13)	$2.46\pm0.05~\mathrm{ms}$		α 100	
		191	(3/2-)	-5.055 (12)	$22 \pm 1 \text{ ms}$		α 99	
		191m	(13/2+)	-5.015 (12)	$93 \pm 3 \text{ ms}$		α 96	
		192	0+	-8.071 (11)	$32.2 \pm 0.3 \text{ ms}$		$\alpha \approx$ 99.50; $\epsilon \approx 0.50$	
		193	(13/2+)	-8.36 (3)	$245\pm22~\mathrm{ms}$		$\alpha \leq 100.00; \alpha \leq 100.00$	
		194	0+	-11.006 (13)	$0.392 \pm 0.004 \text{ s}$		α 100; ϵ	
		195	(3/2-)	-11.07 (4)	$4.64\pm0.09~\mathrm{s}$		α 75; ϵ 25	
		195m	(13/2+)	-10.84 (4)	$1.92\pm0.02~s$		$\alpha \approx 90.00; \epsilon \approx 10.00;$ IT < 0.01	
		196	0+	-13.474 (13)	$5.8\pm0.2~{ m s}$		$\alpha \approx$ 98.00; $\epsilon \approx$ 2.00	
		197	(3/2-)	-13.36 (5)	$84\pm16~ m s$		ϵ 56; α 44	
		197m	(13/2+)	-13.15 (5)	$32 \pm 2 s$		α 84; ϵ 16; IT 0.01	
		198	0+	-15.474 (17)	$1.77\pm0.03~\mathrm{m}$		α 57; ϵ 43	
		199	(3/2-)	-15.215 (23)	5.47 ± 0.15 m		ϵ 92.5; α 7.5	
		199m	(13/2+)	-14.905 (23)	$4.17\pm0.05~\mathrm{m}$		IT 2.5; ϵ 73.5; α 24	
		200	0+	-16.955 (14)	11.51 ± 0.08 m		ϵ 88.9; α 11.1	
		201	3/2-	-16.525 (6)	$15.6\pm0.1~\mathrm{m}$		ϵ 98.87; α 1.13	
		201m	13/2+	-16.101 (6)	$8.96 \pm 0.12 \text{ m}$		IT 56.2; ϵ 41.4; α 2.4	
		202	0+	-17.925 (15)	44.6 ± 0.4 m		ϵ 98.08; α 1.92	
		203	5/2-	-17.311 (9)	36.7 ± 0.5 m		ϵ 99.89; α 0.11	
		203m	13/2+	-16.669 (9)	$45\pm2~{ m s}$		IT 100; ϵ	
		204	0+	-18.346 (11)	3.519 ± 0.012 h		ϵ 99.33; α 0.67	
		205	5/2-	-17.509 (20)	1.74 ± 0.08 h		ϵ 99.96; α 0.04	
		205m2	2 19/2-	-16.048 (20)	$57.4 \pm 0.9 \text{ ms}$		<i>IT</i> 100	
		206	0+	-18.185 (3)	$8.8 \pm 0.1 \mathrm{d}$		α 5.45; ϵ 94.55	
		207	5/2-	-17.146 (7)	5.80 ± 0.02 h		ϵ 99.98; α 0.02	
		207m	19/2-	-15.763 (7)	$2.79 \pm 0.08 \mathrm{s}$		<i>IT</i> 100	
		208	0+	-17.4703 (18)	$2.898 \pm 0.002 \text{ y}$		α 100; ϵ 0.004	
		209	1/2-	-16.3667 (18)	$102 \pm 5 \text{ y}$		α 99.52; ϵ 0.48	
		210	0+	-15.9538 (12)	$138.376 \pm 0.002 d$		α 100	
		211	9/2+	-12.4333 (13)	0.516 ± 0.003 s		α 100	
		211m	(25/2+)	-10.9/13 (13)	$25.2 \pm 0.6 \text{ s}$		11 0.02; α 99.98	
		212m	(18+)	-7.4482 (13)	45.1 ± 0.68		α 99.93; 11 0.07	
		215	9/2+	-0.54 (3)	$1.781 \pm 0.004 \text{ ms}$		α 100; β 0.00023	
		210	(0, (2))	1.770 (22) E 996 (6)	0.143 ± 0.002 s		α 100	
		217	(9/2+)	9.3578 (22)	1.55 ± 0.05 s		α	
		210	0	10 78 (4)	3.070 ± 0.012 m 112 ± 58.28		$\alpha = 2, 30, \mu = 0.02$	
		221	0	17.70 (0) 22.48 (7)	$112 \pm 30 \pm 420$ s		ρ : β^{-2}	
85	٨.	101	$(1/2^{+})$	22.40 (7) 3.862 (16)	350 ± 450 s 1.7 ± 1.1 ± 0.5 ms		ρ : ~ 100	
65	At	101m	$(1/2^+)$ $(7/2^-)$	3.002 (10)	$2.1 \pm 0.4 \pm 0.3 \text{ ms}$		a 100 a 100	
		107	0	2.92 (6)	115 ± 0.6 ms		a 100 a 100	
		192	(1/2)	-0.07(5)	28 ± 5.4 ms		a 100, a 100 a 100	
		193m	$(1/2^{+})$ $(7/2^{-})$	-0.06 (5)	$20 + 5 \pm 115$ $21 + 5 \pm 115$		a 100	
		193m	$(7, 4^{-})$ (13/2+)	0.00(3)	$21 \pm 5 ms$ $27 \pm 4.3 ms$		IT 76. o 24	
		175114	= (10/ 4T)	U(AI)	27 74-5 1115		11 /0, α 2 1	

Chapter 3

Energy diagrams

Compound nucleus reaction can be understood as a three stage process on which an excited nucleus is formed by the absorption of the incident particle, followed by the decay of this nucleus.

Conservation of mass-energy in these processes can be visualized in the following diagram. Below the diagram, the *Q equation* for non-relativistic collisions is shown. This equation combines conservation of energy and linear momentum for collisions for a target that is at rest in the laboratory system.

Source: Meyerhof, W. Elements of Nuclear Physics. McGraw-Hill, 1967.

	Table 8.1 – Continued from previous page								
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T}_{1/2}, \hat{\mathbf{\Gamma}}$	Abundance	Decay Mode		
		213	(9/2+)	-3.201 (7)	10.2 ± 0.3 m		$\beta^{-} 100$		
		214	0+	-0.1816 (23)	26.8 ± 0.9 m		β^{-} 100		
		215	0	4.5 (3)	147 ± 12 s		β ⁻		
83	Bi	184	0	1 19 (8)	$13 \pm 2 \text{ ms}$		α 100: α 100		
00	51	186	(3+)	-3 17 (8)	10 ± 2 ms		a 100; a 100		
		187	(9/2)	-6 385 (10)	$37 \pm 2 \text{ ms}$		a 100, a 100		
		199	(10)	7.2 (5)	265 ± 15 mg		a_{100}		
		100	(10-)	-7.2 (J) 10.06 (E)	203 ± 13 ms		$\alpha = 100, \epsilon = 2, \alpha = 100, \epsilon = 2$		
		109	(9/2-)	-10.06 (3)	$6/4 \pm 11 \text{ ms}$		$\alpha > 50.00; \epsilon < 50.00$		
		189m	(1/2+)	-9.88 (5)	$5.0 \pm 0.1 \text{ ms}$		$\alpha > 50.00; \epsilon < 50.00$		
		190	(3+)	-10.59 (3)	6.3 ± 0.1 s		α 90; ϵ 10; α 70; ϵ 30		
		191	(9/2-)	-13.24 (7)	12.4 ± 0.3 s		α 51; ϵ 49		
		191m	(1/2+)	-12.999 (7)	$125 \pm 13 \text{ ms}$		α 68; <i>IT</i> 32; ϵ		
		192	(3+)	-13.55 (3)	$34.6 \pm 0.9 \text{ s}$		ϵ 88; α 12		
		192m	(10-)	-13.4 (3)	$39.6 \pm 0.4 \mathrm{s}$		ϵ 90; α 10		
		193	(9/2-)	-15.873 (10)	$63.6 \pm 3 \text{ s}$		ϵ 96.5; α 3.5		
		193m	(1/2+)	-15.565 (10)	$3.2\pm0.5~\mathrm{s}$		α 84; ϵ 16		
		194	(3+)	-15.968 (15)	$95 \pm 3 \mathrm{s}$		ϵ 99.54; α 0.46; ϵ 100;		
							ϵ 99.8; α 0.2		
		195	(9/2-)	-18.026 (5)	$183 \pm 4 \mathrm{~s}$		ϵ 99.97; α 0.03		
		195m	(1/2+)	-17.625 (5)	$87 \pm 1 \text{ s}$		ϵ 67; α 33		
		196	(3+)	-18.009 (24)	$308\pm12~\mathrm{s}$		ϵ 100; α 0.0012		
		196m	(7+)	-17.84 (24)	$0.6\pm0.5~{ m s}$		ϵ ; IT		
		196m2	2 (10-)	-17.738 (24)	$240\pm3~{ m s}$				
		197	(9/2-)	-19.687 (8)	9.33 ± 0.5 m		ϵ 100; α 0.0001		
		197m	(1/2+)	-19.187 (8)	5.04 ± 0.16 m		α 55; ϵ 45; $IT < 0.30$		
		198	(2+.3+)	-19.37 (3)	$10.3 \pm 0.3 \text{ m}$		<i>ε</i> 100; <i>ε</i> 100		
		198m	10-	-19.12 (3)	7.7 ± 0.5 s		<i>IT</i> 100		
		199	9/2-	-20.799(12)	$27 \pm 1 \text{ m}$		€ 100		
		199m	(1/2+)	-20132(12)	24.70 ± 0.15 m		ϵ 99: $IT < 2.00: \alpha \approx 0.01$		
		200	(1) <u>1</u>) 7+	-20 371 (24)	$36.4 \pm 0.5 \text{ m}$		$\epsilon 100; \epsilon \le 100.00$		
		200m	(10-)	-19 943 (24)	0.40 ± 0.05 s		IT 100		
		2001	(10)	-21 /16 (15)	$103 \pm 3 \text{ m}$		< 100		
		201 201m	1/2	-21.410(15)	$105 \pm 3 \text{ m}$		$\epsilon = 100$		
		201111	1/2+	-20.309 (13)	57.5 ± 2.1 III		$\epsilon > 91.10, 11 \leq 0.00, \alpha \approx$		
		202	5.	-20.742(15)	1.71 ± 0.04 h		c 100		
		202	0/ 7	-20.742(13)	1.71 ± 0.04 m		< 100		
		203	9/2- 1/2	-21.324(13)	205 ± 5.001		E 100		
		20511	1/2+	-20.420(13)	305 ± 5 ms		11 100		
		204	0+	-20.646 (9)	11.22 ± 0.1 n		ε 100 μπ 100		
		204m	10-	-19.84 (9)	$13.0 \pm 0.1 \text{ ms}$		<i>TT</i> 100		
		204m2	2 17+	-17.812 (9)	$1.07 \pm 0.03 \text{ms}$		11/100		
		205	9/2-	-21.065 (5)	15.31 ± 0.04 d		ϵ 100		
		206	6+	-20.029 (8)	$6.243 \pm 0.003 \text{ d}$		ϵ 100		
		207	9/2-	-20.0553 (24)	31.55 ± 0.04 y		ϵ 100		
		208	5+	-18.8709 (24)	$3.68E+5 \pm 0.04E+5 \text{ y}$		ϵ 100		
		208m	10-	-17.2998 (24)	$2.58\pm0.04~\mathrm{ms}$		<i>IT</i> 100		
		209	9/2-	-18.2593 (15)	stable	100%			
		210	1-	-14.7926 (14)	$5.012 \pm 0.005 \text{ d}$		eta^- 100; $lpha$ 0.00013		
		210m	9-	-14.5213 (14)	$3.04E+6 \pm 0.06E+6 \text{ y}$		α 100		
		211	9/2-	-11.859 (5)	$2.14\pm0.02~\text{m}$		$lpha$ 99.72; eta^- 0.28		
		212	1(-)	-8.1201 (20)	$60.55 \pm 0.06 \text{ m}$		β^- 64.06; α 35.94		
		212m	(8-,9-)	-7.8701 (20)	25.0 ± 0.2 m		α 67; β^- 33; $\beta^- \alpha$ 30		
		212m2	2 —>16	-6.2101 (20)	7.0 ± 0.3 m		β^{-} 100		
		213	9/2-	-5.23 (5)	$45.59\pm0.06~\mathrm{m}$		β^{-} 97.8; α 2.2		
		214	1-	-1.201 (11)	19.9 ± 0.4 m		β^{-} 99.98; α 0.02		

Continued on next page

	Table 8.1 – Continued from previous page							
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \hat{\Gamma}$	Abundance	Decay Mode	
		207	1/2+	-21.034 (5)	$4.77 \pm 0.03 \text{ m}$		$\beta^{-} 100$	
		207m	11/2-	-19.686 (5)	$1.33\pm0.11~{ m s}$		<i>IT</i> 100	
		208	5+	-16.7523 (20)	$3.053 \pm 0.004 \text{ m}$		β^{-} 100	
		209	(1/2+)	-13.638 (8)	$2.161 \pm 0.007 \text{ m}$		β^- 100	
		210	(5+)	-9.247 (12)	$1.30\pm0.03~\mathrm{m}$		β^{-} 100; $\beta^{-}n$ 0.007	
		213	0	1.76 (6)	$101 \pm 0 \text{ s}$		β^{-}	
82	Pb	179	(9/2-)	2.05 (8)	3.5 +1.4-0.8 ms		α 100	
		180	0+	-1.935 (13)	$4.2\pm0.5~\mathrm{ms}$		α 100	
		181	(9/2-)	-3.1 (8)	$36 \pm 2 \text{ ms}$		α 100; $\alpha < 100.00$	
		182	0+	-6.821 (13)	$55 \pm 5 \text{ ms}$		$\epsilon \approx 2.00; \alpha \approx 98.00$	
		183	(3/2-)	-7.57 (3)	$535\pm30~\mathrm{ms}$		$\alpha \approx 90.00$	
		183m	(13/2+)	-7.47 (3)	$415\pm20~\mathrm{ms}$		α 100	
		184	0+	-11.052 (13)	$490\pm25~\mathrm{ms}$		α 80; ϵ 20	
		185	3/2-	-11.541 (16)	$6.3\pm0.4~\mathrm{s}$		ϵ ; α 34; α 50; ϵ	
		186	0+	-14.682 (11)	$4.82\pm0.03~\mathrm{s}$		ϵ 60; α 40	
		187	(13/2+)	-14.99 (6)	$18.3\pm0.3~{ m s}$		ϵ 88; α 12	
		187m	(3/2-)	-14.957 (6)	$15.2\pm0.3~\mathrm{s}$		ϵ 90.5; α 9.5	
		188	0+	-17.816 (11)	$25.1\pm0.1~{ m s}$		ϵ 90.7; α 9.3	
		189	(3/2-)	-17.88 (3)	$39 \pm 8 \text{ s}$		ϵ 100; α < 1.00	
		189m	(13/2+)	-17.84 (3)	$50 \pm 3 \text{ s}$		ϵ 100; α < 1.00	
		190	0+	-20.418 (12)	$71 \pm 1 \text{ s}$		$\alpha 0.4$; $\epsilon 99.6$	
		191	(3/2-)	-20.25 (4)	1.33 ± 0.08 m		ϵ 99.99; α 0.01; ϵ 100; $\alpha \approx$	
							0.02	
		192	0+	-22.556 (13)	$3.5 \pm 0.1 \text{ m}$		ϵ 99.99; α 0.0059	
		194	0+	-24.209 (17)	$10.7 \pm 0.6 \text{ m}$		α 7.3e-06; ϵ 100	
		195	3/2-	-23.714 (23)	$\approx 15 \text{ m}$		ε 100	
		195m	13/2+	-23.511 (23)	$15.0 \pm 1.2 \text{ m}$		ε 100 ε 2.0Ε 5	
		196	0+	-25.361 (14)	$3/\pm 3 \text{ m}$		ϵ ; $\alpha \leq 3.0$ E-5	
		197	3/2-	-24.749 (6)	$8.1 \pm 1.7 \text{ m}$		ε 100 01 μπ 10	
		19/m	13/2+	-24.429 (6)	$42.9 \pm 0.9 \text{ m}$		ε 81; <i>IT</i> 19	
		190	0+	-26.031(13)	2.4 ± 0.1 M		ε 100 - 100	
		199	$\frac{3}{2}$	-23.232(10)	$90 \pm 10 \text{ III}$		ε 100 	
		200	(13/2+)	-24.007(10)	$12.2 \pm 0.3 \text{ III}$		$\epsilon \approx 7.00; 11 \approx 93.00$	
		200	0+ 5/2	-20.230 (11)	21.5 ± 0.4 m 9.22 ± 0.02 h		ε 100 - 100	
		201 201m	12/2	-23.238 (22)	9.33 ± 0.03 m		ε 100 IT 100	
		201111	13/2+	-24.029 (22)	50.5 ± 1.55 52 5E + 2 \pm 2 8E + 2 m		- 100	
		202 202m	0+ 9-	-23 767 (3)	354 ± 0.02 h		IT 90 5: < 9 5	
		20211	5/2-	-24 787 (7)	51.92 ± 0.02 h		€ 100	
		203m	13/2-	-23.962 (7)	6.21 ± 0.05 H		E 100	
		203m	2 29/2	-21 838 (7)	$480 \pm 7 \mathrm{ms}$		IT 100	
		203112	0+	-25,1105,(12)	> 1.4F+17 v	$14\% \pm 01\%$	11 100	
		201 204m	9_	-22 9246 (12)	$\frac{2}{6693} \pm 0.1 \text{ m}$	1.1/0 ± 0.1/0	IT 100	
		205	5/2-	-23,7709(12)	$1.73F+7 \pm 0.07F+7 v$		e 100	
		205m	13/2+	-22.7571(12)	5.55 ± 0.02 ms		IT 100	
		206	0+	-23,7862 (12)	stable	$24.1\% \pm 0.1\%$	11 100	
		207	1/2-	-22.4527 (12)	stable	$22.1\% \pm 0.1\%$		
		207m	$\frac{13}{2+}$	-20.8193 (12)	0.806 ± 0.005 s	U.1/0	<i>IT</i> 100	
		208	0+	-21.7492 (12)	stable	$52.4\% \pm 0.1\%$		
		209	9/2+	-17.6153 (18)	3.253 ± 0.014 h	011/0 - 011/0	β^{-} 100	
		210	0+	-14.7291 (15)	22.20 ± 0.011 m		β^{-} 100: α 1 9e-06	
		211	9/2+	-10.491 (3)	$36.1 \pm 0.2 \text{ m}$		β^{-} 100	
		212	0+	-7.553 (22)	10.64 ± 0.01 h		β^- 100	
					10:01 ± 0:01 11		Continued on work was a	

Chapter 4

X-ray and gamma standards

The following table presents the recommended values of decay parameters of many common radionuclides routinely used for X-ray and gamma-ray detector calibration. For each radionuclide the following parameters are listed:

- Decay mode.
- Half life $(T_{1/2})$ in days.
- ID of the spectral line, in the case of X-rays.
- Energy of the *γ* or X-ray in keV.
- Emission probability (# of photons emitted per parent decay).

Source: X-ray and gamma-ray standards for detector calibration. IAEA-TECDOC-619 (1991).

(http://www-nds.iaea.org/publications/tecdocs/iaea-tecdoc-0619.pdf).

Note: it must be noted that for technical applications, the information contained in this chapter has been superseded by new IAEA-NDS X Ray and Gamma standards

(http://www-nds.iaea.org/xgamma_standards/)

Continued on next page

Table 4.1: X-ray and gamma standards.

Nuclide	Decay Mode	$T_{1/2}$	XR ID	E [keV]	Emission Prob.
22Na	EC	950.8(9) [major 511.033 aı	nnihiliation radiation]	1274.542(7)	0.99935(15)
24Na	β^{-}	0.62356(17)		1368.633(6)	0.999936(15)
				2754.030(14)	0.99855(5)
26Sc	β^{-}	83.79(4)		889.277(3)	0.999844(16)
				1120.545(4)	0.999874(11)
51Cr	EC	27.706(7)	VKa	4.95	0.201(3)
			VKx	4.95 - 5.43	0.228(3)
			$VK\beta$	5.43	0.027(1)
				320.0842(9)	0.0986(5)
54Mn	EC	312.3(4)	CrKa	5.41	0.226(7)
			CrKx	5.41 - 5.95	0.256(8)
			$CrK\beta$	5.95	0.030(1)
				834.843(6)	0.999758(24)
55Fe	EC	999(8)	MnKx	5.89 - 6.49	0.283(10)
			MnKa	5.89	0.249(9)
			MnKβ	6.49	0.034(1)
56Co	EC	77.31(19)		846.764(6)	0.99933(7)
				1037.884(4)	0.1413(5)
				1175.099(8)	0.02239(11)
				1238.287(6)	0.6607(19)
				1360.206(6)	0.04256(15)
				1771.350(15)	0.1549(5)
				2015.179(11)	0.03029(13)
				2034.759(11)	0.07771(27)
				2598.460(10)	0.1696(6)
				3201.954(14)	0.0313(9)
				3253.417(14) 2272.008(14)	0.0762(24)
				3272.990(14) 3451.154(12)	0.002(4)
				3548.27(10)	0.0093(4)
	EC		E K		0.510(5)
5/00	EC	2/1./9(9)	FeKa	6.4	0.510(7)
			Ferx EeV Q	0.40 - 7.00	0.079(8)
			renp	7.00 14.4127(4)	0.009(1) 0.0016(15)
				14.4127(4) 122(614(2)	0.0910(13)
				136.4743(5)	0.1068(8)
5800	EC	70 86(7)	Folly	6 40 7 06	0.267(2)
JUCU	EC	70.00(7)	FeKa	64	0.207(3)
			FeK B	7.06	0.233(3)
			i cinp	810.775(9)	0.9945(1)
6000	8-	1925 5(5)		1173 238(4)	0 99857(22)
0000	ρ	1723.3(3)		11/0.200(4)	Continued on north north

	Table 8.1 – Continued from previous page							
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \hat{\mathbf{\Gamma}}$	Abundance	Decay Mode	
		206	0+	-20.946 (20)	$8.32 \pm 0.07 \text{ m}$		$\beta^- 100$	
		207	(9/2+)	-16.22 (15)	2.9 ± 0.2 m		β^- 100	
		208	0+	-13.27 (3)	41 +5-4 m		β^- 100	
		209	0	-8.54 (15)	35 +9-6 s		β^{-} 100	
81	Tl	176	(3-,4-,5-)	0.58 (8)	5.2 +3-1.4 ms		p 100	
		177	(1/2+)	-3.33 (23)	$18\pm5~\mathrm{ms}$		α 73; p 27	
		178	0	-4.79 (10)	254 +11-9 ms		$\alpha \approx 53.00$; $\epsilon \approx 47.00$	
		179	(1/2+)	-8.3 (4)	$0.23\pm0.04~\mathrm{s}$		$\alpha <$ 100.00; ϵ ; p ; ϵ ; IT ;	
							$lpha \leq$ 100.00; p	
		180	(4-,5-)	-9.26 (6)	$1.09\pm0.01~{ m s}$		ϵ 94; α 6; $\epsilon SF \approx$ 1.0E-4	
		181	(1/2+)	-12.799 (9)	$3.2\pm0.3~\mathrm{s}$		ϵ ; $lpha \leq 10.00$	
		181m	(9/2-)	-11.963 (9)	$1.40\pm0.03~\mathrm{ms}$		IT 99.6; α 0.4	
		182	(7+)	-13.35 (8)	$3.1 \pm 1 \text{ s}$		ϵ 97.5; α < 5.00	
		183	(1/2+)	-16.589 (9)	$6.9\pm0.7~{ m s}$		$lpha$; $\epsilon > 0.00$	
		183m	(9/2-)	-15.959 (9)	$53.3\pm0.3~\mathrm{ms}$		IT ; ϵ ; α 2	
		184	0	-16.89 (5)	$10.1\pm0.5~{\rm s}$		ϵ 97.9; α 2.1	
		185	(1/2+)	-19.76 (5)	$19.5\pm0.5~{\rm s}$		ϵ	
		185m	(9/2-)	-19.3 (5)	$1.93\pm0.08~{\rm s}$		α ; IT	
		186	(7+)	-19.87 (3)	$27.5\pm1~{\rm s}$		$\alpha \approx 6.0\text{E-3}; \epsilon \ 100$	
		186m	(10-)	-19.5 (3)	$2.9\pm0.2~{\rm s}$		<i>IT</i> 100	
		187	(1/2+)	-22.443 (8)	$\approx 51 \text{ s}$		ϵ 100; $\alpha \approx 0.03$	
		187m	(9/2-)	-22.109 (8)	$15.60\pm0.12~{\rm s}$		$\epsilon \ < \ 99.90; \ IT \ < \ 99.90;$	
							$\alpha 0.15$	
		188	(2-)	-22.35 (3)	$71 \pm 2 s$		<i>ϵ</i> 100; <i>ϵ</i> 100	
		188m	(9-)	-22.08 (3)	41 ± 4 ms		ϵ ; IT 100	
		189	(1/2+)	-24.602 (11)	2.3 ± 0.2 m		ϵ 100	
		189m	(9/2-)	-24.344 (11)	1.4 ± 0.1 m		$\epsilon <$ 100.00; $IT <$ 4.00	
		190	2(-)	-24.311 (14)	2.6 ± 0.3 m		<i>ϵ</i> 100; <i>ϵ</i> 100	
		192	(2-)	-25.87 (3)	9.6 ± 0.4 m		ϵ 100	
		192m	(7+)	-25.72 (3)	10.8 ± 0.2 m		ϵ 100	
		193	1/2(+)	-27.3 (8)	21.6 ± 0.8 m		ϵ 100	
		193m	(9/2-)	-26.93 (8)	$2.11\pm0.15~\mathrm{m}$		$IT \leq$ 75.00; $\epsilon \geq$ 25.00	
		194	2-	-26.83 (14)	33.0 ± 0.5 m		ϵ 100; $\alpha <$ 1.0E-7; ϵ 100	
		195	1/2+	-28.155 (14)	$1.16\pm0.05~h$		ϵ 100	
		195m	9/2-	-27.673 (14)	$3.6\pm0.4~{ m s}$		<i>IT</i> 100	
		196	2-	-27.497 (12)	$1.84\pm0.03~h$		ϵ 100	
		196m	(7+)	-27.102 (12)	1.41 ± 0.02 h		ε 96.2; IT 3.8	
		197	1/2+	-28.341 (16)	$2.84\pm0.04~h$		e 100	
		197m	9/2-	-27.733 (16)	$0.54\pm0.01~{\rm s}$		<i>IT</i> 100	
		198	2-	-27.49 (8)	5.3 ± 0.5 h		e 100	
		198m	7+	-26.95 (8)	$1.87\pm0.03~\mathrm{h}$		ϵ 55.9; IT 44.1	
		198m2	2 (10-)	-26.75 (8)	$32.1 \pm 1 \text{ ms}$		<i>IT</i> 100	
		199	1/2+	-28.06 (3)	$7.42\pm0.08~\mathrm{h}$		ϵ 100	
		199m	9/2-	-27.31 (3)	$28.4\pm0.2\ \mathrm{ms}$		<i>IT</i> 100	
		200	2-	-27.047 (6)	$26.1\pm0.1~h$		ϵ 100	
		200m	7+	-26.294 (6)	$34.0\pm0.9\ ms$		<i>IT</i> 100	
		201	1/2+	-27.183 (15)	$3.0421 \pm 0.0017 \ d$		ϵ 100	
		201m	(9/2-)	-26.264 (15)	$2.01\pm0.07~ms$		<i>IT</i> 100	
		202	2-	-25.985 (14)	$12.31\pm0.08~d$		ϵ 100	
		203	1/2+	-25.762 (13)	stable	$29.524\% \pm 0.001\%$		
		204	2-	-24.3468 (13)	$3.783 \pm 0.012 \text{ y}$		β^- 97.08; ϵ 2.92	
		205	1/2+	-23.8215 (13)	stable	$70.48\% \pm 0.01\%$		
		206	0-	-22.254 (14)	$4.202\pm0.011~\text{m}$		β^- 100	
		206m	(12-)	-19.6109 (14)	$3.74\pm0.03\ m$		<i>IT</i> 100	

Continued on next page

			-/		5
197	3/2+	-31.1409 (7)	stable	100%	
197m	11/2-	-30.7317 (7)	$7.73\pm0.06~{ m s}$		<i>IT</i> 100
198	2-	-29.5819 (7)	$2.6948 \pm 0.0012 \ d$		β^{-} 100
198m	(12-)	-28.7702 (7)	$2.272 \pm 0.016 \text{ d}$		<i>IT</i> 100
199	3/2+	-29.0948 (7)	$3.139 \pm 0.007 \text{ d}$		$\beta^{-} 100$
200	(1-)	-27.27 (5)	48.4 ± 0.3 m		β^{-} 100
200m	12-	-26.31 (5)	$18.7\pm0.5~\mathrm{h}$		β^{-} 84; IT 16
201	3/2+	-26.401 (3)	$26.0\pm0.8~\text{m}$		$\beta^{-} 100$
202	(1-)	-24.4 (17)	$28.4\pm1.2~{ m s}$		$\beta^{-} 100$
203	3/2+	-23.143 (3)	$60 \pm 6 \text{ s}$		β^{-} 100
204	(2-)	-20.75 (20)	$39.8\pm0.9~\mathrm{s}$		$\beta^{-} 100$
205	(3/2+)	-18.9 (3)	$32.5\pm1.4~\mathrm{s}$		$\beta^{-} 100$
205m	(11/2-)	-18 (3)	$6\pm 2\mathrm{s}$		IT ; β^-
174	0+	-6.646 (20)	2.1 +1.8-0.7 ms		α 99.6
175	(7/2-)	-7.97 (7)	$10.6\pm0.4~\mathrm{ms}$		α 100
176	0+	-11.778 (12)	$20.3\pm1.4~\mathrm{ms}$		α 94
177	(7/2-)	-12.78 (8)	$118\pm8~\mathrm{ms}$		α 100
178	0+	-16.311 (12)	$266.5 \pm 2.4 \text{ ms}$		$\alpha \approx$ 70.00; $\epsilon \approx$ 30.00
179	(7/2-)	-16.92 (3)	$1.05\pm0.03~{ m s}$		$\epsilon p \approx 0.15$; α 55; ϵ 45
180	0+	-20.251 (13)	$2.58\pm0.01~{\rm s}$		ϵ 52; α 48
181	1/2-	-20.661 (15)	$3.6\pm0.1~{ m s}$		ϵ 73; α 27; ϵp 0.01; $\epsilon \alpha$ 9e-

Abundance

Table 8.1 – Continued from previous page

 $T_{1/2}, \dot{\Gamma}$

 $10.83\pm0.06\ s$

 $9.4\pm0.7~s$

 $30.87\pm0.26~s$

 $49.1\pm1~s$

 $21.6\pm1.5~s$

 $1.38\pm0.06~\text{m}$

 $2.4\pm0.3\ m$

 $3.25\pm0.15\ m$

 $7.6\pm0.1\ m$

 $20.0\pm0.5\ m$

 $49\pm10\ m$

 $4.85\pm0.2\ h$

 $3.80\pm0.15~h$

 $11.8\pm0.2~h$

 $444 \pm 77 \text{ y}$

 $10.53\pm0.03~h$

 $41.6\pm0.8~h$

stable

 $64.14\pm0.05~h$

 $23.8\pm0.1\,h$

stable

stable

 $42.67\pm0.09\ m$

stable

stable

stable

 $46.594 \pm 0.012 \ d$

stable

 $5.14\pm0.09\ m$

 $1.09 \pm 0.04 \text{ ms}$

Z El

80 Hg

Α

174

182

183

184

185

186 0 +

187

188

189

190 0+

191

192 0 +

193

194 0 +

195

196 0 +

197

198 0 +

199

200 0 +

201

202

203

204 0 +

205

 \mathbf{J}^{π}

0 +

0 +

185m 13/2+

1/2-

3/2(-)

0 +

3/2-

3/2(-)

3/2(-)

 $193m \quad 13/2(+)$

195m 13/2+

197m 13/2+

199m 13/2+

1/2-

1/2-

1/2-

3/2-

5/2-

1/2-

205m 13/2+

0 +

1/2-

 Δ [MeV]

-23.577 (10)

-23.806 (7)

-26.349 (10)

-26.176 (16)

-26.076 (16)

-28.54 (11)

-28.118 (14)

-30.202 (12)

-31.371 (16)

-30.594 (23)

-32.012 (16)

-31.063 (16)

-30.922 (16)

-32.193 (13)

-30.824 (23)

-31.827 (3)

-30.541 (3)

-30.242 (3)

-30.9548 (5)

-29.5464 (4)

-29.0139 (4)

-29.5035 (4)

-27.6629 (6)

-27.3456 (6)

-25.2698 (17)

-24.6902 (5)

-22.288 (4)

-20.731 (4)

-31 (23)

-29.63 (3)

Poc	ketbool	c of Data	for N	luclear	Engineers

06

 ϵ 84.8; α 15.2

 ϵ 98.89; α 1.11

ε 99.98; α 0.02

ε 100; α 3.7e-05

 $\alpha < 3.4\text{E-7}; \epsilon 100$

ε 100; α 5e-06; ε 100

 $\alpha < 3.7\text{E-4}$

 $\alpha < 3.0\text{E-5}$

ε 92.8; IT 7.2

e 45.8; IT 54.2

IT 91.4; e 8.6

 $\epsilon 100$

 $\epsilon 100$

 $\epsilon 100$

 $\epsilon 100$

 $\epsilon 100$

IT 100

 β^- 100

 β^- 100

 $IT \, 100$

 $0.15\% \pm 0.01\%$

 $9.97\% \pm 0.2\%$

 $16.87\% \pm 0.22\%$

 $23.1\% \pm 0.19\%$

 $13.18\% \pm 0.09\%$ $29.86\% \pm 0.26\%$

 $6.87\% \pm 0.15\%$

 ϵ 94; α 6

εp 0.00026; *ε* 88.3; *α* 11.7

IT 54; ϵ 46; $\alpha \approx 0.03$

 ϵ 100; α < 3.7E-4; ϵ 100;

 ϵ 100; α < 3.0E-5; ϵ 100;

Decay Mode

Pocketbook of Data for Nuclear Engineers

Nuclide	Decay Mode	$\mathbf{T_{1/2}}$	XR ID	E [keV]	Emission Prob
				1332.502(5)	0.99983(6)
65Zn	EC	244.26(26)	CuKa	8.03 - 8.05	0.341(6)
		()	CuKx	8 03 - 8 91	0.387(6)
			CuKβ	8 91	0.046(1)
			Curtp	1115.546(4)	0.5060(24)
75Se	EC	119.64(24)	AsKa	10.51 - 10.54	0.493(11)
			AsKx	10.51 - 11.95	0.568(13)
			$AsK\beta$	11.72 - 11.95	0.075(2)
				96.7344(10)	0.0341(4)
				121.1171(14)	0.171(1)
				136.0008(6)	0.588(3)
				264.6580(17)	0.590(2)
				279.5431(22)	0.250(1)
				400.6593(13)	0.115(1)
85Sr	EC	64.849(4)	RbKx	13.34 - 15.29	0.587(4)
			RbKa	13.34 - 13.40	0.500(3)
			RbKβ	14.96 - 15.29	0.087(2)
				514.0076(22)	0.984(4)
88Y	EC	106.63(25)	SrKx	14.10 - 16.19	0.616(7)
			SrKa	14.10 - 14.17	0.522(6)
			$SrK\beta$	15.83 - 16.19	0.094(2)
				898.042(4)	0.940(3)
				1836.063(13)	0.9936(3)
93mNb	IT	5890(50)	NbKx	16.52 - 19.07	0.1104(35)
			NbKa	16.52 - 16.62	0.0925(30)
			NbKβ	18.62 - 19.07	0.0179(7)
94Nb	β^{-}	$7.3(9) \times 106$		702.645(6)	0.9979(5)
				871.119(4)	0.9986(5)
95Nb	β^{-}	34.975(7)		765.807(6)	0.9981(3)
109Cd	EC	462.6(7)	AgKa	21.99 - 22.16	0.821(9)
			AgKx	21.99 - 25.60	0.994(10)
			AgKβ	24.93 - 25.60	0.173(3)
				88.0341(11)	0.0363(2)
111In	EC	2.8047(5)	CdKa	22.98 - 23.17	0.684(5)
			CdKx	22.98 - 26.80	0.830(5)
			CdKβ	26.09 - 26.80	0.146(3)
				171.28(3)	0.9078(10)
				245.35(4)	0.9416(6)
113Sn	EC	115.09(4)	InKx	24.00 - 28.02	0.968(6)
			InKa	24.00 - 24.21	0.796(6)
			InKβ	27.27 - 28.02	0.172(3)

Continued on next page

Continued on next page

Pocketbook of Data for Nuclear Engineers

	Decay	Table 4	e.1 – Continueu from pi	revious puge	
Nuclide	Mode	$T_{1/2}$	XR ID	E [keV]	Emission Prob.
				391.702(4)	0.6489(13)
125Sb	β^{-}	1007 7(6)		176 313(1)	0.0685(7)
12000	P	100711 (0)		380.452(8)	0.01518(16)
				427 875(6)	0.297(3)
				463 365(5)	0.1048(11)
				600,600(4)	0.1773(18)
				606 718(3)	0.0500(5)
				635.954(5)	0.1121(12)
				000.004(0)	0.1121(12)
25I	EC	59.43(6)	TeKa	27.20 - 27.47	1.135(21)
			TeKx	27.20 - 31.88	1.390(25)
			TeKβ	30.98 - 31.88	0.255(6)
				35.4919(5)	0.0658(8)
34Cs	β^{-}	754.28(22)		475.364(3)	0.0149(2)
	<i>p</i> -	·····()		563.240(4)	0.0836(3)
				569.328(3)	0 1539(6)
				604 720(3)	0.9763(6)
				795 859(5)	0.854(3)
				801.948(5)	0.0869(3)
				1038 610(7)	0.00990(5)
				1167 968(5)	0.01792(7)
				1365 185(7)	0.01772(7)
				1303.105(7)	0.00010(11)
137Cs	β^{-}	$1.102(6) \times 104$	BaKa	31.82 - 32.19	0.0566(16)
			BaKx	31.82 - 37.45	0.0700(20)
			$BaK\beta$	36.36 - 37.45	0.0134(5)
				661.660(3)	0.851(2)
133Ba	EC	3862(15)	CsKa	30.63 - 30.97	0.980(14)
			CsKx	30.63 - 36.01	1.210(16)
			CsKβ	34.97 - 36.01	0.230(5)
				80.998(5)	0.3411(28)
				276.398(1)	0.07147(30)
				302.853(1)	0.1830(6)
				356 017(2)	0.6194(14)
				383.851(3)	0.08905(29)
12000	FC	127 64(22)	LaKa	22 02 22 44	0.642(18)
10900	EC	107.04(20)	LaKa	22.02 28.02	0.707(22)
			Lanx	27 78 20 02	0.197(22)
			Lanp	37.70 - 30.93 165 857(6)	0.134(3)
				105.057(0)	0.7907(0)
l52Eu	EC	4933(11)	SmKx	39.52 - 46.82	0.740(12)
			(Sm+Gd)Kx	39.52 - 50.21	0.748(12)
			SmKa	39.52 - 40.12	0.591(12)
			GdKa	42.31 - 43.00	0.00648(22)
			GdKx	42.31 - 50.21	0.00824(28)
			SmKβ	45.38 - 46.82	0.149(3)
			$GdK\beta$	48.65 - 50.21	0.00176(18)
				121.7824(4)	0.2837(13)
					Continued on next page

Z	El	А	\mathbf{J}^{π}	Δ [MeV]	$T_{1/2}$, Γ	Abundance	Decay Mode
-		194	0+	-34 7625 (9)	stable	$32.86\% \pm 0.4\%$	Decuj moue
		195	1/2-	-32 7962 (9)	stable	$33.78\% \pm 0.24\%$	
		195m	13/2+	-32,5369 (9)	$4010 \pm 0.005 d$	000 070 ± 0.2170	<i>IT</i> 100
		196	0+	-32 6468 (9)	stable	$25.21\% \pm 0.34\%$	11 100
		197	1/2-	-30 4219 (9)	198915 ± 0.0019 h		β^{-} 100
		197m	$\frac{172}{13/2+}$	-30 0223 (9)	95.41 ± 0.18 m		$T 967 \cdot B^{-} 33$
		198	0+	-29 9056 (22)	stable	$736\% \pm 013\%$	11 90.7, p - 0.0
		199	5/2-	-27 3903 (22)	30.80 ± 0.21 m	7.5070 ± 0.1070	8- 100
		100m	$(13/2)_{\pm}$	-26 9663 (22)	136 ± 0.21 m		D 100
		200	$(13/2)^+$	-26.601 (20)	13.0 ± 0.43 12.6 ± 0.3 h		2 ⁻ 100
		200	(5/2)	-20.001(20)	$25 \pm 0.1 \text{ m}$		$\beta = 100$
		201	(3/2-)	-23.74(3)	2.3 ± 0.1 m		$\beta = 100$
		202	(1/2)	-22.6 (20)	44 ± 13 ft		β 100 2= 100
		203	(1/2-)	-19.7 (3)	$10 \pm 3 \text{ s}$		β 100
-		204	0+	-18.1 (4)	10.3 ± 1.4 s		β 100
79	Au	171m	(11/2-)	-7.317 (21)	$1.02 \pm 0.1 \text{ ms}$		α 54; p 46
		172	0	-9.37 (8)	22 +6-4 ms		$lpha$ 100; ϵ ; p ; $p < 0.02;$ $lpha$ 100
		173	(1/2+)	-12.822 (24)	$25 \pm 1 \text{ ms}$		$lpha$ 94; ϵ ; p
		173m	(11/2-)	-12.608 (24)	$14.0\pm0.9~\mathrm{ms}$		$lpha$ 92; p ; ϵ
		174	0	-14.24 (9)	$139 \pm 3 \text{ ms}$		$\alpha > 0.00$
		177	(1/2+,3/2+))-21.547 (11)	$1.53\pm0.07~{ m s}$		α 40; ϵ
		177m	11/2-	-21.389 (11)	$1.00\pm0.2~{ m s}$		α 66; ϵ
		178	0	-22.33 (6)	$2.6\pm0.5~{ m s}$		$\alpha \ge 40.00; \epsilon \le 60.00$
		179	(1/2+,3/2+)	-24.98 (13)	$7.1\pm0.3~{ m s}$		ϵ 78; α 22
		180	0	-25.596 (21)	$8.1\pm0.3~{ m s}$		$\epsilon \leq 98.20; \alpha \geq 1.80$
		181	(3/2-)	-27.871 (20)	$13.7\pm1.4~\mathrm{s}$		ϵ 97.3; α 2.7
		182	(2+)	-28.301 (20)	$15.5 \pm 0.4 \text{ s}$		ϵ 99.87; α 0.13
		183	(5/2)-	-30.187 (10)	$42.8 \pm 1 \text{ s}$		$\alpha 0.55; \epsilon 99.45$
		184	5+	-30.319 (22)	20.6 ± 0.9 s		$\epsilon 100; \alpha \leq 0.02$
		184m	2+	-30 25 (22)	47.6 ± 1.4 s		$\epsilon 70: IT 30: \alpha \le 0.02$
		185	5/2-	-31.87 (3)	4.25 ± 0.06 m		ϵ 99 74: α 0 26: $\epsilon < 100$ (
			-,-	e 1101 (e)			IT
		186	3-	-31.715 (21)	$10.7\pm0.5~\mathrm{m}$		α 0.0008; ϵ 100
		187	1/2(+)	-33.01 (3)	8.3 ± 0.2 m		ϵ 100; α 0.003
		187m	9/2(-)	-32.88 (3)	$2.3\pm0.1~{ m s}$		<i>IT</i> 100
		188	1(-)	-32.301 (20)	$8.84\pm0.06~\mathrm{m}$		ϵ 100
		189	1/2+	-33.582 (20)	$28.7 \pm 0.3 \text{ m}$		ϵ 100: α < 3.0E-5
		189m	11/2-	-33.335 (20)	$4.59\pm0.11~\mathrm{m}$		<i>ϵ</i> 100
		190	1-	-32.883 (16)	42.8 ± 1 m		ϵ 100; α < 1.0E-6: <i>IT</i> 10
		191	3/2+	-33.81 (4)	3.18 ± 0.08 h		<i>ϵ</i> 100
		191m	(11/2-)	-33.55 (4)	$0.92 \pm 0.11 \mathrm{~s}$		IT 100
		192	1-	-32.776 (16)	4.94 ± 0.09 h		ε 100
		192m	(5)+	-32.64 (16)	$29 \pm 0 \mathrm{ms}$		<i>IT</i> 100
		192m2	(11-)	-32,344 (16)	$160 \pm 20 \text{ ms}$		IT 100
		193	3/2+	-33 406 (9)	17.65 ± 0.15 h		e 100
		193m	11/2-	-33 116 (9)	39 ± 0.35		$TT 99 97 \epsilon \approx 0.03$
		194	1-	-32 262 (10)	38.02 ± 0.00		e 100
		19/m	(5+)	-32 154 (10)	$600 \pm 8 mc$		IT 100
		10/m?	(3+)	-32.134(10) -31.786(10)	$420 \pm 10 \text{ ms}$		IT 100
		105	2/2	22 5604 (14)	$420 \pm 10 \text{ms}$ 186 008 \pm 0 047 4		11 100
		190	3/∠+ 11/2	-32.3094 (14)	100.090 ± 0.047 d		E 100 ITT 100
		195M	11/2-	-52.2508 (14)	$30.3 \pm 0.2 \text{ s}$		11 100
		196	2-	-31.14 (3)	$6.1669 \pm 6.0E-4 d$		ϵ 93; β^- 7
		196m	5+	-31.055 (3)	8.1 ± 0.2 s		TT 100
		196m2	12-	-30.544 (3)	9.6 ± 0.1 h		11 100

			Table	e 8.1 – Continued from previ	ous page				Table	le 4.1 – Continued from previous page	
Z	El	A J^{π}	Δ [MeV]	$T_{1/2}, \Gamma$	Abundance	Decay Mode	Nuclide	Decay	T1/0	XR ID	E [keV]
		190 4-	-36.7555 (20)	$11.78 \pm 0.1 \text{ d}$		ε 100	Tuchue	Mode	- 1/2		17 [KC 4]
		190m (1-)	-36.7294 (20)	$1.120\pm0.003~h$		<i>IT</i> 100					244.6989(10)
		190m2 (11)-	-36.3791 (20)	$3.087 \pm 0.012 \text{ h}$		ϵ 91.4; IT 8.6					344.2811(19)
		191 3/2+	-36.7107 (19)	stable	$37.3\% \pm 0.2\%$						411.126(3)
		191m 11/2-	-36.5394 (19)	$4.899 \pm 0.023 \text{ s}$		<i>IT</i> 100					443.965(4)
		191m2 0	-34.664 (19)	$5.5\pm0.7~{ m s}$		<i>IT</i> 100					778.903(6)
		192 4+	-34.8375 (19)	$73.829 \pm 0.011 \text{ d}$		β^- 95.24; ϵ 4.76					867.390(6)
		192m 1-	-34.7808 (19)	$1.45\pm0.05~\mathrm{m}$		eta^- 0.02; IT 99.98					964.055(4)
		192m2 (11-)	-34.6694 (19)	$241 \pm 9 \text{ y}$		<i>IT</i> 100					1085.842(4)
		193 3/2+	-34.5382 (19)	stable	$62.7\% \pm 0.2\%$						1089.767(14)
		193m 11/2-	-34.458 (19)	$10.53 \pm 0.04 \text{ d}$		<i>IT</i> 100					1112.087(6)
		194 1-	-32.5337 (19)	19.28 ± 0.13 h		β^- 100					1212.970(13)
		194m 4+	-32.3866 (19)	$31.85\pm0.24~\mathrm{ms}$		<i>IT</i> 100					1299.152(9)
		194m2 (10,11)	-32.3437 (19)	$171 \pm 11 d$		β^- 100					1408.022(4)
		195 3/2+	-31.6942 (19)	2.5 ± 0.2 h		β^- 100		2		0.177	
		195m 11/2-	-31.5942 (19)	3.8 ± 0.2 h		β^- 95; IT 5	154Eu	β^{-}	3136.8(29)	GdKx	42.31 - 50.21
		196 (0-)	-29.44 (4)	$52 \pm 1 \mathrm{s}$		β^- 100				GdKa	42.31 - 43.00
		196m (10,11-)	-29.03 (4)	1.40 ± 0.02 h		eta^- 100; $IT < 0.30$				$GdK\beta$	48.65 - 50.21
		197 3/2+	-28.266 (20)	$5.8 \pm 0.5 \text{ m}$		β^{-} 100					123.071(1)
		197m 11/2-	-28.151 (20)	8.9 ± 0.3 m		β^{-} 99.75; <i>IT</i> 0.25					247.930(1)
		198 0	-25.82 (20)	$8 \pm 1 s$		β^{-} 100					591.762(5)
		199 0	-24.4 (4)	6 +5-4 s		β^{-}					692.425(4)
=0		202 (1-,2-)	-17 (4)	$11 \pm 3 \text{ s}$		β^{-} 100					723.305(5)
78	Pt	168 0+	-11.04 (21)	$2.02 \pm 0.1 \text{ ms}$		α 100 100					756.804(5)
		169 (7/2-)	-12.36 (20)	$7.0 \pm 0.2 \text{ ms}$		α 100					8/3.190(5)
		1/0 0+	-16.304 (19)	$13.8 \pm 0.5 \text{ ms}$		α 98; ϵ					996.262(6)
		1/1 (//2-) 172 0	-17.47(7) 21.102(11)	$45.5 \pm 2.5 \text{ ms}$ $97.6 \pm 1.2 \text{ ms}$		α 90; ϵ 10					1004.723(7) 1274.426(6)
		1/2 0+ 172 (E/2)	-21.105 (11)	97.6 ± 1.3 IIIS		ϵ 6; α 94					1274.430(0)
		173 (3/2-)	-21.94(0)	$362 \pm 2 1115$		$\alpha 100; \epsilon$					1494.040(9)
		174 0+	-25.515 (11)	253 ± 0.06		a 70, 6 24	155Eu	<i>β</i> -	1770(50)		1590.495(10)
		175 772-	-23.09 (19)	2.33 ± 0.00 s		(104, e 30 (60: o 40	155Eu	ρ	1770(50)		
		170 0+	-20.353 (15)	10.6 ± 0.15 s		a = 57 + 694 - 3	108 \ 11	<i>β</i> -	2 69/3(8)	Haky	68 89 - 87 78
		178 0+	-31 999 (11)	10.0 ± 0.43 20.7 ± 0.7 s		€ 92 3: 0 7 7	170/10	ρ	2.0740(0)	HoKa	68 89 - 70 82
		179 1/2-	-32 27 (8)	20.7 ± 0.7 s		e 99 76: 0 0 24				ΗσΚβ	80 12 - 82 78
		180 0+	-34 436 (11)	$56 \pm 2s$		$\epsilon 100: \alpha \approx 0.30$				11610	411 8044(11)
		181 1/2-	-34 375 (15)	50 ± 23 52.0 ± 2.2 s		$\epsilon 100; \alpha \approx 0.08$					111.0011(11)
		182 0+	-36 17 (16)	267 ± 0.12 m		ε 99 96: α 0.04	204Hg	β^{-}	46.595(13)	TILX	8.95 - 14.40
		183 1/2-	-35.773 (16)	$6.5 \pm 1 \text{ m}$		$\epsilon 100: \alpha \approx 1.3\text{E-3}$	8	<u></u>		TlKa2	70.83 0.038(2)
		183m (7/2)-	-35.738 (16)	43 ± 5 s		$\epsilon 100; \alpha < 4.0$ E-4: <i>IT</i>				TlKx	70.83 - 85.19
		184 0+	-37.332 (18)	17.3 ± 0.2 m		$\epsilon 100; \alpha \approx 1.0\text{E-3}$				TlKa1	72.87 0.064(2)
		184m 8-	-35.492 (18)	$1.01\pm0.05~\mathrm{ms}$		<i>IT</i> 100				$TlK\beta'1$	82.43 0.022(1)
		185 9/2+	-36.68 (4)	70.9 ± 2.4 m		$\epsilon < 100.00$				$TlK\beta'2$	85.19 0.0063(3)
		185m 1/2-	-36.58 (4)	33.0 ± 0.8 m		ϵ 99; $IT < 2.00$,	279.1967(12)
		186 0+	-37.864 (22)	2.08 ± 0.05 h		ϵ 100: $\alpha \approx 1.4\text{E-4}$					· · · ·
		187 3/2-	-36.71 (3)	2.35 ± 0.03 h		<i>ϵ</i> 100	207Bi	EC	$1.16(7) \times 104$	PbLx	9.19 - 14.91
		188 0+	-37.829 (6)	$10.2 \pm 0.3 \text{ d}$		ϵ 100; α 2.6e-05				PbKx	72.80 - 87.63
		189 3/2-	-36.485 (11)	$10.87\pm0.12~\mathrm{h}$		ε 100				PbKa2	72.8
		190 0+	-37.325 (6)	$6.5E+11 \pm 0.3E+11 \text{ y}$	$0.012\%\pm 0.002\%$	α 100				PbKa1	74.97
		191 3/2-	-35.701 (5)	$2.83\pm0.02~\text{d}$		$\epsilon \ 100$				$PbK\beta'1$	84.79
		192 0+	-36.292 (3)	stable	$0.782\% \pm 0.024\%$					PbKβ'2	87.63
		193 1/2-	-34.4816 (20)	50 ± 6 y		ε 100					569.702(2)
		193m 13/2+	-34.3318 (20)	$4.33\pm0.03~\mathrm{d}$		<i>IT</i> 100					1063.662(4)

Pocketbook of Data for Nuclear Engineers

Emission Prob.

0.0753(4)

0.2657(11)

0.02238(10)

0.03125(14)

0.04214(25)

0.1297(6)

0.1463(6)

0.1013(5)

0.01731(9)

0.1354(6)

0.01412(8)

0.01626(11)

0.2085(9)

0.256(6)

0.205(6)

0.051(2)

0.412(5)

0.0695(9)

0.0499(6)

0.0180(3)

0.202(2)

0.0458(6)

0.182(2)

0.350(4) 0.0071(2)

0.0181(2)

0.0280(10) 0.0219(8)

0.0061(3)

0.9557(47)

0.060(12)

0.130(4)

0.8148(8)

0.325(13)

0.777(26) 0.226(12) 0.382(20) 0.130(10) 0.039(3)

0.9774(3)

0.745(2)

0.1224(15) 0.1048(13)

Continued on next page

Pocketbook of Data for Nuclear Engineers

		Table 4.	1 – Continued from p	rrevious page	
Nuclide	Decay Mode	$T_{1/2}$	XR ID	E [keV]	Emission Prob.
				1770.237(9)	0.0687(4)
228Th	α	698.2(6)		84.373(3)	0.0122(2)
				238.632(2) *	0.435(4)
				240.987(6) *	0.0410(5)
				277.358(10) *	0.0230(3)
				300.094(10) *	0.0325(3)
				510.77(10) *	0.0818(10)
				583.191(2) *	0.306(2)
				727.330(9) *	0.0669(9)
				860.564(5) *	0.0450(4)
				1620.735(10) *	0.0149(5)
				2614.533(13) *	0.3586(6)
		* Indicates daughte	er in equilibrium wi	ith the parent radionucli	de
239Np	β^{-}	2.35(4)		106.123(2)	0.267(4)
1	,			228.183(1)	0.1112(15)
				277.599(2)	0.1431(20)
241Am	α	$1.5785(24) \times 105$	NpLl	11.871	0.0085(3)
			NpLa	13.927	0.132(4)
			$NpL\beta'$	17.611	0.194(6)
			NpLh	-20.997	0.049(2)
			1	26.345(1)	0.024(1)
				59.537(1)	0.360(4)
243Am	α	2.69(8) × 106		43.53(1)	0.0594(11)
				74.66(1)	0.674(10)

			_	Table	8.1 – Continued from preve	ious page	
Z	El	A	\mathbf{J}^{π}	Δ [MeV]	$T_{1/2}, \Gamma$	Abundance	Decay Mode
		188	0+	-41.1392 (15)	stable	$13.24\% \pm 0.08\%$	
		189	3/2-	-38.9883 (16)	stable	$16.15\% \pm 0.05\%$	
		189m	9/2-	-38.9575 (16)	5.81 ± 0.06 h		<i>IT</i> 100
		190	0+	-38.7093 (16)	stable	$26.26\% \pm 0.02\%$	
		190m	(10)-	-37.0039 (16)	9.9 ± 0.1 m		<i>IT</i> 100
		191	9/2-	-36.3967 (16)	$15.4 \pm 0.1 \text{ d}$		β^- 100
		191m	3/2-	-36.3223 (16)	13.10 ± 0.05 h		<i>IT</i> 100
		192	0+	-35.884 (3)	stable	$40.78\% \pm 0.19\%$	
		192m	(10-)	-33.868 (3)	$5.9\pm0.1~{ m s}$		$IT > 87.00; \beta^- < 13.00$
		193	3/2-	-33.396 (3)	30.11 ± 0.01 h		β^- 100
		194	0+	-32.437 (3)	$6.0\pm0.2~\mathrm{y}$		β^- 100
		195	0	-29.7 (5)	$\approx 9 \text{ m}$		β^{-}
		196	0+	-28.28 (4)	34.9 ± 0.2 m		β^- 100
		197	0	-25.31 (20)	$2.8\pm0.6~\mathrm{m}$		β^- 100
		199	0	-20.5 (4)	5 +4-2 s		β^- 100
		200	0+	-18.9 (5)	6 +4-3 s		β^{-} 100
77	Ir	166	(2-)	-13.2 (20)	$10.5\pm2.2~\mathrm{ms}$		α 93; p 7
		166m	(9+)	-13.03 (20)	$15.1\pm0.9~\mathrm{ms}$		α 98.2; p 1.8
		167	1/2+	-17.078 (19)	$35.2 \pm 2 \text{ ms}$		p 32; ε 20; α 48
		167m	11/2-	-16.903 (19)	$25.7\pm0.8~\mathrm{ms}$		α 80; ϵ 20; p 0.4
		168	0	-18.72 (7)	222 +60-40 ms		$\alpha \leq 100.00; \epsilon; p; \alpha 77; \epsilon \leq$
				()			23.00; <i>p</i>
		169	(1/2+)	-22.083 (24)	$0.353 \pm 0.004 \text{ s}$		α 45; ϵ ; p
		169m	(11/2-)	-21.93 (24)	$0.281 \pm 0.004 \text{ s}$		α 72; ϵ ; p
		170	(3-)	-23.36 (9)	0.87 +0.18-0.12 s		ϵ 94.8; α 5.2; α 38; $IT <$
			()	()			62.00; $\epsilon \le 62.00$
		171	(1/2+)	-26.43 (4)	3.2 +1.3-0.7 s		$\alpha > 0.00; p$; ϵ ; α 58; $p \le 42.00; \epsilon \le 42.00$
		172	(3+)	-27.38 (3)	$4.4\pm0.3~{ m s}$		ϵ 98; $\alpha \approx 2.00$
		172m	(7+)	-27.24 (3)	$2.0\pm0.1~{ m s}$		ϵ 77; α 23
		173	(3/2+,5/2+)-30.27 (12)	$9.0\pm0.8~\mathrm{s}$		$\epsilon > 93.00; \alpha < 7.00$
		173m	(11/2-)	-30.044 (12)	$2.4\pm0.9~\mathrm{s}$		$\epsilon; \alpha 7$
		174	(3+)	-30.87 (3)	$7.9\pm0.6~{ m s}$		ϵ 99.5; α 0.5
		174m	(7+)	-30.68 (3)	$4.9\pm0.3~\mathrm{s}$		ϵ 97.5: α 2.5
		175	(5/2-)	-33.386 (13)	$9\pm2\mathrm{s}$		ϵ 99.15; α 0.85
		176	0	-33.861 (20)	$8.7\pm0.5~{ m s}$		α 3.1: ϵ 96.9
		177	5/2-	-36.047 (20)	$30 \pm 2 s$		ϵ 99.94; α 0.06
		178	0	-36,252 (20)	12 ± 2 s		€ 100
		179	(5/2)-	-38.077 (11)	$79 \pm 1 \mathrm{s}$		<i>ϵ</i> 100
		180	(4.5)	-37.977 (22)	$1.5 \pm 0.1 \text{ m}$		<i>ϵ</i> 100
		181	5/2-	-39 47 (3)	4.90 ± 0.15 m		€ 100
		182	3+	-39 052 (21)	$15 \pm 100 \text{ m}$		€ 100
		183	5/2-	-40 2 (3)	$10 \pm 1 \text{ m}$ $57 \pm 4 \text{ m}$		€ 100 € 100
		184	5-	-39.61 (3)	3.09 ± 0.03 h		< 100
		185	5/2-	-40 34 (3)	144 ± 0.00 H		< 100
		186	5+	-39 173 (17)	16.64 ± 0.03 h		$\epsilon 100 \epsilon \sim 75.00 \cdot IT \sim$
		100	01		10.01 ± 0.00 1		25.00
		187	3/2+	-39.532 (6)	$10.5\pm0.3~h$		ϵ 100
		187m	9/2-	-39.346 (6)	$30.3\pm0.6~\mathrm{ms}$		<i>IT</i> 100
		188	1-	-38.351 (10)	$41.5\pm0.5~\text{h}$		ϵ 100
		188m	0	-37.428 (10)	$4.2\pm0.2~\mathrm{ms}$		ϵ ?; IT
		189	3/2+	-38.457 (13)	$13.2 \pm 0.1 \text{ d}$		ε 100
		189m	11/2-	-38.084 (13)	$13.3 \pm 0.3 \text{ms}$		IT 100
		189m	2(25/2)+	-36.123 (13)	3.7 ± 0.2 ms		IT 100
		10/111	- (-0/ -) -	00.120 (10)	0.7 ± 0.2 mb		Cantingal and and and

				Table	e 8.1 – Continued from previou	ıs page	
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		176	(3+)	-45.06 (3)	5.3 ± 0.3 m		<i>ϵ</i> 100
		177	5/2-	-46.27 (3)	$14 \pm 1 \text{ m}$		ϵ 100
		178	(3+)	-45.65 (3)	13.2 ± 0.2 m		ϵ 100
		179	5/2+	-46.585 (24)	19.5 ± 0.1 m		$\epsilon 100$
		180	(1)-	-45.837 (21)	$2.44\pm0.06~\mathrm{m}$		$\epsilon 100$
		181	5/2+	-46.523 (13)	$19.9\pm0.7~\mathrm{h}$		$\epsilon 100$
		182	7+	-45.45 (10)	64.0 ± 0.5 h		ϵ 100; ϵ 100
		183	5/2+	-45.811 (8)	70.0 ± 1.4 d		ϵ 100
		183m	(25/2)+	-43.903 (8)	$1.04\pm0.04~\mathrm{ms}$		<i>IT</i> 100
		184	3(-)	-44.225 (4)	$35.4\pm0.7~\mathrm{d}$		ϵ 100
		184m	8(+)	-44.037 (4)	$169 \pm 8 d$		<i>IT</i> 74.5; <i>ε</i> 25.5
		185	5/2+	-43.8225 (12)	stable	$37.4\% \pm 0.02\%$	
		186	1-	-41.9306 (12)	$3.7186 \pm 5.0E-4 d$		ϵ 7.47; β^- 92.53
		186m	(8+)	-41.7816 (12)	$2.0E+5 \pm 0 \text{ y}$		<i>IT</i> 100
		187	5/2+	-41.2184 (15)	$4.33E+10 \pm 0.07E+10 \text{ y}$	$62.6\% \pm 0.02\%$	eta^- 100; $lpha <$ 1.0E-4
		188	1-	-39.0189 (15)	17.003 ± 0.003 h		β^- 100
		188m	(6)-	-38.8468 (15)	$18.59 \pm 0.04 \text{ m}$		<i>IT</i> 100
		189	5/2+	-37.981 (8)	24.3 ± 0.4 h		β^- 100
		190	(2)-	-35.57 (15)	3.1 ± 0.3 m		β^- 100
		190m	(6-)	-35.36 (15)	3.2 ± 0.2 h		β^{-} 54.4; IT 45.6
		191	(3/2+,1/2	+)-34.352 (10)	9.8 ± 0.5 m		β^{-} 100
		192	0	-31.77 (20)	$16 \pm 1 \text{ s}$		β^- 100
		194	0	-27.4 (3)	$5\pm1\mathrm{s}$		β^{-} 100; β^{-} 100; β^{-} 100
		195	0	-25.6 (4)	$6 \pm 1 \text{ s}$		β^{-}
= (•	196	0	-22.5 (5)	3+1-2s		β^{-} 100
76	Os	162	0+	-14.5 (5)	$2.1 \pm 0.1 \text{ ms}$		$\alpha \approx 99.00$
		163	(//2-)	-16.1(4)	$5.5 \pm 0.6 \mathrm{ms}$		α 100; ϵ
		164	(7/2)	-20.46 (21)	$21 \pm 1 \text{ ms}$		α 98; ϵ 2
		165	(7/2-)	-21.03(20)	71 ± 3 IIIS		$\alpha > 60.00; \epsilon < 40.00$
		160	(7/2)	-23.437 (10)	$199 \pm 3 \text{ Ins}$		α /2; ϵ 18
		167	(7/2-)	-20.3(7)	$0.81 \pm 0.00 \text{ s}$		α 57; ϵ 45
		160	(5/2)	-29.992(10) -30.72(3)	2.1 ± 0.13 3.43 ± 0.14 s		c 86 3: ~ 12 7
		170	(3/2-)	-33,921,(11)	7.37 ± 0.18 c		e 80.5, a 15.7
		170	(5/2-)	-34 293 (19)	83 ± 0.2 s		€ 98.2: o 1.8
		172	0+	-37 245 (13)	19.2 ± 0.9 s		$\epsilon 99.8: \alpha 0.2$
		173	(5/2-)	-37 438 (15)	224 ± 0.98		6:004
		174	0+	-39 997 (11)	44 ± 4 s		ϵ 99 98: α 0.02
		175	(5/2-)	-40.111 (13)	$1.4 \pm 0.1 \text{ m}$		€ 100
		176	0+	-42.1 (3)	3.6 ± 0.5 m		ϵ 100
		177	1/2-	-41.949 (16)	$3.0 \pm 0.2 \text{ m}$		ϵ 100
		178	0+	-43.547 (16)	5.0 ± 0.4 m		ϵ 100; α
		179	1/2-	-43.02 (18)	6.5 ± 0.3 m		$\epsilon 100$
		180	0+	-44.355 (20)	21.5 ± 0.4 m		ϵ 100
		181	1/2-	-43.55 (3)	$105 \pm 3 \text{ m}$		ϵ 100
		181m	7/2-	-43.5 (3)	$2.7\pm0.1~\mathrm{m}$		ϵ 100; $IT \leq 3.00$
		182	0+	-44.609 (22)	$21.84\pm0.2~h$		ϵ 100
		183	9/2+	-43.66 (5)	$13.0\pm0.5~h$		ϵ 100
		183m	1/2-	-43.49 (5)	9.9 ± 0.3 h		ε 85; IT 15
		184	0+	-44.2566 (13)	> 5.6E13 y	$0.02\% \pm 0.01\%$	α
		185	1/2-	-42.8098 (13)	$93.6\pm0.5~d$		ϵ 100
		186	0+	-43.0023 (15)	$2.0\text{E+15} \pm 1.1\text{E+15} \text{ y}$	$1.59\% \pm 0.03\%$	α 100
		187	1/2-	-41.2209 (15)	stable	$1.96\% \pm 0.02\%$	

Chapter 5

Beta decay

Source: Meyerhof, W. Elements of Nuclear Physics. McGraw-Hill, 1967.

5.1 Energetics of beta decay

	β^- decay
	$(A,Z) \rightarrow (A,Z+1) + \beta^- + \bar{\nu}$
Atomic mass	$M_A(A,Z) = M_A(A,Z+1) + m_e + Q - m_e$
(Mass Excess Δ)	$Q = \Delta(A, Z) - \Delta(A, Z + 1)$

* * *

	β^+ decay
	$(A,Z) \rightarrow (A,Z-1) + \beta^+ + \nu$
Atomic mass	$M_A(A, Z) = M_A(A, Z - 1) + m_e + Q + m_e$
(Mass Excess Δ)	$Q = \Delta(A, Z) - \Delta(A, Z - 1) - 2m_e$

*

Continued on next page

Pocketbook of Data for Nuclear Engineers

	EC decay
	$(A,Z) + e^- \rightarrow (A,Z-1) + \nu$
Atomic mass	$M_A(A, Z) + m_e = M_A(A, Z - 1) + Q + m_e$
(Mass Excess Δ)	$Q = \Delta(A, Z) - \Delta(A, Z - 1)$

				Table 8	3.1 – Continued from prev	ious page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \dot{\mathbf{\Gamma}}$	Abundance	Decay Mode
		163	7/2-	-34.91 (5)	$2.67\pm0.1~{ m s}$		ϵ 86; α 14
		164	0+	-38.235 (10)	$6.3\pm0.2~{ m s}$		ϵ 96.2; α 3.8
		165	(5/2-)	-38.861 (25)	$5.1\pm0.5~{ m s}$		ϵ 100; $lpha < 0.20$
		166	0+	-41.886 (10)	$19.2\pm0.6~\mathrm{s}$		ϵ 99.96; α 0.04
		167	(+)	-42.089 (19)	$19.9\pm0.5~{ m s}$		ϵ 99.96; α 0.04
		168	0+	-44.897 (15)	$50.9\pm1.9~\mathrm{s}$		ϵ 100; α 0.0032
		169	(5/2-)	-44.918 (15)	$74\pm 6~{ m s}$		ϵ 100
		170	0+	-47.294 (15)	$2.42 \pm 0.04 \text{ m}$		ϵ 100
		171	(5/2-)	-47.09 (3)	$2.38 \pm 0.04 \text{ m}$		ϵ 100
		172	0+	-49.1 (3)	$6.6 \pm 0.9 \text{ m}$		€ 100
		173	5/2-	-48.73 (3)	$7.6 \pm 0.2 \text{ m}$		ε 100 100
		174	(1/2)	-50.23 (3)	$33.2 \pm 2.1 \text{ m}$		ε 100 100
		175	(1/2-)	-49.63 (3)	$35.2 \pm 0.6 \text{ m}$		ε 100 - 100
		170	0+ 1/2	-30.64 (3)	2.5 ± 0.1 m		ε 100 - 100
		179	1/2-	-49.7 (3)	132 ± 2111 21.6 $\pm 0.2.4$		ε 100 < 100
		170	0+ 7/2-	-49 296 (15)	$21.0 \pm 0.5 \text{ u}$ $37.05 \pm 0.16 \text{ m}$		e 100
		179m	1/2-	-49 074 (15)	$6.40 \pm 0.07 \text{ m}$		$TT 99 71 \le 0.29$
		180	0+	-49 6365 (24)	> 6.6F + 17 v	$0.12\% \pm 0.01\%$	26 100
		181	9/2+	-48 253 (5)	1212 ± 0.2 d	0.12/0 ± 0.01/0	€ 100
		182	0+	-48.2475 (8)	stable	$26.5\% \pm 0.16\%$. 100
		183	1/2-	-46.3671 (8)	> 1.3E + 19 v	$14.31\% \pm 0.04\%$	α
		183m	11/2 +	-46.0576 (8)	$5.2\pm0.3~ m s$		<i>IT</i> 100
		184	0+	-45.7075 (9)	stable	$30.64\% \pm 0.02\%$	
		185	3/2-	-43.3899 (9)	75.1 ± 0.3 d		β^- 100
		185m	11/2 +	-43.1925 (9)	$1.67\pm0.03~\mathrm{m}$		<i>IT</i> 100
		186	0+	-42.5109 (15)	> 2.3E+19 y	$28.43\% \pm 0.19\%$	$2\beta^{-}$
		186m	(16+)	-38.9681 (15)	> 3 ms		IT
		187	3/2-	-39.9061 (15)	$24.000 \pm 0.004 \text{ h}$		β^- 100
		188	0+	-38.67 (3)	$69.78 \pm 0.05 \text{ d}$		β^- 100
		189	(3/2-)	-35.48 (20)	10.7 ± 0.5 m		β^- 100
		190	0+	-34.3 (16)	30.0 ± 1.5 m		β^- 100
		190m	(10-)	-31.92 (16)	\leq 3.1 ms		IT 100
75	Re	161m	11/2-	-20.75 (21)	$14.7 \pm 0.3 \text{ ms}$		lpha 93; p 7
		162	(2-)	-22.35 (20)	$107 \pm 13 \text{ ms}$		α 94; ϵ 6
		162m	(9+)	-22.18 (20)	$77 \pm 9 \text{ ms}$		α 91; ϵ 9
		163	1/2+	-26.008 (19)	$390 \pm 72 \text{ms}$		ϵ 68; α 32
		163m	11/2-	-25.893 (19)	$214 \pm 5 \text{ ms}$		α 66; ϵ 34
		164	0	-27.52(7)	$0.85 \pm 0.14 \pm 0.11$ s		$\alpha \approx 58.00; \epsilon \approx 42.00$
		16411	(1/2)	-27.43 (7) 20.640 (2E)	0.00 +0.13-0.11 \$		11; $\alpha \approx 3.00$
		165 165m	(1/2+) (11/2-)	-30.649 (23)	≈ 18 21 + 0.3 c		α ; ϵ
		16511	(11/2-)	-31.89 (7)	2.1 ± 0.5 S		ϵ 87; α 13 $\epsilon > 76.00; \alpha < 24.00$
		167	(9/2)	-34.84 (5)	59 ± 0.3 s		$\alpha \sim 1.00; \alpha \sim 99.00; \alpha 100$
		168	(7/2)	-35 79 (3)	3.9 ± 0.33 4.4 ± 0.1 s		$\epsilon 100; \epsilon \sim 5.0$ F-3
		169	(9/2-)	-38 41 (11)	$\frac{4.4 \pm 0.13}{81 \pm 0.5 s}$		$\epsilon 100, \alpha \approx 0.01 \epsilon \cdot IT$
			(- / = /		0.2 - 0.0 0		$\alpha \approx 0.20$
		170	(5+)	-38.92 (3)	$9.2\pm0.2\ s$		ϵ 100
		171	(9/2-)	-41.25 (3)	$15.2\pm0.4~s$		ϵ 100
		172	(2)	-41.52 (5)	$55\pm5~{ m s}$		ϵ 100; ϵ 100
		173	(5/2-)	-43.55 (3)	$1.98\pm0.26~\mathrm{m}$		ϵ 100
		174	(LE 4)	-43.67 (3)	2.40 ± 0.04 m		<i>ϵ</i> 100
		175	(5/2-)	-45.29 (3)	$5.89 \pm 0.05 \text{ m}$		ε 100

		fuble c	.1 Communuly from pro		
El	A J^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \dot{\Gamma}$	Abundance	Decay Mode
	157 1/2+	-29.63 (21)	$10.1\pm0.4~\mathrm{ms}$		α 96.6; p 3.4
	157m 11/2-	-29.61 (21)	$4.3\pm0.1~\mathrm{ms}$		α 100
	157m2 (25/2-)	-28.04 (21)	$1.7\pm0.1~\mathrm{ms}$		α 100
	158 (2-)	-31.02 (20)	$55\pm15~\mathrm{ms}$		$\alpha \approx 91.00$; $\epsilon \approx 9.00$
	158m (9+)	-30.88 (20)	$36.7\pm1.5~\mathrm{ms}$		α 95; ε 5
	159 1/2+	-34.445 (20)	$0.83\pm0.18~{\rm s}$		ϵ 66; α 34
	159m 11/2-	-34.381 (20)	$0.56\pm0.06~{ m s}$		α 55; ϵ 45
	160 0	-35.87 (7)	$1.55\pm0.04~{ m s}$		ε 66; α 34;
	162 0	-39.78 (5)	$3.57\pm0.12~{ m s}$		ϵ 99.93; α 0.07
	163 0	-42.54 (4)	$10.6\pm1.8~{\rm s}$		$\epsilon \approx 99.80; \alpha \approx 0.20$
	164 (3+)	-43.28 (3)	$14.2\pm0.3~\mathrm{s}$		ε 100
	165 0	-45.854 (16)	$31.0\pm1.5~{ m s}$		ε 100
	166 (2)+	-46.1 (3)	$34.4\pm0.5~{ m s}$		ϵ 100
	167 (3/2+)	-48.35 (3)	$80\pm4~{ m s}$		ϵ 100
	168 (2-,3+)	-48.39 (3)	2.0 ± 0.1 m		ϵ 100
	169 (5/2+)	-50.29 (3)	4.9 ± 0.4 m		$\epsilon 100$
	170 (3+)	-50.14 (3)	$6.76 \pm 0.06 \text{ m}$		<i>ϵ</i> 100
	171 (5/2-)	-51.72 (3)	23.3 ± 0.3 m		ε 100
	172 (3+)	-51.33 (3)	36.8 ± 0.3 m		<i>ϵ</i> 100
	173 5/2-	-52.4 (3)	3.14 ± 0.13 h		€ 100
	174 3+	-51.74 (3)	1.14 ± 0.08 h		ε 100
	175 7/2+	-52.41 (3)	10.5 ± 0.2 h		€ 100
	176 (1)-	-51.37 (3)	8.09 ± 0.05 h		€ 100
	177 7/2+	-51.719 (4)	56.56 ± 0.06 h		e 100
	178 (1+)	-50.503 (15)	9.31 ± 0.03 m		€ 100: € 100
	178m 15-	-49 035 (15)	$58 \pm 4 \text{ ms}$		IT 100
	178m2 (21-)	-47 6 (15)	$290 \pm 12 \text{ ms}$		IT 100
	179 7/2+	-50.3617 (21)	$1.82 \pm 0.03 \text{ v}$		€ 100
	179m (25/2+)	-49 0445 (21)	90 ± 0.2 ms		IT 100
	$179m^2 (37/2+)$	-47 7222 (21)	541 ± 1.7 ms		IT 100 IT 100
	180 1+	-48 9365 (23)	8154 ± 0.006 h		€ 86: β [−] 14
	180m 9-	-48 8594 (23)	> 1.2F + 15 v	$0.01201\% \pm 0.00032\%$	$\epsilon 2 \cdot \beta^{-} 2$
	181 7/2+	-48 4419 (19)	stable	$9998799\% \pm 0.00032\%$	c.,p .
	182 3-	-46 4335 (19)	11474 ± 0.12 d)).)0 /))/// ± 0.00002/0	ß [−] 100
	$182m 5 \pm$	-46 4172 (19)	$283 \pm 3 \text{ ms}$		D 100
	182m2 10-	-45 9139 (19)	$15.84 \pm 0.1 \text{ m}$		IT 100 IT 100
	$183 7/2 \pm$	-45 2964 (19)	$51 \pm 0.1 d$		$\beta^{-} 100$
	184 (5-)	-42.84 (3)	$3.1 \pm 0.1 \text{ u}$ $8.7 \pm 0.1 \text{ h}$		β^{-} 100 β^{-} 100
	$104 (0^{-})$ 185 (7/2+)	-41 396 (14)	$49.4 \pm 1.5 \text{ m}$		β^{-} 100 β^{-} 100
	105 (7/2+) 185m (21/2)	40.128 (14)	+).+ ± 1.5 m		p 100
	185111 (21/2) 186 (2.2.)	-40.138 (14)	> 1 Ins 105 \pm 0.2 m		$\rho = 100, \rho = 100$
	$130 (2^{-}, 3^{-})$ $187 (7/2^{-})$	-36.01 (0)	$10.5 \pm 0.5 \text{ m}$		$\rho = 100, \rho = 100$
	107 (7/2+) 187m (27/2)	-30.77 (20)	2.3 ± 0.0 m		$\rho = 100$ $\rho = 2, IT 2$
	$107 \text{m}^2 (27/2-)$ $187 \text{m}^2 (41/2+)$	-34.98 (20)	22 ± 98		ρ :, II : ρ = 2, IT 2
	$18/m^{(41/2+)}$	-33.83 (20)	> 5 m		β $(; II)$
	100 U	-33.00 (20)	19.0 ± 2.8 5.2 ± 0.7 c		p = 100
	100 (10)	-20.7 (4)	3.5 ± 0.7 s		p 100 e= 100
347	192 (1,2)	-23.1 (0)	2.2 ± 0.7 S		p 100
vv	15/ (//2-)	-19.3 (5) 22.7 (5)	$2/5 \pm 40 \text{ ms}$		€ 100
	150 0	-23.7 (5)	$1.25 \pm 0.21 \text{ ms}$		α 100
	109 0	-23.2 (4)	$1.3 \pm 2.7 \text{ ms}$		$\alpha \approx$ 99.90; $\epsilon \approx 0.10$
	1(0 0)	00.0((01)	01 E		
	160 0+	-29.36 (21)	$91 \pm 5 \text{ ms}$		α 87
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-29.36 (21) -30.41 (20)	$91 \pm 5 \text{ ms}$ $409 \pm 18 \text{ ms}$ 1.26 ± 0.07		α 87 α 73; ϵ 27
	w	157 1/2+ 157m1 1/2- 157m2 (25/2-) 158 (2-) 158 (2-) 158 (2-) 158 (2-) 158 (2-) 159 1/2+ 159m 11/2- 160 0 162 0 163 0 164 (3+) 165 0 166 (2)+ 167 (3/2+) 168 (2-3+) 169 (5/2+) 170 (3+) 171 (5/2-) 172 (3+) 173 5/2- 174 3+ 175 7/2+ 178 (1+) 178m1 (1-) 177 7/2+ 178 (1+) 179m2 (25/2+)) 179m2 (25/2+) 179m2 (37/2+) 180	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Chapter 6

CSDA Range for protons

In the following figures range of protons in Carbon, Aluminum, Iron, Copper, Tin, Lead and Uranium. The range was computed using the *continuous slowing down approximation* (CSDA) which constitutes an upper bound of the real range. The range for a different heavy charged particle *i* in the same materials can be approximated as:

$$R_i \simeq \left. \frac{M_i}{z_i^2 M_p} R_{p^+} \right|_{E_{p^+} = \frac{M_p}{M} E_i} \tag{6.1}$$

Sources:

NIST PSTAR Database (http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html)

				ous page			
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$T_{1/2}, \Gamma$	Abundance	Decay Mode
		179m	1/2+	-48.467 (5)	$3.1\pm0.9~\mathrm{ms}$		<i>IT</i> 100
		180	5+	-46.68 (7)	5.7 ± 0.1 m		β^- 100
		181	(7/2+)	-44.7 (3)	3.5 ± 0.3 m		β^- 100
		182	0	-41.88 (20)	2.0 ± 0.2 m		β^- 100
		183	(7/2+)	-39.5 (3)	$58\pm4~ m s$		β^- 100
		184	(3+)	-36.4 (4)	$19\pm2~{ m s}$		β^- 100
72	Hf	154	0+	-32.7 (5)	$2\pm1~{ m s}$		ϵ 100; α ?
		155	0	-34.1 (4)	$0.84\pm0.03~{ m s}$		ϵ 100
		156	0+	-37.85 (21)	$23\pm1~\mathrm{ms}$		α 100
		157	7/2-	-38.75 (20)	$110\pm 6~\mathrm{ms}$		α 86; ϵ 14
		158	0+	-42.103 (17)	$2.85\pm0.07~{\rm s}$		ϵ 55.7; α 44.3
		159	7/2-	-42.853 (17)	$5.6\pm0.4~{ m s}$		α 35; ϵ 65
		160	0+	-45.938 (9)	$13.6\pm0.2~\mathrm{s}$		ϵ 99.3; α 0.7
		161	0	-46.316 (23)	$18.2\pm0.5~{ m s}$		$\epsilon > 99.87; \alpha < 0.13$
		162	0+	-49.167 (9)	$39.4\pm0.9~\mathrm{s}$		ϵ 99.99; α 0.008
		163	0	-49.29 (3)	$40.0\pm0.6~{ m s}$		ϵ 100; α < 1.0E-4
		164	0+	-51.829 (19)	$111\pm 8~{ m s}$		$\epsilon 100$
		165	(5/2-)	-51.64 (3)	$76 \pm 4 \mathrm{s}$		$\epsilon 100$
		166	0+	-53.86 (3)	$6.77 \pm 0.3 \text{ m}$		$\epsilon 100$
		167	(5/2)-	-53.47 (3)	2.05 ± 0.05 m		$\epsilon 100$
		168	0+	-55.36 (3)	$25.95 \pm 0.2 \text{ m}$		$\epsilon 100$
		169	5/2-	-54.72 (3)	3.24 ± 0.04 m		$\epsilon 100$
		170	0+	-56.25 (3)	16.01 ± 0.13 h		$\epsilon 100$
		171	7/2+	-55.43 (3)	12.1 ± 0.4 h		<i>ϵ</i> 100
		171m	1/2-	-55.41 (3)	$29.5 \pm 0.9 \mathrm{~s}$		$IT \leq 100.00; \epsilon$
		172	0+	-56,403 (24)	1.87 ± 0.03 v		€ 100
		173	1/2-	-55.41 (3)	23.6 ± 0.1 h		€ 100
		174	0+	-55.845 (3)	$2.0E+15 \pm 0.4E+15 v$	$0.16\% \pm 0.01\%$	α 100
		175	5/2(-)	-54,483 (3)	70 + 2 d		€ 100
		176	0+	-54.5769 (21)	stable	$5.26\% \pm 0.07\%$	
		177	7/2-	-52.885 (21)	stable	$18.6\% \pm 0.09\%$	
		177m	$\frac{23}{2+}$	-51,5695 (21)	$1.09 \pm 0.05 \text{ s}$		<i>IT</i> 100
		177m2	2 37/2-	-50.145 (21)	51.4 ± 0.5 m		<i>IT</i> 100
		178	0+	-52 4396 (21)	stable	$27.28\% \pm 0.07\%$	
		178m	8-	-51.2922 (21)	4.0 ± 0.2 s		IT 100
		178m2	2 16+	-49 9935 (21)	31 + 1 v		IT 100 IT 100
		179	9/2+	-50 4673 (21)	stable	$13.62\% \pm 0.02\%$	11 100
		179m	1/2-	-50.0923 (21)	18.67 ± 0.04 s	10.02/0 ± 0.02/0	LT 100
		179m2	25/2-	-49 3616 (21)	$25.05 \pm 0.25 d$		IT 100
		180	0+	-49 7838 (21)	20.00 ± 0.20 u	$35.08\% \pm 0.16\%$	11 100
		180m	8-	-48 6423 (21)	547 ± 0.04 h	55.00 /0 ± 0.10 /0	$IT 99 7 \cdot \beta^- 0.3$
		181	1/2-	-47 4072 (21)	$42.39 \pm 0.06 d$		β^{-} 100
		181m	(25/2)	-45 6653 (21)	15 ± 0.50 u		J 100 LT 100
		187	(23/2-)	-46.054.(6)	1.5 ± 0.5 His 8 90F+6 $\pm 0.09F+6$ v		β^{-} 100
		102 182m	(P)	-40.004 (0)	$615 \pm 15m$		$\beta = 54$, $IT 46$
		182	(3/2)	-44.001 (0)	1.0 ± 1.0 m 1.018 ± 0.002 h		$\beta 34, 1140$ $\beta^{-} 100$
		184	(3/ 2-) 0+	-41 5 (4)	1.010 ± 0.002 II 1.12 ± 0.05 h		$\beta = 100$ $\beta = 100$
		104	(8)	-41.3 (4)	4.12 ± 0.03 m		μ 100 IT 100
		104M	(0-)	-40.23 (4)	$40 \pm 10 \text{ s}$ $25 \pm 0.6 \text{ m}$		<i>11</i> 100 <i>2</i> ⁻ 100
		100	0	-30.30 (20)	$3.3 \pm 0.0 \text{ m}$		p 100 e= 100
70	т-	100	0+ 11/2	-30.4 (3)	$2.0 \pm 1.2 \text{ m}$		p 100
13	12	155	11/2-	-24 (3)	$2.9 \pm 1.5 \pm 1.1 \text{ ms}$		<i>p</i> 100
		156	(2-)	-23.8 (4)	$144 \pm 24 \text{ ms}$		p 100; ϵ
		156m	9+	-23.7 (4)	$0.30 \pm 0.04 {\rm s}$		ε 95.8; p 4.2

Continued on next page

		178	0+	-49.693 (10)	$74 \pm 3 \text{ m}$		β^{-} 100
		179	(1/2-)	-46.4 (3)	8.0 ± 0.4 m		$\beta^{-} 100$
		180	0+	-44.4 (4)	2.4 ± 0.5 m		$\beta^{-} 100$
71	Lu	150	(2+)	-24.6 (5)	$45 \pm 3 \text{ ms}$		p 70.9; <i>e</i> 29.1
		151	11/2-	-30.1 (4)	$80.6 \pm 2 \text{ ms}$		$p 63.4; \epsilon 36.6$
		152	(4-,5-,6-)	-33.42 (20)	$0.7\pm0.1~{ m s}$		ε 100; εp 15
		153	11/2-	-38.41 (21)	$0.9\pm0.2~{ m s}$		$\alpha \approx 70.00; \epsilon \approx 30.00$
		155	11/2-	-42.55 (20)	$68 \pm 1 \text{ ms}$		α 90; ϵ 10
		155m	1/2+	-42.53 (20)	$138 \pm 8 \text{ ms}$		α 76; ϵ 24
		155m2	2(25/2-)	-40.769 (20)	$2.69\pm0.03~\mathrm{ms}$		α 100
		156	(2)-	-43,75 (7)	$494 \pm 12 \text{ ms}$		$\alpha \approx 95.00; \epsilon \approx 5.00; \alpha 100$
		157	(1/2+.3/2)	+)-46.459(15)	$6.8\pm1.8~{ m s}$		$\alpha > 0.00$
		157m	(11/2-)	-46,433 (15)	$4.79\pm0.12~\mathrm{s}$		ϵ 94: α 6
		158	0	-47.213 (15)	10.6 ± 0.3 s		ϵ 99.09; α 0.91
		159	0	-49.71 (4)	12.1 ± 1.8		ϵ 100: α 0.1
		160	0	-50.27 (6)	36.1 ± 0.3 s		$\epsilon 100: \alpha \leq 1.0\text{E-4}: \epsilon \leq$
			1 (2	50.5((0)			100.00; α
		161	1/2+	-52.56 (3)	$77 \pm 2 s$		€ 100
		161m	(9/2-)	-52.4 (3)	$7.3 \pm 0.4 \text{ ms}$		1T
		162	1-	-52.84 (8)	$1.37 \pm 0.02 \text{ m}$		$\epsilon \leq 100.00; \epsilon \leq 100.00; \epsilon \leq 100.00; \epsilon \leq 100.00$
		163	1/2(+)	-54.79 (3)	3.97 ± 0.13 m		ϵ 100
		164	1(-)	-54.64 (3)	3.14 ± 0.03 m		ϵ 100
		165	1/2+	-56.44 (3)	$10.74\pm0.1~\mathrm{m}$		ϵ 100
		166	6-	-56.02 (3)	$2.65\pm0.1~\mathrm{m}$		ϵ 100
		166m	3(-)	-55.99 (3)	$1.41\pm0.1~{ m m}$		ϵ 58; IT 42
		166m2	2 0-	-55.98 (3)	$2.12\pm0.1~\text{m}$		$\epsilon >$ 80.00; $IT <$ 20.00
		167	7/2+	-57.5 (3)	$51.5\pm1~\mathrm{m}$		ϵ 100; ϵ ; IT
		168	6(-)	-57.07 (5)	$5.5\pm0.1~\mathrm{m}$		ϵ 100
		168m	3+	-56.87 (5)	6.7 ± 0.4 m		$IT < 0.80; \epsilon > 99.60$
		169	7/2+	-58.083 (4)	$34.06\pm0.05~h$		ϵ 100
		169m	1/2-	-58.054 (4)	$160\pm10~{ m s}$		<i>IT</i> 100
		170	0+	-57.305 (17)	$2.012\pm0.02~d$		ϵ 100
		170m	(4)-	-57.212 (17)	$0.67\pm0.1~{ m s}$		<i>IT</i> 100
		171	7/2+	-57.829 (3)	$8.24 \pm 0.03 \text{ d}$		ϵ 100
		171m	1/2-	-57.757 (3)	$79\pm2~{ m s}$		<i>IT</i> 100
		172	4-	-56.737 (3)	$6.70 \pm 0.03 \text{ d}$		e 100
		172m	1-	-56.695 (3)	3.7 ± 0.5 m		<i>IT</i> 100
		173	7/2+	-56.8811 (22)	$1.37\pm0.01~{ m y}$		ϵ 100
		174	(1)-	-55.5707 (22)	3.31 ± 0.05 y		ϵ 100
		174m	(6)-	-55.3999 (22)	142 ± 2 d		IT 99.38; e 0.62
		175	7/2+	-55.1661 (19)	stable	$97.401\% \pm 0.013\%$	
		176	7-	-53.3828 (19)	$3.76\text{E}{+}10 \pm 0.07\text{E}{+}10~\text{v}$	$2.599\% \pm 0.013\%$	$\beta^{-} 100$
		176m	1-	-53.26 (19)	3.664 ± 0.019 h		β^{-} 99.9; ϵ 0.09
		177	7/2+	-52.3843 (20)	$6.647 \pm 0.004 \text{ d}$		$\beta^{-} 100$
		177m	23/2-	-51.4141 (20)	$160.44 \pm 0.06 \text{ d}$		β^{-} 78.6; IT 21.4
		177m2	2 (39/2-)	-49.6443 (20)	6 +3-2 m		<i>IT</i> ?; β^{-} 100
		178	1(+)	-50.338 (3)	28.4 ± 0.2 m		$\beta^{-} 100$
		178m	(9-)	-50.214 (3)	$23.1\pm0.3~\text{m}$		$\beta^{-} 100$
		179	7/2+	-49.059 (5)	$4.59\pm0.06~\mathrm{h}$		$\beta^{-} 100$

Table 8.1 – Continued from previous page

 $T_{1/2}, \dot{\Gamma}$

stable

 $11.4\pm0.3~{
m s}$

 $1.911\pm0.003~h$

 $6.41\pm0.02~s$

 Δ [MeV]

-53.4885 (23)

-52.4387 (23)

-50.9836 (23)

-50.6521 (23)

Z El

Α

176 0+

176m 8-

177 (9/2+)

177m (1/2-)

 \mathbf{J}^{π}

Pocketbook of Data for Nuclear Engineers

Decay Mode

IT 100

 β^- 100

IT 100

Abundance

12.996% ± 0.083%

Chapter 7

How to compute number densities

Definitions:

N_i: number density of the element (isotope or molecule) i. Units: molecules/cm³, atoms/cm³ ρ_i : density of *i*. Units: grams/cm³ n_i : number of moles of the molecule or atom *i*. Unit: mol. m_i : mass of *i*. Unit: grams.

 M_i : atomic weight of *i*. Units: atomic mass unit (u) or grams/mol.

By definition, atomic weight is:

$$M_i \equiv \frac{m_i}{n_i}$$

 $n_i = \frac{\dots}{M_i}$ m_i

then, the moles number of *i* is:

In one mole of matter there are
$$N_A = 6.0221 \cdot 10^{23}$$
 particles. Then, the atomic density of *i* is:

$$N_i = \frac{\rho_i N_A}{M_i} \tag{7.1}$$

For doing this we need to know the density of *i* and its average atomic weight. As we usually work with mixtures, compounds or solutions we will learn how to compute this.

The weight fraction of i is:

$$w_i \equiv \frac{m_i}{\sum_j m_j}$$

and the mole or atomic fraction:

$$y_i \equiv \frac{n_i}{\sum_j n_j}$$

In general, the isotopic abundance is commonly written as an atomic fraction, and the enrichment is written as mass weight fraction (wt%)

Using these definitions, we can now calculate the average atomic weight for mixtures or compounds.

$$\bar{M} = \frac{m_{\text{total}}}{n_{\text{total}}} = \frac{\sum_j n_j M_j}{n_{\text{total}}} = \frac{n_{\text{total}} \sum_j y_j M_j}{n_{\text{total}}} = \sum_j y_j M_j$$
(7.2)

or also:

$$\bar{I} = \frac{m_{\text{total}}}{n_{\text{total}}} = \frac{m_{\text{total}}}{\sum_j m_j/M_j} = \frac{m_{\text{total}}}{m_{\text{total}} \sum_j w_j/M_j} = \frac{1}{\sum_j w_j/M_j}$$
(7.3)

In the case we need to convert from weight fraction to atomic fraction or viceversa, we can do:

Λ

$$w_i = \frac{m_i}{m_{\text{total}}} = \frac{n_i M_i}{\sum_j n_j M_j} = \frac{n_{\text{total}} y_i M_i}{n_{\text{total}} \sum_j y_j M_j} = \frac{y_i M_i}{\sum_j y_j M_j} = \frac{y_i M_i}{\overline{M}}$$
(7.4)

$$y_i = \frac{n_i}{n_{\rm total}} = \frac{m_i/M_i}{\sum_j m_j/M_j} = \frac{m_{\rm total}w_i/M_i}{m_{\rm total}\sum_j w_j/M_j} = \frac{w_i\bar{M}}{\sum_j w_j/M_j} = \frac{w_i\bar{M}}{M_i}$$

72

Example:

UO₂ with 3% enrichment, and $\rho = 10 \text{ g/cm}^3$.

We can calculate the isotopic masses of ²³⁵U and ²³⁸U using the mass delta from the Nuclear Wallet Card.

$$M_i = A + \Delta/931.5 \frac{\text{Mev/c}^2}{\text{g/mol}}$$

$$M_{235} = 235 \text{ g/mol} + \frac{40.914 \text{Mev/c}^2}{931.5 \frac{\text{Mev/c}^2}{\text{g/mol}}} = 235.0439 \text{ g/mol}$$

$$M_{238} = 238 \text{ g/mol} + \frac{47.304 \text{Mev/c}^2}{931.5 \frac{\text{Mev/c}^2}{\text{g/mol}}} = 238.0508 \text{ g/mol}$$

and the atomic weight for the oxygen is obtained from Nuclear Wallet Card, Appendix-I.

$$\begin{split} M_{\rm O} &= 15.9994 \ {\rm g/mol} \quad M_{235} = 235.0439 \ {\rm g/mol} \quad M_{238} = 238.0508 \ {\rm g/mol} \\ \bar{M}_{\rm U} &= \frac{1}{\varepsilon/M_{235} + (1-\varepsilon)/M_{238}} = \frac{1}{0.03/235.0439 \ {\rm g/mol} + 0.97/238.0508 \ {\rm g/mol}} = 237.9595 \ {\rm g/mol} \\ M_{\rm HO_2} &= M_{\rm H} + 2M_{\rm O} = 237.9595 \ {\rm g/mol} + 2 \cdot 15.999 \ {\rm g/mol} = 269.9583 \ {\rm g/mol} \end{split}$$

$$M_{\rm UO_2} = M_{\rm U} + 2M_{\rm O} = 237.9595 \,\text{g/mol} + 2 \cdot 15.999 \,\text{g/mol} = 269.9583 \,\text{g/mol}$$

Here, the small fraction of 234 U present -if any- was neglected. For low enriched uranium this is appropriate, but it might be important to take it into account if the enrichment is high.

Now, the number density of molecules of UO_2 is:

$$N_{\rm UO_2} = \frac{10 \text{ g/cm}^3 \cdot 6.0221 \cdot 10^{23} \text{ l/mol}}{269.9583 \text{ g/mol}} = 2.2308 \cdot 10^{22} \text{ l/cm}^3$$

For each molecule of UO₂ there is one atom of uranium and two of oxygen, then

$$N_{\rm U} = N_{{
m UO}_2} = 2.2308 \cdot 10^{22} \ 1/{\rm cm}^3$$

 $N_{\rm O} = 2N_{{\rm UO}_2} = 4.4615 \cdot 10^{22} \ 1/{\rm cm}^3$

Then, to calculate the amount of 235 U and 238 U we need the atomic fraction of 235 U:

$$y_{235} = \frac{\varepsilon \bar{M}_U}{M_{235}} = \frac{0.03 \cdot 237.9595 \text{ g/mol}}{235.0439 \text{ g/mol}} = 3.04\%$$

and using that:

$$\begin{split} N_{235} &= y_{235} N_{\rm U} = 3.04\% \cdot 2.2308 \cdot 10^{22} \ 1/{\rm cm}^3 = 6.7753 \cdot 10^{20} 1/{\rm cm}^3 \\ N_{238} &= (1-y_{235}) N_{\rm U} = (1-3.04\%) \cdot 2.2308 \cdot 10^{22} \ 1/{\rm cm}^3 = 2.1630 \cdot 10^{22} \ 1/{\rm cm}^3 \end{split}$$

				Table 8	3.1 – Continued from prev	ious page	page			
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode			
		158	2-	-58.7 (3)	$3.98 \pm 0.06 \text{ m}$		<i>ϵ</i> 100; <i>ϵ</i> ?			
		159	5/2+	-60.57 (3)	$9.13\pm0.16~\mathrm{m}$		ϵ 100			
		160	1-	-60.3 (3)	9.4 ± 0.3 m		ϵ 100			
		160m	5	-60.23 (3)	$74.5\pm1.5~{\rm s}$		IT 85; e 15			
		161	7/2+	-61.9 (3)	$30.2\pm0.8~\mathrm{m}$		ε 100			
		162	1-	-61.47 (3)	$21.70\pm0.19~\text{m}$		ε 100; IT 81; ε 19			
		163	1/2+	-62.727 (6)	$1.810\pm0.005~h$		ε 100			
		164	1+	-61.904 (24)	$2.0\pm0.1~\text{m}$		ϵ 100; IT $pprox$ 80.00; ϵ $pprox$			
							20.00			
		165	1/2+	-62.929 (3)	$30.06\pm0.03~h$		ϵ 100			
		166	2+	-61.887 (12)	$7.70\pm0.03~h$		<i>ϵ</i> 100			
		166m	(6-)	-61.778 (12)	$340\pm25~ms$		<i>IT</i> 100			
		167	1/2+	-62.5429 (23)	$9.25 \pm 0.02 \text{ d}$		ϵ 100			
		168	3+	-61.312 (3)	$93.1\pm0.2~\mathrm{d}$		ϵ 99.99; β^- 0.01			
		169	1/2+	-61.2745 (21)	stable	100%				
		170	1-	-59.7952 (21)	$128.6\pm0.3~\mathrm{d}$		β^{-} 99.87; ϵ 0.13			
		171	1/2+	-59.2103 (23)	$1.92\pm0.01~{ m y}$		β^{-} 100			
		172	2-	-57.374 (6)	$63.6\pm0.2h$		β^{-} 100			
		173	(1/2+)	-56.253 (5)	$8.24\pm0.08~\text{h}$		β^- 100			
		174	(4)-	-53.86 (4)	5.4 ± 0.1 m		β^{-} 100			
		174m	0+	-53.61 (4)	$2.29\pm0.01~\mathrm{s}$		IT 99; $\beta^- < 1.00$			
		175	(1/2+)	-52.31 (5)	15.2 ± 0.5 m		β^- 100			
		176	(4+)	-49.37 (10)	$1.9\pm0.1~{ m m}$		β^- 100			
		177	(7/2-)	-47.5 (3)	$90\pm 6~{ m s}$		β^- 100			
70	Yb	149	(1/2+,3/2)	+)-33.2 (5)	$0.7\pm0.2~{ m s}$		<i>ϵp</i> 100; <i>ϵ</i> 100			
		151	(1/2+)	-41.5 (3)	$1.6\pm0.1~{ m s}$		ϵ 100; $\epsilon p > 0.00$; ϵ 100;			
							$IT \approx 0.40; \epsilon p$			
		152	0+	-46.31 (21)	$3.03\pm0.06~{\rm s}$		ϵ 100; ϵp			
		153	7/2-	-47.06 (20)	$4.2\pm0.2~{ m s}$		ϵ 40; α 60			
		154	0+	-49.932 (17)	$0.409\pm0.002~{\rm s}$		α 92.6; ϵ 7.4			
		155	(7/2-)	-50.503 (17)	$1.793\pm0.019~s$		α 89; ϵ 11			
		156	0+	-53.265 (9)	$26.1\pm0.7~{\rm s}$		ϵ 90; α 10			
		157	7/2-	-53.43 (10)	$38.6\pm1~\mathrm{s}$		ϵ 99.5; α 0.5			
		158	0+	-56.009 (8)	$1.49\pm0.13~\text{m}$		$\alpha \approx$ 2.1E-3; ϵ 100			
		159	5/2(-)	-55.836 (18)	$1.67\pm0.09~\mathrm{m}$		ϵ 100			
		160	0+	-58.163 (16)	4.8 ± 0.2 m		ϵ 100			
		161	3/2-	-57.838 (15)	4.2 ± 0.2 m		ϵ 100			
		162	0+	-59.825 (15)	$18.87\pm0.19~\text{m}$		ϵ 100			
		163	3/2-	-59.298 (15)	$11.05\pm0.35~\mathrm{m}$		ϵ 100			
		164	0+	-61.016 (15)	75.8 ± 1.7 m		ϵ 100			
		165	5/2-	-60.29 (3)	9.9 ± 0.3 m		ϵ 100			
		166	0+	-61.594 (7)	56.7 ± 0.1 h		ϵ 100			
		167	5/2-	-60.589 (5)	17.5 ± 0.2 m		ϵ 100			
		168	0+	-61.5804 (21)	stable	$0.123\% \pm 0.003\%$				
		169	7/2+	-60.3761 (21)	$32.018 \pm 0.005 \text{ d}$		ϵ 100			
		169m	1/2-	-60.3519 (21)	$46\pm2~{ m s}$		<i>IT</i> 100			
		170	0+	-60.7636 (21)	stable	$2.982\% \pm 0.039\%$				
		171	1/2-	-59.3068 (21)	stable	$14.09\% \pm 0.14\%$				
		171m	7/2+	-59.2115 (21)	$5.25\pm0.24~ms$		<i>IT</i> 100			
		172	0+	-59.255 (21)	stable	$21.68\% \pm 0.13\%$				
		173	5/2-	-57.551 (21)	stable	$16.103\%\pm 0.063\%$				
		174	0+	-56.9443 (21)	stable	$32.026\% \pm 0.08\%$				
		175	(7/2-)	-54.6954 (21)	$4.185 \pm 0.001 \; d$		β^- 100			
		175m	1/2-	-54 1805 (21)	$682 \pm 0.3 \mathrm{ms}$		IT 100			

				Table 8	.1 – Continued from pret	vious page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode
		172	0	-51.48 (20)	25 ± 3 s		$\beta^{-} 100$
68	Er	145m	(11/2-)	-39.2 (4)	$1.0\pm0.3~{ m s}$		ϵ 100; ϵp
		146	0+	-44.322 (7)	$1.7\pm0.6~{ m s}$		<i>ϵp</i> 100; <i>ϵ</i> 100
		147	(1/2+)	-46.61 (4)	$2.5\pm0.2~{ m s}$		ϵ 100; $\epsilon p > 0.00$; ϵ 100;
							$\epsilon p > 0.00$
		148	0+	-51.479 (10)	$4.6\pm0.2~{ m s}$		ϵ 100
		149	(1/2+)	-53.74 (3)	$4\pm2~{ m s}$		ϵ 100; ϵp 7
		149m	(11/2-)	-53 (3)	$8.9\pm0.2~{ m s}$		ϵ 96.5; IT 3.5; ϵp 0.18
		150	0+	-57.831 (17)	$18.5\pm0.7~{\rm s}$		ϵ 100
		151	(7/2-)	-58.266 (16)	$23.5\pm2~\mathrm{s}$		ϵ 100
		151m	(27/2-)	-55.68 (16)	$0.58\pm0.02~{\rm s}$		$IT 95.3; \epsilon 4.7$
		152	0+	-60.5 (9)	$10.3\pm0.1~{\rm s}$		α 90; ϵ 10
		153	(7/2-)	-60.476 (9)	$37.1\pm0.2~{\rm s}$		α 53; ϵ 47
		154	0+	-62.606 (5)	3.73 ± 0.09 m		ϵ 99.53; α 0.47
		155	7/2-	-62.209 (6)	5.3 ± 0.3 m		$\alpha 0.02; \epsilon 99.98$
		156	0+	-64.213 (24)	19.5 ± 1 m		ϵ 100; α 1.7e-05
		157	3/2-	-63.41 (3)	$18.65\pm0.1~\mathrm{m}$		$\epsilon 100$
		157m	(9/2+)	-63.26 (3)	$76\pm 6~\mathrm{ms}$		<i>IT</i> 100
		158	0+	-65.3 (3)	$2.29\pm0.06~h$		$\epsilon 100$
		159	3/2-	-64.56 (4)	$36\pm1~{ m m}$		$\epsilon 100$
		160	0+	-66.058 (25)	$28.58 \pm 0.09 \text{ h}$		$\epsilon 100$
		161	3/2-	-65.199 (9)	3.21 ± 0.03 h		$\epsilon 100$
		162	0+	-66.3329 (19)	stable	$0.139\% \pm 0.005\%$	
		163	5/2-	-65.166 (5)	75.0 ± 0.4 m		$\epsilon 100$
		164	0+	-65.941 (3)	stable	$1.601\%\pm 0.003\%$	
		165	5/2-	-64.52 (3)	$10.36\pm0.04~\mathrm{h}$		$\epsilon 100$
		166	0+	-64.9245 (21)	stable	$33.503\% \pm 0.036\%$	
		167	7/2+	-63.2897 (21)	stable	$22.869\% \pm 0.009\%$	
		167m	1/2-	-63.0819 (21)	$2.269\pm0.006~\mathrm{s}$		<i>IT</i> 100
		168	0+	-62.9897 (21)	stable	$26.978\% \pm 0.018\%$	
		169	1/2-	-60.9216 (21)	$9.392 \pm 0.018 \text{ d}$		$\beta^{-} 100$
		170	0+	-60.108 (24)	stable	$14.91\%\pm 0.036\%$	
		171	5/2-	-57.7183 (24)	7.516 ± 0.002 h		$\beta^{-} 100$
		172	0+	-56.483 (4)	$49.3\pm0.3h$		β^{-} 100
		173	(7/2-)	-53.65 (20)	$1.4\pm0.1~{ m m}$		β^{-} 100
		174	0+	-51.9 (3)	3.2 ± 0.2 m		β^{-} 100
		175	(9/2+)	-48.7 (4)	1.2 ± 0.3 m		$\beta^{-} 100$
69	Tm	146	(5-)	-31.2 (4)	$80\pm10~\mathrm{ms}$		$p;\epsilon$
		146m	(8+)	-31.1 (4)	$200 \pm 10 \text{ ms}$		$p;\epsilon$
		147	11/2-	-35.974 (7)	$0.58\pm0.03~{ m s}$		ε 85; p 15
		148	(10+)	-38.765 (10)	$0.7\pm0.2~{ m s}$		ϵ 100
		149	(11/2-)	-43.9 (3)	$0.9\pm0.2~{ m s}$		ϵ 100; ϵp 0.2
		150	(6-)	-46.49 (20)	$2.20\pm0.06~\mathrm{s}$		$\epsilon 100$
		150m	(10+)	-45.82 (20)	5.2 ± 0.3 ms		<i>IT</i> 100
		151	(11/2-)	-50.778 (20)	$4.17\pm0.11~{\rm s}$		<i>ϵ</i> 100; <i>ϵ</i> 100
		152	(2)-	-51.77 (7)	$8.0 \pm 1 \mathrm{~s}$		<i>ε</i> 100; <i>ε</i> 100
		153	(11/2-)	-53.991 (14)	$1.48\pm0.01~{\rm s}$		α 91; ϵ 9
		153m	(1/2+)	-53,948 (14)	$2.5\pm0.2~{ m s}$		α 92: ϵ 8
		154	(2-)	-54.427 (14)	$8.1\pm0.3~{ m s}$		α 54; ε 46; α 58: ε 42: <i>IT</i>
		155	11/2-	-56.626 (10)	$21.6\pm0.2~\mathrm{s}$		ϵ 99.11; α 0.89
		155m	1/2+	-56.585 (10)	$45 \pm 3 \mathrm{s}$		$\epsilon > 98.00; \alpha < 2.00$
		156	2-	-56.84 (15)	$83.8 \pm 1.8 \mathrm{~s}$		ϵ 99.94; α 0.06
		157	1/2 +	-58.71 (3)	3.63 ± 0.09 m		ε 100

Another way to solve it:

Because the enrichment is a weight fraction, we could convert everything to mass fraction. The atomic fraction of uranium and oxygen in the uranium dioxide are:

$$y_{\rm U} = \frac{1}{1+2} = \frac{1}{3}$$
$$y_{\rm O} = \frac{2}{1+2} = \frac{2}{3}$$

and, using (7.4):

$$w_{\rm U} = \frac{y_{\rm U} \cdot M_{\rm U}}{y_{\rm U} \cdot \bar{M}_{\rm U} + y_{\rm O} \cdot \bar{M}_{\rm O}} = \frac{1/3 \cdot 237.9595 \text{ g/mol}}{1/3 \cdot 237.9595 \text{ g/mol} + 2/3 \cdot 15.9994 \text{ g/mol}} = 88.147\%$$

 $w_{235} = \varepsilon \cdot w_{\rm U} = 2.644\%$

 $w_{238} = (1 - \varepsilon) \cdot w_{\rm U} = 85.502\%$

 $w_{\rm O} = 1 - w_{\rm U} = 11.853\%$

Then, the weight fraction of ²³⁵U respect to the total amount is:

and for oxygen:

for ²³⁸U:

finally we just do:

$$\begin{split} N_{235} &= \frac{w_{235}\rho N_A}{M_{235}} = 6.7753 \cdot 10^{20} \ 1/\text{cm}^3 \\ N_{238} &= \frac{w_{238}\rho N_A}{M_{238}} = 2.1630 \cdot 10^{22} \ 1/\text{cm}^3 \\ N_{\text{O}} &= \frac{w_{\text{O}}\rho N_A}{M_{\text{O}}} = 4.4615 \cdot 10^{22} \ 1/\text{cm}^3 \end{split}$$

Continued on next page

				Table	8.1 – Continued from prev	ious page		
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \dot{\mathbf{\Gamma}}$	Abundance	Decay Mode	
		168	0+	-58.56 (14)	8.7 ± 0.3 m		β^- 100	
		169	(5/2)-	-55.6 (3)	39 ± 8 s		β^- 100	
67	Но	140	(6-,0-,8+)	-29.2 (5)	$6 \pm 3 \text{ ms}$		p 100	
		141	7/2-	-34.3 (5)	$4.1\pm0.3~\mathrm{ms}$		p 100	
		142	(7 - <i>,</i> 8+)	-37.2 (5)	$0.4\pm0.1~{ m s}$		ϵ 100; $\epsilon p > 0.00$	
		144	(5-)	-44.609 (8)	$0.7\pm0.1~{ m s}$		ϵ 100; ϵp	
		145	(11/2-)	-49.12 (7)	$2.4\pm0.1~ m s$		ϵ 100	
		146	(10+)	-51.238 (7)	$3.6\pm0.3~{ m s}$		ϵ 100	
		147	(11/2-)	-55.757 (5)	$5.8\pm0.4~{ m s}$		ϵ 100	
		148	(1+)	-57.99 (8)	$2.2\pm1.1~{ m s}$		ϵ 100; ϵ 100; ϵp 0.08	
		148m	(10+)	-57.3 (8)	$2.35\pm0.04~\mathrm{ms}$		<i>IT</i> 100	
		149	(11/2-)	-61.664 (14)	$21.1\pm0.2~{ m s}$		ϵ 100	
		149m	(1/2+)	-61.616 (14)	$56 \pm 3 \mathrm{s}$		ϵ 100	
		150	2-	-61.946 (14)	$72\pm4~{ m s}$		ϵ 100	
		150m	(9)+	-61.446 (14)	$24.1\pm0.5~{ m s}$		ϵ 100;	
		151	(11/2-)	-63.623 (8)	$35.2\pm0.1~{ m s}$		ϵ 78; α 22	
		151m	(1/2+)	-63.582 (8)	$47.2 \pm 1.3 \text{ s}$		α 80; ϵ 20	
		152	2-	-63.608 (13)	$161.8\pm0.3~{ m s}$		ϵ 88; α 12	
		152m	9+	-63.448 (13)	$50.0 \pm 0.4 \text{ s}$		ϵ 89.2; α 10.8	
		153	11/2-	-65.013 (5)	2.01 ± 0.03 m		ϵ 99.95; α 0.05	
		153m	1/2+	-64.944 (5)	9.3 ± 0.5 m		ϵ 99.82; α 0.18	
		154	2-	-64.639 (8)	$11.76 \pm 0.19 \text{ m}$		α 0.02; ϵ 99.98; ϵ 100; α <	
		455	= /2	((04 (10)	10 1 1		1.0E-3	
		155	5/2+	-66.04 (18)	$48 \pm 1 \text{ m}$		<i>ϵ</i> 100	
		156	4-	-65.47 (6)	$56 \pm 1 \text{ m}$		ε 100	
		156m	1-	-65.42 (6)	$9.5 \pm 1.5 \mathrm{s}$		$TT 100; \epsilon 75; TT 25$	
		157	7/2-	-66.832 (23)	$12.6 \pm 0.2 \text{ m}$		€ 100	
		158	5+	-66.18 (3)	$11.3 \pm 0.4 \text{ m}$		€ 100 ITT = 01.00 = 10.00	
		158m	2-	-66.12 (3)	$28 \pm 2 \text{ m}$		$TT > 81.00; \epsilon < 19.00$	
		158m2	2 (9+)	-66 (3)	$21.3 \pm 2.3 \text{ m}$		$\epsilon \geq 93.00; TT \leq 7.00$	
		159	1/2-	-67.328 (3)	33.05 ± 0.11 m		€ 100 I/T 100	
		159m	1/2+	-07.123 (3)	8.30 ± 0.08 s		11 100	
		160	3+	-00.381 (15)	$25.6 \pm 0.5 \text{ m}$		ε 100 μπ. 52 - 25	
		160m	Z-	-00.321 (15)	5.02 ± 0.05 n		Π 73; ε 27	
		1601112	2 (9+)	-66.211(13)	3 ± 0.8		11 100	
		101	1/2-	-67.196(3)	2.48 ± 0.03 II		ε 100 I/T 100	
		161111	1/2+	-00.903 (3)	0.70 ± 0.07 s 15.0 \pm 1 m		11 100	
		162m	1+	-00.04 (4) 65.024 (4)	13.0 ± 1.111		$\epsilon 100$	
		162	7/2	-03.934 (4) 66 2760 (10)	$4570 \pm 25 \text{ m}$		- 100	
		163 162m	1/2-	-00.3709 (19) 66 070 (10)	4370 ± 23 y 1.09 ± 0.02 c		E 100	
		164	1/2+	-64 9801 (23)	1.09 ± 0.03 s		11100	
		164m	1 + 6-	-64 8403 (23)	$27 \pm 1 \text{ m}$ $375 \pm 15 - 0.5 \text{ m}$		ττ 100	
		165	7/2	-04.0403 (23) 64.8077 (20)	stable	100%	11 100	
		166	0-	-63.07 (20)	26.824 ± 0.012 h	10070	8- 100	
		166m	0- 7-	-63 064 (20)	$1.20E3 \pm 0.012$ II 1.20E3 $\pm 0.18E3$ v		β^{-} 100	
		167	, 7/2-	-62 28 (6)	3.003 ± 0.018 b		β ⁻ 100	
		168	3+	-60.06 (3)	2.000 ± 0.010 m		β ⁻ 100	
		168m	(6+)	0	132 ± 4 s		$T > 99.50 \cdot \beta^- < 0.50$	
		169	7/2-	-58 796 (20)	$472 \pm 0.1 \text{ m}$		$\beta^{-} 100 \ge 0.50$	
		170	(6+)	-56 24 (5)	$2.76 \pm 0.05 \text{ m}$		β ⁻ 100	
		170m	(1+)	-56 12 (5)	43 + 2 s		β ⁻ 100	
		17011	(7/2)	-54 5 (6)	$\frac{10}{53} \pm 2.5$		β ⁻ 100	
		1/1	(1/47)	51.5 (0)	JJ ± 2 3		P 100	

				Table	8.1 – Continued from prev	ious page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \dot{\Gamma}$	Abundance	Decay Mode
		155	3/2+	-71.247 (12)	$5.32 \pm 0.06 \text{ d}$		<i>ϵ</i> 100
		156	3-	-70.09 (4)	$5.35\pm0.1~\mathrm{d}$		ϵ 100
		156m	(7-)	-70.04 (4)	$24.4\pm1h$		<i>IT</i> 100
		156m2	2 (0+)	-70.002 (4)	5.3 ± 0.2 h		$IT < 100.00; \epsilon > 0.00$
		157	3/2+	-70.7629 (17)	71 ± 7 y		ϵ 100
		158	3-	-69.4697 (19)	$180\pm11~{ m y}$		ϵ 83.4; β^{-} 16.6
		158m	0-	-69.3594 (19)	$10.70\pm0.17~{\rm s}$		ϵ $<$ 0.01; IT 100; $\beta^ <$
							0.60
		159	3/2+	-69.5315 (18)	stable	100%	
		160	3-	-67.8354 (18)	$72.3 \pm 0.2 \text{ d}$		β^{-} 100
		161	3/2+	-67.4607 (19)	$6.89 \pm 0.02 \text{ d}$		β^{-} 100
		162	1-	-65.67 (4)	7.60 ± 0.15 m		β^{-} 100
		163	3/2+	-64.594 (4)	19.5 ± 0.3 m		β^- 100
		164	(5+)	-62.08 (10)	3.0 ± 0.1 m		β^{-} 100
		165	(3/2+)	-60.66 (20)	2.11 ± 0.1 m		β^{-} 100
		166	(2-)	-57.88 (7)	$25.1\pm2.1~{ m s}$		β^{-} 100
		167	(3/2+)	-55.9 (4)	$19.4 \pm 2.7 \text{ s}$		β^- 100
	_	168	(4-)	-52.6 (5)	8.2 ± 1.3 s		β^{-} 100
66	Dy	139	(7/2+)	-37.6 (5)	$0.6 \pm 0.2 \text{ s}$		ϵ ; ϵp
		141	(9/2-)	-45.2 (3)	$0.9 \pm 0.2 \text{ s}$		ϵ 100; ϵp
		142	0+	-49.9 (7)	$2.3 \pm 0.3 \text{ s}$		$\epsilon p \ 0.06; \epsilon \ 100$
		143	(1/2+)	-52.169 (13)	$5.6 \pm 1 \text{s}$		ϵ 100; ϵp
		143m	(11/2-)	-51.858 (13)	3.0 ± 0.3 s		$\epsilon 100; \epsilon p$
		144	(1, (2, .))	-56.57 (7)	$9.1 \pm 0.4 \text{ s}$		$\epsilon 100; \epsilon p$
		145	(1/2+)	-58.243 (7)	$6 \pm 2 s$		$\epsilon 100; \epsilon p \approx 50.00$
		145m	(11/2-)	-58.124 (7)	$14.1 \pm 0.7 \text{ s}$		$\epsilon p \approx 50.00; \epsilon 100$
		146	(10.)	-62.555 (7)	29 ± 3 s		ε 100 I/T 100
		146m	(10+)	-59.619 (7)	$150 \pm 20 \text{ ms}$		11 100
		147	(1/2+)	-04.193 (0)	67 ± 78		$\epsilon 100; \epsilon p 0.05$
		147111	(11/2 -)	-03.444 (0)	33.2 ± 0.3 s		€ 68.9; <i>11</i> 31.1
		140	(7/2)	-07.30 (9) 67.702 (0)	3.3 ± 0.2 m 4.20 ± 0.14 m		ε 100 - 100
		149 140m	$(7/2^{-})$	-07.703 (9)	4.20 ± 0.14 III 0.490 ± 0.015 c		E 100
		150	$(27 / 2^{-})$	-69 311 (5)	7.17 ± 0.015 m		11 99.5, e 0.7
		150	$\frac{0+}{7/2}$	-68 752 (4)	17.9 ± 0.05 m		ε 04, α 56 c 94.4: α 5.6
		152	0+	-70 118 (5)	2.38 ± 0.02 h		ε 99 9· α 0 1
		152	7/2(-)	-69 143 (4)	6.4 ± 0.1 h		e 99 99: a 0.0094
		154	0+	-70 393 (8)	$3.0E+6 \pm 1.5E+6v$		a 100
		155	3/2-	-69 152 (12)	99 ± 0.2 h		€ 100
		156	0+	-70,522 (6)	stable	$0.056\% \pm 0.003\%$. 100
		157	3/2-	-69.42 (6)	8.14 ± 0.04 h	0100070 ± 0100070	€ 100
		157m	11/2-	-69.221 (6)	$21.6 \pm 1.6 \text{ ms}$		IT 100
		158	0+	-70.405 (3)	stable	$0.095\% \pm 0.003\%$	11 100
		159	3/2-	-69.1661 (21)	144.4 ± 0.2 d		€ 100
		160	0+	-69.6711 (19)	stable	$2.329\% \pm 0.018\%$	
		161	5/2+	-68.0541 (19)	stable	$18.889\% \pm 0.042\%$	
		162	0+	-68,1798 (19)	stable	$25.475\% \pm 0.036\%$	
		163	5/2-	-66.3795 (19)	stable	$24.896\% \pm 0.042\%$	
		164	0+	-65.9663 (19)	stable	$28.26\% \pm 0.054\%$	
		165	7/2+	-63.6109 (19)	$2.334 \pm 0.001 \text{ h}$		$\beta^{-} 100$
		165m	1/2-	-63.5027 (19)	$1.257\pm0.006~\text{m}$		IT 97.76; β^{-} 2.24
		166	0+	-62.5831 (20)	$81.6\pm0.1~\text{h}$		β^{-} 100
		167	(1/2-)	-59.93 (6)	$6.20\pm0.08\ m$		$\beta^{-} 100$
							Continued on next page

Chapter 8

Ground and isomeric states properties

The properties of ground and isomeric states for all nuclides included in NuDat 2.6 are listed in the following table. For each state the following data is given:

- Atomic number (Z), chemical symbol and mass number (A).
- Spin and parity (Jπ).
- Mass excess: $\Delta = M A$, where *M* is the mass a neutral atom. Mass excess is given in MeV; to convert to atomic mass units, the relationship 1 u = 931.494 MeV/c² can be used.
- Half life $(T_{1/2})$ or level width (Γ)
- Abundance (isotope atom fraction) of natural occurring nuclides.
- Decay modes, followed by emission probability in %:

 $\begin{array}{l} \beta-:\beta-\text{ decay.}\\ \epsilon: \text{ electron capture, }\beta+\text{ decay, or }EC+\beta+.\\ IT: \text{ isomeric transition }(\gamma \text{ emission or conversion electron}).\\ n, p, \alpha, \ldots: n, p, \alpha, \ldots \text{ emission.}\\ SF: \text{ spontaneous fission.}\\ \beta-p, \beta-\alpha, \beta-n, \ldots: \text{ delayed } p, \alpha, n, \ldots \text{ emission following }\beta-\text{ decay.}\\ \epsilon-p, \epsilon-\alpha, \epsilon-n, \ldots: \text{ delayed } p, \alpha, n, \ldots \text{ emission following }\beta+\text{ or }EC \text{ decay.} \end{array}$

 ${}^{12}C, {}^{24}Ne, \ldots; {}^{12}C, {}^{24}Ne, \ldots$ nuclei emission.

IAEA NuDat 2.6 http://www-nds.iaea.org/nudat2/.

Source:

Table 8.1: Ground and isomeric states properties (Adapted from								Table 8.1 – Continued from previous page							
			IA	AEA NuDat 2.6).				Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \hat{\Gamma}$	Abundance	Decay Mode
										143	(1/2)+	-68.23 (20)	$39 \pm 2 s$		<i>ϵ</i> 100
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$T_{1/2}, \Gamma$	Abundance	Decay Mode			143m	(11/2-)	-68.08 (20)	$110.0\pm1.4~{\rm s}$		ϵ 100
0	n	1	1/2+	8.0713 (5)	$10.183 \pm 0.017 \text{ m}$		β^- 100%			144	0+	-71.76 (3)	$4.47\pm0.06~\mathrm{m}$		ϵ 100
1	Н	1	1/2+	7.2889 (10)	stable	$99.9885\% \pm 0.007\%$				145	1/2+	-72.927 (19)	23.0 ± 0.4 m		ϵ 100
		2	1+	13.1357 (15)	stable	$0.0115\% \pm 0.007\%$				145m	11/2-	-72.178 (19)	$85 \pm 3 \mathrm{~s}$		IT 94.3; ϵ 5.7
		3	1/2+	14.9498 (22)	$12.32 \pm 0.02 \text{ y}$		β^- 100%			146	0+	-76.087 (4)	$48.27 \pm 0.1 \text{ d}$		ϵ 100
2	He	3	1/2+	14.9312 (23)	stable	$0.000134\% \pm 3e-06\%$				147	7/2-	-75.357 (3)	$38.06\pm0.12~h$		ϵ 100
		4	0+	2.4249 (6)	stable	$99.999866\% \pm 3e-06\%$				148	0+	-76.2696 (25)	$70.9 \pm 1 \text{ y}$		α 100
		6	0+	17.5928 (4)	$801\pm10~\mathrm{ms}$		β^- 100%			149	7/2-	-75.127 (4)	$9.28\pm0.1~\mathrm{d}$		α 0.00043; ϵ 100
		8	0+	31.6096 (18)	$119.1 \pm 1.2 \text{ ms}$		eta^- 100%; eta^-n 16%			150	0+	-75.763 (6)	$1.79E+6 \pm 0.08E+6 \text{ y}$		α 100
3	Li	6	1+	14.0868 (15)	stable	$7.59\% \pm 0.04\%$				151	7/2-	-74.188 (3)	$123.9 \pm 1 \text{ d}$		ϵ 100; $\alpha \approx 8.0\text{E-7}$
		7	3/2-	14.907 (4)	stable	$92.41\% \pm 0.04\%$				152	0+	-74.7065 (17)	$1.08E14 \pm 0.08E14$ y	$0.2\% \pm 0.01\%$	α 100
		8	2+	20.9457 (5)	$839.9 \pm 0.9 \text{ ms}$		β^- 100%; $\beta^- \alpha$ 100%			153	3/2-	-72.8821 (17)	$240.4\pm1~d$		ϵ 100
		9	3/2-	24.9549 (9)	$178.3 \pm 0.4 \text{ ms}$		eta^- 100%; eta^-n 50.8%			154	0+	-73.7055 (17)	stable	$2.18\% \pm 0.03\%$	
		11	3/2-	40.7284 (11)	$8.75\pm0.14~\mathrm{ms}$		$\beta^{-}\alpha, n$ 0.027%; β^{-} 100%;			155	3/2-	-72.0694 (17)	stable	$14.8\% \pm 0.12\%$	
		_	a (a				$\beta^{-}n$ 83%; $\beta^{-}2n$ 4.1%			155m	11/2-	-71.9484 (17)	$31.97\pm0.27~\mathrm{ms}$		<i>IT</i> 100
4	Ве	7	3/2-	15.7689 (7)	53.24 ± 0.04 d	1000/	$\epsilon 100$			156	0+	-72.5345 (17)	stable	$20.47\% \pm 0.09\%$	
		9	3/2-	11.3484 (8)	stable	100%				157	3/2-	-70.823 (17)	stable	$15.65\% \pm 0.02\%$	
		10	0+	12.6074 (8)	$1.38/E+6 \pm 0.012E+6 \text{ y}$		β^{-} 100			158	0+	-70.6891 (17)	stable	$24.84\% \pm 0.07\%$	
		11	1/2+	20.1771 (24)	$13.81 \pm 0.08 \text{ s}$		β^{-} 100; $\beta^{-}\alpha$ 3.1			159	3/2-	-68.5609 (17)	$18.479 \pm 0.004 \text{ h}$		β^- 100
		12	0+	25.077 (4)	$21.49 \pm 0.03 \text{ ms}$		β^{-} 100; $\beta^{-}n \leq 1.00$			160	0+	-67.9409 (18)	> 3.1E+19 y	$21.86\% \pm 0.19\%$	$2\beta^-$
_	_	14	0+	39.95 (13)	$4.35 \pm 0.17 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 81; $\beta^{-}2n$ 5			161	5/2-	-65.505 (20)	$3.66\pm0.05~\text{m}$		β^- 100
5	В	8	2+	22.9215 (10)	$770 \pm 3 \text{ ms}$		<i>ε</i> 100; <i>εα</i> 100			162	0+	-64.28 (4)	8.4 ± 0.2 m		β^- 100
		10	3+	12.0507 (4)	stable	$19.9\% \pm 0.7\%$				163	(5/2-	-61.47(7)	68 + 3c		8- 100
		11	3/2-	8.6679 (4)	stable	$80.1\% \pm 0.7\%$				105	,7/2+)	-01.47 (7)	00 ± 3 s		β 100
		12	1+	13.3688 (14)	$20.20 \pm 0.02 \text{ ms}$		$\beta^{-} 100; \beta^{-} 3\alpha 1.58$			164	0+	-59.9 (4)	$45\pm3~{ m s}$		β^- 100
		13	3/2-	16.5621 (11)	$17.33 \pm 0.17 \text{ ms}$		β^{-} 100			165	0	-56.6 (5)	$10.3\pm1.6~{ m s}$		$\beta^{-} 100$
		14	2-	23.664 (21)	$12.5 \pm 0.5 \mathrm{ms}$		β^{-} 100			166	0+	-54.5 (6)	$4.8 \pm 1 \mathrm{~s}$		β^- 100
		15	0	28.964 (22)	$9.93 \pm 0.07 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 93.6;	65	Tb	139	0	-48 (3)	$1.6\pm0.2~{ m s}$		ϵ ; ϵp ?
		1.77	(2 (2)				$\beta^{-}2n 0.4$			140	(7+)	-50.5 (8)	$2.0\pm0.5~{ m s}$		$\epsilon p 0.26; \epsilon 100$
		17	(3/2-)	43.77 (17)	$5.08 \pm 0.05 \text{ms}$		$\beta 100; \beta n 63; \beta 2n 11;$			141	(5/2-)	-54.54 (11)	$3.5\pm0.2~{ m s}$		ϵ 100; ϵ 100
		10	(2, (2))	EQ Q (4)	2.02 ± 0.12 mg		p = 3n 3.5; p = 4n 0.4 $\rho = 100; \rho = \pi 70; \rho = 2\pi 10$			142	1+	-56.6 (7)	$597\pm17~\mathrm{ms}$		ϵ 100; ϵp 0.0022
6	c	0	(3/2)	28 0004 (21)	2.92 ± 0.13 IIIS		$\beta = 100; \beta = n/2; \beta = 2n/16$			142m	5-	-56.3 (7)	$303\pm17~\mathrm{ms}$		<i>IT</i> 100
0	C	9 10	(3/2-)	15 6086 (4)	120.3 ± 0.9 IIIS		$\epsilon 100; \epsilon p 61.6; \epsilon \alpha 38.4$			143	(11/2-)	-60.42 (5)	$12 \pm 1 \text{ s}$		ε 100; ε
		10	0+	10.6900(4) 10.6502(10)	19.308 ± 0.004 s		ε 100 - 100			144	1+	-62.37 (3)	$\approx 1 \text{ s}$		ϵ 100
		11	5/2-	10.6505 (10)	20.334 ± 0.024 III	00 020/ 1 0 000/	ϵ 100			144m	(6-)	-61.97 (3)	$4.25\pm0.15~\mathrm{s}$		IT 66; ϵ 34
		12	$\frac{0+}{1/2}$	0 () 2 125 (21)	stable	$90.95 / 0 \pm 0.00 / 0$ 1 079/ \pm 0 089/				146	1+	-67.76 (4)	$8\pm4~ m s$		ϵ 100; ϵ 100
		1/	1/2- 0+	3.125(21) 3.0198(4)	$5700 \pm 30 \text{ y}$	1.07 /0 ± 0.00 /0	8- 100			146m	(10+)	-66.98 (4)	$1.18\pm0.02~\mathrm{ms}$		<i>IT</i> 100
		15	1/2	0.8721(8)	2.449 ± 0.005		$\beta = 100$ $\beta = 100$			147	(1/2+)	-70.743 (8)	1.64 ± 0.03 h		ϵ 100
		16	1/2+	13 694 (4)	2.449 ± 0.003 s		$\beta = 100$ $\beta^{-} = 100; \ \beta^{-} = 00$			147m	(11/2-)	-70.692 (8)	$1.83\pm0.06~\mathrm{m}$		ϵ 100
		17	3/2+	21.032(17)	$193 \pm 13 \text{ ms}$		β^{-} 100; β^{-} n 33			148	2-	-70.54 (13)	$60 \pm 1 \text{ m}$		ϵ 100
		18	0+	21.032(17) 24.92(3)	92 ± 2 ms		β^{-} 100, β^{-} <i>n</i> 32 β^{-} <i>n</i> 31 5: β^{-} 100			148m	(9)+	-70.45 (13)	2.20 ± 0.05 m		ϵ 100
		10	1/2+	24.92(3) 32.41(10)	$72 \pm 2 \text{ ms}$		$\beta^{-} \cdot \beta^{-} = 61$			149	1/2+	-71.489 (4)	$4.118 \pm 0.025 \text{ h}$		α 16.7; ϵ 83.3
		20	1/2+ 0+	37 56 (24)	$14 \pm 6-5 \text{ ms}$		β^{-}, β^{-}, n 01 $\beta^{-}, 100; \beta^{-}, n$ 72			149m	11/2-	-71.453 (4)	$4.16 \pm 0.04 \text{ m}$		ϵ 99.98; α 0.02
		20	0+	52 1 (5)	$61 \pm 14 - 12$ ms		β^{-} 100; β^{-} n 61; β^{-} 2n <			150	(2-)	-71.105 (7)	3.48 ± 0.16 h		ϵ 100; $\alpha < 0.05$
			01	02.1 (0)	0.1 1.7 1.2 110		37.00			150m	9+	-70.631 (7)	5.8 ± 0.2 m		ϵ
7	Ν	12	1+	17.338 (10)	11.000 ± 0.016 ms		€ 100			151	1/2(+)	-71.623 (4)	17.609 ± 0.014 h		ϵ 99.99; α 0.0095
,		13	1/2-	5.3454 (3)	9.965 ± 0.004 m		e 100			151m	(11/2-)	-71.523 (4)	25 ± 3 s		IT 93.4; ϵ 6.6
		14	1+	2.8634 (19)	stable	$99.636\% \pm 0.02\%$				152	2-	-70.72 (4)	17.5 ± 0.1 h		$\alpha <$ 7.0E-7; ϵ 100
		15	1/2-	0 1014 (6)	stable	$0.364\% \pm 0.02\%$				152m	8+	-70.21 (4)	4.2 ± 0.1 m		IT 78.8; ϵ 21.2
		16	2-	5.684 (3)	7.13 ± 0.02 s	5.001/0 ± 0.02/0	β^{-} 100: $\beta^{-} \alpha$ 0.0012			153	5/2+	-71.313 (4)	$2.34 \pm 0.01 \text{ d}$		ϵ 100
		17	1/2-	7.87 (15)	4.173 ± 0.004 s		β^{-} 100: β^{-} n 95 1			154	0	-70.15 (5)	21.5 ± 0.4 h		$\epsilon \ 100; \ \beta^- < 0.10; \ \epsilon \ 98.2;$
		18	1-	13.113 (19)	$620 \pm 8 \text{ ms}$		$\beta^- \alpha 12.2: \beta^- n 7 \cdot \beta^- 100$								TT 1.8; ϵ 78.2; TT 21.8;
		10	-	101110 (17)	010 1 0 110		Continued on next nace								$\beta < 0.10$
							21								Continuea on next page

Continued on next page

				Table	8.1 – Continued from previ	ous page		Table $8.1 - Continued$ from previous page							
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$T_{1/2}, \tilde{\Gamma}$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T}_{1/2}, \dot{\mathbf{\Gamma}}$	Abundance	Decay Mode
		157	(3/2-)	-66.73 (5)	8.03 ± 0.07 m		$\beta^{-} 100$			19	0	15.857 (16)	$336 \pm 3 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 41.8
		158	0+	-65.2 (8)	5.30 ± 0.03 m		$\beta^{-} 100$			20	2-	21.77 (6)	$136 \pm 3 \text{ ms}$		β^{-} 100; β^{-} n 42.9
		159	5/2-	-62.25 (7)	$11.37\pm0.15~\mathrm{s}$		β^{-} 100			21	(1/2-)	25.25 (10)	$83 \pm 8 \text{ ms}$		$\beta^{-} 100; \beta^{-} n 90.5$
		160	0+	-60.42 (20)	9.6 ± 0.3 s		β^- 100			22	(01-)	32.04 (19)	$20 \pm 2 \text{ ms}$		β^{-} 100: $\beta^{-}n$ 33: $\beta^{-}2n$ 12
		161	0	-56.75 (14)	4.8 ± 0.4 s		β^- 100			23	0	38.4 (3)	14.5 ± 1.4 ms		$\beta^- 100; \beta^- n; \beta^- 2n$
		162	0+	-54.8 (5)	2.4 ± 0.5 s		β^- 100	8	0	13	(3/2-)	23.115 (10)	$8.58 \pm 0.05 \mathrm{ms}$		e 100: ep 100
63	Eu	131	3/2+	-38.7 (4)	$17.8 \pm 1.9 \text{ ms}$		n 89: e 11	0	Ũ	14	0+	8.0074 (11)	70.620 ± 0.015 s		€ 100, cp 100
		134	0	-49 72 (20)	0.5 ± 0.2 s		$\epsilon 100:\epsilon n > 0.00$			15	1/2-	2 8556 (5)	122.24 ± 0.16 s		e 100
		135	Ő	-54 1 (3)	15 ± 0.25		e 100; ep			16	0+	-4 737 (16)	stable	$99.757\% \pm 0.016\%$. 100
		136	(7+)	-56 1 (20)	33 ± 0.38		$\epsilon 100; \epsilon = 0.09; \epsilon 100;$			17	5/2+	-0.8087 (6)	stable	$0.038\% \pm 0.001\%$	
		100	(, ,)	0011 (20)			en 0.09			18	0+	-0.7828 (7)	stable	$0.205\% \pm 0.014\%$	
		137	(11/2-)	-60.02 (20)	11 + 2 s		€ 100			19	5/2+	3 334 (3)	26.88 ± 0.05 s	0.20070 ± 0.01170	β^{-} 100
		138	(6-)	-61.75 (3)	$12.1 \pm 0.6 \text{ s}$		e 100			20	0+	3 7961 (9)	$1351 \pm 0.05s$		β^{-} 100
		139	(11/2)-	-65.398 (13)	17.9 ± 0.6 s		€ 100 € 100			20	(5/2+)	8.062 (12)	342 ± 0.053		β^{-} 100
		140	1+	-66 99 (5)	1.51 ± 0.02 s		$\epsilon 100$ <i>IT</i> 100 $\epsilon < 1.00$			22	0+	9.28 (6)	2.25 ± 0.09 s		β^{-} 100 $\beta^{-}n < 22.00$
		141	5/2+	-69 926 (13)	40.7 ± 0.7 s		e 100			22	1/2+	14.62 (9)	$97 \pm 8 \text{ ms}$		β^{-} 100; $\beta^{-}n < 22.00$ $\beta^{-} 100; \beta^{-}n 7$
		141m	11/2-	-69 829 (13)	27 ± 0.3 s		IT 87: ¢ 13			23	1/2+ 0+	185(11)	$57 \pm 5 \text{ ms}$		β^{-} 100, β^{-} n^{7}
		142	1+	-71 31 (3)	2.3 ± 0.03		€ 100: € 100	9	F	17	5/2±	1 9517 (25)	61.49 ± 0.16 s		ρ η 58, β 100 < 100
		143	5/2+	-74 242 (11)	2.51 ± 0.12 b 2.59 ± 0.02 m		< 100)	T.	19	1	0.8721(5)	$109.77 \pm 0.05 \text{ m}$		< 100
		143	1+	-75 619 (11)	10.2 ± 0.1 s		< 100			10	1/2	1.4974(0)	109.77 ± 0.05 m	100%	ε 100
		145	5/2+	-77 992 (4)	5.93 ± 0.04 d		e 100			20	1/2+	-1.4074(9) 0.0174(2)	11.07 ± 0.06	100 /o	8= 100
		145	4-	-77 117 (6)	$4.61 \pm 0.03 d$		< 100			20	2+ 5/2	-0.0174(3)	$11.07 \pm 0.00 \text{ s}$		$\beta = 100$
		140		-77 544 (3)	24.1 ± 0.65 d		€ 100 < 100: ∝ 0.00 22			21	3/2+	-0.0470(10)	4.136 ± 0.02 s		$\beta = 100$
		147	572+	-76 299 (10)	$54.5 \pm 0.5 d$		e 100, a 0.0022			22	(4+) 5 /2 -	2.795 (12)	4.23 ± 0.04 s		$\beta = 100; \beta = n < 11.00$
		140	5/2	-76.299(10)	921 ± 0.4 d		ε 100, α 9.4e-07			25	$\frac{3}{2+}$	5.51 (10)	2.23 ± 0.14 s		$\beta = 100$
		150	572+	74 701 (6)	36.0 ± 0.0 w		e 100 - 100			24	(1,2,3)+	7.30(7)	390 ± 70 ms		$\beta = 100; \beta = n < 5.90$
		150m	. 0	-74.791 (0)	30.9 ± 0.9 y 12.8 \pm 0.1 b		$\epsilon 100$			25	5/2+	11.30 (8)	$80 \pm 9 \mathrm{ms}$		β 100; β n 23.1
		15011	5/2	74.75 (0)	12.0 ± 0.1 H > 1.7E + 18 y	$47.81\% \pm 0.02\%$	ϵ 11, 11 \leq 5.0E-8, β 89			26	(1+)	18.67 (8)	$9.7 \pm 0.7 \text{ ms}$		β n 11; β 100
		151	3/2+	72 8871 (18)	$\geq 1.7 \pm 10$ y 12 528 ± 0.014 y	$47.01/0 \pm 0.00/0$	α			2/	(5/2+)	24.03 (19)	3.0 ± 0.2 ms		$\beta = 100; \beta = n77$
		152	5-	-72.0071(10)	13.328 ± 0.014 y		$e_{72.1,p}$ 27.9	10	N.T.	29	(5/2+)	40 (6)	$2.5 \pm 0.5 \mathrm{ms}$		β 100; β n 100
		152m	10- 199	-72.0413(10) 727202(18)	9.5116 ± 0.0013 m		p 72; € 28	10	Ne	1/	1/2-	16.5004 (4)	$109.2 \pm 0.6 \text{ ms}$		$\epsilon p \ 100; \epsilon \alpha; \epsilon \ 100$
		15211	E /2 -	-72.7392(10)		E2 109/ 1 0 069/	11 100			18	0+	5.31/6 (4)	$1.66/0 \pm 0.001/s$		ε 100 100
		155	3/2+	-73.3001(10)		$32.19 \ / \circ \pm 0.00 \ / \circ$	0.00 3= 00.00			19	1/2+	1.752 (16)	17.22 ± 0.02 s	00 400/ 1 0 000/	ϵ 100
		154	3-	-/1./3/(18)	$8.601 \pm 0.01 \text{ y}$		$\epsilon 0.02; \beta$ 99.98			20	0+	-7.0419 (16)	stable	$90.48\% \pm 0.03\%$	
		154m	5- 5-	-/1.3916 (18)	$46.3 \pm 0.4 \text{ m}$		11 100			21	3/2+	-5.7317 (4)	stable	$0.27\% \pm 0.01\%$	
		155	5/2+	-/1.8169 (18)	4.753 ± 0.014 y		β 100			22	0+	-8.0247 (18)	stable	$9.25\% \pm 0.03\%$	
		156	0+	-70.085 (6)	15.19 ± 0.08 d		β 100			23	5/2+	-5.154 (10)	37.24 ± 0.12 s		β^{-} 100
		157	5/2+	-69.46 (5)	15.18 ± 0.03 h		β^{-} 100			24	0+	-5.9516 (5)	$3.38 \pm 0.02 \text{ m}$		β^{-} 100
		158	(1-)	-67.2 (8)	$45.9 \pm 0.2 \text{ m}$		β 100			25	1/2+	-2.06 (4)	$602 \pm 8 \text{ ms}$		β^{-} 100
		159	5/2+	-66.046 (7)	$18.1 \pm 0.1 \text{ m}$		β 100			26	0+	0.479 (18)	$197 \pm 1 \text{ ms}$		$\beta^{-}n \ 0.13; \beta^{-} \ 100$
		160	1	-63.25 (6)	38 ± 4 s		β^{-} 100			27	(3/2+)	7.04 (7)	31.5 ± 1.3 ms		eta^- 100; eta^-n 2
		161	0	-61.8 (6)	$26 \pm 3 \text{ s}$		β^{-} 100			28	0+	11.29 (10)	$18.9\pm0.4~\mathrm{ms}$		β^{-} 100; $\beta^{-}n$ 12; β^{-} 3.6
		162	0	-58.69 (6)	$10.6 \pm 1 \text{ s}$		β^{-} 100			29	(3/2+)	18.4 (10)	14.8 ± 0.3 ms		β^{-} 100; $\beta^{-}n$ 28; $\beta^{-}2n$ 4
		163	0	-56.8 (10)	$7.7\pm0.4~{ m s}$		β^{-} 100			30	0+	23 (3)	7.3 ± 0.3 ms		$eta^- n$ 13; eta^- 8.9; eta^- 100
		164	0	-53.4 (4)	4.2 ± 0.2 s		β^{-} 100			31	0	30.8 (16)	$3.4\pm0.8~\mathrm{ms}$		eta^- 100; $eta^- n$
	~ .	165	0	-50.8 (5)	2.3 ± 0.2 s		β^{-} 100			32	0+	37 (5)	$3.5\pm0.9~\mathrm{ms}$		β^- 100; $\beta^- n$
64	Gd	135	(5/2+)	-44 (5)	$1.1 \pm 0.2 \text{ s}$		ϵ 100; ϵp 18	11	Na	20	2+	6.8502 (10)	$447.9\pm2.3~\mathrm{ms}$		ϵ 100; $\epsilon \alpha$ 20.05
		137	(7/2)	-51.2 (4)	$2.2 \pm 0.2 \text{ s}$		ϵ 100; ϵp			21	3/2+	-2.1846 (3)	$22.49\pm0.04~\mathrm{s}$		ϵ 100
		138	0+	-55.66 (20)	$4.7 \pm 0.9 \text{ s}$		ϵ 100			22	3+	-5.1815 (17)	$2.6027 \pm 0.001 \text{ y}$		ϵ 100
		139	(9/2-)	-57.63 (20)	$5.8\pm0.9~{ m s}$		$\epsilon p > 0.00; \epsilon > 0.00; \epsilon p >$			23	3/2+	-9.5298 (18)	stable	100%	
							$0.00; \epsilon > 0.00$			24	4+	-8.4179 (4)	$14.997 \pm 0.012 \ h$		β^- 100
		140	0+	-61.78 (3)	$15.8\pm0.4~\mathrm{s}$		ϵ 100			24m	1+	-7.9457 (4)	$20.18\pm0.1~\text{ms}$		IT 99.95; $\beta^-\approx 0.05$
		141	1/2+	-63.224 (20)	$14 \pm 4 \mathrm{s}$		ϵ 100; ϵp 0.03			25	5/2+	-9.3578 (12)	$59.1\pm0.6~{\rm s}$		β^- 100
		141m	11/2-	-62.846 (20)	$24.5\pm0.5~{ m s}$		ϵ 89; IT 11			26	3+	-6.861 (4)	$1.07128 \pm 2.5\text{E-}4 \text{ s}$		β^- 100
		142	0+	-66.96 (3)	$70.2 \pm 0.6 \text{ s}$		$\epsilon 100$								Continued on next name

Continued on next page

Continued on next page

Pocketbook of Data for Nuclear Engineer	ers
---	-----

Z B A J* $\Delta [MeV]$ $T_{1/2}$ $Abundance$ $Pex Mode$ 28 1+ -0.988 (10) 30.1 ± 6.ms β^+ n0.15; 100 14m β^- n0.15; 100 12m 14m 12m β^- n0.15; 100 14m β^- n0.15; 100 12m 14m 12m β^- n0.15; 100 12m 12m β^- n0.15; 100 14m β^- n0.15; 100 12m 12m β^- n0.15; 10m β	Table 8.1 – Continued from previous page							Table 8.1 – Continued from previous page								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \check{\Gamma}$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \check{\Gamma}$	Abundance	Decay Mode
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		27	5/2+	-5.518 (4)	$301 \pm 6 \text{ ms}$		$\beta^{-}n \ 0.13; \beta^{-} \ 100$			142m	n (8)-	-80.27 (3)	$2.0\pm0.2~\mathrm{ms}$		IT 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			28	1+	-0.988 (10)	$30.5\pm0.4~\mathrm{ms}$		β^{-} 100; $\beta^{-}n$ 0.58			143	5/2+	-82.96 (3)	$265 \pm 7 d$		$\epsilon 100$
No 3^{2} 8.374 (33) $48 \pm 2ns$ β^{-1} ($10, \beta^{-n} 3b)$ β^{-1} ($10, \beta^{-n} 3b)$ β^{-1} ($10, \beta^{-n} 3b)$ $\beta^{-n} 3b^{-1}$ ($10, \beta^{-n} 3b)$ $\beta^{-n} 3b^{-1}$ ($10, \beta^{-n} 3b)$ $\beta^{-n} 3b^{-1}$ ($10, \beta^{-n} 3b^{-1}$ ($10, \beta^{-1} 3b^{-1} 3b^{-1}$ ($10, \beta^{-1} 3b^{-1}$ ($10, \beta^{-1} 3b^{-1} 3b^{-1}$ ($10, \beta^{-1} 3b^{-1} 3b^{-1} 3b^{-1} 3b^{-1} 3b^{-1} 3b^{-1} $			29	3/2+	2.67 (12)	$44.9\pm1.2~\mathrm{ms}$		β^{-} 100; β^{-} n 21.5			144	5-	-81.416 (3)	$363 \pm 14 \text{ d}$		$\epsilon 100$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			30	2+	8.374 (23)	$48\pm2~\mathrm{ms}$		β^{-} 100; $\beta^{-}n$ 30;			145	5/2+	-81.267 (3)	$17.7\pm0.4~{ m y}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. ,			$\beta^{-}2n \ 1.15; \beta^{-}\alpha \ 5.5e-05$			146	3-	-79.454 (4)	5.53 ± 0.05 v		ϵ 66; β^- 34
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			31	3/2(+)	12.54 (10)	$17.0\pm0.4~\mathrm{ms}$		$\beta^{-}n$ 37; $\beta^{-}2n$ 0.87;			147	7/2+	-79.0416 (18)	$2.6234 \pm 2.0E-4$ y		β^- 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								$\beta^- 3n < 0.05; \beta^- 100$			148	1-	-76.865 (6)	5.368 ± 0.002 d		β^- 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			32	(3-,4-)	18.81 (12)	$13.2\pm0.4~\mathrm{ms}$		β^- 100; β^-n 24; β^-2n 8			148m	n 5-,6-	-76.727 (6)	$41.29 \pm 0.11 \text{ d}$		β^{-} 95.8; IT 4.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			33	(3/2+)	24 (6)	$8.0\pm0.4~\mathrm{ms}$		β^{-} 100; $\beta^{-}n$ 47; $\beta^{-}2n$ 13			149	7/2+	-76.063 (3)	53.08 ± 0.05 h		β^- 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			34	0	31.3 (5)	$5.5\pm1~\mathrm{ms}$		$\beta^- n \approx$ 15.00; β^- 100;			150	(1-)	-73.596 (20)	$2.68\pm0.02~\mathrm{h}$		β^{-} 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								$\beta^- 2n \approx 50.00$			151	5/2+	-73.389 (5)	$28.40\pm0.04~\mathrm{h}$		β^- 100
12 Mg 20 0+ 17.5 (3) 90.8 ± 2.4 ms $(10, cp > 27.0)$ 138 ± 0.2 m $\beta^{-1} = 00; IT \ge 0.00;$ 12 5/2 10.91 10.9399 (3) 3.8755 ± 0.0012 s $(10, cp > 22.6)$ 153 5/2 $70.678 (11)$ 5.25 ± 0.02 m $\beta^{-1} = 00; IT \ge 0.00;$ 23 3/2 -5.4732 (7) 11.317 ± 0.01 s $(10, cp > 27.0)$ 153 5/2 $70.678 (11)$ 5.25 ± 0.02 m $\beta^{-1} = 00; IT \ge 0.00;$ 24 0+ -13.9335 (13) stable 78.99% ± 0.04% 155 $5/2.4$ $-64.97 (3)$ $41.5 = 0.2 s$ $\beta^{-1} = 100; IT \ge 0.00;$ 25 5/2+ -13.1927 (5) stable 10% ± 0.01% 155 $(5/2, -62.37 (11))$ $10.5 \pm 0.1 s$ $\beta^{-1} = 00; IT \ge 0.00;$ 27 1/2+ -14.5866 (5) 9.458 ± 0.012 m $\beta^{-1} = 100$ 159 0.5 ± 0.15 $15 \pm 0.2 s$ $\beta^{-1} = 100; IT \ge 0.00;$ 29 3/2+ -10.003 (11) 1.30 \pm 0.12 s $\beta^{-1} = 100; \beta^{-1} = 10;$ 159 $0.2 \pm 0.15 s$ $100; cp > 0.00;$ 31 1/2(+) -3.91(1) 3.92 \pm 1.5 ms $\beta^{-1} = 100; \beta^{-1} = 1.5 m;$ <			35	0	37.8 (6)	$1.5\pm0.5~\mathrm{ms}$		eta^- 100; $eta^- n$			152	1+	-71.26 (3)	4.12 ± 0.08 m		β^{-} 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	Mg	20	0+	17.56 (3)	$90.8\pm2.4~\mathrm{ms}$		ϵ 100; $\epsilon p \approx$ 27.00			152m	n (8)	-71.11 (3)	$13.8 \pm 0.2 \text{ m}$		β^{-} 100: $IT > 0.00$:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			21	5/2+	10.913 (16)	$122 \pm 3 \text{ ms}$		$\epsilon\alpha <$ 0.50; ϵ 100; ϵp 32.6				(-)	(-)			$\beta^{-} 100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			22	0+	-0.3999 (3)	$3.8755 \pm 0.0012 \text{ s}$		ϵ 100			153	5/2-	-70.678 (11)	5.25 ± 0.02 m		β^- 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			23	3/2+	-5.4732 (7)	$11.317 \pm 0.011 \text{ s}$		ϵ 100			154	(3,4)	-68.49 (4)	2.68 ± 0.07 m		$\beta^{-} 100; \beta^{-} 100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			24	0+	-13.9335 (13)	stable	$78.99\% \pm 0.04\%$				155	5/2-	-66.97 (3)	$41.5\pm0.2~{ m s}$		β^- 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			25	5/2+	-13.1927 (5)	stable	$10\%\pm0.01\%$				156	4-	-64.21 (3)	$26.70\pm0.1~{ m s}$		β^- 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			26	0+	-16.2145 (3)	stable	$11.01\% \pm 0.03\%$				157	(5/2-)	-62.37 (11)	$10.56\pm0.1~{ m s}$		β^- 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			27	1/2+	-14.5866 (5)	$9.458 \pm 0.012 \text{ m}$		β^{-} 100			158	Ò	-59.12 (11)	$4.8\pm0.5~{ m s}$		β^{-} 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			28	0+	-15.0186 (20)	$20.915 \pm 0.009 \text{ h}$		β^{-} 100			159	0	-56.82 (15)	$1.5\pm0.2~{ m s}$		$\beta^{-} 100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			29	3/2+	-10.603 (11)	$1.30\pm0.12~{ m s}$		β^{-} 100	62	Sm	129	(1/2+.3/2)	+)-41.3 (7)	$0.55 \pm 0.1 { m s}$		$\epsilon 100; \epsilon p > 0.00$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			30	0+	-8.892 (13)	$335\pm17~\mathrm{ms}$		β^{-} 100			131	0	-49.6 (3)	1.2 ± 0.2 s		$\epsilon 100; \epsilon p > 0.00$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			31	1/2(+)	-3.19 (17)	$232\pm15~\mathrm{ms}$		β^{-} 100; $\beta^{-}n$ 1.7			132	0+	-54.7 (3)	4.0 ± 0.3 s		e 100: en
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			32	0+	-0.912 (18)	$86 \pm 5 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 5.5			133	(5/2+)	-56.83 (20)	2.89 ± 0.16 s		$\epsilon 100; \epsilon p > 0.00; \epsilon : IT : \epsilon p$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			33	3/2-	4.947 (22)	$90.5\pm1.6~\mathrm{ms}$		β^{-} 100; $\beta^{-}n$ 14			134	0+	-61.22 (20)	9.5 ± 0.8 s		ε 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			34	0+	8.56 (9)	$20\pm10~ms$		β^{-} 100; $\beta^{-}n$			135	(3/2+5/2)	+)-62.86(15)	10.3 ± 0.5 s		$\epsilon n 0.02 \cdot \epsilon 100$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			35	(7/2-)	15.64 (18)	$70 \pm 40 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 52			136	0+	-66 811 (12)	47 ± 28		€ 100
13AI224+ $18.2 (4)$ $91.1 \pm 0.5 \text{ ms}$ $e2p 1.1; e\alpha 0.04; e 100; e 1.02; f 40.04; e 100; e 1.28; e 100; e 1.28; e 100; e 1.28; e 100; e 1.22; f 44; e 0.489; f 10)2.57 \pm 0.1 \text{ m}e100235/2+6.748 (3)446 \pm 6 \text{ ms}e100; e p 1.22; e 1.2; e 0.0016; e \alpha 0.04; e 100; e 1.22; f 1.39; m 11/2-7.1.498 (12)3.1 \pm 0.2 \text{ m}e100244+-0.0489 (10)2.053 \pm 0.004 \text{ s}e100; e p 0.0016; e \alpha 0.04; e 100; e 0.02; m;e 10024m1+0.3768 (10)130 \pm 3 \text{ ms}1782; 5; e 17.5; e \alpha 0.03; e 100; e 0.03; e 100; e 0.02; m;e 99.69; 17 0.31; e 100; e 9.69; 17 0.31; e 100; e 100;$			36	0+	20.4 (5)	3.9 ± 1.3 ms		$\beta^- n$; $\beta^- 100$			137	(9/2-)	-68.03 (4)	45 ± 1 s		€ 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	Al	22	4+	18.2 (4)	$91.1\pm0.5~\mathrm{ms}$		$\epsilon 2p$ 1.1; $\epsilon \alpha$ 0.04; ϵ 100;			138	0+	-71 498 (12)	31 ± 0.2 m		€ 100
23 $5/2+$ $6.748 (3)$ $446 \pm 6 \text{ ms}$ $\epsilon 100; \epsilon p 1.22$ $139 \text{m} 11/2 -71.923 (11)$ $10.7 \pm 0.6 \text{ s}$ $IT 93.7; \epsilon 6.3$ 24 $4+$ $-0.0489 (10)$ $2.053 \pm 0.004 \text{ s}$ $\epsilon 100; \epsilon p 0.0016; \epsilon \alpha 0.04$ 140 $0+$ $-75.456 (12)$ $14.82 \pm 0.12 \text{ m}$ $\epsilon 100$ 24m $1+$ $0.3768 (10)$ $130 \pm 3 \text{ ms}$ $IT 82.5; \epsilon 17.5; \epsilon \alpha 0.03$ 141 $1/2+$ $-75.934 (9)$ $10.2 \pm 0.2 \text{ m}$ $\epsilon 100$ 25 $5/2+$ $-8.9161 (5)$ $7.183 \pm 0.012 \text{ s}$ $\epsilon 100$ $141 \text{ m} 11/2 -75.758 (9)$ $22.6 \pm 0.2 \text{ m}$ $\epsilon 99.69; IT 0.31$ 26 $5+$ $-12.2101 (6)$ $7.17E+5 \pm 0.24E+5 \text{ y}$ $\epsilon 100$ 142 $0+$ $-78.987 (4)$ $72.49 \pm 0.05 \text{ m}$ $\epsilon 100$ 26m $0+$ $-11.9818 (6)$ $6.3464 \pm 7.0E-4 \text{ s}$ $\epsilon 100$ 143 $3/2+$ $-79.517 (3)$ $8.75 \pm 0.06 \text{ m}$ $\epsilon 100$								ϵp 54.5			139	1/2+	-72.38 (11)	$2.57 \pm 0.1 \text{ m}$		€ 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			23	5/2+	6.748 (3)	$446\pm 6~\mathrm{ms}$		ϵ 100; ϵp 1.22			139m	11/2-	-71.923 (11)	10.7 ± 0.6 s		$IT 93.7: \epsilon 6.3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			24	4+	-0.0489 (10)	$2.053\pm0.004~\mathrm{s}$		ϵ 100; ϵp 0.0016; $\epsilon \alpha$ 0.04			140	0+	-75 456 (12)	14.82 ± 0.12 m		€ 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			24m	1+	0.3768 (10)	$130 \pm 3 \text{ ms}$		IT 82.5; ϵ 17.5; $\epsilon \alpha$ 0.03			141	1/2+	-75 934 (9)	102 ± 0.2 m		€ 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			25	5/2+	-8.9161 (5)	$7.183\pm0.012~\mathrm{s}$		ϵ 100			141m	11/2-	-75 758 (9)	22.6 ± 0.2 m		e 99 69: IT 0 31
$\frac{26m}{143} 0^{+} -\frac{11.9818}{3/2+} -\frac{6100}{143} \frac{112}{3/2+} -\frac{100}{79.57} \frac{100}{3} \frac{100}{3} \frac{100}{143} \frac{100}{3} \frac{100}{143} \frac{100}{3} \frac{100}{143} \frac{100}{3} \frac{100}{143} \frac{100}{1$			26	5+	-12.2101 (6)	$7.17E+5 \pm 0.24E+5 \text{ y}$		ϵ 100			142	0+	-78 987 (4)	$72.49 \pm 0.05 \text{ m}$		e 100
0F F (0, 1F10/F (10) (11) 1000/			26m	0+	-11.9818 (6)	$6.3464 \pm 7.0\text{E-4 s}$		ϵ 100			143	3/2+	-79 517 (3)	$875 \pm 0.06 \text{ m}$		e 100
$27 - 5/2^{+} - 17.1967$ (10) stable 100% 143m 11/278 763 (3) 66 + 2 s $T = 976 \pm 0.24$			27	5/2+	-17.1967 (10)	stable	100%				143m	11/2-	-78 763 (3)	66 ± 28		$UT 99 76: \epsilon 0.24$
28 3+ -16.8504 (12) 2.2414 ± 0.0012 m β^{-100} 143m2 23/2(-) -76.773 (3) 30 + 3 ms $IT 100$			28	3+	-16.8504 (12)	$2.2414 \pm 0.0012 \ m$		β^{-} 100			143m	223/2(-)	-76 723 (3)	$30 \pm 3 \text{ ms}$		IT 100
$29 5/2 + -18.2153 (12) \qquad 6.56 \pm 0.06 \text{ m} \qquad \beta^{-1} 100 \qquad 144 0 + -81.9657 (25) \qquad \text{stable} \qquad 3.07\% \pm 0.07\%$			29	5/2+	-18.2153 (12)	$6.56\pm0.06~\mathrm{m}$		β^{-} 100			144	0+	-81 9657 (25)	stable	$3.07\% \pm 0.07\%$	11 100
30 3+ -15.872 (14) 3.62 \pm 0.06 s β^{-100} 145 7/280 (515/(25)) 340 + 3 d (10)			30	3+	-15.872 (14)	$3.62\pm0.06~\mathrm{s}$		$\beta^{-} 100$			145	7/2-	-80 6515 (25)	$340 \pm 3 d$	0.07 /0 ± 0.07 /0	€ 100
31 $(3/2,5/2)+ -14.955(20)$ $644 \pm 25 \text{ ms}$ β^{-100} $146 + \beta^{-1} - 80.996(3) = 10.3E+7 + 0.5E+7 \text{ y}$ $\alpha = 100$			31	(3/2,5/2)+	-14.955 (20)	$644\pm25~\mathrm{ms}$		β^{-} 100			146	0+	-80 996 (3)	$10.3F+7 \pm 0.5F+7 v$		o 100
32 1+ -11.06 (9) 33.0 \pm 0.2 ms β^{-1} 100; β^{-n} 0.7 147 7/279 267 (18) 1 1060 F11 + 0.011 F11 y 14.99% + 0.18% or 100			32	1+	-11.06 (9)	33.0 ± 0.2 ms		β^{-} 100; $\beta^{-}n$ 0.7			147	7/2-	-79 2657 (18)	$1060E11 \pm 0.011E11 v$	$14.99\% \pm 0.18\%$	a 100
33 $(5/2)+$ -8.44 (7) 41.7 ± 0.2 ms $\beta^{-}n$ 8.5; β^{-} 100 148 0+ -79 335 (18) 7E+15 + 3E+15 y 11.24% + 0.1% or 100			33	(5/2)+	-8.44 (7)	$41.7\pm0.2~\mathrm{ms}$		$\beta^{-}n$ 8.5; β^{-} 100			148	0+	-79 3358 (18)	7F+15 + 3F+15 v	$11.99\% \pm 0.10\%$ $11.24\% \pm 0.1\%$	a 100
$34 0 -3.05 \ (6) 42 \pm 6 \ \text{ms} \qquad \beta^{-1} 100; \beta^{-n} 27 \qquad 149 7/2 -77135 \ (18) \text{stable} 13.8\% \pm 0.1\% 4100$			34	0	-3.05 (6)	$42\pm 6~\mathrm{ms}$		β^{-} 100; β^{-} n 27			149	7/2-	-77 135 (18)	etable	$13.82\% \pm 0.07\%$	a 100
$35 0 -0.22 (7) 37.2 \pm 0.8 \text{ ms}$ $\beta^{-1} 100 \beta^{-n} 38$ $150 0 \pm -77 (504 (17) \text{ stable} 738\% \pm 0.01\%$			35	0	-0.22 (7)	$37.2\pm0.8~\mathrm{ms}$		β^{-} 100; $\beta^{-}n$ 38			150	0+	-77 0504 (17)	stable	$738\% \pm 0.01\%$	
$36 0 5.95 (10) 90 \pm 40 \text{ ms} \qquad \beta^{-1} 100; \beta^{-n} < 31.00 \qquad 151 5/2 -74 575 (17) \qquad 90 \pm 8y \qquad \beta^{-1} 100 \beta$			36	0	5.95 (10)	$90\pm40~\mathrm{ms}$		β^{-} 100; $\beta^{-}n < 31.00$			151	5/2-	-74 5755 (17)	90 + 8 v	7.0070±0.0170	β^{-} 100
β^{-100} 37 0 9.81 (12) 10.7 ± 1.3 ms β^{-100} 152 0± -74.702 (17) 50±0 26.75% ± 0.16%			37	0	9.81 (12)	$10.7\pm1.3~\mathrm{ms}$		β^{-} 100			152	0+	-74 7622 (17)	stable	$26.75\% \pm 0.16\%$	p 100
$38 0 16.21 (25) 7.6 \pm 0.6 \text{ ms} \beta^{-}; \beta^{-}n 153 3/2 - 72 593 (17) 46 284 + 0.004 \beta^{-}; 20.73 \% \pm 0.10\% \beta^{-}; 100$			38	0	16.21 (25)	$7.6\pm0.6~\mathrm{ms}$		$\beta^-;\beta^-n$			152	3/2+	-772593(17)	46284 ± 0.004 b	$20.75 / 0 \pm 0.10 / 0$	8- 100
$\beta^{-}n;\beta^{-}$ 153 574 72.355 (17) 10.254 ± 0.05 m β^{-} 153 11/2 72.450 (17) 10.6 + 0.3 m β^{-} 10 10			39	0	21 (6)	$7.6\pm1.6~\mathrm{ms}$		$\beta^{-}n$; β^{-}			153m	11/2-	-72 4609 (17)	10.6 ± 0.3 ms		D 100 IT 100
14 Si 22 0+ 33 (4) 29 ± 2 ms $\epsilon 100; \epsilon p 32$ 154 0 ± 1.540 (17) 100 ± 0.5 lis 17100	14	Si	22	0+	33 (4)	$29 \pm 2 \text{ ms}$		ε 100; εp 32			15311	0+	-72.4509(17)	etable	$22.75\% \pm 0.20\%$	11 100
$23 (5/2) + 23.1(4) 42.3 \pm 0.4 \text{ ms} \epsilon 100; ep 71; e2p 3.6 155 2/2 72.4542(17) 5401e 22.75/6 \pm 0.27/6 72.4542(17) 5401e 22.75762(17) 540$			23	(5/2)+	23.1 (4)	42.3 ± 0.4 ms		$\epsilon 100; \epsilon p 71; \epsilon 2p 3.6$			154	3/2	-72.4047 (19)	$22.3 \pm 0.2 \text{ m}$	$22.73 / 0 \pm 0.29 / 0$	8- 100
24 0+ $10.755(19)$ 140.5 ± 1.5 ms ϵ 100; p 45 15 15 0+ ϵ 0.2 3; ϵ 0.2 m β 100			24	0+	10.755 (19)	$140.5\pm1.5~\mathrm{ms}$		ϵ 100; ϵp 45			156	0+	-70.1903 (19)	$22.3 \pm 0.2 \text{ m}$ $9.4 \pm 0.2 \text{ h}$		$\beta = 100$ $\beta = 100$
$25 5/2 + 3.827 (10) \qquad 220 \pm 3 \text{ ms} \qquad \epsilon 100; ep 35 \qquad $			25	5/2+	3.827 (10)	$220 \pm 3 \text{ ms}$		ε 100; εp 35			1.00	UT	-07.505 (7)	フ.モ 土 U.Z II		Continued on next page

i puge

Pocketbook of Data for Nuclear Engineers

Z I A D Abbed and column biology Z E A D Abbed vert in the set of	Table 8.1 – Continued from previous page						Table 8.1 – Continued from previous page									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$T_{1/2}, \tilde{\Gamma}$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$T_{1/2}, \dot{\Gamma}$	Abundance	Decay Mode
1 120 6/2-4 6/2-5 7<7-5			128	0+	-60.07 (20)	5 ± 0 s		ε 100; ερ			26	0+	-7.1409 (11)	$2.229 \pm 0.003 \text{ s}$		<i>ϵ</i> 100
130 137 132 134 640.0 12.1.5.3 100 12.2.5.3 12.3.5.3.5.3			129	(5/2+)	-62.23 (20)	$4.9\pm0.2~{ m s}$		$\epsilon > 0.00; \epsilon p > 0.00$			27	5/2+	-12.3843 (14)	$4.15\pm0.04~{ m s}$		$\epsilon 100$
13 (7)2, 0 272 (3) 25 ± 0.9 × 0.00 × 0.0			130	0+	-66.6 (3)	$21 \pm 3 \text{ s}$		ε 100			28	0+	-21.4927 (4)	stable	$92.223\%\pm 0.019\%$	
132 0.4 71.45 (2) 91.4 ± 8.5 + 100 50 0.4 24.42 5 (2) 30.0 kbc 30.2 2 kbc 30.2 kbc 30.2 kbc 30.2 kbc 30.2 kbc 30.2 kbc 70.0 kbc <td></td> <td></td> <td>131</td> <td>(5/2+)</td> <td>-67.77 (3)</td> <td>25.4 ± 0.9 s</td> <td></td> <td>$\epsilon 100: \epsilon p > 0.00$</td> <td></td> <td></td> <td>29</td> <td>1/2+</td> <td>-21,895 (5)</td> <td>stable</td> <td>$4.685\% \pm 0.008\%$</td> <td></td>			131	(5/2+)	-67.77 (3)	25.4 ± 0.9 s		$\epsilon 100: \epsilon p > 0.00$			29	1/2+	-21,895 (5)	stable	$4.685\% \pm 0.008\%$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			132	0+	-71 426 (24)	94 + 8 s		€ 100			30	0+	-24 4329 (22)	stable	$3092\% \pm 0.011\%$	
$\mathbf{i} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			133	(7/2+)	-72.33 (5)	70 ± 10 s		e 100			31	3/2+	-22 949 (4)	$157.3 \pm 0.3 \text{ m}$		β^{-} 100
144 0+ $-7564/(2)$ 8.5 ± 1.5 m -100 33 $3/2$ $2018(37)$ $6.11 = 021_8$ 7100 135m (7/2) 70.19 (9) $5.1 = 0.5m$ 500 530 0 $-14.36(8)$ $0.271 = 0.23$ 7100 7100 135m (1/2) $70.19(12)$ $53.1 = 0.5m$ 100 35 0^{-1} $-14.36(8)$ $0.271 = 0.23$ $7100, 71 = 0.00$ 137 $11/2$ $70.18(12)$ $50.1 \pm 0.0m$ 100 37 $0^{-1}/2$ $450(0)$ $39 = 0.01$ $7100, 71 = 0.00$ 139 $1/2$ 42.00 $50.02(3)$ $100, 71 = 0.00$ $7100, 71 = 0.00$ $7100, 71 = 0.00$ 139 $1/2$ $42.00(3)$ $297, 10.5m$ 100 100 10^{-1} $100, 0$ 35.29 30.01 $7100, 71 = 0.00$ 139 $1/2$ $42.00(3)$ $327, 10.22$ $1000, 0$ $43.2, 00.01$ $7100, 71 = 0.00$ 140 $0^{-1}/2$ $42.00(3)$ $32.99, 0.002$ $1000, 0$ </td <td></td> <td></td> <td>133m</td> <td>(1/2+)</td> <td>-72 2 (5)</td> <td>$\approx 70 \text{ s}$</td> <td></td> <td>$\epsilon \cdot IT$</td> <td></td> <td></td> <td>32</td> <td>0+</td> <td>-24 0776 (3)</td> <td>$153 \pm 19 \text{ v}$</td> <td></td> <td>β^{-} 100</td>			133m	(1/2+)	-72 2 (5)	$\approx 70 \text{ s}$		$\epsilon \cdot IT$			32	0+	-24 0776 (3)	$153 \pm 19 \text{ v}$		β^{-} 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			134	0+	-75 646 (12)	85 ± 15 m		e 100			33	3/2+	-20 5143 (7)	611 ± 0.21 s		β^{-} 100
$ \begin{array}{ $			135	9/2(-)	-76 214 (19)	12.4 ± 0.6 m		€ 100			34	0+	-19 957 (14)	2.77 ± 0.21 s		β^{-} 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			135m	(1/2+)	-76 149 (19)	$55 \pm 0.5 \text{ m}$		< > 99.97 $IT < 0.03$			35	0	-14 36 (4)	0.78 ± 0.12 s		β^{-} 100: $\beta^{-} n < 5.00$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			136	(1/21)	-79 199 (12)	50.65 ± 0.33 m		€ > 99.97,11 < 0.03			36	0+	-12.42 (6)	0.75 ± 0.06 s		β^{-} 100; $\beta^{-} n < 5.00$ β^{-} 100; $\beta^{-} n < 10.00$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			137	1/2+	-79 584 (12)	385 ± 1.55 m		< 100			37	$(7/2_{-})$	-6 59 (8)	$90 \pm 60 \text{ ms}$		β^{-} 100; β^{-} $n < 10.00$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			127m	1/2+	-79.364(12)	160 ± 0.15		E 100			20	(772-)	-0.39(0)	$47 E \pm 2 mc$		$\beta 100, \beta n 17$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			122	11/2-	-79.003 (12) 82.018 (12)	1.00 ± 0.13 S		- 100			40	0	2.32 (9) 5.42 (22)	$47.3 \pm 2 \mathrm{ms}$		ρ , ρ n
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			120	$\frac{0+}{2}$	-02.010 (12)	3.04 ± 0.09 m		£ 100			40	0+	121(4)	$33.0 \pm 1 \text{ ms}$		β , β n
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			120m	3/2+	-02.01 (3)	$29.7 \pm 0.3 \text{ m}$		E 100			41	0	12.1 (4)	$20.0 \pm 2.5 \text{ ms}$		p, p n : p = 100, p = 1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			13911	11/2-	-01.70 (3)	3.30 ± 0.2 M		£ 88.2; 11 11.8	15	п	42	(2+)	10.0(3) 10.07(20)	$12.3 \pm 3.3 \text{ ms}$		β 100; β n
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			140	0+	-04.23 (3)	3.37 ± 0.02 d		ε 100 100	15	P	20	(3+)	10.97 (20)	$43.7 \pm 0.0 \text{ ms}$		ϵ 100; ϵp
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			141	3/2+	-84.193 (4)	2.49 ± 0.03 h		ε 100 Κπ. 100			2/	1/2+	-0.72 (3)	$260 \pm 80 \text{ ms}$		$\epsilon p 0.07; \epsilon 100$
$ \begin{array}{ c c c c c c c } & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $			141m	11/2-	-83.436 (4)	$62.0 \pm 0.8 \text{ s}$	25 1 5 20/ 1 0 0 40/	<i>TT</i> 100; $\epsilon < 0.05$			28	3+	-7.149 (11)	$2/0.3 \pm 0.5 \text{ ms}$		ϵ 100; ϵp 0.0013;
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			142	0+	-85.9493 (18)	stable	$27.152\% \pm 0.04\%$				20	1 /2	16 0526 (6)	4.142 ± 0.015		εα 0.00086 - 100
$ \begin{bmatrix} 14 & 0 + & 8.5.743 (18) & 2295 + 12 + 0.164 + 15 & 25.98\% \pm 0.019\% & a 100 & a 100 & 174 & -24.02.00 (15) & 2495 + 0.04 m & e 100 \\ \hline 146 & 0 + & -80.922 (18) & stable & 17.189\% \pm 0.032\% & 31 & 1/24 & -24.3446 (7) & stable & 076 & 31 \\ \hline 146 & 0 + & -80.922 (18) & stable & 5.75\% \pm 0.02 & 37 & 1/24 & -24.3446 (7) & 2.53 + 0.11 & 37 & 7 & 100 \\ \hline 148 & 0 + & -7.3088 (24) & stable & 5.75\% \pm 0.02 & 37 & 1/24 & -24.3486 (8) & 12.43 \pm 0.08 & 7 & 7 & 100 \\ \hline 148 & 0 + & -7.3083 (3) & 0.79E19 \pm 0.07E19 & 5.38\% \pm 0.02\% & 37 & 0 & -19 (4) & 2.31 \pm 0.13 & 7 & 7 & 100 \\ \hline 150 & 0 + & -7.3083 (3) & 0.79E19 \pm 0.07E19 & 5.38\% \pm 0.02\% & 37 & 0 & -19 (4) & 2.31 \pm 0.13 & 7 & 7 & 100 \\ \hline 151 & 3/24 & -7.0346 (3) & 1.24 \pm 0.07 & 37 & 100 & 38 & (1/24) & -14.64 (7) & 0.64 \pm 0.14 & 7 & 100, 7 & n23 \\ \hline 152 & 0 + & -7.0152 (25) & 11.4 \pm 0.2 & 37 & 100 & 39 & (1/24) & -12.8 (8) & 0.23 \pm 0.04 & 7 & 100, 7 & n23 \\ \hline 153 & 3/2 + & -7.0152 (25) & 11.4 \pm 0.2 & 37 & 100 & 39 & (1/24) & -12.8 (8) & 0.23 \pm 0.04 & 7 & 100, 7 & n23 \\ \hline 153 & (3/2) - (5.24) (1 & 2.59 \pm 0.2 & 3 & 7 & 100 & 41 & (1/24) & 4.98 (8) & 100 \pm 5 ns & 7 & 100, 7 & n35 \\ \hline 154 & 0 + & -65.8 (11) & 2.59 \pm 0.2 & 3 & 7 & 100 & 41 & (1/24) & 4.98 (8) & 100 \pm 5 ns & 7 & 100, 7 & n35 \\ \hline 155 & 0 & -42.47 (15) & 8.9 \pm 0.2 & 3 & 6100 & -2.9 & 43 & (1/24) & 4.74 (4) & 35 \pm 1.5 ns & 7 & 100, 7 & n35 \\ \hline 158 & 0 + & -47.6 (6) & 1.0 \pm 0.3 & 6100 & -2.9 & 28 & 04 & 407 (16) & 125 \pm 1.0 ns & 7 & 7 & n \\ \hline 129 & (5/2) - & -52.5 (4) & 2.4 \pm 0.9 & 6100 & -2.9 & 28 & 04 & 407 (16) & 125 \pm 1.5 ns & 7 & 7.5 & -7.7 & n \\ \hline 129 & (5/2) - & -52.5 (4) & 2.4 \pm 0.9 & 6100 & -2.9 & 28 & 04 & 407 (16) & 125 \pm 1.5 ns & 6100, 7 & n & 07 \\ \hline 130 & (4.50) & -55.2 (5) & -55.4 & 27 & 6100 & -2.8 & 28 & 04 & 407 (16) & 125 \pm 1.5 ns & 6100, 7 & n & 0.07 & -7.07 \\ \hline 130 & (4.50) & -55.4 & 0.24 & 0.05 & -1.00 & -2.8 & 0.0 & -1.4062 (3) & 1.178 \pm 0.005 & -1.00 & -1.007 & -1.007 & -1.007 & -1.007 & -1.007 & -1.007 & -1.007 & -1.007 & -1.007 & -1.007 & -1.007 & -1.007 & -1.007 & -1.007 & -1.00$			143	7/2-	-84.0015 (18)	stable	$12.174\% \pm 0.026\%$	100			29	1/2+	-10.9520 (0)	4.142 ± 0.013 s		ε 100 100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			144	0+	-83.7473 (18)	$2.29E+15 \pm 0.16E+15$ y	$23.798\% \pm 0.019\%$	$\alpha 100$			30	1+	-20.2006 (3)	$2.498 \pm 0.004 \text{ m}$	1000/	ϵ 100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			145	7/2-	-81.4312 (18)	stable	$8.293\% \pm 0.012\%$				31	1/2+	-24.4405 (7)	stable	100%	07 100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			146	0+	-80.9252 (18)	stable	$17.189\% \pm 0.032\%$				32	1+	-24.3048 (4)	14.262 ± 0.014 d		β 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			147	5/2-	-78.146 (18)	$10.98 \pm 0.01 \text{ d}$		β^{-} 100			33	1/2+	-26.3373 (11)	25.35 ± 0.11 d		β 100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			148	0+	-77.4068 (24)	stable	$5.756\% \pm 0.021\%$				34	1+	-24.5486 (8)	$12.43 \pm 0.08 \text{ s}$		β 100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			149	5/2-	-74.3743 (24)	1.728 ± 0.001 h	E (200) + 0.0200/	β^{-} 100			35	1/2+	-24.8578 (19)	47.3 ± 0.7 s		β 100 $\beta = 100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			150	0+	-73.683 (3)	$0.79E19 \pm 0.07E19$ y	$5.638\% \pm 0.028\%$				30	4-	-20.251 (13)	5.6 ± 0.3 S		β 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			151	3/2+	-70.946 (3)	12.44 ± 0.07 m		β^{-} 100			3/		-19 (4)	2.31 ± 0.13 s		β 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			152	0+	-70.152 (25)	$11.4 \pm 0.2 \text{ m}$		$\beta^{-} 100$			38	(0-:4-)	-14.64 (7)	0.64 ± 0.14 s		β 100; β n 12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			153	(3/2)-	-67.34 (3)	$31.6 \pm 1 \text{ s}$		$\beta^{-} 100$			39	(1/2+)	-12.8 (8)	0.28 ± 0.04 s		β 100; β n 26
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			154	0+	-65.68 (11)	$25.9 \pm 0.2 \text{ s}$		$\beta^{-} 100$			40	(2-,3-)	-8.07 (11)	$125 \pm 25 \text{ ms}$		β^{-} 100; β^{-} n 15.8
1560+-60.52 (20)5.06 ± 0.13 s $\beta = 100$ 42 01.01 (21) $48.5 \pm 1.5 \text{ ms}$ $\beta = 100; \beta^{-n} 50$ 61Pm1280-47.6 (5)1.0 ± 0.3 s $\epsilon 100; \alpha; cp$ 43 $(1/2+)$ $47.(4)$ $36.5 \pm 1.5 \text{ ms}$ $\beta = 100; \beta^{-n} 100$ 129(5/2-)-52.5 (4) $2.4 \pm 0.9 \text{ s}$ $\epsilon 100; \alpha; cp$ 16S 27 $(5/2+)$ $17.(4)$ $36.5 \pm 2.5 \text{ ms}$ $\beta^{-1}, 00; \beta^{-n} 100$ 130(4.5.6)-55.2 (3) $2.6 \pm 0.2 \text{ s}$ $\epsilon 100; cp$ 16S 27 $(5/2+)$ $17.(4)$ $15.5 \pm 1.5 \text{ ms}$ $cp 2.3; c2p 1.1; e100$ 132(3+)-61.64 (20) $6.2 \pm 0.6 \text{ s}$ $\epsilon 100; cp \approx 5.0 \text{ c-5}$ 29 $5/2+$ $-3.16 (5)$ $187 \pm 4 \text{ ms}$ $e100; cp 47$ 133 $(1/2+)$ -65.24 (5) $13.5 \pm 2.1 \text{ s}$ $\epsilon 100; cp \approx 5.0 \text{ c-5}$ 30 $0+$ $-14.062 (3)$ $1.178 \pm 0.005 \text{ s}$ $e100; cp 47$ 133 $(1/2+)$ -66.74 (6) $\approx 5.s$ $\epsilon 100; c100$ 32 $0+$ $-26.055 (13)$ $stable$ $9.79\% \pm 0.26\%$ 135 $(1/2+)^{-69.91} (6)$ $49 \pm 3.s$ $e100; c100$ 34 $0+$ $-29.93 (6)$ $stable$ $0.75\% \pm 0.02\%$ 136 $(5-)$ $-71.2 (8)$ $107 \pm 6.s$ $e100; c100$ 34 $0+$ $-29.83 (61)$ $stable$ $0.01\% \pm 0.0\%$ 138 0 $-74.94 (3)$ $10 \pm 2.s$ $\epsilon 100$ 35 $3/2+$ $-28.8661 (7)$ 17.3 ± 0.04 $\beta^{-1} 100$ 13			155	0	-62.47 (15)	$8.9\pm0.2~{ m s}$		$\beta^{-} 100$			41	(1/2+)	-4.98 (8)	$100 \pm 5 \text{ ms}$		β^{-} 100; β^{-} n 30
61Pm1280-47.6 (5)1.0 ± 0.3 s $\epsilon 100; c_{1}; c_{1}$ 43(1/24)47.7 (4)36.5 ± 1.5 ms $\beta^{-1} 100; \beta^{-n} 100$ 129(5/2)-52.5 (4)2.4 ± 0.9 s $\epsilon 100; c_{1}; c_{1}$ 10015.4 ± 1.5 ms $\beta^{-2} 100; \beta^{-n} n$ 130(45.6)-55.2 (3)2.6 ± 0.2 s $\epsilon 100; c_{1}; c_{1}$ 10280+4.07 (16)125 ± 1.0 ms $\epsilon 23; c_{2}; 1.1; \epsilon 100$ 131(11/2)-69.59 (20)6.3 ± 0.8 s $\epsilon 100; c_{1}; c_{2} > 50.E^5$ 295/2.4-31.6 (5)187 ± 4 ms $\epsilon 100; c_{1}; c_{2} < 37, c_{2} < 32, c_{2} < 1.1; e^{-1} 00$ 133(3/2)-65.48 (5)(5.5 ± 1.5 s) $\epsilon 100; c_{1}; c_{2} > 50.E^5$ 295/2.4-31.6 (5)187 ± 4 ms $\epsilon 100; c_{2} > 27, c_{2} < 37, c_{2} < 1.0; c_{2} > 27, c_{2} < 37, c_{2} < 1.0; c_{2} > 27, c_{2} < 37, c_{2} < 1.0; c_{2} > 27, c_{2} < 27, c_{2} < 1.0; c_{2} > 27, c_{2} > 27, c_{2} < 1.0; c_{2} > 1.1; c_{1} > 0, c_{2} > 27, c_{2} > 27, c_{2} > 2, c_{2} > 1.1; c_{1} > 0, c_{2} > 27, c_{2} > 2, c_{2} > 1.1; c_{1} > 0, c_{2} > 27, c_{2} > 2, c_{2} > 1, c_{2} > 2, c_{2} > 2, c_{2} > 2, c_{2} > 2, c_{2} > 1, c_{2} > 2, c_{2} > 2$			156	0+	-60.52 (20)	$5.06\pm0.13~\mathrm{s}$		β^{-} 100			42	0	1.01 (21)	$48.5 \pm 1.5 \text{ ms}$		β^- 100; β^- n 50
129(5/2-)-52.5 (4)2.4 \pm 0.9 s ϵ 10044010.4 (8)18.5 \pm 2.5 ms β^{-} ; $\beta^{-}n$ 130(41,72)-59.59 (20)6.3 \pm 0.8 s ϵ 100; ϵp 2.0; ϵ^{-} 0.010280+407 (16)125 \pm 1.5 ms ϵ^{-} 2.3; ϵ^{-} 2.1; ϵ^{-} 100; ϵ^{-} 2.0132(3+)-61.64 (20)6.2 \pm 0.6 s ϵ^{-} 100; $\epsilon p \approx$ 5.0E-5295/2+-3.16 (5)187 \pm 4 ms ϵ^{-} 100; $\epsilon p 2.07$ 133(3/2+)-65.41 (5)13.5 \pm 2.1 s ϵ^{-} 100; $\epsilon p \approx$ 5.0E-5295/2+-3.16 (5)187 \pm 4 ms ϵ^{-} 100; $\epsilon p 2.07$ 133(3/2+)-65.41 (5)13.5 \pm 2.1 s ϵ^{-} 100300+ -14.062 (3)1.178 \pm 0.005 s ϵ^{-} 100134(2+)-66.74 (6) \approx 5 s ϵ^{-} 100, ϵ^{-} 100320+ -26.0155 (13)stable94.99% \pm 0.26%135(3/2+5/2+) -69.98 (6)49 \pm 3 s ϵ^{-} 100333/2+ -26.858 (14)stable0.75% \pm 0.02%136(5)-7.12 (8)107 \pm 6.5 ϵ^{-} 100340+ -29.9316 (6)stable4.25% \pm 0.02%13711/274.073 (13)2.4 \pm 0.1 m ϵ^{-} 100353/2+ -26.8964 (20)5.05 \pm 0.02 m β^{-} 1001380-74.94 (3)10 \pm 2 s ϵ^{-} 100380+ -30.6641 (19)stable0.01% \pm 0.01% -100.166 1380-74.94 (3)10 \pm 2 s ϵ^{-} 100<	61	Pm	128	0	-47.6 (5)	$1.0\pm0.3~{ m s}$		ϵ 100; α ; ϵp			43	(1/2+)	4.7 (4)	$36.5 \pm 1.5 \text{ ms}$		β^- 100; $\beta^- n$ 100
130(45.6)-55.2 (3) $2.6 \pm 0.2 \text{ s}$ $\epsilon 100; cp$ 16S27(5/2+)17 (4) $15.5 \pm 1.5 \text{ ms}$ $\epsilon p2.3; c2p 11; \epsilon 100$ 131(11/2-)-59.59 (20) $6.3 \pm 0.8 \text{ s}$ $\epsilon 100; cp \approx 5.0E-5$ 28 $0 + 4.07$ (16) $125 \pm 10 \text{ ms}$ $\epsilon 100; cp 47$ 133(3/2+)-65.41 (5) $13.5 \pm 2.1 \text{ s}$ $\epsilon 100; cp \approx 5.0E-5$ 29 $5/2+$ -3.16 (5) $187 \pm 4 \text{ ms}$ $\epsilon 100; cp 47$ 133(3/2+)-65.28 (5)< 8.8 \text{ s} $TT; \epsilon$ 31 $1/2+$ -19.043 (10) $2.572 \pm 0.013 \text{ s}$ $\epsilon 100$ 134(2+)-66.74 (6) $\approx 5 \text{ s}$ $\epsilon 100; cp (100)$ 32 $0 +$ -26.0155 (13) stable $94.99\% \pm 0.26\%$ 135 $(3/2+,5/2+)-69.98$ (6) $49 \pm 3 \text{ s}$ $\epsilon 100$ 33 $3/2+$ -26.5858 (14) stable $94.99\% \pm 0.26\%$ 135 $(3/2+,5/2+)-69.98$ (6) $49 \pm 3 \text{ s}$ $\epsilon 100$ 34 $0 +$ -29.316 (6) stable $4.25\% \pm 0.24\%$ 136 $(5-)$ -71.2 (8) $107 \pm 6 \text{ s}$ $\epsilon 100; \epsilon 100$ 35 $3/24 +$ -28.8461 (4) 87.37 ± 0.04 β^-100 137 $11/2 -74.073$ (13) $2.4 \pm 0.1 \text{ m}$ $\epsilon 100$ 6 $49 +$ -30.6641 (19) stable $0.01\% \pm 0.01\%$ 138 0 -74.92 (3) $3.24 \pm 0.05 \text{ m}$ $\epsilon 100$ 37 $7/2 -26.8964$ (20) $5.05 \pm 0.02 \text{ m}$ β^-100 138 0 -74.92 (3) $3.24 \pm 0.05 \text{ m}$ <			129	(5/2-)	-52.5 (4)	$2.4\pm0.9~ m s$		ϵ 100		_	44	0	10.4 (8)	$18.5 \pm 2.5 \text{ms}$		eta^- ; $eta^- n$
131 $(11/2)$ -595 (20) $6.3 \pm 0.8 \text{ s}$ $\epsilon 100$ 28 $0+$ $4.07 (16)$ $125 \pm 10 \text{ ms}$ $\epsilon 100; cp 20.7$ 132 $(3+)$ $-61.64 (20)$ $6.2 \pm 0.6 \text{ s}$ $\epsilon 100; cp \approx 5.0 \text{ E-5}$ 29 $5/2+$ $-3.16 (5)$ $187 \pm 4 \text{ ms}$ $\epsilon 100; cp 47$ 133 $(3/2+)$ $-65.41 (5)$ $13.5 \pm 2.1 \text{ s}$ $\epsilon 100$ 30 $0+$ $-14.062 (3)$ $1.178 \pm 0.005 \text{ s}$ $\epsilon 100$ 133m $(11/2-)$ $-65.28 (5)$ $< 8.8 \text{ s}$ $17; \epsilon$ 31 $1/2+$ $-19.043 (10)$ $2.572 \pm 0.013 \text{ s}$ $\epsilon 100$ 134 $(2+)$ $-66.74 (6)$ $\approx 5 \text{ s}$ $\epsilon 100; \epsilon 100$ 32 $0+$ $-26.0155 (13)$ stable $94.99\% \pm 0.26\%$ 135 $(3/2+5/2+)-69.98 (6)$ $49 \pm 3 \text{ s}$ $\epsilon 100$ 33 $3/2+$ $-26.585 (14)$ stable $0.75\% \pm 0.02\%$ 135m $(11/2-)$ $-69.91 (6)$ $45 \pm 4 \text{ s}$ $\epsilon 100$ 34 $0+$ $-29.936 (6)$ stable $4.25\% \pm 0.24\%$ 136 $(5-)$ $-71.2 (8)$ $107 \pm 6 \text{ s}$ $\epsilon 100; \epsilon 100$ 35 $3/2+$ $-28.8461 (4)$ $87.37 \pm 0.04 \text{ d}$ $\beta^- 100$ 137 $11/2 -74.073 (13)$ $2.4 \pm 0.1 \text{ m}$ $\epsilon 100$ 37 $7/2 -26.8964 (20)$ $5.05 \pm 0.02 \text{ m}$ $\beta^- 100$ 138 0 $-74.92 (3)$ $32.4 \pm 0.05 \text{ m}$ $\epsilon 100$ 37 $7/2 -26.8964 (20)$ $5.05 \pm 0.02 \text{ m}$ $\beta^- 100$ 138 0 $-74.92 (3)$ $32.4 \pm 0.05 $			130	(4,5,6)	-55.2 (3)	$2.6\pm0.2~{ m s}$		ϵ 100; ϵp	16	S	27	(5/2+)	17 (4)	$15.5 \pm 1.5 \text{ ms}$		$\epsilon p \ 2.3; \epsilon 2p \ 1.1; \epsilon \ 100$
132(3+)-61.64 (20) $6.2 \pm 0.6 \text{ s}$ $\epsilon 100; \epsilon p 45$ 29 $5/2+$ $-3.16 (5)$ $187 \pm 4 \text{ ms}$ $\epsilon 100; \epsilon p 47$ 133(3/2+)-65.41 (5)13.5 \pm 2.1 \text{ s} $\epsilon 100$ 30 $0+$ $-14.062 (3)$ $1.178 \pm 0.005 \text{ s}$ $\epsilon 100$ 133m(11/2-)-65.28 (5)< 8.8 \text{ s} $T; \epsilon$ 31 $1/2+$ $-19.043 (10)$ $2.572 \pm 0.013 \text{ s}$ $\epsilon 100$ 134(2+)-66.74 (6) $\approx 5 \text{ s}$ $\epsilon 100; \epsilon 100$ 32 $0+$ $-26.0155 (13)$ stable $94.99\% \pm 0.26\%$ 135 $(3/2+5/2+)-69.98 (6)$ $49 \pm 3 \text{ s}$ $\epsilon 100$ 31 $3/2+$ $-26.5858 (14)$ stable $0.75\% \pm 0.02\%$ 136m $(11/2-)$ $-69.91 (6)$ $45 \pm 4 \text{ s}$ $\epsilon 100$ 34 $0+$ $-29.9316 (6)$ stable $425\% \pm 0.24\%$ 136 $(5-)$ $-71.2 (8)$ $107 \pm 6 \text{ s}$ $\epsilon 100; \epsilon 100$ 35 $3/2+$ $-28.8461 (4)$ $87.37 \pm 0.04 \text{ d}$ $\beta^- 100$ 137 $11/2 -74.073 (13)$ $2.4 \pm 0.1 \text{ m}$ $\epsilon 100$ 36 $0+$ $-36.6641 (19)$ stable $0.01\% \pm 0.01\%$ 138 0 $-74.94 (3)$ $10 \pm 2 \text{ s}$ $\epsilon 100$ 37 $7/2 -26.8964 (20)$ $505 \pm 0.02 \text{ m}$ $\beta^- 100$ 138m 0 $-74.92 (3)$ $3.24 \pm 0.05 \text{ m}$ $\epsilon 100$ 39 $(7/2) -23.16 (5)$ $11.5 \pm 0.5 \text{ s}$ $\beta^- 100$ 139m $(11/2) -77.312 (14)$ $180 \pm 20 \text{ ms}$ $t7 9.94; \epsilon 0.0$			131	(11/2-)	-59.59 (20)	$6.3\pm0.8~{ m s}$		ϵ 100			28	0+	4.07 (16)	$125 \pm 10 \text{ ms}$		ϵ 100; ϵp 20.7
133 $(3/2+)$ -65.41 (5) 13.5 ± 2.1 s $\epsilon 100$ 30 $0+$ -14.062 (3) 1.178 ± 0.005 s $\epsilon 100$ $133m$ $(11/2-)$ -65.28 (5) < 8.8 s IT ; ϵ 31 $1/2+$ -19.043 (10) 2.572 ± 0.013 s $\epsilon 100$ 134 $(2+)$ -66.74 (6) ≈ 5 s $\epsilon 100$; $\epsilon 100$ 32 $0+$ -26.0155 (13)stable $94.99\% \pm 0.26\%$ 135 $(3/2+5/2+)-69.98$ (6) 49 ± 3 s $\epsilon 100$ 33 $3/2+$ -26.5858 (14)stable $0.75\% \pm 0.02\%$ $135m$ $(11/2-)$ -69.91 (6) 45 ± 4 s $\epsilon 100$ 34 $0+$ -29.9316 (6)stable $4.25\% \pm 0.24\%$ 136 $(5-)$ -71.2 (8) 107 ± 6 s $\epsilon 100$ 35 $3/2+$ -28.8461 (4) 87.37 ± 0.04 d β^-100 137 $11/2 -74.073$ (13) 2.4 ± 0.1 m $\epsilon 100$ 36 $0+$ -30.6641 (19)stable $0.01\% \pm 0.01\%$ 138 0 -74.94 (3) 10 ± 2 s $\epsilon 100$ 37 $7/2 -26.861$ (7) 170.3 ± 0.02 m β^-100 138 0 -74.94 (3) 10 ± 2 s $\epsilon 100$ 37 $7/2 -26.861$ (7) 170.3 ± 0.7 m β^-100 138 0 -74.94 (3) 32.4 ± 0.05 m $\epsilon 100$ 39 $(7/2) -23.16$ (5) 11.5 ± 0.5 s β^-100 139 $(5/2)+$ -77.5 (14) 4.15 ± 0.05 m $\epsilon 100$ 39 $(7/2) -23.16$ (5) 11.5 ± 0.5 s			132	(3+)	-61.64 (20)	$6.2\pm0.6~{ m s}$		ϵ 100; $\epsilon p \approx 5.0$ E-5			29	5/2+	-3.16 (5)	$187 \pm 4 \text{ ms}$		ϵ 100; ϵp 47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			133	(3/2+)	-65.41 (5)	$13.5\pm2.1~\mathrm{s}$		ϵ 100			30	0+	-14.062 (3)	$1.178 \pm 0.005 \text{ s}$		ϵ 100
134 $(2+)$ -66.74 (6) ≈ 5 s $\epsilon 100$; $\epsilon 100$ 32 $0+$ -26.0155 (13)stable $94.99\% \pm 0.26\%$ 135 $(3/2+5/2+)-69.98$ (6) 49 ± 3 s $\epsilon 100$ 33 $3/2+$ -26.5858 (14)stable $0.75\% \pm 0.02\%$ 135 $(1/2-)$ -69.91 (6) 45 ± 4 s $\epsilon 100$ 34 $0+$ -29.9316 (6) $stable$ $4.25\% \pm 0.24\%$ 136 $(5-)$ -71.2 (8) 107 ± 6 s $\epsilon 100$, $\epsilon 100$ 35 $3/2+$ -28.8461 (4) 87.37 ± 0.04 d $\beta^{-} 100$ 137 $11/2 -74.94$ (3) 10 ± 2 s $\epsilon 100$ 36 $0+$ -30.6641 (19) $stable$ $0.01\% \pm 0.01\%$ 1380 -74.94 (3) 10 ± 2 s $\epsilon 100$ 37 $7/2 -26.8964$ (20) 5.05 ± 0.02 m $\beta^{-} 100$ 139 $(5/2)+$ -77.5 (14) 4.15 ± 0.05 m $\epsilon 100$ 39 $(7/2) -23.16$ (5) 11.5 ± 0.5 s $\beta^{-} 100$ 139 $(1/2) -77.312$ (14) 180 ± 20 ms $IT 99.94; \epsilon 0.06$ 40 $0+$ -22.93 (11) 8.8 ± 2.2 s $\beta^{-} 100$			133m	(11/2-)	-65.28 (5)	< 8.8 s		IT ; ϵ			31	1/2+	-19.043 (10)	$2.572 \pm 0.013 \text{ s}$		ϵ 100
135 $(3/2+,5/2+)-69.98$ (6) 49 ± 3 s ϵ 10033 $3/2+$ -26.588 (14)stable $0.75\% \pm 0.02\%$ 135m $(11/2-)$ -69.91 (6) 45 ± 4 s ϵ 100 34 $0+$ -29.9316 (6) $stable$ $4.25\% \pm 0.24\%$ 136 $(5-)$ -71.2 (8) 107 ± 6 s ϵ 100, ϵ 100 35 $3/2+$ -28.8461 (4) 87.37 ± 0.04 β^{-} 100137 $11/2 -74.073$ (13) 2.4 ± 0.1 m ϵ 100 36 $0+$ -30.6641 (19) $stable$ $0.01\% \pm 0.01\%$ 138 0 -74.94 (3) 10 ± 2 s ϵ 100 37 $7/2 -26.8964$ (20) 5.05 ± 0.02 m β^{-} 100138m 0 -74.92 (3) 3.24 ± 0.05 m ϵ ϵ 38 $0+$ -26.861 (7) 170.3 ± 0.7 m β^{-} 100139m $(11/2) -77.51(14)$ 4.15 ± 0.05 m ϵ 100 39 $(7/2) -23.16$ (5) 11.5 ± 0.5 s β^{-} 100139m $(11/2) -77.312$ (14) 180 ± 20 ms IT 99.94; ϵ 0.06 40 $0+$ -22.93 (11) 8.8 ± 2.2 s β^{-} 100			134	(2+)	-66.74 (6)	$\approx 5 \text{ s}$		<i>ϵ</i> 100; <i>ϵ</i> 100			32	0+	-26.0155 (13)	stable	$94.99\% \pm 0.26\%$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			135	(3/2+,5/2	+)-69.98 (6)	$49 \pm 3 \text{ s}$		ϵ 100			33	3/2+	-26.5858 (14)	stable	$0.75\% \pm 0.02\%$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			135m	(11/2-)	-69.91 (6)	$45 \pm 4 \mathrm{~s}$		ϵ 100			34	0+	-29.9316 (6)	stable	$4.25\% \pm 0.24\%$	
137 $11/2$ - $-74.073 (13)$ $2.4 \pm 0.1 \text{ m}$ $\epsilon 100$ 36 $0 + -30.6641 (19)$ stable $0.01\% \pm 0.01\%$ 1380 $-74.94 (3)$ $10 \pm 2 \text{ s}$ $\epsilon 100$ 37 $7/2$ - $-26.8964 (20)$ $5.05 \pm 0.02 \text{ m}$ $\beta^- 100$ 138m0 $-74.92 (3)$ $3.24 \pm 0.05 \text{ m}$ ϵ 38 $0 + -26.861 (7)$ $170.3 \pm 0.7 \text{ m}$ $\beta^- 100$ 139 $(5/2) + -77.5 (14)$ $4.15 \pm 0.05 \text{ m}$ $\epsilon 100$ 39 $(7/2) - 23.16 (5)$ $11.5 \pm 0.5 \text{ s}$ $\beta^- 100$ 139m $(11/2)77.312 (14)$ $180 \pm 20 \text{ ms}$ $IT 99.94; \epsilon 0.06$ 40 $0 + -22.93 (11)$ $8.8 \pm 2.2 \text{ s}$ $\beta^- 100$			136	(5-)	-71.2 (8)	$107\pm 6~{ m s}$		<i>ϵ</i> 100; <i>ϵ</i> 100			35	3/2+	-28.8461 (4)	$87.37 \pm 0.04 \text{ d}$		$\beta^{-} 100$
1380-74.94 (3)10 ± 2 s ϵ 100377/226.8964 (20) $5.05 \pm 0.02 \text{ m}$ β^- 100138m0-74.92 (3) $3.24 \pm 0.05 \text{ m}$ ϵ 380+-26.861 (7)170.3 \pm 0.7 \text{ m} β^- 100139(5/2)+-77.5 (14) $4.15 \pm 0.05 \text{ m}$ ϵ 10039(7/2)23.16 (5)11.5 \pm 0.5 s β^- 100139m(11/2)77.312 (14)180 ± 20 msIT 99.94; ϵ 0.06400+-22.93 (11)8.8 ± 2.2 s β^- 100			137	11/2-	-74.073 (13)	$2.4\pm0.1~\text{m}$		e 100			36	0+	-30.6641 (19)	stable	$0.01\% \pm 0.01\%$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			138	0	-74.94 (3)	$10\pm2~{ m s}$		ϵ 100			37	7/2-	-26.8964 (20)	$5.05\pm0.02~\text{m}$		β^- 100
139 (5/2)+ -77.5 (14) 4.15 \pm 0.05 m ϵ 100 39 (7/2)- -23.16 (5) 11.5 \pm 0.5 s β^- 100 139m (11/2)- -77.312 (14) 180 \pm 20 ms IT 99.94; ϵ 0.06 40 0+ -22.93 (11) 8.8 \pm 2.2 s β^- 100			138m	0	-74.92 (3)	$3.24\pm0.05~m$		ϵ			38	0+	-26.861 (7)	$170.3\pm0.7~\mathrm{m}$		β^- 100
$139m (11/2)77.312 (14) 180 \pm 20 ms IT 99.94; \epsilon 0.06 40 0+ -22.93 (11) 8.8 \pm 2.2 s \beta^{-1} 100 \beta^{-1} 10$			139	(5/2)+	-77.5 (14)	$4.15\pm0.05~\text{m}$		ϵ 100			39	(7/2)-	-23.16 (5)	$11.5\pm0.5~{\rm s}$		β^- 100
			139m	(11/2)-	-77.312 (14)	$180\pm20~ms$		IT 99.94; ϵ 0.06			40	0+	-22.93 (11)	$8.8\pm2.2~\mathrm{s}$		β^- 100
140 1+ -78.21 (4) 9.2 \pm 0.2 s ϵ 100; ϵ 100 41 (7/2-) -19.09 (6) 1.99 \pm 0.05 s β^- 100; $\beta^- n$			140	1+	-78.21 (4)	$9.2\pm0.2~\mathrm{s}$		ϵ 100; ϵ 100			41	(7/2-)	-19.09 (6)	$1.99\pm0.05~s$		β^- 100; $\beta^- n$
141 5/2+ -80.523 (14) 20.90 \pm 0.05 m ϵ 100 42 0+ -17.68 (12) 1.03 \pm 0.03 s β^- 100			141	5/2+	-80.523 (14)	$20.90\pm0.05~\text{m}$		ϵ 100			42	0+	-17.68 (12)	$1.03\pm0.03~s$		β^- 100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			142	1+	-81.16 (3)	$40.5\pm0.5~{\rm s}$		e 100			43	0	-12.07 (10)	$0.28\pm0.03~s$		$\beta^{-}n$ 40; β^{-} 100

Continued on next page

Pocketbook of Data for Nuclear Engineers

				Table	e 8.1 – Continued from previ	ous page						Table	8.1 – Continued from previ	ious page	
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$T_{1/2}, \Gamma$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$T_{1/2}, \Gamma$	Abundance	Decay Mode
		44	0+	-9.1 (14)	$100 \pm 1 \text{ ms}$		$\beta^{-} 100; \beta^{-} n 18$	-		142	0+	-84.532 (3)	> 5É+16 y	$11.114\% \pm 0.051\%$	$2\beta^-$
		45	0	-4 (7)	$68 \pm 2 \text{ ms}$		β^{-} 100: β^{-} n 54			143	3/2-	-81 605 (3)	33.039 ± 0.006 h		β^{-} 100
		46	0+	0(AP)	50 ± 2 ms		β^{-} 100			144	0+	-80 431 (3)	$284.91 \pm 0.05 d$		β^{-} 100
17	CI	31	0	-7.07(5)	$150 \pm 25 \text{ ms}$		β 100 cm 0.7			145	$(5/2_{-})$	-77.09(4)	3.01 ± 0.06 m		β^{-} 100
17	CI	22	1	12 2251 (0)	208 ± 1 ms		e 100, ep 0.7			140	(3/2-)	75 641 (19)	12.52 ± 0.12 m		β 100 β = 100
		32	1+	-15.5551 (9)	$290 \pm 1 \text{ Ins}$		ϵ 100; $\epsilon \alpha$ 0.05; ϵp 0.05			140	(F(2))	-73.041 (10)	15.52 ± 0.13 m		β 100 2= 100
		33	3/2+	-21.0032 (4)	2.511 ± 0.004 s		ε 100 100			14/	(5/2-)	-72.014 (9)	56.4 ± 1.8		β 100
		34	0+	-24.44 (7)	1.5264 ± 0.0014 s		<i>ε</i> 100			148	0+	-70.398 (11)	56 ± 1 s		β 100
		34m	3+	-24.2936 (7)	32.00 ± 0.04 m		ϵ 55.4; <i>IT</i> 44.6			149	(3/2-)	-66.67 (10)	$5.3 \pm 0.2 \text{ s}$		$\beta^{-} 100$
		35	3/2+	-29.0135 (4)	stable	$75.76\% \pm 0.1\%$				150	0+	-64.849 (12)	$4.0\pm0.6~{ m s}$		β^{-} 100
		36	2+	-29.5219 (4)	$3.01E+5 \pm 0.02E+5 \text{ y}$		β^{-} 98.1; ϵ 1.9			151	(5/2+)	-61.225 (18)	$1.76\pm0.06~{ m s}$		β^{-} 100; β^{-}
		37	3/2+	-31.7615 (5)	stable	$24.24\% \pm 0.1\%$				152	0+	-59.31 (20)	$1.4\pm0.2~{ m s}$		$\beta^{-} 100$
		38	2-	-29.7981 (10)	$37.24 \pm 0.05 \text{ m}$		β^- 100	59	Pr	121	(3/2)	-41.4 (7)	10 +6-3 ms		$p \ 100$
		38m	5-	-29.1267 (10)	$715 \pm 3 \text{ ms}$		IT 100			122	0	-44.7 (5)	$pprox 0.5 \ m s$		ϵ ?
		39	3/2+	-29.8002 (17)	$56.2 \pm 0.6 \text{ m}$		$\beta^{-} 100$			123	0	-50.1 (6)	$pprox 0.8~{ m s}$		ϵ ?
		40	2-	-27.56 (3)	1.35 ± 0.02 m		$\beta^{-} 100$			124	0	-53 (6)	$1.2\pm0.2~{ m s}$		$\epsilon p > 0.00; \epsilon 100$
		41	(1/2+)	-27.31 (7)	$38.4\pm0.8~\mathrm{s}$		β^- 100			125	0	-57.7 (4)	$3.3 \pm 0.7 \mathrm{~s}$		ϵ 100: ϵp
		42	0	-24.91 (14)	$6.8\pm0.3~{ m s}$		β^{-} 100			126	>3	-60.14 (20)	$3.14 \pm 0.22 \text{ s}$		ϵ 100: ϵp
		43	(1/2+)	-24 41 (21)	313 ± 0.09 s		β^{-} 100			127	0	-64.32 (20)	42 ± 0.3 s		€ 100
		44	(2-)	-20.61(14)	0.56 ± 0.010 s		$\beta^{-} 100^{\circ} \beta^{-} n < 8.00^{\circ}$			128	456	-66 33 (3)	2.84 ± 0.09 s		€ 100
		15	(1/2+)	-18 36 (10)	$413 \pm 25 \text{ ms}$		$\beta^{-100}, \beta^{-n} < 0.00$			120	(11/2)	-69.77 (3)	30 ± 4 s		< > 0.00
		45	(1/2+)	12.81 (16)	410 ± 20 ms		$\beta = 100, \beta = m 60$			120	$(11/2^{-})$	-09.77 (3)	30 ± 43		e > 0.00
		47	0	10.1 (9)	202 ± 2113		$\beta = 100, \beta = 0.00$			121	(7,0)	74.2 (5)	151 ± 0.02 m		e 100, e 100, e 100
10		4/	0 5 (0(.)	-10.1 (6)	101 ± 0 Ins		$\beta = 100; \beta = n > 0.00$			101	(3/2+)	-74.3 (3)	1.51 ± 0.02 m		ε 100 Ιπος 1 - 2 ζ
18	Ar	31	5/2(+)	11.29 (21)	$14.4 \pm 0.6 \text{ ms}$		ϵ 100; ϵp 62; $\epsilon 2p$ 8.5			131m	(11/2-)	-74.15 (5)	5.73 ± 0.2 s		$11'96.4; \epsilon 3.6$
		32	0+	-2.2003 (18)	$100.5 \pm 0.3 \mathrm{ms}$		ϵ 100; ϵp 35.6			132	(2)+	-75.21 (6)	$1.6 \pm 0.3 \text{ m}$		$\epsilon 100$
		33	1/2+	-9.3843 (4)	$1/3.0 \pm 2 \text{ ms}$		<i>ϵ</i> 100; <i>ϵp</i> 38.7			133	(3/2+)	-77.937 (12)	$6.5 \pm 0.3 \text{ m}$		ϵ 100
		34	0+	-18.3773 (3)	$844.5 \pm 3.4 \text{ ms}$		ϵ 100			133m	(11/2-)	-77.745 (12)	1.1 ± 0.2 s		<i>IT</i> 100
		35	3/2+	-23.0473 (7)	$1.7756 \pm 0.001 \text{ s}$		ϵ 100			134	(6-)	-78.51 (4)	$\approx 11 \text{ m}$		ϵ 100; ϵ 100
		36	0+	-30.2315 (3)	stable	$0.3336\% \pm 0.0021\%$				135	3/2(+)	-80.936 (12)	24 ± 1 m		ϵ 100
		37	3/2+	-30.9476 (21)	$35.04 \pm 0.04 \text{ d}$		<i>ϵ</i> 100			136	2+	-81.329 (12)	13.1 ± 0.1 m		ϵ 100
		38	0+	-34.7147 (25)	stable	$0.0629\% \pm 0.0007\%$				137	5/2+	-83.179 (11)	1.28 ± 0.03 h		ϵ 100
		39	7/2-	-33.242 (5)	$269 \pm 3 \text{ y}$		β^{-} 100			138	1+	-83.127 (14)	$1.45\pm0.05~\mathrm{m}$		ϵ 100
		40	0+	-35.0398 (22)	stable	$99.6035\% \pm 0.0025\%$				138m	7-	-82.763 (14)	$2.12\pm0.04~\mathrm{h}$		ϵ 100
		41	7/2-	-33.0675 (3)	$109.61 \pm 0.04 \text{ m}$		$\beta^{-} 100$			139	5/2+	-84.821 (8)	$4.41\pm0.04~\mathrm{h}$		$\epsilon 100$
		42	0+	-34,423 (6)	$32.9 \pm 1.1 \text{ v}$		β^{-} 100			140	1+	-84.691 (6)	$3.39 \pm 0.01 \text{ m}$		<i>ϵ</i> 100
		43	(5/2-)	-32.01 (5)	5.37 ± 0.06 m		β^{-} 100			141	5/2+	-86.0158 (22)	stable	100%	
		44	0+	-32 6732 (16)	$11.87 \pm 0.05 \text{ m}$		β^{-} 100 β^{-} 100			142	2-	-83 7877 (22)	19.12 ± 0.04 h		β^{-} 99 98: $\epsilon = 0.02$
		45	5/2-7/2-	-29 7707 (5)	21.48 ± 0.15 s		β^{-} 100			142m	5-	-83 784 (22)	$14.6 \pm 0.5 \text{ m}$		IT 100
		46	0+	-29.73(4)	84 ± 0.6 s		$\beta = 100$			1/12	7/2+	-83.0674.(23)	$13.57 \pm 0.02 d$		β^{-} 100
		47	(2/2)	25.21 (9)	1.22 ± 0.02		β^{-100}			143	0	80.75 (2)	17.28 ± 0.05 m		β^{-} 100 β^{-} 100
		19	$(3/2)^{-}$	-22.6(7)	1.25 ± 0.055		$\beta = 100, \beta = n < 0.20$ $\beta = 100$			1//	3_	-80 601 (2)	72 ± 0.05 m		P = 100 $IT = 0.02 \cdot B^{-} = 0.07$
		40	0+	-22.6 (7)	$473 \pm 40 \text{ ms}$		β 100 2- 100 2- (-			14411	. 3-	-60.691 (3)	7.2 ± 0.3 III		11 99.93; p 0.07
		49	0	-16.8 (8)	$170 \pm 50 \text{ ms}$		β 100; β n 65			145	7/2+	-79.626 (7)	5.984 ± 0.01 h		β 100
10		50	0+	-12.8 (9)	$85 \pm 30 \text{ ms}$		β^{-} 100; β^{-} n 35			146	(2)-	-76.69 (4)	24.15 ± 0.18 m		β^{-} 100
19	К	35	3/2+	-11.1729 (5)	$178 \pm 8 \text{ ms}$		ϵ 100; ϵp 0.37			147	(5/2+)	-75.444 (16)	$13.4 \pm 0.3 \text{ m}$		$\beta^{-} 100$
		36	2+	-17.4173 (3)	$342 \pm 2 \text{ ms}$		ϵ 100; ϵp 0.05; $\epsilon \alpha$ 0.0034			148	1-	-72.535 (15)	$2.29\pm0.02~\mathrm{m}$		β^- 100
		37	3/2+	-24.8001 (9)	$1.226\pm0.007~\mathrm{s}$		ϵ 100			148m	(4)	-72.445 (15)	$2.01\pm0.07~\text{m}$		β^- 100
		38	3+	-28.8006 (25)	$7.636 \pm 0.018 \text{ m}$		ϵ 100			149	(5/2+)	-71.039 (10)	$2.26\pm0.07~\text{m}$		β^- 100
		38m	0+	-28.6702 (25)	$924.3\pm0.3~ms$		ϵ 99.97; IT 0.03			150	(1)-	-68.299 (9)	$6.19\pm0.16~s$		β^- 100
		39	3/2+	-33.8071 (5)	stable	$93.2581\% \pm 0.0044\%$				151	(3/2-)	-66.78 (12)	$18.90\pm0.07~\mathrm{s}$		β^- 100
		40	4-	-33.5354 (6)	$1.248E+9 \pm 0.003E+9 v$	$0.0117\% \pm 0.0001\%$	β^{-} 89.28; ϵ 10.72			152	(4+)	-63.758 (19)	$3.57\pm0.18~{\rm s}$		β^- 100
		41	3/2+	-35.5595 (4)	stable	$6.7302\% \pm 0.0044\%$				153	0	-61.581 (14)	$4.28\pm0.11~{\rm s}$		β^- 100
		42	2-	-35.022 (11)	12.321 ± 0.025 h		$\beta^{-} 100$			154	(3+)	-58.19 (15)	$2.3 \pm 0.1 \text{ s}$		β^{-} 100
		43	3/2+	-36.5753 (4)	22.3 ± 0.1 h		β^{-} 100	60	Nd	125	(5/2)	-47.4 (4)	0.65 ± 0.15 s		$\epsilon 100; \epsilon n > 0.00$
		44	2-	-35 7814 (4)	22.0 ± 0.11 m		β^{-} 100	00	1.444	127	0	-55.3 (4)	18 ± 0.4 s		e 100; ep
		11	-	55.7014 (4)	22.10 ± 0.17 III		p 100			14/	0	55.5 (4)	1.0 ± 0.4 3		e 100, ep

Continued on next page

Continued on next page

				Table	e 8.1 – Continued from prev	ious page						Table	e 8.1 – Continued from previo	ous page	
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\hat{\Gamma}}$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \hat{\mathbf{\Gamma}}$	Abundance	Decay Mode
		129	3/2+	-81.326 (21)	$11.6 \pm 0.2 \text{ m}$		<i>ϵ</i> 100			45	3/2+	-36.6156 (5)	17.81 ± 0.61 m		$\beta^{-} 100$
		129m	11/2-	-81.154 (21)	$0.56 \pm 0.05 \text{ s}$		<i>IT</i> 100			46	(2-)	-35.4139 (7)	$105\pm10~{ m s}$		β^{-} 100
		130	3(+)	-81.63 (3)	8.7 ± 0.1 m		ϵ 100			47	1/2+	-35.709 (3)	$17.50 \pm 0.24 \text{ s}$		β^{-} 100
		131	3/2+	-83.77 (3)	$59 \pm 2 \text{ m}$		<i>ϵ</i> 100			48	(2-)	-32.2852 (23)	$6.8\pm0.2~\mathrm{s}$		β^{-} 100: $\beta^{-}n$ 1.14
		132	2-	-83.72 (4)	4.8 ± 0.2 h		<i>€</i> 100			49	(1/2+.3/2+)-29.612 (3)	1.26 ± 0.05 s		$\beta^{-} 100; \beta^{-} n 86$
		132m	6-	-83.54 (4)	24.3 ± 0.5 m		IT 76: e 24			50	(012-)	-25.736 (10)	$472 \pm 4 \text{ ms}$		β^{-} 100: β^{-} n 29
		133	5/2+	-85 49 (3)	3912 ± 0.008 h		€ 100			51	(1/2+3/2+))-21 6 (6)	$365 \pm 5 \text{ ms}$		$\beta^{-} n 47: \beta^{-} 100$
		134	1+	-85 219 (20)	$645 \pm 0.16 \text{ m}$		€ 100			52	(2-)	-16 (7)	$118 \pm 6 \mathrm{ms}$		β^{-} 100: β^{-} $n \approx 73.00$
		135	5/2+	-86 651 (10)	195 ± 0.10 h		€ 100			53	(2/2+)	-11 1 (7)	$30 \pm 5 \text{ ms}$		β^{-} 100; $\beta^{-}n \approx 75.00$
		136	1+	-86.04 (5)	9.87 ± 0.03 m		€ 100 € 100			55	(3/21)	11.1 (7)	50 ± 5 mb		$\beta^{-100}, \beta^{-}n \sim 75.00, \beta^{-}2n < 10$
		136m	(8+)	-85.81 (5)	$114 \pm 3 \text{ ms}$		IT 100			54	0	-4.3 (9)	$10 \pm 5 \text{ms}$		$\beta^{-} 100; \beta^{-} n > 0.00$
		137	$\frac{(01)}{7/2+}$	-87 106 (12)	6F+4 + 2F+4 v		ε 100	20	Ca	35	Õ	4.79 (20)	$25.7 \pm 0.2 \text{ ms}$		$\epsilon 100; \epsilon p 95.9; \epsilon 2p 4.1$
		138	5+	-86 521 (3)	$1.02F \pm 11 \pm 0.01F \pm 11 v$	$0.08881\% \pm 0.00071\%$	ε 65 6· β ⁻ 34 4			36	0+	-6.45 (4)	$102 \pm 2 \text{ ms}$		e 100: ep 54 3
		139	7/2+	-87 2282 (23)	stable	$999119\% \pm 0.00071\%$	ε 05.0, β - 54.4			37	3/2+	-13.1357 (8)	$181.1 \pm 1 \text{ ms}$		ϵ 100; ϵp 82.1
		140	3-	-84 3179 (23)	1.67855 ± 1.2 F-4 d)).)II)//0 ± 0.007 I/0	8- 100			38	0+	-22 0584 (3)	$440 \pm 12 \text{ ms}$		e 100
		140	$(7/2_{\pm})$	-82 934 (4)	3.92 ± 0.03 h		β^{-} 100			39	3/2+	-27 2827 (6)	859.6 ± 1.4 ms		e 100
		141	(7 / 2+) 2_	-80.022(7)	91.1 ± 0.5 m		$\beta = 100$			40	0+	-34 8463 (21)	> 3.0E+21 v	$96.94\% \pm 0.16\%$	26
		1/12	$(7/2)_{+}$	-78 171 (7)	14.2 ± 0.1 m		β^{-} 100			41	7/2-	-35 1379 (14)	$1.02F+5 \pm 0.07F+5 v$	2012 1/0 ± 0110/0	£ 100
		143	$(7/2)^+$	-70.171(7) -74.822(18)	14.2 ± 0.1 m		$\beta = 100$			42	0+	-38 5472 (15)	stable	$0.647\% \pm 0.023\%$	0.100
		144	(5-)	-74.033 (10)	40.0 ± 0.4 S		$\beta = 100$			13	7/2-	-38 4089 (23)	stable	$0.047 / 0 \pm 0.023 / 0$ $0.135\% \pm 0.01\%$	
		143	(3/2+)	-72.052(12)	24.0 ± 2.8		$\beta = 100$			43	0+	-30.4009 (23)	stable	$2.09\% \pm 0.01\%$	
		140	(2 (2 .)	-69.03(3)	0.27 ± 0.18		$\beta = 100; \beta = 100$			45	7/2	40.8122 (4)	$162.61 \pm 0.00.4$	$2.07/0 \pm 0.11/0$	8- 100
		14/	(3/2+)	-00.078 (11)	4.06 ± 0.04 s		$\beta 100; \beta n 0.04$			45	7/2- 0	-40.0123 (4)	> 0.28E + 16 m	$0.004\% \pm 0.002\%$	ρ 100 2 <i>e</i> -
		148	(2-)	-62.709 (19)	$1.26 \pm 0.08 \text{ s}$		$\beta 100; \beta n 0.15$			40	0+	-43.1399 (22)	> 0.20E+10 y 4 526 $\pm 0.002 \text{ d}$	0.004 /o \pm 0.003 /o	2p 8= 100
		149	(3/2-)	-60.22 (20)	1.05 ± 0.03 s		β 100; β n 1.43			47	7/2-	-42.343 (22)	4.550 ± 0.005 u	$0.1970/ \pm 0.0010/$	p 100 p <i>e</i> = 75
50	~	150	(3+)	-36.35 (20)	0.86 ± 0.05 s		β 100; β n 2.7			40	2/2	-44.2234 (22)	> 3.61222 y	0.107 /0 ± 0.021 /0	2p 75 e= 100
58	Ce	121	(5/2)	-52.5 (5)	$1.1 \pm 0.1 \text{ s}$		$\epsilon 100; \epsilon p \approx 1.00$			49	5/2-	-41.2900 (22)	3.718 ± 0.006 III		β 100
		123	(5/2)	-60.1 (3)	3.8 ± 0.2 s		$\epsilon 100; \epsilon p > 0.00$			50	(2/2)	-39.300 (3)	13.9 ± 0.08		$\beta = 100$
		124	0+	-64.6 (3)	$6 \pm 2 s$		ε 100 100			51	(3/2-)	-33.67 (9)	$10.0 \pm 0.0 \text{ s}$		$\beta = 100; \beta = n$ $\beta = 100; \beta = n < 2.00$
		125	(//2-)	-66.66 (20)	9.7 ± 0.3 s		$\epsilon 100; \epsilon p$			32	0+	-32.3 (7)	4.0 ± 0.3 S		β 100; β $n \le 2.00$
		126	0+	-70.82 (3)	51.0 ± 0.3 s		ε 100			53	(3/2-	-27.5 (5)	$90\pm15~\mathrm{ms}$		β^{-} 100; $\beta^{-}n > 30.00$
		127	(1/2+)	-71.98 (6)	$34 \pm 2 s$		ε 100 100			E 4	,3/2-)	22 (7)	86 7 mg		<i>a</i> = 100
		12/m	(5/2+)	-71.97 (6)	28.6 ± 0.7 s		ε 100			54	0+ (F (2))	-25 (7)	30 ± 7 ms		$\beta = 100$
		128	0+	-75.53 (3)	$3.93 \pm 0.02 \text{ m}$		ε 100 2.22			55	(3/2-)	-17(0)	22 ± 2 IIIS		β 100; β n
		129	5/2+	-76.29 (3)	3.5 ± 0.5 m		$\epsilon > 0.00$	21	6.	30	0+	-12.4(9)	$11 \pm 2 \text{ IIIS}$		p; p n ?
		130	0+	-79.42 (3)	$22.9 \pm 0.5 \text{ m}$		ε 100	21	50	40	4-	-20.525 (3)	$182.3 \pm 0.7 \text{ ms}$		ϵ 100; ϵp 0.44; $\epsilon \alpha$ 0.02
		131	//2+	-79.71 (3)	$10.3 \pm 0.3 \text{ m}$		ε 100			41	7/2-	-20.0424(0)	596.5 ± 1.7 ms		ε 100 100
		131m	(1/2+)	-79.64 (3)	5.4 ± 0.4 m		ϵ 100; TT			42	(7)	-32.1211(17)	661.3 ± 0.7 ms		ε 100 - 100
		132	0+	-82.471 (20)	3.51 ± 0.11 h		ε 100			42111	(7)+	-31.3046 (17)	01.7 ± 0.4 S		ε 100 100
		132m	(8-)	-80.13 (20)	$9.4 \pm 0.3 \text{ ms}$		117 100			45	7/2-	-30.1001 (19)	3.691 ± 0.012 m		ε 100 100
		133	1/2+	-82.423 (16)	$97 \pm 4 \text{ m}$		$\epsilon 100$			44	2+	-37.8163 (18)	3.97 ± 0.04 h		ε 100 μπ. οο. ο 1. ο.
		133m	9/2-	-82.386 (16)	5.1 ± 0.3 h		ϵ ; IT			44m	0+ 7 (2	-37.3455 (18)	58.61 ± 0.1 h	1000/	11 98.8; ϵ 1.2
		134	0+	-84.836 (20)	3.16 ± 0.04 d		ϵ 100			45	7/2-	-41.0/03 (6)	stable	100%	
		135	1/2(+)	-84.625 (11)	17.7 ± 0.3 h		ϵ 100			45m	3/2+	-41.05/9 (6)	$318 \pm 7 \text{ ms}$		11 100
		135m	(11/2-)	-84.179 (11)	$20 \pm 1 \text{ s}$		<i>IT</i> 100			46	4+	-41./596 (6)	83.79 ± 0.04 d		β 100
		136	0+	-86.474 (12)	> 0.7E+14 y	$0.185\% \pm 0.002\%$	2ϵ			46m	1-	-41.6171 (6)	$18.75 \pm 0.04 \text{ s}$		<i>TT</i> 100
		137	3/2+	-85.884 (12)	9.0 ± 0.3 h		<i>ϵ</i> 100			47	//2-	-44.3367 (19)	3.3492 ± 6.01		β 100 2= 100
		137m	11/2-	-85.629 (12)	$34.4 \pm 0.3 \text{ h}$		<i>IT</i> 99.21; ϵ 0.79			48	6+ 7 (2	-44.503 (5)	43.67 ± 0.09 h		$\beta^{-} 100$
		138	0+	-87.564 (10)	\geq 0.9E+14 y	$0.251\% \pm 0.002\%$	$2\epsilon 100$			49	7/2-	-46.56 (3)	57.18 ± 0.13 m		$\beta^- 100$
		138m	7-	-85.435 (10)	$8.65\pm0.2~\mathrm{ms}$		<i>IT</i> 100			50	5+	-44.546 (15)	$102.5 \pm 0.5 \text{ s}$		β^{-} 100
		139	3/2+	-86.95 (7)	$137.641 \pm 0.02 \text{ d}$		ε 100			50m	2+,3+	-44.289 (15)	$0.35 \pm 0.04 \text{ s}$		$TT > 97.50; \beta^- < 2.50$
		139m	11/2-	-86.196 (7)	$54.8\pm1~{ m s}$		<i>IT</i> 100			51	(7/2)-	-43.227 (20)	$12.4 \pm 0.1 \text{ s}$		β^- 100
		140	0+	-88.0786 (22)	stable	$88.45\% \pm 0.051\%$				52	3(+)	-40.36 (19)	$8.2 \pm 0.2 \text{ s}$		β^{-} 100
		141	7/2-	-85.4354 (22)	$32.508 \pm 0.013 \text{ d}$		β^- 100			53	(7/2-)	-37.5 (3)	$2.4 \pm 0.6 \text{ s}$		$\beta^{-} 100; \beta^{-}n?$

Continued on next page

Continued on next page

Pocketbook of Data for Nuclear Engineer	ers
---	-----

				Table	8.1 – Continued from previo	ous page						Table	8.1 – Continued from prev	ious page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \hat{\mathbf{\Gamma}}$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \dot{\mathbf{\Gamma}}$	Abundance	Decay Mode
		54	(3)+	-33.7 (5)	$526 \pm 15 \text{ ms}$		$\beta^{-} 100$			120	0+	-68.9 (3)	$24\pm2~{ m s}$		ε 100
		55	(7/2)-	-29.6 (7)	$96 \pm 2 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 17			121	5/2(+)	-70.74 (14)	$29.7\pm1.5~{\rm s}$		ϵ 100
		56	(1+)	-24.5 (7)	$26 \pm 6 \text{ ms}$		β^{-} 100; $\beta^{-}n$?; β^{-} 100;			122	0+	-74.61 (3)	$1.95\pm0.15~\text{m}$		ϵ 100
							$\beta^{-}n > 14.00$			123	5/2(+)	-75.655 (12)	2.7 ± 0.4 m		ϵ 100
		57	(7/2-)	-20.1 (7)	$22 \pm 2 \text{ ms}$		β^- 100; $\beta^- n$			124	0+	-79.09 (12)	$11.0\pm0.5~\mathrm{m}$		ϵ 100
		58	0	-14.4 (8)	$12 \pm 5 \text{ ms}$		β^- 100; $\beta^- n$			125	1/2(+)	-79.668 (11)	3.3 ± 0.3 m		ϵ 100
22	Ti	39	(3/2+)	2.2 (3)	31 +6-4 ms		ϵ 100; ϵp 100			126	0+	-82.67 (12)	$100 \pm 2 \text{ m}$		ϵ 100
		40	0+	-8.85 (16)	$52.4\pm0.3~\mathrm{ms}$		ϵ ; ϵp 97.5			127	1/2+	-82.815 (11)	12.7 ± 0.4 m		ϵ 100
		41	3/2+	-15.1 (4)	$80.4\pm0.9~\mathrm{ms}$		ε 100; εp 100			127m	7/2-	-82.735 (11)	$1.9\pm0.2~{ m s}$		<i>IT</i> 100
		42	0+	-25.1046 (3)	$199\pm 6~\mathrm{ms}$		e 100			128	0+	-85.379 (5)	$2.43 \pm 0.05 \text{ d}$		ϵ 100
		43	7/2-	-29.321 (7)	$509 \pm 5 \text{ ms}$		e 100			129	1/2+	-85.064 (11)	$2.23\pm0.11~\text{h}$		$\epsilon 100$
		44	0+	-37.5485 (7)	$60.0 \pm 1.1 \text{ y}$		e 100			129m	7/2+	-85.056 (11)	$2.16\pm0.02\mathrm{h}$		$\epsilon \leq 100.00; IT$
		45	7/2-	-39.0083 (8)	$184.8\pm0.5\ m$		e 100			130	0+	-87.262 (3)	stable	$0.106\%\pm 0.001\%$	2ϵ
		46	0+	-44.127 (3)	stable	$8.25\% \pm 0.03\%$				130m	8-	-84.787 (3)	$9.4\pm0.4~\mathrm{ms}$		<i>IT</i> 100
		47	5/2-	-44.9364 (4)	stable	$7.44\% \pm 0.02\%$				131	1/2+	-86.684 (3)	$11.50 \pm 0.06 \text{ d}$		ϵ 100
		48	0+	-48.4917 (4)	stable	$73.72\% \pm 0.03\%$				131m	9/2-	-86.496 (3)	14.6 ± 0.2 m		<i>IT</i> 100
		49	7/2-	-48.5628 (4)	stable	$5.41\% \pm 0.02\%$				132	0+	-88.4349 (11)	> 3.0E + 21 y	$0.101\%\pm 0.001\%$	2ϵ
		50	0+	-51.4307 (4)	stable	$5.18\% \pm 0.02\%$				133	1/2+	-87.5535 (10)	10.551 ± 0.011 y		$\epsilon 100$
		51	3/2-	-49.7318 (6)	$5.76 \pm 0.01 \text{ m}$		β^- 100			133m	11/2-	-87.2652 (10)	$38.93 \pm 0.1 \text{ h}$		IT 99.99; e 0.01
		52	0+	-49.469 (7)	$1.7\pm0.1~\mathrm{m}$		β^- 100			134	0+	-88.9501 (3)	stable	$2.417\% \pm 0.018\%$	
		53	(3/2)-	-46.83 (10)	$32.7\pm0.9~\mathrm{s}$		β^- 100			135	3/2+	-87.8508 (3)	stable	$6.592\% \pm 0.012\%$	
		54	0+	-45.59 (12)	$1.5\pm0.4~{ m s}$		$\beta^{-} 100$			135m	11/2-	-87.5826 (3)	28.7 ± 0.2 h		<i>IT</i> 100
		55	(1/2)-	-41.67 (15)	$1.3\pm0.1~{ m s}$		β^- 100			136	0+	-88.8872 (3)	stable	$7.854\% \pm 0.024\%$	
		56	0+	-38.94 (20)	$0.200\pm0.005~\mathrm{s}$		$\beta^- n$; $\beta^- 100$			136m	7-	-86.8567 (3)	$0.3084 \pm 0.0019 \ {\rm s}$		<i>IT</i> 100
		57	(5/2-)	-33.5 (5)	$98\pm5~\mathrm{ms}$		β^- 100; $\beta^- n$			137	3/2+	-87.7215 (3)	stable	$11.232\%\pm 0.024\%$	
		58	0+	-30.7 (5)	$57\pm10~\mathrm{ms}$		β^- 100; $\beta^- n$			137m	11/2-	-87.0598 (3)	$2.552 \pm 0.001 \text{ m}$		<i>IT</i> 100
		59	(5/2-)	-25 (5)	$27.5\pm2.5~\mathrm{ms}$		β^- 100			138	0+	-88.2619 (3)	stable	$71.698\% \pm 0.042\%$	
		60	0+	-21.5 (6)	$22.4\pm2.5~\mathrm{ms}$		β^{-}			139	7/2-	-84.914 (3)	$83.06 \pm 0.28 \text{ m}$		β^- 100
		61	(1/2-)	-15.5 (7)	$15 \pm 4 \text{ ms}$		β^- 100; $\beta^- n$			140	0+	-83.27 (8)	$12.7527 \pm 0.0023 \text{ d}$		$\beta^{-} 100$
23	v	43	0	-18.02 (23)	$79.3\pm2.4~\mathrm{ms}$		e 100			141	3/2-	-79.733 (5)	$18.27\pm0.07~\mathrm{m}$		β^{-} 100
		44	(2+)	-24.12 (12)	$111 \pm 7 \text{ ms}$		<i>ε</i> 100; <i>εα</i> ; <i>ε</i> 100			142	0+	-77.845 (6)	10.6 ± 0.2 m		β^{-} 100
		45	7/2-	-31.88 (17)	$547\pm 6~\mathrm{ms}$		e 100			143	5/2-	-73.937 (7)	$14.5\pm0.3~{ m s}$		$\beta^{-} 100$
		46	0+	-37.0744 (3)	$422.50 \pm 0.11 \text{ ms}$		e 100			144	0+	-71.767 (7)	$11.5\pm0.2~{ m s}$		$\beta^{-} 100$
		46m	3+	-36.2729 (3)	$1.02\pm0.07~\mathrm{ms}$		<i>IT</i> 100			145	5/2-	-67.516 (8)	$4.31\pm0.16~{\rm s}$		β^{-} 100
		47	3/2-	-42.0056 (3)	32.6 ± 0.3 m		e 100			146	0+	-64.941 (20)	$2.22\pm0.07~\mathrm{s}$		$\beta^{-} 100$
		48	4+	-44.4764 (11)	$15.9735 \pm 0.0025 \ d$		e 100			147	(3/2-)	-60.264 (20)	$0.894\pm0.01~{\rm s}$		β^{-} 100; $\beta^{-}n$ 0.06
		49	7/2-	-47.9609 (9)	$330\pm15~d$		e 100			148	0+	-57.59 (6)	$0.612\pm0.017~s$		β^{-} 100; $\beta^{-}n$ 0.4
		50	6+	-49.224 (9)	> 2.1E+17 y	$0.25\% \pm 0.002\%$	$\epsilon > 92.90; \beta^- < 7.10$			149	0	-53.17 (20)	$0.344\pm0.007~s$		β^{-} 100; $\beta^{-}n$ 0.43
		51	7/2-	-52.2039 (9)	stable	$99.75\% \pm 0.002\%$				150	0+	-50.3 (4)	$0.3\pm0~{ m s}$		β^- 100; $\beta^- n$
		52	3+	-51.4438 (9)	$3.743 \pm 0.005 \text{ m}$		β^- 100	57	T.	117	(3/2+,3/2-	$A \in E(A)$	22 E + 2.6 ms		- 02 0: . (1
		53	7/2-	-51.85 (3)	$1.543\pm0.014~\mathrm{m}$		β^- 100	57	La	117)	-40.3 (4)	25.3 ± 2.0 ms		p 93.9; ϵ 6.1
		54	3+	-49.892 (15)	$49.8\pm0.5~\mathrm{s}$		β^- 100			117m	(9/2+)	-46.3 (4)	$10\pm5~\mathrm{ms}$		ε 2.6; p 97.4
		55	(7/2-)	-49.15 (10)	$6.54\pm0.15~{\rm s}$		β^- 100			120	0	-57.7 (5)	$2.8\pm0.2~\mathrm{s}$		ϵ 100; $\epsilon p > 0.00$
		56	1+	-46.08 (20)	$0.216\pm0.004~\mathrm{s}$		β^- 100; $\beta^- n$			121	0	-62.4 (5)	$5.3\pm0.2~\mathrm{s}$		ϵ 100
		57	(7/2-)	-44.19 (23)	$0.32\pm0.03~{ m s}$		β^- 100; $\beta^- n$			122	0	-64.5 (3)	$8.6\pm0.5~{ m s}$		ϵ 100; ϵp
		58	(1+)	-40.21 (25)	$191\pm10~\mathrm{ms}$		β^- 100; $\beta^- n$			123	0	-68.71 (20)	$17\pm3~{ m s}$		ϵ 100
		59	(5/2-)	-37.1 (3)	$97 \pm 2 \text{ ms}$		β^- 100; $\beta^- n < 3.00$			124	(8-)	-70.26 (6)	$29.21\pm0.17~s$		<i>ϵ</i> 100; <i>ϵ</i> 100
		60	0	-32.6 (5)	$68 \pm 5 \text{ ms}$		eta^- ; $eta^- n$; eta^- 100; $eta^- n$;			125	(3/2+)	-73.76 (3)	$64.8\pm1.2~\mathrm{s}$		ϵ 100
							β^- 100			125m	0	-73.65 (3)	$0.39\pm0.04~s$		
		61	(3/2-)	-29.5 (3)	$52.6\pm4.2~\mathrm{ms}$		eta^- 100; $eta^-n \ge$ 6.00			126	(5+)	-74.97 (9)	$54\pm2~{ m s}$		$\epsilon > 0.00; \epsilon ; IT$
		62	0	-24.6 (4)	$33.5\pm2~\mathrm{ms}$		eta^- 100; $eta^- n$			127	(11/2-)	-77.9 (3)	$5.1\pm0.1~\mathrm{m}$		ε 100
		63	7/2-	-21.1 (5)	$19.2\pm2.4~\mathrm{ms}$		eta^- 100; $eta^-npprox$ 35.00			127m	(3/2+)	-77.88 (3)	$3.7\pm0.4\ m$		ϵ 100; IT
		64	0	-15.6 (5)	$19\pm8~\mathrm{ms}$		β^- 100			128	(5+)	-78.63 (5)	$5.18\pm0.14~\text{m}$		ε 100; ε 100
24	Cr	42	0+	6.5 (3)	$13.3\pm1~\mathrm{ms}$		ϵ 100; ϵp 94.4								Continued on next page

Pocketbook of Data for Nuclear Engineers

Z II A J^{-} Allowing Program Proro Program Progr					Table	8.1 – Continued from previo	ous page						Table	8.1 – Continued from previ	ous page	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Z	El A		\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}},\dot{\mathbf{\Gamma}}$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}},\dot{\mathbf{\Gamma}}$	Abundance	Decay Mode
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		11	8	2	-68.409 (13)	$14 \pm 2 \text{ s}$		ϵ 100; $\epsilon p < 0.04$; $\epsilon \alpha < 2.4$ E-3; $\epsilon \alpha < 2.4$ E-3; $\epsilon 100$;			43	(3/2+)	-1.94 (20)	$20.6 \pm 0.9 \text{ ms}$		ϵ 100; ϵp 81; $\epsilon 2p$ 7.1; $\epsilon 3p$ 0.08
11 9 7.2.8 (7.14) 4.0.9 (0.2.3) 100, mp 1.4 50 7.2.9 10.4 (20) 0.3.9 (10.5 mp 1.4								$\epsilon p < 0.04$			44	0+	-13.14 (20)	$42.8\pm0.6~\mathrm{ms}$		$\epsilon p \ 14; \epsilon \ 100$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		11	9	9/2+	-72.305 (14)	$43.0\pm0.2~\mathrm{s}$		<i>ϵ</i> 100; <i>ϵ</i> 100			45	(7/2-)	-19.4 (20)	$60.9 \pm 0.4 \text{ ms}$		ϵ 100; ϵp 34.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		12	0	2(+)	-73.889 (10)	$61.3 \pm 1.1 \text{ s}$		ϵ 100; $\epsilon \alpha$ 2e-05; ϵp 7e-06;			46	0+	-29.473 (20)	0.26 ± 0.06 s		€ 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. ,				ϵ 100			47	3/2-	-34,558 (14)	$500 \pm 15 \text{ ms}$		€ 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12	1 :	3/2(+)	-77.1 (14)	$155 \pm 4 \text{ s}$		$\epsilon 100$			48	0+	-42 822 (7)	21.56 ± 0.03 h		e 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12	1m	9/2(+)	-77.032 (14)	$122 \pm 3 \mathrm{s}$		ϵ 83; IT 17			49	5/2-	-45 3329 (24)	$42.3 \pm 0.1 \text{ m}$		e 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12	2	1+	-78.14 (3)	$21.18\pm0.19~\mathrm{s}$		€ 100			50	0+	-50 2619 (9)	$> 1.3E \pm 18 v$	$4345\% \pm 0.013\%$	26
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12	2m	(5)-	-78.01 (3)	$0.36 \pm 0.02 \text{ s}$		<i>IT</i> 100			51	7/2-	-51 4512 (9)	277025 ± 0.0024 d	4.04070 ± 0.01070	< 100
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $		12	2m2	8(-)	-78 (3)	$3.70 \pm 0.11 \text{ m}$		ϵ 100			52	0+	-55 418 (6)	27.7.020 ± 0.0021 u	$83.789\% \pm 0.018\%$	100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12	3	1/2+	-81.044 (12)	$5.88 \pm 0.03 \text{ m}$		ϵ 100			53	3/2-	-55 2858 (6)	stable	$9501\% \pm 0.017\%$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12	3m	(11/2)-	-80.887 (12)	1.64 ± 0.12 s		IT 100			54	0+	-56 9336 (6)	stable	$2.365\% \pm 0.007\%$	
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$		12	4	1+	-81.731 (8)	30.9 ± 0.4 s		€ 100			55	3/2-	-55 1086 (6)	3.497 ± 0.003 m	2.303 /0 ± 0.007 /0	8- 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12	4m	(7)+	-81 269 (8)	63 ± 0.2 s		IT 100			55	0	55 2812 (10)	5.477 ± 0.005 m		$\beta = 100$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12	5	$\frac{1}{2}(+)$	-84 088 (8)	46.7 ± 0.1 m		< 100			50	(2, (2))	-55.2612 (19)	5.94 ± 0.1 m		$\beta = 100$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12	6	1+	-84 345 (12)	$1.64 \pm 0.02 \text{ m}$		€ 100			57	(3/2)-	-52.5241(19)	21.1 ± 1.5 7.0 ± 0.2		β 100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		12	7	1/2+	-86 24 (6)	6.25 ± 0.1 h		< 100			58	0+	-51.85 (20)	7.0 ± 0.3 s		β 100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		12	¢ .	1/2+ 1:	85 021 (5)	0.25 ± 0.11		< 100			59	(1/2-)	-47.89 (24)	1.05 ± 0.09 s		β 100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	0	1/2	-03.931 (3)	3.00 ± 0.02 m		. 100			60	0+	-46.5 (21)	$0.49 \pm 0.01 \mathrm{s}$		β^{-} 100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		12	0 .	1/2+	-07.499 (3)	32.00 ± 0.00 m		$\epsilon 100$			61	(5/2-)	-42.2 (3)	$243 \pm 11 \text{ ms}$		β^- 100; $\beta^- n$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		13	0	1+ F	-00.9 (0)	29.21 ± 0.04 III		ε 98.4; p 1.6			62	0+	-40.4 (3)	$206 \pm 12 \text{ ms}$		eta^- 100; $eta^- n$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		13	um :	5- 5 (0)	-80.730 (8)	3.46 ± 0.06 m		11 99.84; ε 0.16			63	1/2-	-35.6 (3)	$129 \pm 2 \text{ ms}$		eta^- 100; $eta^- n$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		13	1 3	5/2+	-88.059 (5)	9.689 ± 0.016 d		ϵ 100			64	0+	-33.3 (3)	$42 \pm 2 \text{ ms}$		β^{-} 100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		13	2.	2+ 7 (2	-87.1557 (19)	$6.480 \pm 0.006 \mathrm{d}$	1000/	ϵ 98.13; β 1.87			65	(1/2-)	-27.8 (3)	$28 \pm 3 \text{ ms}$		β^- 100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		13	3	7/2+	-88.0709 (8)	stable	100%				66	0+	-24.3 (5)	$23 \pm 4 \text{ ms}$		β^- 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		13	4	4+	-86.8911 (16)	$2.0652 \pm 4.0E-4$ y		ϵ 0.0003; β^- 100	25	Mn	46	(4+)	-11.96 (11)	$36.2 \pm 0.4 \text{ ms}$		ϵ 100; ϵp 57
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		13	4m	8-	-86.7524 (16)	2.912 ± 0.002 h		IT 100			47	(5/2-)	-22.26 (16)	$88.0 \pm 1.3 \text{ ms}$		ϵ 100; $\epsilon p < 1.70$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		13	5	7/2+	-87.5818 (10)	$2.3E+6 \pm 0.3E+6 \text{ y}$		β^{-} 100			48	4+	-29.32 (11)	$158.1\pm2.2~\mathrm{ms}$		ϵ 100; ϵp 0.28; $\epsilon \alpha <$ 6.0E-4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		13	5m	19/2-	-85.9489 (10)	$53 \pm 2 \text{ m}$		<i>IT</i> 100			49	5/2-	-37.615 (24)	$382 \pm 7 \text{ ms}$		ϵ 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		13	6	5+	-86.339 (19)	$13.04 \pm 0.03 \text{ d}$		β^- 100			50	0+	-42.6274 (9)	$283.19\pm0.1~\mathrm{ms}$		ϵ 100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		13	6m	8-	-85.8211 (19)	$17.5 \pm 0.2 \text{ s}$		eta^- ; $IT>0.00$			50m	5+	-42.4021 (9)	1.75 ± 0.03 m		ϵ 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		13	7	7/2+	-86.5459 (4)	$30.08 \pm 0.09 \text{ y}$		β^- 100			51	5/2-	-48.2437 (9)	46.2 ± 0.1 m		ϵ 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		13	8	3-	-82.887 (9)	$33.41\pm0.18~m$		β^- 100			52	6+	-50.7068 (19)	$5.591 \pm 0.003 \text{ d}$		$\epsilon 100$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		13	8m	6-	-82.807 (9)	$2.91\pm0.08~m$		β^{-} 19; IT 81			52m	2+	-50.3291 (19)	21.1 ± 0.2 m		ϵ 98.25: IT 1.75
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		13	9	7/2+	-80.701 (3)	$9.27\pm0.05~\mathrm{m}$		β^- 100			53	7/2-	-54.689 (6)	$3.74E+6 \pm 0.04E+6 v$		ε 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		14	0	1-	-77.05 (8)	$63.7\pm0.3~\mathrm{s}$		β^- 100			54	3+	-55,5565 (12)	312.12 ± 0.06 d		$\epsilon 100; \beta^- < 2.9E-4$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		14	1	7/2+	-74.48 (10)	$24.84\pm0.16~s$		β^{-} 100; $\beta^{-}n$ 0.04			55	5/2-	-57,7117 (4)	stable	100%	,,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		14	2	0-	-70.525 (11)	$1.684\pm0.014~\mathrm{s}$		β^{-} 100; $\beta^{-}n$ 0.09			56	3+	-56,9108 (5)	$2.5789 \pm 1.0E-4$ h		β^{-} 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		14	3	3/2+	-67.675 (22)	$1.791 \pm 0.007 \text{ s}$		β^{-} 100; $\beta^{-}n$ 1.64			57	5/2-	-57,4861 (15)	$85.4 \pm 1.8 \text{ s}$		β^- 100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		14	4	1(-)	-63.27 (3)	$0.994 \pm 0.006 \text{ s}$		β^{-} 100; $\beta^{-}n$ 3.03; β^{-}			58	1+	-55 827 (3)	$30 \pm 01s$		β^{-} 100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14	5	3/2+	-60.056 (11)	$0.587 \pm 0.005 \text{ s}$		β^{-} 100; $\beta^{-}n$ 14.7			58m	4+	-55 756 (3)	65.4 ± 0.15		$\beta^- \approx 90.00$ $TT \approx 10.00$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14	6	1-	-55.57 (4)	$0.321 \pm 0.002 \text{ s}$		β^{-} 100; $\beta^{-}n$ 14.2			59	(5/2)-	-55 5252 (23)	459 ± 0.05 s		β^{-} 100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14	7	(3/2+)	-52.02 (5)	$0.230 \pm 0.001 \text{ s}$		$\beta^{-} 100; \beta^{-} n 28.5$			60	1+	-52 9678 (23)	0.28 ± 0.02 s		β^{-} 100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14	8	0	-47.3 (6)	$146 \pm 6 \text{ ms}$		β^{-} 100: β^{-} n 25.1			60m	1.	-52 6959 (23)	1.20 ± 0.023		β^{-} 88 5. <i>IT</i> 11 5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14	9	õ	-43.84 (20)	> 50 ms		$\beta^- \cdot \beta^- n$			61	4+ (5/2)	51 742 (22)	1.77 ± 0.023		$\beta = 30.5, 11 = 11.5$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		15	0	Õ	-39 (3)	> 50 ms		β^{-} , β^{-} n			62	$(3/2)^{-}$	-51.742 (25)	$6.07 \pm 0.04 \text{ s}$		$\beta = 100$
56 Ba 114 0 43 40.3 69 100 β^{-1} plot β^{-1} plot β^{-1} plot β^{-1} no 56 Ba 114 0 -45.96 (11) 0.43 +0.3-0.15 s $\epsilon^{-91.;ep}$ (2; α 0.9; $^{12}C <$ 63 $5/2$ -46.887 (4) 0.275 ± 0.004 s β^{-1} 100; β^{-n} 56 Ba 114 0 -45.96 (11) 0.43 + 0.3-0.15 s $\epsilon^{-91.;ep}$ (2; α 0.9; $^{12}C <$ 63 $5/2$ -46.887 (4) 0.275 ± 0.004 s β^{-1} 100; β^{-n} 115 (5/2+) -49 (6) 0.45 \pm 0.05 s $\epsilon^{-100; ep > 15.00}$ 65 (5/2-) -40.967 (4) 84 ± 8 ms β^{-100} 116 0+ -54.6 (4) 1.3 \pm 0.2 s $\epsilon^{-100; ep 3}$ 66 0 -36.75 (11) 65 ± 2 ms β^{-100} 117 (3/2) -57.5 (3) 1.75 \pm 0.07 s $\epsilon^{-100; ep 3}$ 66 0 -32.8 (4) 51 ± 4 ms $\beta^{-100; \beta^{-n} > 10.0$ 118 0+ -62.37 (20) 5.5 \pm 0.2 s $\epsilon^{-100; ep < 25.00}$ 68 (>3) -28 (5) 28 ± 3 ms $\beta^{-100; e^{-1} = 10.0}$		15	1	Ő	-35 1 (4)	> 50 ms		β^{-} , β^{-} n			02	(3+)	-40.101 (3)	071 ± 5 IIIS		$\beta 100, \beta n, \beta n, \beta n, \beta^{-} 100$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56	Ra 11	4	0+	-45.96 (11)	$0.43 \pm 0.3 \pm 0.15$ s		$\epsilon 991 \epsilon n 20 \alpha 0.9 t^{12}C <$			62	5/2	16 887 (1)	0.275 ± 0.004 c		$\rho = 100$ $\rho = 100, \rho = m$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	J a 11	*	υT	-==	0.45 +0.5-0.15 5		0.0034			64	3/2- (1.)	-40.00/ (4)	$0.275 \pm 0.004 \text{ s}$		p = 100; p = n $e^{-} 100; e^{-} = 22$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11	5	(5/2+)	-49 (6)	0.45 ± 0.05 s		$\epsilon 100 \cdot \epsilon_{2} > 15.00$			64	(1+)	-42.707 (4)	$90 \pm 4 \text{ ms}$		$\beta 100; \beta n 33$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11	6	(3/ 4 +) 0+	-54 6 (4)	13 ± 0.005		$\epsilon 100, \epsilon p > 10.00$			65	(3/2-)	-40.967 (4)	$\delta 4 \pm \delta ms$		p 100 a= 100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11	7	(3/2)	-57 5 (3)	1.5 ± 0.25 1.75 ± 0.07 s		(100, ep)			66	U (F (0)	-36./5 (11)	$65 \pm 2 \text{ ms}$		p 100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11	, ,	(3/4) 0+	-62 37 (20)	55 ± 0.075		$\epsilon 100, \epsilon \alpha > 0.00, \epsilon p > 0.00$			67	(5/2+)	-32.8 (4)	$51 \pm 4 \text{ ms}$		β 100; $\beta^- n > 10.0$
$\frac{117}{(3/2\pi)} -\frac{69}{5/2} -\frac{244}{6} + \frac{18\pm4}{18} + \frac{3}{10} - \frac{10}{10} + \frac{1}{10} $		11	0	(5/2))	-02.37 (20)	5.5 ± 0.28 5.4 ± 0.2 c		e_{100}, e_p			68	(>3)	-28 (5)	$28 \pm 3 \text{ ms}$		$\beta n; \beta^- 100$
		11	1	(3/2+)	-04.37 (20)	0.4 ± 0.3 S		$\epsilon 100; \epsilon p < 23.00$			69	5/2-	-24.4 (6)	$18 \pm 4 \text{ ms}$		β 100

u on next page

Continued on next page

Decay Mode

ϵ 99.16; *α* 0.84

ε 100; εp 0.0029

 ϵ ; ϵp 7; α \approx 0.01; $\epsilon \alpha$ \approx

εp 0.34; *α* 0.0003; *ε* 100

ε 90; α 10

7.0E-3

 $\epsilon 100$

 $\epsilon \; 100$

 ϵ 100

 $\epsilon 100$

 $\epsilon 100$

 $\epsilon \; 100$

 $\epsilon 100$

 $\epsilon 100$

 $\epsilon \; 100$

 $IT \ 100$

 $\epsilon \ 100$

 $IT \ 100$

 $IT \ 100$

IT 100

IT 100

 β^- 100

IT 100

 $IT \ 100$

 β^- 100

 β^- 100

 $\beta^- 100$

 β^- 100

 β^- 100

 $\alpha 0.02$

ε 100; ε

 β^{-} 100; $\beta^{-}n$ 0.04

 β^{-} 100; $\beta^{-}n$ 0.21

 β^{-} 100; $\beta^{-}n$ 1

 β^- 100; $\beta^- n$ 3

 β^{-} 100; $\beta^{-}n$ 5

 β^- 100; β^-n 6.9

 β^- ; $\beta^- n < 8.00$

 $\epsilon 100; \epsilon p \approx 0.07$

ϵα 0.05; *ϵ* 100; *ϵp* 2.8

 ϵ 100; ϵp 0.51; $\epsilon \alpha$ 0.008

 $IT > 99.40; \beta^- < 0.60$

 $2\beta^{-}$

 $2\beta^{-}$

 2ϵ

Abundance

 $0.0952\% \pm 0.0003\%$

 $0.089\% \pm 0.0002\%$

 $1.9102\%\pm 0.0008\%$

 $26.4006\% \pm 0.0082\%$

 $4.071\%\pm 0.0013\%$

 $21.232\% \pm 0.03\%$

 $26.9086\% \pm 0.0033\%$

 $10.4357\% \pm 0.0021\%$

 $8.8573\% \pm 0.0044\%$

Pocketbook of Data for Nuclear Engineers

				Table	8.1 – Continued from previ	ous page						Table	8.1 – Continued from pre	vious page
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathrm{T}_{1/2},\Gamma$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	A
26	Fe	45	(3/2+)	13.79 (20)	1.89 +0.49-0.21 ms		$\epsilon 3p$ 3.3; 2p 70; $\epsilon \leq$ 30.00;			111	(7/2+)	-54.39 (9)	$0.81\pm0.2~{ m s}$	
				/ ->			$\epsilon p \ 19; \epsilon 2p \ 7.8$			112	0+	-60.028 (8)	$2.7\pm0.8~{ m s}$	
		46	0+	0.8 (4)	$13.0 \pm 2 \text{ ms}$		ε 100; εp 78.7			113	(5/2+)	-62.204 (7)	$2.74\pm0.08~{ m s}$	
		47	(7/2-)	-6.6 (3)	$21.9\pm0.2~\mathrm{ms}$		ϵ 100; ϵp 88.4; $\epsilon 2p$							
		48	0+	-18.16 (7)	$45.3\pm0.6~\mathrm{ms}$		ε 100; εp 15.9			114	0+	-67.086 (11)	$10.0\pm0.4~{ m s}$	
		49	(7/2-)	-24.82 (15)	$64.7\pm0.3~\mathrm{ms}$		ϵ 100; ϵp 56.7			115	(5/2+)	-68.657 (12)	$18\pm4~{ m s}$	
		50	0+	-34.49 (6)	$155\pm11~{ m ms}$		ϵ 100; ϵp ?			116	0+	-73.047 (13)	$59\pm2~{ m s}$	
		51	5/2-	-40.221 (15)	$305 \pm 5 \text{ ms}$		ϵ 100			117	5/2(+)	-74.185 (10)	$61 \pm 2 \mathrm{s}$	
		52	0+	-48.333 (7)	$8.275 \pm 0.008 \text{ h}$		ϵ 100			118	0+	-78.079 (10)	3.8 ± 0.9 m	
		52m	12+	-41.375 (7)	$45.9\pm0.6~\mathrm{s}$		ϵ 100; $IT < 4.0$ E-3			119	(5/2+)	-78.794 (10)	5.8 ± 0.3 m	
		53	7/2-	-50.9467 (17)	$8.51\pm0.02~\mathrm{m}$		ϵ 100			120	0+	-82.172 (12)	$40\pm1~{ m m}$	
		53m	19/2-	-47.9063 (17)	$2.54\pm0.02~\text{m}$		<i>IT</i> 100			121	5/2(+)	-82.473 (11)	40.1 ± 2 m	
		54	0+	-56.2538 (5)	stable	$5.845\% \pm 0.035\%$				122	0+	-85.355 (11)	$20.1\pm0.1~{ m h}$	
		55	3/2-	-57.4806 (5)	$2.744 \pm 0.009 \text{ y}$		ϵ 100			123	(1/2)+	-85.249 (10)	$2.08\pm0.02~h$	
		56	0+	-60.6063 (5)	stable	$91.754\% \pm 0.036\%$				124	0+	-87.6612 (18)	\geq 1.6E+14 y	0.095
		57	1/2-	-60.1811 (5)	stable	$2.119\% \pm 0.01\%$				125	1/2(+)	-87.1932 (18)	16.9 ± 0.2 h	
		58	0+	-62.1544 (5)	stable	$0.282\% \pm 0.004\%$				125m	9/2(-)	-86.9406 (18)	$57 \pm 1 \text{ s}$	
		59	3/2-	-60.6641 (5)	$44.495 \pm 0.009 \text{ d}$		β^{-} 100			126	0+	-89.146 (4)	stable	0.089
		60	0+	-61.413 (3)	$2.62E+6 \pm 0.04E+6$ y		β^- 100			127	1/2 +	-88.322 (4)	$36.346 \pm 0.003 \text{ d}$	
		61	3/2-,5/2-	-58.92 (3)	5.98 ± 0.06 m		$\beta^{-} 100$			127m	9/2-	-88.025 (4)	$69.2\pm0.9~\mathrm{s}$	
		62	0+	-58.878 (3)	$68 \pm 2 s$		β^- 100			128	0+	-89.8602 (11)	stable	1.910
		63	(5/2-)	-55.636 (4)	$6.1\pm0.6~{ m s}$		$\beta^{-} 100$			129	1/2 +	-88.696 (6)	stable	26.400
		64	0+	-54,969 (5)	$2.0\pm0.2~{ m s}$		β^{-} 100			129m	11/2-	-88.4599 (6)	$8.88 \pm 0.02 \text{ d}$	
		65	(1/2-)	-51,221 (7)	$0.81\pm0.05~{ m s}$		β^{-} 100			130	0+	-89.8804 (9)	stable	4.071
		65m	(9/2+)	-50.819 (7)	1.12 ± 0.15 s		β^{-} 100			131	3/2+	-88.4136 (22)	stable	21.2
		66	0+	-50.068 (4)	$440 \pm 60 \text{ ms}$		β^- 100			131m	11/2-	-88.2497 (22)	11.84 ± 0.04 d	
		67	(1/2-)	-457(4)	0.40 ± 0.04 s		β^{-} 100			132	0+	-89 2789 (5)	stable	26 908
		68	0+	-431(7)	$180 \pm 19 \text{ ms}$		β^{-} 100			132m	(10+)	-86 5267 (5)	8.39 ± 0.11 ms	200700
		69	1/2-	-38 4 (5)	$110 \pm 6 \text{ ms}$		β^{-} 100			133	3/2+	-87 6435 (24)	52475 ± 50 F-4 d	
		70	0+	-36 3 (6)	$71 \pm 10 \text{ ms}$		β^{-} 100			133m	11/2-	-87 4103 (24)	2198 ± 0.013 d	
		70	0	-31 (8)	$28 \pm 5 \text{ ms}$		β^{-} 100 β^{-} n			134	0+	-88 1245 (8)	> 5.8F+22 v	10 435
27	Co	50	(6+)	-17 19 (17)	38.8 ± 0.2 ms		$\beta = 100, \beta = n$ $\epsilon = 100; \epsilon = 70, 5; \epsilon 2n$			134m	7-	-86 1589 (8)	$290 \pm 17 \mathrm{ms}$	10.100
21	CU	52	(0+)	-17.19(17)	$115 \pm 23 \text{ ms}$		e 100, ep 70.3, e2p			135	3/2+	-86 418 (5)	200 ± 17 ms 9.14 ± 0.02 b	
		52	(0+)	-33.92 (7)	$240 \pm 9 \text{ mg}$		€ 100 < 100			135 125m	3/2+ 11/2	-00.410 (5)	9.14 ± 0.02 m	
		53m	$(7/2^{-})$	-42.0303 (18)	240 ± 9 ms 247 ± 12 ms		£ 100 			13511	11/2- 0+	-86 4291 (3)	$> 2.4E \pm 21 \text{ m}$	8 857
		5311	(19/2-)	-39.4013 (18)	$247 \pm 12 \text{ Ins}$ 102.28 $\pm 0.07 \text{ mg}$		$\epsilon \approx 98.50; p \approx 1.50$			127	$\frac{0+}{7/2}$	-00.4291 (10) 82 2822 (11)	2.417 ± 0.012 m	0.007
		54m	0+	-40.0092 (J)	193.28 ± 0.07 ms		£ 100			137	772-	-02.3033 (11)	3.010 ± 0.013 III	
		5411	7+	-47.0122 (3) E4.0202 (E)	1.40 ± 0.02 III 17.52 ± 0.02 h		ε 100 100			130	2/2	-79.973(3)	$14.00 \pm 0.00 \text{ III}$	
		55	1/2-	-34.0292 (3)	17.35 ± 0.05 ft 77.226 ± 0.026 d		ε 100 - 100			139	5/2-	-73.0443(21)	39.00 ± 0.14 S	
		56	4+	-56.0397 (6)	$77.236 \pm 0.026 d$		ε 100 100			140	0+ E (2()	-72.9864 (23)	13.60 ± 0.1 s	
		57	7/2-	-59.3449 (6)	$2/1.74 \pm 0.06$ d		€ 100			141	5/2(-)	-68.197 (3)	$1.73 \pm 0.01 \text{ s}$	
		58	2+	-59.8465 (12)	$70.86 \pm 0.06 d$		ε 100			142	0+	-65.23 (3)	$1.23 \pm 0.02 \text{ s}$	
		58m	5+	-59.8215 (12)	9.10 ± 0.09 h	1000/	TT 100			143	5/2-	-60.203 (5)	$0.511 \pm 0.006 \mathrm{s}$	
		59	7/2-	-62.229 (5)	stable	100%				144	0+	-56.872 (5)	$0.388 \pm 0.007 \text{ s}$	
		60	5+	-61.6496 (5)	1925.28 ± 0.14 d		β^{-} 100			145	0	-51.493 (11)	$188 \pm 4 \text{ ms}$	
		60m	2+	-61.591 (5)	$10.467 \pm 0.006 \text{ m}$		TT 99.76; β^- 0.24			146	0+	-47.955 (24)	$146 \pm 6 \text{ ms}$	
		61	7/2-	-62.8975 (9)	1.650 ± 0.005 h		β^{-} 100		_	147	(3/2-)	-42.5 (4)	0.10 +0.1-0.05 s	
		62	2+	-61.431 (20)	$1.50 \pm 0.04 \text{ m}$		β^- 100	55	Cs	114	(1+)	-54.68 (7)	$0.57 \pm 0.02 \text{ s}$	
		62m	5+	-61.409 (20)	$13.91 \pm 0.05 \text{ m}$		$eta^- > 99.00; IT < 1.00$				_			
		63	7/2-	-61.839 (20)	$27.4\pm0.5~{\rm s}$		β^- 100			115	0	-59.7 (3)	$1.4 \pm 0.8 \text{ s}$	
		64	1+	-59.792 (20)	$0.30\pm0.03~\mathrm{s}$		β^- 100			116	(1+)	-62.07 (10)	$0.70 \pm 0.04 \text{ s}$	
					1111		0- 100			116	1 56	61 07 (10)	2.95 ± 0.12	
		65	(7/2)-	-59.1851 (21)	$1.16 \pm 0.03 \text{ s}$		β 100			11011	4+,5,0	-01.97 (10)	3.65 ± 0.15 s	
		65 66	(7/2)- (3+)	-59.1851 (21) -56.408 (14)	$1.16 \pm 0.03 \text{ s}$ $0.20 \pm 0.02 \text{ s}$		β 100 β^- 100			117	(9/2+)	-66.49 (6)	3.85 ± 0.15 s 8.4 ± 0.6 s	

Continued on next page

ϵ 99.98; *ϵp* 8.7; *ϵα* 0.19;

Pocketbook (of Data	for Nuclear	Engineers
I UCKELDOOK (JI Data	101 I vucicai	Linginicers

				Table	8.1 - Continued from previou	is page							Table	8.1 - Continued from prev	ious page	
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode	Z		El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \Gamma$	Abundance	Decay Mode
		132	0+	-85.18 (7)	$3.204 \pm 0.013 \text{ d}$		β^{-} 100				68	(7-)	-51.91 (13)	$0.199 \pm 0.021 \text{ s}$		β^{-} 100; β^{-} 100
		133	(3/2+)	-82.944 (24)	12.5 ± 0.3 m		β^{-} 100				69	7/2-	-50 (3)	$229\pm24~ms$		β^- 100
		133m	(11/2-)	-82.61 (24)	55.4 ± 0.4 m		β^{-} 83.5; IT 16.5				70	(6-)	-45.6 (8)	$108\pm7~\mathrm{ms}$		β^{-} 100; β^{-} 100
		134	0+	-82.559 (11)	41.8 ± 0.8 m		β^{-} 100				71	(7/2-)	-43.9 (8)	$80 \pm 3 \text{ ms}$		$\beta^{-} 100; \beta^{-} n \leq 6.00$
		135	(7/2-)	-77.903 (15)	$19.0\pm0.2~\mathrm{s}$		β^{-} 100				72	(6-,7-)	-39.7 (6)	$59.9 \pm 1.7 \text{ ms}$		$\beta^{-}n \geq 6.00; \beta^{-}100$
		136	0+	-74.479 (25)	$17.63\pm0.08~{\rm s}$		β^{-} 100; $\beta^{-}n$ 1.31				73	0	-37.2 (7)	$41\pm4~\mathrm{ms}$		β^-
		137	(7/2-)	-69.29 (12)	$2.49\pm0.05~\mathrm{s}$		β^{-} 100; $\beta^{-}n$ 2.99				74	0+	-32.7 (8)	25 ± 5 ms		β^- ; $\beta^- n \approx 18.00$
		138	0+	-65.76 (12)	$1.4\pm0.4~{ m s}$		β^{-} 100; $\beta^{-}n$ 6.3	28	;]	Ni	48	0+	18 (5)	2.1 +1.4-0.6 ms		$2p \approx 70.00; \epsilon$
53	Ι	108	(1)	-52.65 (21)	$36 \pm 6 \text{ ms}$		$\alpha 91; \epsilon 9; p < 1.00$				49	0	8.7 (4)	$7.5 \pm 1 \text{ ms}$		$\epsilon p 83; \epsilon 100$
		110	ò	-60.46 (5)	$0.65\pm0.02~{ m s}$		ϵ 83: α 17: ϵp 11: $\epsilon \alpha$ 1.1				50	0+	-3.6 (3)	$18.5\pm1.2~\mathrm{ms}$		ϵ 100; ϵp 86.7; $\epsilon 2p$
		111	(5/2+)	-64.954 (5)	$2.5 \pm 0.2 \text{ s}$		$\alpha \approx 0.10; \epsilon 99.9$				51	(7/2-)	-11.5 (3)	$23.8 \pm 0.2 \text{ ms}$		$\epsilon : \epsilon p \ 87.2$
		112	0	-67.063 (10)	3.42 ± 0.11 s		ϵ 100: $\alpha \approx 1.2\text{E-3}$				52	0+	-22.89 (20)	40.8 ± 0.2 ms		ϵ 100: ϵp 31.4
		113	5/2+	-71 119 (8)	$66 \pm 0.2 s$		ϵ 100: α 3 3e-07				53	(7/2-)	-29 7 (3)	$55.2 \pm 0.7 \mathrm{ms}$		e 100: en 23.4
		114	1+	-72.8 (3)	2.1 ± 0.2 s		ε 100; α θίου οι ε 100: εp				54	(1, 1) = (1, 1) (1, 1) = (1, 1)	-39.22 (5)	$104 \pm 7 \text{ ms}$		€ 100
		114m	(7)	-72.5 (3)	$62 \pm 0.5 s$		ϵ 91: <i>IT</i> 9				55	7/2-	-45,3351 (8)	$204.7 \pm 3.7 \text{ ms}$		e 100
		115	(5/2+)	-76 34 (3)	13 ± 0.2 m		e 100				56	0+	-53 9068 (5)	6.075 ± 0.01 d		e 100
		116	1+	-77 49 (10)	291 ± 0.15 s		e 100				57	3/2-	-56 0831 (7)	35.60 ± 0.06 h		€ 100
		117	(5/2)+	-80 43 (3)	2.91 ± 0.10 B		e 100				58	0+	-60 2281 (5)	stable	$68.077\% \pm 0.009\%$	6 100
		118	2-	-80 971 (20)	$137 \pm 0.5 \text{ m}$		¢ 100				59	3/2-	-61 156 (5)	$7.6E+4 \pm 0.5E+4$ v	00.077 /0 ± 0.0077/0	¢ 100
		118m	2- (7-)	-80.867 (20)	85 ± 0.5 m		$\epsilon < 100 00 IT$				60	0+	-64 4725 (5)	r.ort+f ± 0.5rt+f y	$26223\% \pm 0.008\%$	8 100
		110111	(7-) 5/2+	-83 77 (3)	8.5 ± 0.5 m		$\epsilon < 100.00, 11$				61	$\frac{0+}{3/2}$	-64 2212 (5)	stable	$11300\% \pm 0.000\%$	
		120	3/2+ 2	-03.77 (3) 82 755 (15)	15.1 ± 0.4 m		< 100				62	0,	-04.2212 (5) 66 7458 (5)	stable	$2.6246\% \pm 0.0013\%$	
		120	2- (7)	-03.733 (13) 92.425 (15)	$51.0 \pm 0.2 \mathrm{m}$		e 100 - 100				62	1/2	-00.7438 (3) (5 E122 (5)	$101.2 \pm 1.5 \text{ m}$	5.0540 /8 ± 0.004 /8	8- 100
		12011	(/-) E /2	-65.455 (15) 96.252 (5)	33 ± 4 m		ε 100 100				64	1/2-	-03.3122 (3)	$101.2 \pm 1.5 \text{ y}$	0.02559/ 1.0.00109/	β 100
		121	3/2+	-66.255 (5)	2.12 ± 0.01 II		ε 100 100				04	0+ E / 2	-67.0964 (5)		0.9233 /6 ± 0.0019 /6	2= 100
		122	1+ E /0 -	-00.002 (3)	3.03 ± 0.00 III		ε 100 100				65	3/2-	-03.1232 (0)	2.3173 ± 3.024 m		β 100 g= 100
		123	5/2+ 2	-87.945 (4)	13.2235 ± 0.0019 h		ε 100 100				66	(1/2)	-66.0062 (14)	54.6 ± 0.3 n		β 100 2= 100
		124	Z- E (0)	-87.307 (24)	$4.1760 \pm 3.0E-4$ d		ε 100 100				67	(1/2)-	-03.743 (3)	21 ± 18		β 100
		125	5/2+	-88.8385 (16)	59.407 ± 0.01 d		ϵ 100				68	0+	-03.404 (3)	29 ± 28		β 100
		126	2-	-87.912 (4)	12.93 ± 0.05 d	1000/	ϵ 52.7; β 47.3				69	9/2+	-59.979 (4)	$11.2 \pm 0.9 \text{ s}$		β 100
		12/	5/2+	-88.985 (4)	stable	100%					69m	1/2-	-59.658 (4)	3.5 ± 0.9 s		β 100
		128	1+	-87.739 (4)	$24.99 \pm 0.02 \text{ m}$		β^{-} 93.1; ϵ 6.9				70	0+	-59.2136 (22)	6.0 ± 0.3 s		β^{-} 100
		129	7/2+	-88.507 (3)	$1.5/E+/\pm 0.04E+/y$		β 100				71	(9/2+)	-55.4059 (23)	2.56 ± 0.03 s		β 100
		130	5+	-86.936 (3)	12.36 ± 0.01 h		β^{-} 100				71m	(1/2-)	-54.9069 (23)	2.3 ± 0.3 s		β^{-} 100
		130m	2+	-86.896 (3)	8.84 ± 0.06 m		$TT 84; \beta^{-16}$				72	0+	-54.2258 (23)	$1.57 \pm 0.05 \text{ s}$		β^{-} 100
		131	7/2+	-87.4427 (6)	$8.0252 \pm 6.0E-4 d$		β^{-} 100				73	(9/2+)	-50.1079 (25)	$0.84 \pm 0.03 \text{ s}$		β^- 100
		132	4+	-85.698 (6)	2.295 ± 0.013 h		β^{-} 100				74	0+	-48.7 (4)	$0.68 \pm 0.18 \text{ s}$		β^- 100; $\beta^- n$
		132m	(8-)	-85.578 (6)	1.387 ± 0.015 h		TT 86; β^{-} 14				75	(7/2+)	-44.1 (4)	$344 \pm 25 \text{ ms}$		$\beta^{-} 100; \beta^{-} n 10$
		133	7/2+	-85.886 (5)	20.83 ± 0.08 h		β^{-} 100				76	0+	-41.6 (5)	0.238 +0.015-0.018 s		β^- 100; $\beta^- n$
		133m	(19/2-)	-84.252 (5)	$9\pm 2s$		TT 100				77	0	-36.7 (5)	128 +36-32 ms		eta^- 100; eta^-n 30
		134	(4)+	-84.072 (8)	$52.5 \pm 0.2 \text{ m}$		β^{-} 100			_	78	0+	-34.1 (8)	0.11 +0.1-0.06 s		$eta^- n$; eta^- 100
		134m	(8)-	-83.756 (8)	3.52 ± 0.04 m		IT 97.7; β^{-} 2.3	29		Cu	55	(3/2-)	-31.6 (3)	$27 \pm 8 \text{ ms}$		ϵ 100; ϵp 15
		135	7/2+	-83.791 (7)	6.58 ± 0.03 h		β^- 100				56	(4+)	-38.2 (4)	$93 \pm 3 \text{ ms}$		$\epsilon p 0.4; \epsilon 100$
		136	(1-)	-79.572 (19)	$83.4 \pm 1 \text{ s}$		β^- 100				57	3/2-	-47.3082 (6)	$196.3\pm0.7~\mathrm{ms}$		ϵ 100
		136m	(6-)	-78.932 (19)	$46.9 \pm 1 \mathrm{~s}$		β^- 100				58	1+	-51.6671 (7)	$3.204 \pm 0.007 \text{ s}$		$\epsilon 100$
		137	(7/2+)	-76.51 (3)	$24.5\pm0.2~{ m s}$		eta^- 100; $eta^- n$ 7.14				59	3/2-	-56.3577 (6)	$81.5\pm0.5~{\rm s}$		$\epsilon 100$
		138	(2-)	-71.9 (10)	$6.23\pm0.03~\mathrm{s}$		β^{-} 100; $\beta^{-}n$ 5.56				60	2+	-58.3445 (16)	$23.7\pm0.4~\text{m}$		ϵ 100
		139	(7/2+)	-68.53 (12)	$2.280\pm0.011~\mathrm{s}$		eta^- 100; eta^-n 10				61	3/2-	-61.9837 (10)	$3.333 \pm 0.005 \text{ h}$		ϵ 100
		140	(4-)	-63.6 (12)	$0.86\pm0.04~{ m s}$		eta^- 100; $eta^- n$ 9.3				62	1+	-62.7869 (7)	$9.673 \pm 0.008 \text{ m}$		ϵ 100
		141	0	-60.3 (13)	$0.43\pm0.02~{ m s}$		eta^- 100; $eta^- n$ 21.2				63	3/2-	-65.5792 (5)	stable	$69.15\% \pm 0.15\%$	
		142	0	-55 (4)	$222\pm12~\mathrm{ms}$		eta^- 100; eta^-n ?				64	1+	-65.424 (5)	$12.701 \pm 0.002 \ h$		ϵ 61.5; β^- 38.5
		143	0	-51.1 (4)	$130\pm45~\mathrm{ms}$		β^- ?				65	3/2-	-67.2633 (7)	stable	$30.85\% \pm 0.15\%$	
54	Xe	109	(7/2+)	-45.9 (3)	$13\pm2~ms$		α 100				66	1+	-66.2579 (7)	$5.120\pm0.014~\text{m}$		β^- 100
		110	0+	-51.92 (10)	$93\pm3~ms$		ϵp ; $lpha$ 64; ϵ				67	3/2-	-67.3187 (12)	$61.83\pm0.12~h$		β^- 100

				Table 8	3.1 – Continued from previ	ous page						Tabl	e 8.1 – Continued from previo	us page	
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$T_{1/2}, \tilde{\Gamma}$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$T_{1/2}, \tilde{\Gamma}$	Abundance	Decay Mode
		68	1+	-65.567 (16)	$30.9 \pm 0.6 \text{ s}$		$\beta^{-} 100$			126m	12 (3-)	-86.36 (3)	≈ 11 s		IT 100
		68m	(6-)	-64.8454 (16)	3.75 ± 0.05 m		$IT 84; \beta^{-} 16$			127	7/2+	-86.701 (5)	$3.85 \pm 0.05 \text{ d}$		$\beta^{-} 100$
		69	3/2-	-65,7362 (14)	$2.85 \pm 0.15 \text{ m}$		β^{-} 100			128	8-	-84.61 (3)	9.01 ± 0.04 h		β^{-} 100: β^{-} 96.4: <i>IT</i> 3.6
		70	(6-)	-62.9763 (11)	44.5 ± 0.2 s		β^- 100			129	7/2+	-84.629 (21)	4.40 ± 0.01 h		β^{-} 100
		70m	(3-)	-62 8752 (11)	33 ± 2 s		β^{-} 52: <i>IT</i> 48			129m	(19/2-)	-82 778 (21)	$17.7 \pm 0.1 \text{ m}$		β^{-} 85: <i>IT</i> 15
		70m2	1+	-62 7337 (11)	66 ± 0.28		$JT 6 8: \beta^{-} 93 2$			130	(8-)	-82 29 (16)	$395 \pm 0.8 \text{ m}$		β^{-} 100
		701112	3/2(-)	-62 7111 (15)	19.4 ± 1.6 s		$\beta^{-} 100$			130m	$(45)_{\pm}$	-82 285 (16)	$63 \pm 0.2 \text{ m}$		β^{-} 100
		71	(2)	50.782(14)	6.62 ± 0.02 c		β 100 8 ⁻ 100			121	(7/2)	81 076 (11)	0.5 ± 0.2 m		β 100 β= 100
		72	(2)	-59.765 (14)	0.05 ± 0.05 s		$\beta = 100$			122	(7/2+)	-01.970 (11)	25.03 ± 0.04 III		$\beta = 100, \beta = 100$
		75	(3/2-)	-36.9672 (20)	4.2 ± 0.3 s		β 100			132	$(4)^+$	-79.009 (10)	2.79 ± 0.07 m		β 100; β 100
		74	(1+,3+)	-36.006 (6)	1.394 ± 0.018		β 100 β 100 β			133	(7/2+)	-76.94(3)	2.54 ± 0.05 m		β 100 2- 100
		75	(3/2-)	-54.471 (24)	1.222 ± 0.008 s		β 100; β n 3.5			134	(0-)	-74.17 (4)	0.78 ± 0.06 s		β 100
		76	(3,4)	-50.976 (7)	$637 \pm 7 \mathrm{ms}$		β^{-} 100; β^{-} n 7.2; β^{-} 100			134m	i (7-)	-73.89 (4)	$10.07 \pm 0.05 \mathrm{s}$		β^{-} 100; β^{-} n 0.09
		77	(5/2-)	-48.3 (5)	$468.1 \pm 2 \text{ ms}$		$\beta^{-}n$ 30.3; β^{-} 100			135	(7/2+)	-69.79 (5)	$1.679 \pm 0.015 \mathrm{s}$		$\beta^{-}n$ 22; β^{-} 100
		78	(4-,5-,6-)	-44.5 (5)	$335 \pm 11 \text{ ms}$		β^{-} 100; $\beta^{-}n > 65.00$			136	1-	-64.5 (3)	$0.923 \pm 0.014 \text{ s}$		β^{-} 100; $\beta^{-}n$ 16.3
		79	0	-41.9 (4)	$188 \pm 25 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 55			137	(7/2+)	-60.4 (4)	$492 \pm 25 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 49
		80	0	-36.4 (6)	0.17 +0.11-0.05 s		β^{-}			138	0	-54.8 (3)	$350\pm15~\mathrm{ms}$		β^- 100; β^- n 72
30	Zn	54	0+	-6 (4)	1.59 +0.6-0.35 ms		2p 92			139	0	-50.3 (5)	93 +14-3 ms		$\beta^{-} 100; \beta^{-} n 90$
		55	(5/2-)	-14.4 (4)	$19.8\pm1.3~\mathrm{ms}$		ϵ 100; ϵp 91	52	Te	107	0	-60.54 (7)	$3.1\pm0.1~\mathrm{ms}$		α 70; ϵ 30
		56	0+	-25.2 (4)	$30.0 \pm 1.7 \text{ ms}$		ϵ 100; ϵp 86			108	0+	-65.784 (6)	$2.1\pm0.1~{ m s}$		ϵ 51; α 49; ϵp 2.4
		57	(7/2-)	-32.55 (21)	$38 \pm 4 \text{ ms}$		ϵ 100; $\epsilon p \ge 65.00$			109	(5/2+)	-67.715 (4)	$4.6\pm0.3~{ m s}$		$\epsilon \alpha < 5.0$ E-3; ϵ 96.1; ϵp 9.4;
		58	0+	-42.3 (5)	$86 \pm 8 \text{ ms}$		ϵ 100; $\epsilon p < 3.00$								α 3.9
		59	3/2-	-47.2149 (8)	$182.0\pm1.8~\mathrm{ms}$		ϵ 100; ϵp 0.1			110	0+	-72.23 (7)	$18.6\pm0.8~{ m s}$		ϵ 100; $\alpha \approx 3.0$ E-3
		60	0+	-54.1737 (6)	$2.38\pm0.05~\mathrm{m}$		e 100			111	(5/2)+	-73.587 (6)	$19.3\pm0.4~\mathrm{s}$		ϵ 100; ϵp
		61	3/2-	-56.343 (16)	$89.1\pm0.2~{ m s}$		$\epsilon 100$			112	0+	-77.567 (8)	2.0 ± 0.2 m		ϵ 100
		61m	1/2-	-56.255 (16)	< 430 ms		IT			113	(7/2+)	-78.35 (3)	1.7 ± 0.2 m		ϵ 100
		61m2	3/2-	-55.925 (16)	0.14 ± 0.07 s		IT			114	0+	-81.89 (3)	15.2 ± 0.7 m		$\epsilon 100$
		61m3	5/2-	-55,587 (16)	< 0.13 s		IT			115	7/2+	-82.06 (3)	5.8 ± 0.2 m		ϵ 100
		62	0+	-61.1674 (7)	9.186 ± 0.013 h		e 100			115m	(1/2)+	-82.04 (3)	6.7 ± 0.4 m		IT ; $\epsilon < 100.00$
		63	3/2-	-62 213 (16)	38.47 ± 0.05 m		e 100			116	0+	-85.27 (3)	2.49 ± 0.04 h		ε 100
		64	0+	-66 0036 (7)	> 7.0F20 v	$4917\% \pm 0.75\%$	26			117	1/2+	-85.097 (13)	$62 \pm 2 \text{ m}$		<i>€</i> 100
		65	5/2-	-65 9116 (7)	$2/3.93 \pm 0.09 d$	49.17 /0 ± 0.75 /0	< 100			117m	(11/2)	-84 801 (13)	$103 \pm 3 \text{ ms}$		IT 100
		66	0+	-68 899 (9)	stable	$27.73\% \pm 0.98\%$	6 100			118	0+	-87 684 (19)	6.00 ± 0.02 d		€ 100
		67	5/2-	-67.88 (9)	stable	$4.04\% \pm 0.16\%$				119	1/2+	-87 181 (8)	16.05 ± 0.05 h		€ 100
		69	0	70,0068 (0)	stable	$18.45\% \pm 0.10\%$				119m	11/2-	-86.92 (8)	$4.70 \pm 0.04 d$		$\epsilon 100$ $T < 8.0$ E-3
		69	1/ 2 -	-68 4175 (9)	$56.4 \pm 0.9 \text{ m}$	$10.45 / 0 \pm 0.05 / 0$	8= 100			120	0+	-89.37 (3)	stable	$0.09\% \pm 0.01\%$	0.010
		60m	0/2	-03.4175 (9)	12.76 ± 0.02 h		p = 100			120	1/2+	-88 55 (3)	19.17 ± 0.04 d	0.0970 ± 0.0170	< 100
		70	9/2+	-07.9709(9)	> 2.2E + 17 m	0.619/ 0.19/	$11.99.97, \beta = 0.03$			121 121m	1/2	-88 25 (3)	$164.2 \pm 0.8 d$		c 11 A. IT 88 6
		70	0+	-69.3646 (20)	$\geq 2.3E+17$ y	$0.61\% \pm 0.1\%$	2 <i>β</i>			12111	0	-00.23(3)	104.2 ± 0.8 u	$255\% \pm 0.12\%$	e 11.4, 11 88.0
		71	1/2-	-67.329 (3)	$2.45 \pm 0.1 \text{ m}$		$\beta = 100$			122	1/2	-90.3136 (10) 80 1725 (16)	> 0.2E + 16 m	$2.33\% \pm 0.12\%$	- 100
		71m	9/2+	-67.171 (3)	3.96 ± 0.05 h		$\beta 100; 11 \le 0.05$			123	1/2+	-09.1733 (10)	> 9.21+10 y	0.09 /0 ± 0.03 /0	E 100
		72	0+	-68.1454 (21)	46.5 ± 0.1 h		β 100			12311	1 11/2-	-00.920(10)	$119.2 \pm 0.1 \mathrm{d}$	4 7749/ + 0 149/	11 100
		73	(1/2)-	-65.5934 (19)	$23.5 \pm 1 \text{ s}$		β^- 100; β^- ; TT			124	0+	-90.5266 (16)	stable	$4.74\% \pm 0.14\%$	
		73m	(5/2+)	-65.3979 (19)	$13.0 \pm 0.2 \text{ms}$		<i>IT</i> 100			125	1/2+	-89.0243 (16)		7.07% ± 0.15%	100
		74	0+	-65.757 (3)	$95.6 \pm 1.2 \text{ s}$		β^{-} 100			125m	i 11/2-	-88.8795 (16)	57.40 ± 0.15 d	10.010/ 1.0.000/	11 100
		75	(7/2+)	-62.5589 (20)	$10.2\pm0.2~\mathrm{s}$		β^- 100			126	0+	-90.0666 (16)	stable	$18.84\% \pm 0.25\%$	
		76	0+	-62.303 (15)	$5.7\pm0.3~{ m s}$		β^- 100			127	3/2+	-88.283 (16)	9.35 ± 0.07 h		β^{-} 100
		77	(7/2+)	-58.7891 (20)	$2.08\pm0.05~{\rm s}$		β^- 100			127m	11/2-	-88.1947 (16)	$106.1 \pm 0.7 \text{ d}$		IT 97.6; β^{-} 2.4
		77m	(1/2-)	-58.0167 (20)	$1.05\pm0.1~{\rm s}$		$IT > 50.00; \beta^- < 50.00$			128	0+	-88.9937 (9)	$2.41E+24 \pm 0.39E+24 \text{ y}$	$31.74\% \pm 0.08\%$	$2\beta^{-} 100$
		78	0+	-57.4832 (19)	$1.47\pm0.15~{\rm s}$		β^- 100			129	3/2+	-87.0048 (9)	69.6 ± 0.3 m		β^- 100
		79	(9/2+)	-53.4322 (22)	$0.995 \pm 0.019 \ s$		β^{-} 100; $\beta^{-}n$ 1.3			129m	ı 11/2-	-86.8993 (9)	33.6 ± 0.1 d		IT 63; β^- 37
		80	0+	-51.649 (3)	$0.54\pm0.02~{\rm s}$		β^- 100; $\beta^- n$ 1			130	0+	-87.3529 (11)	\geq 3.0E+24 y	$34.08\% \pm 0.62\%$	$2\beta^{-} 100$
		81	(5/2+)	-46.2 (5)	$304\pm13~\mathrm{ms}$		β^{-} 100; $\beta^{-}n$ 7.5			131	3/2+	-85.211 (6)	$25.0\pm0.1~\mathrm{m}$		β^- 100
31	Ga	60	(2+)	-39.78 (20)	$70\pm13~\mathrm{ms}$		$\epsilon \alpha < 0.02; \epsilon$ 98.4; ϵp 1.6			131m	11/2-	-85.0287 (6)	$33.25\pm0.25h$		β^{-} 74.1; IT 25.9
		61	3/2-	-47.09 (5)	$167 \pm 3 \text{ ms}$		ϵ 100; $\epsilon p < 0.25$			131m	12 (23/2+)	-83.271 (6)	$93\pm12\ ms$		<i>IT</i> 100
				× /			Continued on next nage				,				Continued on next page

Pocketbook of Data	for Nuclear Engineers
--------------------	-----------------------

			Table	e 8.1 – Continued from previo	ous page						Table	8.1 - Continued from previ	ous page	
Z	El	$\mathbf{A} = \mathbf{J}^{\pi}$	Δ [MeV]	$T_{1/2}, \tilde{\Gamma}$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$T_{1/2}, \tilde{\Gamma}$	Abundance	Decay Mode
		121m 11/2-	-89,1908 (22)	$43.9 \pm 0.5 \text{ v}$		$IT 77.6: \beta^- 22.4$			62	0+	-51,9864 (7)	$116.121 \pm 0.021 \text{ ms}$		<u>ε 100: ε</u> p
		122 0+	-89 943 (3)	stable	$4.63\% \pm 0.03\%$	11,7,10,p 11 ,1			63	3/2-	-56 547 (13)	32.4 ± 0.5 s		e 100, ep
		122 01	87 818 (3)	$120.2 \pm 0.4.4$	4.00 /0 ± 0.00 /0	8= 100			64	0,2	58 8224 (15)	2.42 ± 0.03		- 100
		123 11/2-	-07.010(3)	$129.2 \pm 0.4 \text{ u}$		β 100 e= 100			64	0+	-38.8334 (13)	2.027 ± 0.012 III		ε 100 100
		123m 3/2+	-87.793 (3)	$40.06 \pm 0.01 \text{ m}$		β 100			65	3/2-	-62.6572 (8)	$15.2 \pm 0.2 \text{ m}$		$\epsilon 100$
		124 0+	-88.237 (14)	> 1.2E+21 y	$5.79\% \pm 0.05\%$	$2\beta^{-}$			66	0+	-63.724 (3)	9.49 ± 0.03 h		$\epsilon 100$
		125 11/2-	-85.8988 (15)	$9.64 \pm 0.03 \text{ d}$		β^- 100			67	3/2-	-66.8788 (12)	$3.2617 \pm 5.0E-4 d$		ϵ 100
		125m 3/2+	-85.8713 (15)	$9.52 \pm 0.05 \text{ m}$		β^{-} 100			68	1+	-67.0857 (15)	$67.71 \pm 0.09 \text{ m}$		e 100
		126 0+	-86.021 (11)	$2.30E+5 \pm 0.14E+5 v$		$\beta^{-} 100$			69	3/2-	-69.3277 (12)	stable	$60.108\% \pm 0.009\%$	
		127 (11/2-)	-83.47 (10)	2.10 ± 0.04 h		$\beta^{-} 100$			70	1+	-68.91 (12)	21.14 ± 0.03 m		β^{-} 99.59; ϵ 0.41
		127m(3/2+)	-83.465 (10)	4.13 ± 0.03 m		β^{-} 100			71	3/2-	-70.139 (8)	stable	$39.892\% \pm 0.009\%$, ,
		128 0+	-83,34 (3)	59.07 ± 0.14 m		β^- 100			72	3-	-68,5882 (8)	14.10 ± 0.02 h		β^{-} 100
		128m (7-)	-81 24 (3)	65 ± 0.5 s		IT 100			73	3/2-	-69 6993 (17)	4.86 ± 0.03 h		β ⁻ 100
		$120111 (7^{-})$ $120 (2/2^{+})$	-01.24 (3) 80 E0 (2)	2.22 ± 0.04 m		<i>P</i> = 100			73	(2)	-09.0995 (17)	4.00 ± 0.00 m		$\beta = 100$
		129 (3/2+) $120 \dots (11/2)$	-60.59 (5)	2.23 ± 0.04 III		p 100 a= 100 km + 2.0F 2			74	(3-)	-00.049 (4)	0.12 ± 0.12 III		p 100
		129m (11/2-)	-80.56 (3)	$6.9 \pm 0.1 \text{ m}$		β 100; $TT < 2.0E-3$			74m	(0)	-67.989 (4)	9.5 ± 1.8		$1175; \beta < 50.00$
		130 0+	-80.137 (9)	3.72 ± 0.07 m		β^{-} 100			75	3/2-	-68.4645 (24)	126 ± 2 s		β^{-} 100
		130m (7-)	-78.19 (9)	1.7 ± 0.1 m		β^{-} 100			76	2+	-66.2966 (20)	$32.6 \pm 0.6 \text{ s}$		β^{-} 100
		131 (3/2+)	-77.272 (9)	$56.0 \pm 0.5 \mathrm{~s}$		β^{-} 100; β^{-} 100; IT			77	3/2-	-65.9923 (24)	$13.2\pm0.2~\mathrm{s}$		β^- 100
		132 0+	-76.548 (6)	$39.7\pm0.8~{ m s}$		β^{-} 100			78	2+	-63.7059 (19)	$5.09 \pm 0.05 \text{ s}$		$\beta^{-} 100$
		133 7/2-	-70.847 (23)	$1.46\pm0.03~{ m s}$		β^{-} 100; $\beta^{-}n$ 0.03			79	3/2-	-62.5476 (19)	$2.847 \pm 0.003 \text{ s}$		β^{-} 100; $\beta^{-}n$ 0.09
		134 0+	-66.32 (15)	$1.050 \pm 0.011 \mathrm{~s}$		β^{-} 100: $\beta^{-}n$ 17			80	3	-59,224 (3)	$1.676 \pm 0.014 \mathrm{~s}$		β^{-} 100: $\beta^{-}n$ 0.86
		135 (7/2-)	-60.6 (4)	$530 \pm 20 \text{ ms}$		$\beta^{-} 100; \beta^{-} n 21$			81	5/2-	-57 628 (3)	1217 ± 0.005 s		β^{-} 100: β^{-} n 11 9
		136 0+	-56 3 (5)	0.25 ± 0.03 s		$\beta^{-} 100; \beta^{-} n 21$ $\beta^{-} 100; \beta^{-} n 30$			82	(123)	-52 9307 (24)	0.599 ± 0.002 s		β^{-} 100; β^{-} n 19.8
		127 0	50.3 (6)	$100 \pm 60 \text{ mg}$		β^{-} 100; β^{-} n 50			82	(1,2,3)	40.257 (2)	308.1 ± 1 ms		$\beta = 100, \beta = \pi 19.0$
=1	C1	157 0	-30.3 (6)	190 ± 60 ms		p = 100; p = n : 58			03	0	-49.237 (3)	308.1 ± 1 HIS		$\beta = 100; \beta = n.62.8$
51	50	104 0	-59.17 (22)	0.44 +0.15-0.11 s		$p < 1.00; \epsilon 100; \epsilon p < 7.00$			84	(0-)	-44.3 (4)	0.085 ± 0.01 s		$\beta 100; \beta n 74; \beta 100;$
		105 (5/2+)	-63.853 (16)	$1.22 \pm 0.11 \text{ s}$		ϵ 99; p 1				(1 (2				β n?
		106 (2+)	-66.473 (7)	$0.6\pm0.2~{ m s}$		ϵ			85	(1/2-	-40.2 (5)	< 100 ms		$\beta^{-}: \beta^{-}n > 35.0$
		107 (5/2+)	-70.653 (4)	$4.0\pm0.2~{ m s}$		ϵ 100				,3/2-)	(-)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		108 (4+)	-72.445 (5)	$7.4\pm0.3~{ m s}$		ϵ 100	32	Ge	61	(3/2-)	-33.7 (3)	$44 \pm 6 \text{ ms}$		ϵ 100; $\epsilon p > 58.00$
		109 (5/2+)	-76.251 (5)	$17.0\pm0.7~\mathrm{s}$		ϵ 100			62	0+	-42.24 (14)	$129\pm35~\mathrm{ms}$		ϵ 100; ϵp
		110 (3+,4+)	-77.45 (6)	$23.0 \pm 0.4 \text{ s}$		$\epsilon 100$			63	3/2-	-46.92 (4)	$150 \pm 9 \text{ ms}$		<i>ϵ</i> 100
		111 (5/2+)	-80.837 (9)	75 ± 1 s		€ 100			64	0+	-54.315 (4)	$63.7 \pm 2.5 \text{ s}$		ϵ 100
		112 3+	-81 601 (18)	51.4 ± 1.8		e 100			65	3/2-	-56.481 (3)	$30.9 \pm 0.5 \text{ s}$		ϵ 100; ϵp 0.01
		113 5/2+	-84 417 (17)	$667 \pm 0.07 \text{ m}$		< 100			66	0+	-61 6069 (24)	2.26 ± 0.05 h		€ 100
		110 0/21	84.406 (22)	3.49 ± 0.03 m		< 100			67	1/2-	-62 658 (5)	$189 \pm 0.3 \text{ m}$		e 100
		114 5+	-04.490 (22)	3.49 ± 0.03 III		ε 100 100			68	0	66 0787 (10)	$270.95 \pm 0.16.4$		< 100
		115 5/2+	-87.003 (16)	$32.1 \pm 0.3 \text{ m}$		ε 100			60	0+ E / 2	-00.9707 (19)	270.95 ± 0.10 d		e 100 100
		116 3+	-86.822 (5)	$15.8 \pm 0.8 \text{ m}$		ϵ 100			70	3/2-	-07.1003 (13)	39.03 ± 0.1 m	20 579/ + 0 279/	ϵ 100
		116m 8-	-86.439 (5)	$60.3 \pm 0.6 \text{ m}$		ϵ 100			70	0+	-70.5618 (8)	stable	$20.57\% \pm 0.27\%$	
		117 5/2+	-88.642 (9)	2.80 ± 0.01 h		ϵ 100			71	1/2-	-69.9064 (8)	11.43 ± 0.03 d		$\epsilon 100$
		118 1+	-87.996 (3)	3.6 ± 0.1 m		ϵ 100			71m	9/2+	-69.708 (8)	$20.41\pm0.18~\mathrm{ms}$		<i>IT</i> 100
		118m 8-	-87.746 (3)	5.00 ± 0.02 h		e 100			72	0+	-72.5856 (5)	stable	$27.45\% \pm 0.32\%$	
		119 5/2+	-89.474 (8)	$38.19\pm0.22~\mathrm{h}$		ϵ 100			73	9/2+	-71.2972 (5)	stable	$7.75\% \pm 0.12\%$	
		119m (27/2+)	-86.632 (8)	$0.85 \pm 0.09 \text{ s}$		<i>IT</i> 100			73m	1/2-	-71.2305 (5)	$0.499 \pm 0.011 \text{ s}$		IT 100
		120 1+	-88 417 (7)	15.89 ± 0.04 m		€ 100° € 100			74	0+	-73.4221 (5)	stable	$36.5\% \pm 0.2\%$	
		121 5/2+	-89 6 (3)	stable	$57.21\% \pm 0.05\%$				75	1/2-	-71.8561 (5)	$82.78 \pm 0.04 \text{ m}$		β^{-} 100
		121 0/27	-88 335 (3)	$27238 \pm 20E_4 4$	57.21 /0 ± 0.00 /0	β^{-} 97 59: < 2.41			75m	7/2+	-71 7164 (5)	477 ± 0.5 s		$TT 99 97 \beta^{-} 0.03$
		$122 2^{-1}$	-00.000 (0) 88 171 (2)	4.101 ± 0.002 m		$\mu = 27.52, \epsilon 2.41$			76	0+	-73 2128 (0)	stable	$773\% \pm 0.12\%$	
		122111 (0)-	-00.1/1 (3)	4.191 ± 0.003 m	40 700/ + 0.050/	11 100			70	7/2	71 2120 (9)	1120 ± 0.01 h	$7.75/0 \pm 0.12/0$	<i>e</i> = 100
		123 7/2+	-89.2261 (22)	stable	$42.79\% \pm 0.05\%$				11	1/2+	-/ 1.2138 (4)	11.50 ± 0.01 n		p = 100
		124 3-	-87.6223 (22)	$60.20 \pm 0.03 \text{ d}$		β^- 100			77m	1/2-	-/1.0541 (4)	$52.9 \pm 0.6 \text{ s}$		$TT 19; \beta 81$
		124m 5+	-87.6114 (22)	$93 \pm 5 \mathrm{s}$		IT 75; β^- 25			78	0+	-/1.862 (4)	$88.0 \pm 1 \text{ m}$		$\beta^{-} 100$
		124m2 (8)-	-87.5855 (22)	20.2 ± 0.2 m		<i>IT</i> 100			79	(1/2)-	-69.53 (4)	$18.98\pm0.03~{\rm s}$		β^{-} 100
		125 7/2+	-88.258 (3)	$2.75856 \pm 2.5E-4$ y		β^{-} 100			79m	(7/2+)	-69.34 (4)	$39.0 \pm 1 \text{ s}$		β^- 96; IT 4
		126 (8-)	-86.4 (3)	12.35 ± 0.06 d		$\beta^{-} 100$			80	0+	-69.5353 (21)	$29.5\pm0.4~\mathrm{s}$		$\beta^{-} 100$
		126m (5+)	-86.38 (3)	$19.15\pm0.08~\mathrm{m}$		β^{-} 86: IT 14			81	(9/2+)	-66.2916 (21)	$7.6\pm0.6~{ m s}$		$\beta^{-} 100$
		X- /	- \- /			,,					. ,			0 1 1 1

Continued on next page

Pocketbook of Data	for Nuclear Engineers
--------------------	-----------------------

				Table	e 8.1 – Continued from previo	nus page		Table $8.1 - Continued$ from previous page								
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \check{\Gamma}$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \dot{\mathbf{\Gamma}}$	Abundance	Decay Mode	
		81m	(1/2+)	-65.6125 (21)	$7.6 \pm 0.6 \mathrm{s}$		$\beta^{-} 100$			123	m (1/2)-	-83.1 (23)	$47.4 \pm 0.4 \text{ s}$		$\beta^{-} 100$	
		82	0+	-65.415 (22)	$4.56\pm0.26~\mathrm{s}$		β^{-} 100			124	(1)+	-80.87 (3)	$3.12\pm0.09~\mathrm{s}$		β^- 100	
		83	(5/2)+	-60.9764 (24)	$1.85\pm0.06~{ m s}$		β^{-} 100			124	m (8-)	-80.82 (3)	$3.7\pm0.2~{ m s}$		β^- 100	
		84	0+	-58,148 (3)	0.954 ± 0.014 s		$\beta^{-}n$ 10.2: β^{-} 100			125	9/2+	-80.48 (3)	2.36 ± 0.04 s		β^{-} 100	
		85	(1/2+5/2)	$(2)^{(2)}($	0.56 ± 0.05 s		β^{-} 100: β^{-} 14			125	$m \frac{1}{2}$	-80 12 (3)	122 ± 0.016		β^{-} 100	
		87	(5/2+)	-44 2 (5)	≈ 0.14 s		β^{-} 100; β^{-} n			126	3(+)	-77 81 (4)	12.2 ± 0.25 1.53 ± 0.01 s		β^{-} 100	
33	٨c	64	0	-39.4 (3)	$18 \pm 43 - 7 \text{ ms}$		ρ 100, ρ <i>π</i>			126	$m(8_{-})$	-77 71 (4)	1.60 ± 0.015		β^{-} 100	
55	лэ	65	0	-57.4 (5)	10 ± 16 mg		e 100 - 100			120	(0/2)	76 802 (22)	1.04 ± 0.003		$\beta = 100, \beta = \pi < 0.02$	
		05	(0)	-40.94 (0)	120 ± 10 ms		£ 100			127	$(\frac{9}{2+})$	-70.092 (22)	1.09 ± 0.01 s		$\beta = 100, \beta = n \le 0.03$	
		66	(0+)	-52.03 (5)	$95.77 \pm 0.23 \text{ ms}$		ε 100			12/1	m(1/2-)	-76.43 (22)	3.67 ± 0.04 s		β 100; β n 0.69	
		67	(5/2-)	-56.5859 (14)	$42.5 \pm 1.2 \text{ s}$		€ 100			12/1	m2 (21/2-)	-75.029 (22)	1.04 ± 0.1 s		β 100	
		68	3+	-58.8945 (18)	$151.6 \pm 0.8 \text{ s}$		ϵ 100			128	(3)+	-74.36 (5)	0.84 ± 0.06 s		β 100; β $n < 0.05$	
		69	5/2-	-63.09 (3)	$15.2 \pm 0.2 \text{ m}$		ϵ 100			128	m (8-)	-74.02 (5)	$0.72 \pm 0.1 \text{ s}$		β^{-} 100; $\beta^{-}n < 0.05$	
		70	4+	-64.34 (5)	$52.6 \pm 0.3 \text{ m}$		ϵ 100			129	(9/2+)	-72.81 (4)	$0.61\pm0.01~{ m s}$		β^{-} 100; $\beta^{-}n$ 0.25	
		71	5/2-	-67.893 (4)	$65.30 \pm 0.07 \text{ h}$		ϵ 100			129	m (1/2-)	-72.44 (4)	$1.23\pm0.03~\mathrm{s}$		$IT < 0.30; \ \beta^- > 99.70;$	
		72	2-	-68.229 (4)	$26.0\pm0.1~\mathrm{h}$		ϵ 100								$\beta^- n$ 2.5	
		73	3/2-	-70.952 (4)	$80.30 \pm 0.06 \text{ d}$		e 100			129	m2 (23/2-)	-71.18 (4)	$0.67\pm0.1~{ m s}$		β^- 100	
		74	2-	-70.8597 (17)	$17.77 \pm 0.02 \text{ d}$		ϵ 66; β^- 34			130	1(-)	-69.89 (4)	$0.29\pm0.02~{ m s}$		β^{-} 100; $\beta^{-}n$ 0.93	
		75	3/2-	-73.0337 (9)	stable	100%				130	m (10-)	-69.84 (4)	$0.54\pm0.01~{ m s}$		β^{-} 100; $\beta^{-}n$ 1.65	
		75m	9/2+	-72.7298 (9)	$17.62 \pm 0.23 \text{ ms}$		<i>IT</i> 100			130	m2 (5+)	-69.49 (4)	$0.54\pm0.01~{ m s}$		β^{-} 100; $\beta^{-}n$ 1.65	
		76	2-	-72.2908 (9)	$1.0942 \pm 7.0E-4$ d		β^{-} 100			131	(9/2+)	-68.05 (20)	$0.28\pm0.03~{ m s}$		β^{-} 100; $\beta^{-}n < 2.00$	
		77	3/2-	-73.9164 (17)	38.83 ± 0.05 h		β^- 100			131	m (1/2-)	-67.748 (20)	$0.35\pm0.05~{ m s}$		$\beta^{-}n < 2.00; IT < 0.02;$	
		78	2-	-72 817 (10)	90.7 ± 0.2 m		β^{-} 100				()	· · /			$\beta^- \ge 99.98$	
		79	3/2-	-73 636 (5)	9.01 ± 0.15 m		β^{-} 100 β^{-} 100			131	m2(21/2+)	-64.286 (20)	$0.32 \pm 0.06 \text{ s}$		$\beta^- > 99.00; IT < 1.00;$	
		80	1+	-72 171 (16)	152 ± 0.13 m		β 100 8 ⁻ 100				(, , ,				$\beta^- n \approx 0.03$	
		Q1	2/2	72 522 (2)	13.2 ± 0.23		$\beta = 100$			132	(7-)	-62.41 (6)	$0.207 \pm 0.006 \text{ s}$		$\beta^{-} 100; \beta^{-} n 6.3$	
		01	372-	-72.333 (3)	33.3 ± 0.8 s		$\beta = 100$			133	(9/2+)	-57 8 (3)	$165 \pm 3 \text{ ms}$		β^{-} 100: β^{-} n 85	
		82	(2-)	-70.103 (4)	$19.1 \pm 0.5 \text{ s}$		β 100			133	m (1/2-)	-57 4 (3)	180 ± 0 ms		$IT \cdot \beta^{-} n \cdot \beta^{-}$	
		82m	(5-)	-69.956 (4)	13.6 ± 0.4 s		β 100			134	$(4 + t_0 7)$	-52 (4)	$140 \pm 4 \text{ ms}$		$\beta^{-} 100; \beta^{-} n 65$	
		83	(5/2-	-69.669 (3)	13.4 ± 0.3 s		β^{-} 100			125	(4.107.)	32 (1) 47 2 (5)	140 ± 4 ms		β^{-} 100; β^{-} n 05	
			,3/2-)				,	50	6	100	0	-47.2 (J) E6.0 (6)	92 ± 10 ms		$\beta 100, \beta n$	
		84	(3-)	-65.853 (3)	$4.2\pm0.5~{ m s}$		eta^- 100; $eta^- n$ 0.18	50	31	100	(F(2))	-36.9 (6)	$0.80 \pm 0.37 \pm 0.2$ s		$\epsilon 100; \epsilon p < 17.00$	
		85	(3/2-)	-63.189 (3)	$2.021 \pm 0.01 \text{ s}$		eta^- 100; eta^-n 59.4			101	(3/2+)	-39.9 (3)	1.7 ± 0.3 s		<i>εp</i> 26; <i>ε</i> 100	
		86	0	-58.962 (3)	$0.945 \pm 0.008 \text{ s}$		eta^- 100; eta^-n 26			102	0+	-64.93 (10)	3.8 ± 0.2 s		$\epsilon 100$	
		87	(3/2-)	-55.618 (3)	$0.56\pm0.08~{ m s}$		β^{-} 100; $\beta^{-}n$ 15.4			103	(5/2+)	-66.97 (7)	$7.0 \pm 0.2 \text{ s}$		ϵ 100; ϵp 1.2	
34	Se	65	(3/2-)	-32.9 (6)	$33 \pm 4 \text{ ms}$		ϵ 100; ϵp 100			104	0+	-71.625 (6)	$20.8 \pm 0.5 \text{ s}$		ϵ 100	
		67	0	-46.58 (7)	$136\pm12~\mathrm{ms}$					105	(5/2+)	-73.338 (4)	$32.7 \pm 0.5 \text{ s}$		ϵ 100; ϵp 0.01	
		68	0+	-54.1894 (5)	$35.5\pm0.7~\mathrm{s}$		e 100			106	0+	-77.354 (5)	$115\pm5~{ m s}$		ϵ 100	
			(1/2 -	= (a (a)						107	(5/2+)	-78.512 (5)	2.90 ± 0.05 m		ϵ 100	
		69	3/2-)	-56.3 (3)	$27.4 \pm 0.2 \mathrm{s}$		ϵ 100; ϵp 0.05			108	0+	-82.071 (5)	$10.30 \pm 0.08 \text{ m}$		ϵ 100	
		70	0+	-61.9298 (16)	41.1 ± 0.3 m		€ 100			109	5/2+	-82.633 (8)	18.0 ± 0.2 m		ϵ 100	
		71	(5/2-)	-63.146 (3)	$4.74 \pm 0.05 \mathrm{m}$		€ 100			110	0+	-85.844 (14)	$4.11\pm0.1~{ m h}$		ϵ 100	
		72	0+	-67 8681 (20)	840 ± 0.08 d		e 100			111	7/2+	-85.941 (6)	35.3 ± 0.6 m		ϵ 100	
		73	9/2+	-68 227 (7)	7.15 ± 0.08 h		< 100			112	0+	-88.6579 (17)	< 1.3E + 21 v	$0.97\% \pm 0.01\%$	2ϵ	
		73m	3/2-	-68 201 (7)	39.8 ± 1.3 m		E 100			113	1/2+	-88,3303 (22)	115.09 ± 0.03 d		ϵ 100	
		7311	0+	$_{-72}^{-70}$ $_{2107}^{-70}$ $_{21}^{-70}$	etable	$0.80\% \pm 0.04\%$	11 / 2.0, t 2/.4			113	m 7/2+	-88.2528 (22)	21.4 ± 0.4 m		$IT 91.1: \epsilon 8.9$	
		74	0+ E /2 ·	-72.2127(3)		0.09/0 工 0.04%	. 100			114	0+	-90.5594 (15)	stable	$0.66\% \pm 0.01\%$,,,	
		15	3/2+	-72.109 (3)	119.79 ± 0.04 d	0.270/ 0.200/	ϵ 100			115	1/2+	-90 0338 (15)	stable	$0.34\% \pm 0.01\%$		
		76	0+	-/5.2518 (/)	stable	$9.37\% \pm 0.29\%$				116	0+	-91 5259 (10)	etabla	$1454\% \pm 0.01\%$		
		77	1/2-	-74.5993 (10)	stable	$7.63\% \pm 0.16\%$				110	1/2	00 2077 (5)	stable	$7.68^{\circ} \pm 0.07^{\circ}$		
		77m	7/2+	-74.4374 (10)	$17.4\pm0.8~{ m s}$		<i>IT</i> 100			117	1/2+	-90.3977 (3) 00.0921 (5)	stable	1.00/0±0.01%	177 100	
		78	0+	-77.0258 (20)	stable	$23.77\% \pm 0.28\%$				11/1	III 11/2-	-90.0831 (3)	13.76 ± 0.04 d	04 000/ + 0.000/	11 100	
		79	7/2+	-75.9173 (24)	$2.95E+5 \pm 0.38E+5 \text{ y}$		β^- 100			118	0+	-91.6528 (5)	stable	$24.22\% \pm 0.09\%$		
		79m	1/2-	-75.8215 (24)	$3.92\pm0.01~\text{m}$		IT 99.94; β^- 0.06			119	1/2+	-90.065 (7)	stable	$8.59\% \pm 0.04\%$		
		80	0+	-77.7598 (15)	stable	$49.61\% \pm 0.41\%$	$2\beta^-$			119	m 11/2-	-89.9755 (7)	$293.1 \pm 0.7 \text{ d}$		<i>IT</i> 100	
		81	1/2-	-76.3894 (15)	$18.45\pm0.12~\text{m}$		β^- 100			120	0+	-91.0982 (22)	stable	$32.58\% \pm 0.09\%$		
-							Continued on next page			121	3/2+	-89.1971 (22)	$27.03\pm0.04~h$		β^{-} 100	

Pocketbook of Data for Nuclear Engineers

	Table 8.1 – Continued from previous page							Table 8.1 – Continued from previous page								
Z	El	A J^{π}	Δ [MeV]	$\mathbf{T}_{1/2}, \check{\Gamma}$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$T_{1/2}, \check{\Gamma}$	Abundance	Decay Mode		
		131 (7/2-)	-55.38 (20)	$68 \pm 3 \text{ ms}$		$\beta^{-} 100; \beta^{-} n 3.5$			81m	7/2+	-76.2864 (15)	57.28 ± 0.02 m		<i>IT</i> 99.95; β ⁻ 0.05		
		132 0+	-50.9 (3)	$97 \pm 10 \text{ ms}$		$\beta^{-} 100; \beta^{-} n 60$			82	0+	-77.594 (15)	stable	$8.73\% \pm 0.22\%$.,		
		133 (7/2-)	0	$57 \pm 10 \text{ ms}$		$\beta^- 100; \beta^- n; \beta^- 2n$			83	9/2+	-75.341 (3)	$22.3 \pm 0.3 \text{ m}$		β^{-} 100		
49	In	98 0	-53 9 (20)	32 + 32 - 11 ms		6°6			83m	1/2-	-75 112 (3)	70.1 ± 0.4 s		β^{-} 100		
		99 0	-61 38 (20)	30 ± 0.8 s		6			84	0+	-75 9476 (20)	$326 \pm 0.1 \text{ m}$		β^{-} 100		
		100 (6+7+)	-64 34 (18)	5.0 ± 0.05 59 ± 0.2 s		e 100: en 1.6			85	(5/2+)	-72 414 (3)	32.9 ± 0.3 s		β^{-} 100		
		100 (0/2+)	-68.6 (3)	15.1 ± 0.2 s		e 100, ep 1.0			86	0+	-70 503 (3)	143 ± 0.38		β ⁻ 100		
		101 (5/21) 102 (6+)	-70 695 (5)	13.1 ± 0.03 23.3 ± 0.1 s		c 100; cn 0 0003			87	$(5/2_{\pm})$	-66 4261 (22)	5.50 ± 0.12 s		β^{-} 100 $\beta^{-} = 0.2$		
		102 (07) 103 (9/2)+	-74 629 (9)	25.5 ± 0.13		< 100, ep 0.0075			88	0+	-63 884 (3)	1.53 ± 0.06 s		β^{-} 100; β^{-} n 0.67		
		103 (9/2)+ 103m (1/2)	-73.008 (0)	34 ± 2 s		E 100			89	$(5/2_{\pm})$	-58 992 (4)	0.41 ± 0.00 s		β^{-} 100, β^{-} π 0.07		
		103111 (1/2-) 104 (6+)	76 182 (6)	180 ± 0.02 m		- 100			01	(3/2+)	-50.772 (4)	0.41 ± 0.043		$\beta = 100, \beta = n7.8$		
		104 (0+) 104m (2+)	-70.103 (0)	1.80 ± 0.05 m		E 100	25	D	70	0	-50.5 (5) E1 426 (1E)	0.27 ± 0.00 s		$\beta 100, \beta n 21$		
		104III (3+)	-76.069 (6)	13.7 ± 0.3 s		11 80; € 20	55	Dr	70	0+	-31.420 (13)	79.1 ± 0.0 ms		ε 100 100		
		$105 \frac{9}{2+}$	-79.64 (10)	$5.07 \pm 0.07 \text{ m}$		ε 100 μπ 100			70m	9+	-49.133 (15)	$2.2 \pm 0.2 \text{ s}$		ε 100 100		
		105m (1/2-)	-76.900 (10)	40 ± 0.5		11 100			71	(3/2)-	-36.302 (3)	$21.4 \pm 0.0 \text{ s}$		ε 100 100		
		106 /+	-80.604 (11)	6.2 ± 0.1 m		ε 100 100			72	1+	-59.067 (7)	$78.6 \pm 2.4 \text{ s}$		ε 100 μπ. 100		
		106m (2)+	-80.575 (11)	$5.2 \pm 0.1 \text{ m}$		ε 100			72m	(3-)	-58.966 (7)	10.6 ± 0.3 s		TT 100; ϵ		
		107 9/2+	-83.564 (10)	32.4 ± 0.3 m		$\epsilon 100$			73	1/2-	-63.648 (7)	3.4 ± 0.2 m		$\epsilon 100$		
		10/m 1/2-	-82.886 (10)	$50.4 \pm 0.6 \text{ s}$		11/100			74	(0-)	-65.285 (6)	$25.4 \pm 0.3 \text{ m}$		ϵ 100		
		108 7+	-84.116 (9)	$58.0 \pm 1.2 \text{ m}$		ϵ 100			74m	4(+)	-65.271 (6)	$46 \pm 2 \text{ m}$		ϵ 100		
		108m 2+	-84.086 (9)	$39.6 \pm 0.7 \text{ m}$		ϵ 100			75	3/2-	-69.107 (4)	$96.7 \pm 1.3 \text{ m}$		<i>ϵ</i> 100		
		109 9/2+	-86.488 (4)	4.167 ± 0.018 h		ϵ 100			76	1-	-70.289 (9)	16.2 ± 0.2 h		ϵ 100		
		109m 1/2-	-85.838 (4)	1.34 ± 0.07 m		IT 100			76m	(4)+	-70.186 (9)	$1.31 \pm 0.02 \text{ s}$		$IT > 99.40; \epsilon < 0.60$		
		109m2(19/2+)	-84.387 (4)	$0.209 \pm 0.006 \text{ s}$		IT 100			77	3/2-	-73.235 (3)	57.036 ± 0.006 h		ϵ 100		
		110 7+	-86.472 (12)	4.9 ± 0.1 h		ϵ 100			77m	9/2+	-73.129 (3)	4.28 ± 0.1 m		<i>IT</i> 100		
		110m 2+	-86.41 (12)	$69.1 \pm 0.5 \text{ m}$		ϵ 100			78	1+	-73.452 (4)	$6.45 \pm 0.04 \text{ m}$		$\epsilon \ge 99.99; \beta^- \le 0.01$		
		111 9/2+	-88.393 (4)	$2.8047 \pm 4.0E-4 d$		ϵ 100			79	3/2-	-76.0684 (15)	stable	$50.69\% \pm 0.07\%$			
		111m 1/2-	-87.856 (4)	$7.7 \pm 0.2 \text{ m}$		<i>IT</i> 100			79m	9/2+	-75.8608 (15)	$5.1 \pm 0.4 \text{ s}$		TT 100		
		112 1+	-87.993 (5)	$14.97 \pm 0.1 \text{ m}$		ϵ 56; β^- 44			80	1+	-75.8894 (15)	$17.68 \pm 0.02 \text{ m}$		β^{-} 91.7; ϵ 8.3		
		112m 4+	-87.836 (5)	20.56 ± 0.06 m		<i>IT</i> 100			80m	5-	-75.8035 (15)	4.4205 ± 8.0 E-4 h		<i>IT</i> 100		
		113 9/2+	-89.3683 (15)	stable	$4.29\% \pm 0.05\%$				81	3/2-	-77.9755 (13)	stable	$49.31\% \pm 0.07\%$			
		113m 1/2-	-88.9766 (15)	$99.476 \pm 0.023 \text{ m}$		<i>IT</i> 100			82	5-	-77.4972 (13)	35.282 ± 0.007 h		β^{-} 100		
		114 1+	-88.5708 (15)	$71.9 \pm 0.1 \text{ s}$		β^- 99.5; ϵ 0.5			82m	2-	-77.4513 (13)	$6.13 \pm 0.05 \text{ m}$		TT 97.6; β^{-} 2.4		
		114m 5+	-88.3805 (15)	$49.51 \pm 0.01 \text{ d}$		IT 96.75; ϵ 3.25			83	3/2-	-79.006 (5)	2.40 ± 0.02 h		$\beta^{-} 100$		
		115 9/2+	-89.5363 (12)	$4.41E+14 \pm 0.25E+14 \text{ y}$	$95.71\% \pm 0.05\%$	β^- 100			84	2-	-77.79 (3)	$31.76 \pm 0.08 \text{ m}$		β^- 100		
		115m 1/2-	-89.2001 (12)	4.486 ± 0.004 h		IT 95; β^- 5			84m	(6)-	-77.47 (3)	$6.0 \pm 0.2 \text{ m}$		β^- 100		
		116 1+	-88.2497 (22)	$14.10 \pm 0.03 \text{ s}$		ϵ 0.02; β^- 99.98			85	3/2-	-78.575 (3)	$2.90 \pm 0.06 \text{ m}$		β^- 100		
		116m 5+	-88.1224 (22)	$54.29 \pm 0.17 \text{ m}$		β^- 100			86	(1-)	-75.632 (3)	$55.1 \pm 0.4 \mathrm{~s}$		β^{-} 100		
		116m2 8-	-87.96 (22)	$2.18\pm0.04~{ m s}$		IT 100			87	3/2-	-73.892 (3)	$55.65 \pm 0.13 \text{ s}$		$eta^- n$ 2.6; eta^- 100		
		117 9/2+	-88.943 (5)	43.2 ± 0.3 m		β^{-} 100			88	(2-)	-70.716 (3)	$16.29 \pm 0.06 \text{ s}$		β^{-} 100; $\beta^{-}n$ 6.58		
		117m 1/2-	-88.628 (5)	$116.2 \pm 0.3 \text{ m}$		β^{-} 52.9; IT 47.1			89	(3/2-	-68.274 (3)	$4.40\pm0.03~\mathrm{s}$		β^{-} 100: $\beta^{-}n$ 13.8		
		118 1+	-87.228 (8)	$5.0 \pm 0.5 \text{ s}$		β^- 100				,5/2-)				,		
		118m 5+	-87.168 (8)	$4.45 \pm 0.05 \text{ m}$		β^- 100			90	0	-64 (3)	$1.91 \pm 0.01 \text{ s}$		eta^- 100; eta^-n 25.2		
		118m2 8-	-87.028 (8)	$8.5\pm0.3~{ m s}$		IT 98.6; β^{-} 1.4			91	0	-61.107 (4)	$0.541 \pm 0.005 \text{ s}$		eta^- 100; eta^-n 20		
		119 9/2+	-87.699 (8)	2.4 ± 0.1 m		β^- 100			92	(2-)	-56.233 (7)	$0.343 \pm 0.015 \text{ s}$		$\beta^{-}n$ 33.1; β^{-} 100		
		119m 1/2-	-87.388 (8)	18.0 ± 0.3 m		β^{-} 95.6; IT 4.4			93	(5/2-)	-52.85 (20)	$102 \pm 10 \text{ ms}$		β^- 100; β^- n 68		
		120 1+	-85.73 (4)	$3.08\pm0.08~\mathrm{s}$		β^{-} 100; β^{-} 100			94	0	-47.6 (4)	$70 \pm 20 \text{ ms}$		$\beta^{-} 100; \beta^{-} n 68$		
		120m (5)+	-85.66 (4)	$46.2 \pm 0.8 \text{ s}$		β^- 100	36	Kr	69	0	-32.4 (4)	$32 \pm 10 \text{ ms}$		ϵ 100		
		121 9/2+	-85.84 (3)	$23.1 \pm 0.6 \text{ s}$		β^- 100			70	0+	-41.6 (4)	$52 \pm 17 \text{ ms}$		$\epsilon \ 100; \epsilon p \le 1.30$		
		121m 1/2-	-85.52 (3)	$3.88 \pm 0.1 \text{ m}$		β^{-} 98.8; <i>IT</i> 1.2			71	(5/2-)	-46.33 (13)	$100 \pm 3 \text{ms}$		ε 100; εp 2.1		
		122 1+	-83.57 (5)	$1.5 \pm 0.3 \text{ s}$		$\beta^{-} 100$			72	0+	-53.94 (8)	$17.1 \pm 0.2 \text{ s}$		ϵ 100; $\epsilon p < 1.0$ E-6		
		122m 5+	-83.53 (5)	$10.3 \pm 0.6 \text{ s}$		$\beta^{-} 100$			73	3/2-	-56.552 (7)	$27.3 \pm 1 \text{ s}$		ϵ 100; ϵp 0.25		
		122m2 (8-)	-83.28 (5)	$10.8\pm0.4~{ m s}$		β^{-} 100			74	0+	-62.3315 (20)	$11.50 \pm 0.11 \text{ m}$		ϵ 100		
		123 (9/2)+	-83.428 (23)	$6.17 \pm 0.05 \text{ s}$		β^- 100			75	5/2+	-64.324 (8)	$4.29 \pm 0.17 \text{ m}$		ε 100		

Continued on next page

Pocketbook of Data for Nuclear Engineers

	Table 8.1 – Continued from previous page							Table 8.1 – Continued from previous page								
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$T_{1/2}, \Gamma$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode	
		76	0+	-69.014 (4)	$14.8 \pm 0.1 \text{ h}$		ε 100			122	(3+)	-71.11 (4)	0.529 ± 0.013 s		β^{-} 99.8: $\beta^{-}n$ 0.2: β^{-} :	
		77	5/2+	-70 1694 (20)	74.4 ± 0.6 m		€ 100				(-)				$IT:\beta^{-}n$	
		78	0+	-74 1795 (7)	> 1.5E+21 v	$0.355\% \pm 0.003\%$	2-			122m	(9-)	-71 03 (4)	0.20 ± 0.05 s		$\beta^-:\beta^-n$	
		70	1/2	74.1795(7)	25.04 ± 0.1 b	0.000 /0 ± 0.000 /0	2e = 100			123	(7/2+)	-69 55 (3)	0.300 ± 0.005 s		β^{-} 100: β^{-} n 0 55	
		79	1/2-	-74.443 (4)	55.04 ± 0.1 II		E 100			120	(7/21)	66 2 (2)	0.000 ± 0.000 s		$\beta = 100, \beta = 0.00$	
		79m	//2+	-74.313 (4)	50 ± 3 s		11 100			124	>2	-00.2 (3)	0.172 ± 0.003 s		$\beta 100; \beta n 1.3$	
		80	0+	-77.8925 (8)	stable	$2.286\% \pm 0.01\%$				125	(9/2+)	-64.43 (20)	$166 \pm 7 \text{ ms}$		β 100; β n	
		81	7/2+	-77.6947 (14)	$2.29E+5 \pm 0.11E+5 \text{ y}$		$\epsilon 100$			126	0	-60.85 (20)	$107 \pm 12 \text{ ms}$		β^- 100; $\beta^- n$	
		81m	1/2-	-77.5041 (14)	$13.10\pm0.03~{ m s}$		$\epsilon 0.0025; IT 100$			127	0	-58.8 (3)	$109\pm25~\mathrm{ms}$		β^- 100	
		82	0+	-80.5902 (9)	stable	$11.593\%\pm 0.031\%$				128	0	-54.9 (3)	$58 \pm 5 \text{ ms}$		β^- 100; $\beta^- n$	
		83	9/2+	-79.99 (3)	stable	$11.5\% \pm 0.019\%$				129	(9/2+)	-52.6 (4)	46 +5-9 ms		eta^- 100; $eta^- n$; eta^- ; $eta^- n$	
		83m	1/2-	-79.9484 (3)	1.85 ± 0.03 h		<i>IT</i> 100			130	0	-46.3 (3)	$\approx 50 \text{ ms}$		$\beta^-;\beta^-n$	
		84	0+	-82,4393 (4)	stable	$56.987\% \pm 0.015\%$		48	Cd	96	0+	-55.6 (4)	1.03 +0.24-0.21 s		ϵ 100	
		85	9/2+	-81 4803 (20)	10.752 ± 0.025 y		8-100			97	(9/2+)	-60.5 (3)	$1.10 \pm 0.07 \mathrm{s}$		€ 100: €n 12: € 100: €n 25	
		85m	$\frac{1}{2}$	-81 1753 (20)	4480 ± 0.008 h		β^{-} 78.6. <i>IT</i> 21.4			98	0+	-67 62 (5)	92 ± 0.3 s		$\epsilon 100; \epsilon p = 100; \epsilon p = 20$ $\epsilon 100; \epsilon p < 0.03$	
		0.5m	1/2-	-01.17.55 (20) 92.26E6 (4)	4.400 ± 0.000 m	$17.2709/ \pm 0.0419/$	β 78.0, 11 21.4			90	(5/2+)	-60.0311(16)	16 ± 3 s		$c_1 = (0, c_p) < 0.00$	
		00	0+	-03.2030 (4)		17.279/0 ± 0.041/0	2- 100			100	(3/2+)	-09.9511 (10)	10 ± 53		εα < 1.0E-4, ερ 0.17, ε 100	
		8/	5/2+	-80.7095 (25)	$76.3 \pm 0.5 \text{ m}$		β 100			100	(F(2))	-74.1940(17)	49.1 ± 0.3 s		ε 100 100	
		88	0+	-79.691 (3)	2.84 ± 0.03 h		β^{-} 100			101	(5/2+)	-75.8361 (14)	$1.36 \pm 0.05 \text{ m}$		$\epsilon 100$	
		89	3/2(+)	-76.5357 (21)	$3.15 \pm 0.04 \text{ m}$		β^{-} 100			102	0+	-79.6597 (17)	$5.5 \pm 0.5 \text{ m}$		$\epsilon 100$	
		90	0+	-74.9592 (19)	$32.32 \pm 0.09 \text{ s}$		$\beta^{-} 100$			103	(5/2)+	-80.6521 (18)	$7.3 \pm 0.1 \text{ m}$		ϵ 100	
		91	5/2(+)	-70.9739 (22)	$8.57\pm0.04~{ m s}$		$\beta^{-} 100$			104	0+	-83.9683 (17)	$57.7 \pm 1 \text{ m}$		ϵ 100	
		92	0+	-68.769 (3)	$1.840\pm0.008~{\rm s}$		β^{-} 100; $\beta^{-}n$ 0.03			105	5/2+	-84.3339 (13)	55.5 ± 0.4 m		ϵ 100	
		93	1/2 +	-64.136 (3)	$1.286\pm0.01~{ m s}$		β^{-} 100; $\beta^{-}n$ 1.95			106	0+	-87.1304 (17)	> 3.6E + 20 y	$1.25\% \pm 0.06\%$	2ϵ	
		94	0+	-61.348 (12)	$212 \pm 5 \text{ ms}$		β^{-} 100: $\beta^{-}n$ 1.11			107	5/2+	-86.99 (17)	6.50 ± 0.02 h		<i>ϵ</i> 100	
		95	1/2(+)	-56.159 (19)	0.114 ± 0.003 s		β^{-} 100: β^{-} n 2.87			108	0+	-89.2524 (21)	> 1.9E+18 v	$0.89\% \pm 0.03\%$	2ϵ	
		96	0+	-53 08 (20)	$80 \pm 6 \text{ms}$		β^{-} 100; β^{-} n 2.0; β^{-} n 3.7			109	5/2+	-88,5043 (16)	461.4 ± 1.2 d		€ 100	
		97	(3/2+)	-47 42 (13)	$63 \pm 4 \text{ ms}$		$\beta^{-} 100; \beta^{-} n 67$			110	0+	-90,3503 (17)	stable	$1249\% \pm 018\%$		
		98	0+	-44.5 (5)	$46 \pm 8 \text{ ms}$		β^{-} 100; β^{-} n 0			111	1/2+	-89 2547 (17)	stable	$12.8\% \pm 0.12\%$		
		90	0	-38.8 (5)	$13 \pm 34_{-6}$ ms		$\beta = 100, \beta = n7$ $\beta^{-} = 100, \beta^{-} = 11$			111m	11/2-	-88 8585 (17)	$4850 \pm 0.09 \text{ m}$	12.070 ± 0.1270	<i>IT</i> 100	
		100	0	-50.0 (5)	7 + 11 2 mg		$\beta = 100, \beta = n 11$			112	0+	-90 5777 (17)	etable	$24.13\% \pm 0.21\%$	11 100	
27	DI	100	(0)	-55.2 (5)	7 +11-5 IIIS		β 100; β n			112	1/2	-90.3777 (17)	$8.00E1E \pm 0.26E1E m$	$24.13\% \pm 0.21\%$	<i>a</i> = 100	
37	KD	74	(0+)	-51.917 (4)	$64.9 \pm 0.5 \text{ ms}$		ε 100 100			112	1/2+	-09.0404 (10)	$3.00E13 \pm 0.20E13$ y	$12.22 / 0 \pm 0.12 / 0$	$\beta = 100$	
		75	(3/2-)	-57.2186 (16)	$19.0 \pm 1.2 \text{ s}$		ϵ 100			1150	11/2-	-00.7029 (10)	$14.1 \pm 0.5 \text{ y}$	00 700/ + 0 400/	β 99.86; 11 0.14	
		76	1(-)	-60.478 (12)	$36.5 \pm 0.6 \text{ s}$		ϵ 100; $\epsilon \alpha$ 3.8e-07			114	0+	-90.018 (16)	> 2.1E18 y	28.73% ± 0.42%	28	
		77	3/2-	-64.8304 (13)	$3.77 \pm 0.04 \text{ m}$		ϵ 100			115	1/2+	-88.0876 (17)	53.46 ± 0.05 h		β^{-} 100	
		78	0(+)	-66.936 (7)	17.66 ± 0.03 m		ϵ 100			115m	(11/2)-	-87.9066 (17)	44.56 ± 0.24 d		β^{-} 100	
		78m	4(-)	-66.825 (7)	5.74 ± 0.03 m		ϵ 91; IT 9			116	0+	-88.7164 (17)	$3.3E+19 \pm 0.4E+19 \text{ y}$	$7.49\% \pm 0.18\%$	$2\beta^{-}$	
		79	5/2+	-70.8029 (21)	22.9 ± 0.5 m		ϵ 100			117	1/2+	-86.4223 (20)	2.49 ± 0.04 h		β^- 100	
		80	1+	-72.1754 (19)	$33.4\pm0.7~\mathrm{s}$		ϵ 100			117m	(11/2)-	-86.2859 (20)	3.36 ± 0.05 h		β^- 100	
		81	3/2-	-75.456 (5)	$4.572 \pm 0.004 \text{ h}$		ϵ 100			118	0+	-86.706 (20)	50.3 ± 0.2 m		β^- 100	
		81m	9/2+	-75.37 (5)	$30.5 \pm 0.3 \text{ m}$		IT 97.6; e 2.4			119	3/2+	-83.98 (4)	2.69 ± 0.02 m		β^- 100	
		82	1+	-76.188 (3)	$1.2575 \pm 2.0E-4$ m		ε 100			119m	(11/2-)	-83.83 (4)	2.20 ± 0.02 m		β^{-} 100	
		82m	5-	-76.119 (3)	6.472 ± 0.006 h		$IT < 0.33; \epsilon 100$			120	0+	-83.957 (4)	$50.80 \pm 0.21 \text{ s}$		β^- 100	
		83	5/2-	-79 0706 (23)	$862 \pm 0.1 d$		€ 100			121	(3/2+)	-81.06 (8)	$13.5 \pm 0.3 \text{ s}$		β^{-} 100	
		84	2-	-79 756 (3)	32.82 ± 0.07 d		$\epsilon 961: \beta^{-} 39$			121m	(11/2-)	-80.84 (8)	8.3 ± 0.8 s		β^{-} 100	
		84m	6-	-79 293 (3)	20.26 ± 0.04 m		IT 100			122	0+	-80 616 (4)	5.24 ± 0.03 s		β ⁻ 100	
		85	5/2	82 1672 (5)	20.20 ± 0.04 m	$72.17\% \pm 0.02\%$	11 100			122	(3/2+)	-77 32 (4)	2.10 ± 0.02 s		β^{-} 100	
		86	2/2-	-02.1073 (3) 82 747 (20)	51a01e 18 642 \pm 0.018 $\frac{3}{2}$	/ 2.1/ /0 ± 0.02 /0	8 ⁻ 00.00 0.00 F2			123m	(11/2)	-77 (4)	$1.82 \pm 0.02.3$		$\beta^{-} < 100 00 \cdot IT$	
		00 9(<u> </u>	-02.747 (20)	$10.042 \pm 0.010 \text{ d}$		$p = 99.99; \epsilon 0.0052$			12311	0+	-76 607 (0)	1.02 ± 0.003		$\beta \ge 100.00, 11$ $\beta = 100$	
		80M	0-	-82.1909 (20)	1.017 ± 0.003 m	07 000/ L 0 000/	$11\ 100; \beta < 0.30$			124	(2/2)	-70.097 (9) 72 2E (6)	1.23 ± 0.025		$\rho = 100$ $\rho = 100, \rho = 100$	
		8/	3/2-	-84.59// (6)	$4.81E+10 \pm 0.09E+10$ y	$27.83\% \pm 0.02\%$	β 100			120	(3/2+)	-73.33 (0)	0.00 ± 0.04 S		$\rho = 100; \rho = 100$	
		88	2-	-82.6089 (16)	$17.773 \pm 0.011 \text{ m}$		β 100			120	(2, (2, .))	-/2.230 (4)	0.515 ± 0.017 s		β 100 2= 100	
		89	3/2-	-81.712 (5)	$15.15 \pm 0.12 \text{ m}$		β^{-} 100			12/	(3/2+)	-68.44 (6)	0.37 ± 0.07 s		β 100 2= 100	
		90	0-	-79.365 (7)	$158 \pm 5 \text{ s}$		β^- 100			128	0+	-67.25 (17)	0.28 ± 0.04 s		β 100	
		90m	3-	-79.258 (7)	258 ± 4 s		β^{-} 97.4; IT 2.6			129	(3/2+)	-63.31 (20)	$0.27 \pm 0.04 \mathrm{s}$			
		91	3/2(-)	-77.746 (8)	58.4 ± 0.4 s		$\beta^- 100$			130	0+	-61.54 (16)	$162 \pm 7 \text{ ms}$		$\beta n 3.5; \beta^- 100$	

Continued on next page

	Table 8.1 – Continued from previous page								Table 8.1 – Continued from previous page								
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \mathbf{\Gamma}$	Abundance	Decay Mode		
		122	0+	-64.7 (4)	$175\pm16~\mathrm{ms}$		$\beta^- \ge 97.50; \beta^- n \le 2.50$			92	0-	-74.773 (6)	$4.492 \pm 0.02 \text{ s}$		β^{-} 100; $\beta^{-}n$ 0.01		
		123	0	-60.6 (6)	174 +38-34 ms		β^{-}			93	5/2-	-72.62 (8)	$5.84\pm0.02~{ m s}$		β^{-} 100; $\beta^{-}n$ 1.39		
		124	0+	-58.8 (5)	38 +38-19 ms		$\beta^{-} 100$			94	3(-)	-68.562 (3)	$2.702 \pm 0.005 \text{ s}$		β^{-} 100; $\beta^{-}n$ 10.5		
47	Ag	94	(0+)	-52.4 (6)	26 +26-9 ms		ε 100; εp ; ε 100; εp 20			95	5/2-	-65.894 (20)	$377.7\pm0.8~\mathrm{ms}$		β^{-} 100; $\beta^{-}n$ 8.7		
	U	94m	(21+)	-45.7 (6)	$0.40\pm0.04~{ m s}$		ϵ 95.4; ϵp 27; p 4.1; $2p$ 0.5			96	2(-)	-61.354 (3)	$203 \pm 3 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 13.3		
		95	(9/2+)	-59.6 (4)	$1.75\pm0.12~\mathrm{s}$		$\epsilon p:\epsilon 100$			97	3/2+	-58.518 (5)	$169.1\pm0.6~\mathrm{ms}$		β^{-} 100; β^{-} n 25.5		
		95m	(1/2-)	-59.3 (4)	< 500 ms		<i>IT</i> 100			98	(0.1)	-54.03 (5)	$102 \pm 4 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 13.8;		
		96	(8)+	-64.62 (6)	$4.40\pm0.06~\mathrm{s}$		$\epsilon \ 100; \epsilon p \ 8.5; \epsilon \ 100; \epsilon p \ 18$				())				$\beta^{-}2n \ 0.05$		
		97	(9/2+)	-70.83 (11)	25.5 ± 0.3 s		€ 100			98m	(3,4)	-53.76 (5)	$96 \pm 3 \text{ ms}$		β^{-} 100		
		98	(6+)	-73.05 (4)	47.5 ± 0.3 s		$\epsilon 100: \epsilon n = 0.0011$			99	(5/2+)	-51.22 (11)	$54 \pm 4 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 15.8		
		99	(9/2)+	-76 712 (6)	124 ± 3 s		€ 100			100	(3+.4-)	-46.55 (20)	$51 \pm 8 \text{ ms}$		$\beta^{-} 100; \beta^{-} n 6; \beta^{-} 2n 0.16$		
		99m	(1/2)	-76 206 (6)	10.5 ± 0.5 s		IT 100			101	(3/2+)	-42.97 (22)	$32 \pm 5 \text{ ms}$		$\beta^{-} 100; \beta^{-} n 28$		
		100	(5)+	-78 138 (5)	$2.01 \pm 0.09 \text{ m}$		€ 100			102	0	-37.9 (3)	$37 \pm 3 \text{ ms}$		$\beta^{-} 100; \beta^{-} n 18$		
		100m	(2)+	-78.122 (5)	2.24 ± 0.13 m		$\epsilon: IT$	38	Sr	73	0	-31.9 (4)	> 25 ms		$\epsilon \ 100; \epsilon p > 0.00$		
		101	9/2+	-81,334 (5)	111 + 0.3 m		€ 100			75	(3/2-)	-46.62 (22)	$88 \pm 3 \text{ ms}$		ϵ 100: ϵp 5.2		
		101m	(1/2)-	-81.06(5)	310 ± 0.1 s		IT 100			76	0+	-54.25 (3)	$7.89 \pm 0.07 \mathrm{~s}$		ε 100: εp 3.4e-05		
		102	5(+)	-82.247 (8)	12.9 ± 0.3 m		€ 100			77	5/2+	-57.803 (8)	$9.0\pm0.2~\mathrm{s}$		$\epsilon 100; \epsilon p < 0.25$		
		102m	2+	-82.237 (8)	7.7 ± 0.5 m		ϵ 51: <i>IT</i> 49			78	0+	-63.174 (7)	$160 \pm 8 \text{ s}$		$\epsilon 100$		
		103	7/2+	-84.8 (4)	$657 \pm 0.7 \text{ m}$		€ 100			79	3/2(-)	-65.477 (8)	$2.25 \pm 0.1 \text{ m}$		ϵ 100		
		103m	1/2-	-84 666 (4)	57 ± 0.3 s		<i>IT</i> 100			80	0+	-70.311 (3)	106.3 ± 1.5 m		<i>€</i> 100		
		104	5+	-85 114 (5)	$69.2 \pm 1 \text{ m}$		€ 100			81	1/2-	-71,528 (3)	$22.3 \pm 0.4 \text{ m}$		ϵ 100		
		104m	2+	-85 108 (5)	335 ± 2 m		$\epsilon 99.93$ $TT < 0.07$			82	0+	-76.01 (6)	25.34 ± 0.02 d		<i>€</i> 100		
		105	1/2-	-87 071 (5)	$41.29 \pm 0.07 d$		€ 100			83	7/2+	-76,798 (7)	32.41 ± 0.03 h		<i>€</i> 100		
		105m	$\frac{1}{2}$	-87 045 (5)	7.23 ± 0.16 m		IT 99 66: c 0 34			83m	1/2-	-76.538 (7)	4.95 ± 0.12 s		IT 100		
		106	1+	-86 94 (4)	$23.96 \pm 0.04 \text{ m}$		$\epsilon 99.5: \beta^- < 1.00$			84	0+	-80.6493 (13)	stable	$0.56\% \pm 0.01\%$	11 100		
		106m	6+	-86 851 (4)	828 ± 0.02 d		€ 100			85	9/2+	-81.103 (3)	$64.850 \pm 0.007 \mathrm{d}$		ϵ 100		
		107	1/2-	-88.405 (3)	stable	$51.839\% \pm 0.008\%$				85m	1/2-	-80.864 (3)	$67.63 \pm 0.04 \text{ m}$		IT 86.6; e 13.4		
		107m	7/2+	-88.312 (3)	44.3 ± 0.2 s		<i>IT</i> 100			86	0+	-84.5232 (11)	stable	$9.86\% \pm 0.01\%$			
		108	1+	-87.606 (3)	2.382 ± 0.011 m		β^{-} 97.15; ϵ 2.85			87	9/2+	-84.88 (11)	stable	$7\%\pm0.01\%$			
		108m	6+	-87 496 (3)	438 + 9 v		e 91 3: IT 8 7			87m	1/2-	-84.4915 (11)	2.815 ± 0.012 h		$IT 99.7; \epsilon 0.3$		
		109	1/2-	-88 7195 (20)	stable	$48161\% \pm 0.008\%$	• • • • • • • • • • • • • • • • • • • •			88	0+	-87.9213 (11)	stable	$82.58\% \pm 0.01\%$,		
		109m	7/2+	-88.6315 (20)	39.6 ± 0.2 s		<i>IT</i> 100			89	5/2+	-86.2087 (11)	$50.53 \pm 0.07 \text{ d}$		β^- 100		
		110	1+	-87.4574 (20)	24.6 ± 0.2 s		β^- 99.7: ϵ 0.3			90	0+	-85.949 (3)	$28.90\pm0.03~\mathrm{v}$		$\beta^{-} 100$		
		110m	6+	-87.3398 (20)	249.76 ± 0.04 d		β^{-} 98.64: <i>IT</i> 1.36			91	5/2+	-83.653 (6)	$9.63 \pm 0.05 \text{h}$		$\beta^{-} 100$		
		111	1/2-	-88.2179 (22)	7.45 ± 0.01 d		β^- 100			92	0+	-82.867 (3)	2.66 ± 0.04 h		β^{-} 100		
		111m	7/2+	-88,1581 (22)	$64.8 \pm 0.8 \text{ s}$		$T 99.3: \beta^- 0.7$			93	5/2+	-80.086 (8)	7.43 ± 0.03 m		β^{-} 100		
		112	2(-)	-86.5837 (24)	3.130 ± 0.009 h		β^- 100			94	0+	-78.843 (7)	$75.3\pm0.2~\mathrm{s}$		$\beta^{-} 100$		
		113	1/2-	-87.03 (17)	5.37 ± 0.05 h		β^- 100			95	1/2+	-75.124 (6)	$23.90\pm0.14~\mathrm{s}$		$\beta^{-} 100$		
		113m	7/2+	-86.986 (17)	$68.7 \pm 1.6 \text{ s}$		$T 64: \beta^{-} 36$			96	0+	-72.933 (9)	$1.07\pm0.01~{\rm s}$		$\beta^{-} 100$		
		114	1+	-84.931 (5)	$4.6 \pm 0.1 \text{ s}$		β^{-} 100			97	1/2+	-68.592 (10)	$429\pm5~\mathrm{ms}$		$\beta^{-} 100; \beta^{-} n \leq 0.05$		
		115	1/2-	-84,983 (18)	20.0 ± 0.5 m		β^{-} 100			98	0+	-66.437 (10)	$0.653 \pm 0.002 \text{ s}$		β^{-} 100; $\beta^{-}n$ 0.25		
		115m	7/2+	-84.942 (18)	$18.0 \pm 0.7 \text{ s}$		β^{-} 79: <i>IT</i> 21			99	3/2+	-62.529 (7)	$0.269 \pm 0.001 \text{ s}$		β^{-} 100; $\beta^{-}n$ 0.1		
		116	(0-)	-82.543 (3)	$237 \pm 5 s$		β^- 100			100	0+	-59.833 (10)	$202 \pm 3 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 0.78		
		116m	(3+)	-82,495 (3)	20 ± 1 s		β^{-} 93: <i>IT</i> 7			101	(5/2-)	-55.57 (8)	$118 \pm 3 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 2.37		
		116m2	2 (6-)	-82.413 (3)	9.3 ± 0.3 s		β^- 92: IT 8			102	0+	-52.4 (21)	$69 \pm 6 \text{ ms}$		β^{-} 100; $\beta^{-}n$ 5.5		
		117	(1/2-)	-82.182 (14)	72.8 +2-0.7 s		β^- 100			103	0	-47.53 (20)	68 +48-20 ms		β^{-}		
		117m	(7/2+)	-82.153 (14)	$5.34\pm0.05~{ m s}$		β^{-} 94; IT 6			104	0+	-43.9 (4)	43 +9-7 ms		β^{-}		
		118	1(-)	-79.554 (3)	3.76 ± 0.15 s		β^- 100			105	0	-38.6 (5)	40 +36-13 ms		β^{-}		
		118m	4(+)	-79.426 (3)	$2.0 \pm 0.2 \text{ s}$		β^{-} 59; IT 41	39	Y	77	(5/2+)	-46.78 (6)	57 +22-12 ms		ϵ 100; ϵp ; p		
		119	(1/2-)	-78.646 (15)	$6.0 \pm 0.5 \mathrm{~s}$		β^{-} 100; β^{-} 100			78	(0+)	-52.5 (4)	$53\pm8~\mathrm{ms}$		$\epsilon 100; \epsilon p; \epsilon p; \epsilon 100$		
		120	3(+)	-75.651 (4)	1.23 ± 0.04 s		β^{-} 100: $\beta^{-} n < 3.0$ E-3			79	(5/2+)	-58.4 (5)	$14.8\pm0.6~{\rm s}$		ϵ 100; ϵp		
		120m	6(-)	-75.448 (4)	0.40 ± 0.03 s		$\beta^- \approx 63.00; IT \approx 37.00$			80	(4-)	-61.148 (6)	$30.1\pm0.5~{ m s}$		ϵ 100; ϵp		
		121	(7/2+)	-74.403 (12)	$0.78 \pm 0.02 \text{ s}$		β^{-} 100; β^{-} n 0.08			80m	(1-)	-60.92 (6)	$4.8\pm0.3~{ m s}$		IT 81; é 19		
			(,,=,)	()			Continued on work mass				. /	× /			Continued on next nage		

Continued on next page

Continued on next page

		Table 8.1 – Continued from previous page							Table 8.1 – Continued from previous page								
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \hat{\mathbf{\Gamma}}$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \dot{\Gamma}$	Abundance	Decay Mode		
-		81	(5/2+)	-65.713 (6)	$70.4 \pm 1 \text{ s}$		e 100			107	7/2+	-86.861 (12)	21.7 ± 0.4 m		$\beta^{-} 100$		
		82	1+	-68.064 (6)	$8.30\pm0.2~{ m s}$		ϵ 100			108	1+	-85.031 (14)	$16.8\pm0.5~\mathrm{s}$		β^{-} 100; β^{-} 100; IT		
		83	9/2+	-72.206 (19)	7.08 ± 0.06 m		$\epsilon 100$			109	7/2+	-85.011 (6)	$80\pm2~{ m s}$		β^- 100		
		83m	3/2-	-72.144 (19)	$2.85\pm0.02~\text{m}$		$IT 40; \epsilon 60$			110	(GE4)	-82.844 (19)	$28.5\pm1.5~{\rm s}$		β^{-} 100; β^{-} 100		
		84	(6+)	-73.894 (4)	39.5 ± 0.8 m		ϵ 100			111	(7/2+)	-82.304 (7)	$11 \pm 1 \mathrm{s}$		β^{-} 100		
		84m	1+	-73.827 (4)	$4.6\pm0.2~{ m s}$		ϵ 100			112	1+	-79.73 (4)	$3.45\pm0.37~\mathrm{s}$		β^{-} 100; β^{-} 100		
		85	(1/2)-	-77.842 (19)	$2.68\pm0.05\mathrm{h}$		$\epsilon 100$			113	(7/2+)	-78.767 (7)	$2.80\pm0.12~\mathrm{s}$		β^- 100		
		85m	9/2+	-77.822 (19)	4.86 ± 0.2 h		ϵ 100; $IT < 2.0E-3$			114	1+	-75.71 (7)	$1.85\pm0.05~{ m s}$		β^- 100		
		86	4-	-79.283 (14)	14.74 ± 0.02 h		€ 100			114m	(7-)	-75.51 (7)	$1.86\pm0.06~{ m s}$		β^{-} 100		
		86m	(8+)	-79.065 (14)	$48 \pm 1 \text{ m}$		$IT 99.31: \epsilon 0.69$			115	(7/2+)	-74.23 (8)	$0.99\pm0.05~{ m s}$		β^{-} 100		
		87	1/2-	-83.0183 (16)	79.8 ± 0.3 h		<i>ϵ</i> 100			116	1+	-70.74 (7)	$0.68\pm0.06~{ m s}$		β^{-} 100		
		87m	9/2+	-82.6375 (16)	13.37 ± 0.03 h		€ 1.57: <i>IT</i> 98.43			116m	(6-)	-70.59 (7)	0.57 ± 0.05 s		β^{-} 100		
		88	4-	-84.2987 (19)	106.626 ± 0.021 d		€ 100			117	(7/2+)	-68.897 (9)	0.44 ± 0.04 s		β^- 100		
		89	1/2-	-87.7096 (25)	stable	100%				118	0	-64.887 (24)	266 + 22 - 21 ms		β^{-} 100: $\beta^{-}n$ 3.1		
		89m	9/2+	-86 8006 (25)	15663 ± 0.005 s		<i>IT</i> 100			119	(7/2+)	-62 85 (20)	$171 \pm 18 \text{ ms}$		β^{-} 100: β^{-} n 6 4		
		90	2-	-86 4953 (25)	64.053 ± 0.02 h		β^{-} 100			120	0	-58 81 (20)	$136 \pm 14 - 13 \text{ ms}$		$\beta^{-} 100; \beta^{-} n < 5.40$		
		90m	2 7+	-85 8136 (25)	319 ± 0.06 h		$JT 100 \beta^{-} 0.0018$			121	0	-56 4 (3)	151 + 67 - 58 ms		β^{-} 100; $\beta^{-}n$		
		91	1/2-	-86 353 (3)	$58.51 \pm 0.06 d$		$\beta^{-} 100$	46	Pd	92	0+	-55 1 (5)	$0.7 \pm 0.4 \pm 0.2$ s		ε 100		
		91m	9/2+	-85 797 (3)	$49.71 \pm 0.04 \text{ m}$		$TT 100; \beta^- < 1.50$	10	14	93	(9/2+)	-59 1 (4)	1.00 ± 0.09 s		e 100 en		
		92	2-	-84 818 (9)	354 ± 0.01 h		$\beta^{-} 100$			94	0+	-66 102 (5)	96 ± 0.2 s		€ 100, Ep		
		93	1/2-	-84 228 (11)	10.18 ± 0.08 h		β^{-} 100			95	(9/2)	-69.966 (5)	5.0 ± 0.28		€ 100 € 100		
		93m	$(9/2)_{\perp}$	-83 47 (11)	0.82 ± 0.00 ft		JT 100			95m	(21/2+)	-68 091 (5)	133 ± 0.3 c		c 80: IT 11: cm 0.02		
		04	()/2)+ 2	-03.47 (11) 82.252 (7)	$18.7 \pm 0.04.8$		2 ⁻ 100			06	(21/2+)	-00.091(3) 76.182(4)	13.5 ± 0.5 s		- 100		
		94	2- 1/2-	-81 213 (7)	$10.7 \pm 0.1 \text{ m}$ $10.3 \pm 0.1 \text{ m}$		$\beta = 100$			90	(5/2+)	-77.806 (5)	122 ± 2.5 3.10 ± 0.09 m		e 100 - 100		
		95	0	-01.213 (7)	10.3 ± 0.1 m 5.24 ± 0.05 c		$\beta = 100$			97	(3/2+)	-77.800 (3) 81.22 (5)	3.10 ± 0.09 m		ε 100 - 100		
		90 06m	0-	-78.343 (7)	0.54 ± 0.05 s		β 100 β= 100			90	(F(2))	-01.32 (3) 92.194 (E)	17.7 ± 0.3 m		e 100 - 100		
		9011	(1/2)	-77.203 (7)	9.6 ± 0.2 s		$\beta = 100$			100	(3/2)+	-02.104 (3) 95 006 (19)	21.4 ± 0.2 III 2.62 ± 0.00 d		ε 100 - 100		
		97 07m	$(1/2^{-})$	-70.13(7)	3.75 ± 0.03 s		$\beta = 100; \beta = n 0.06$			100	0+ 5 /2 -	-03.220 (10) 95.422 (E)	3.03 ± 0.09 d		ε 100 100		
		97m	(9/2)+	-73.465 (7)	1.17 ± 0.03 s		$\beta n < 0.08; \beta > 99.30;$			101	3/2+	-65.452 (5)	8.47 ± 0.06 m	1.000/ 1.0.010/	ϵ 100		
		07m2	(27/2)	72 608 (7)	$142 \pm 8 \text{ mg}$		II < 0.70 $IT 08.4, \theta^- 1.6$			102	0+	-87.929 (3)		$1.02\% \pm 0.01\%$	100		
		971112	(27 / 2-)	-72.008 (7)	142 ± 0.002 c		p_{μ}^{-1} 100; p_{μ}^{-1} ; 0.22			103	5/2+	-87.483 (3)	16.991 ± 0.019 d	11 1 40/ + 0.000/	ϵ 100		
		90 08m	(0)- (4 E)	-72.304 (8)	0.348 ± 0.002 s		$\beta = 100; \beta = n 0.33$			104	0+	-89.393 (3)	stable	$11.14\% \pm 0.08\%$			
		90111	(4,3)	-71.094(0)	2.0 ± 0.2 S		$\beta > 80.00, 11 < 20.00, \beta^{-}n 3.4$			105	5/2+	-88.416 (3)	stable	$22.33\% \pm 0.08\%$			
		99	$(5/2_{\pm})$	-70 659 (7)	$1.484 \pm 0.007 \mathrm{s}$		β^{-} 100: β^{-} n 1 7			106	0+	-89.906 (3)	stable	$27.35\% \pm 0.05\%$	0- 100		
		100	(3/2+) 1-2-	-67 336 (11)	$735 \pm 7 \text{ ms}$		$\beta^{-} n 0 92; \beta^{-} 100$			107	5/2+	-88.3/1 (3)	$6.5E+6 \pm 0.3E+6 \text{ y}$		β 100		
		100 100m	(3.4.5)	-67 191 (11)	0.94 ± 0.03 c		$\beta = 100$			10/m	11/2-	-88.156 (3)	21.3 ± 0.5 s	0(1(0) + 0.000)	11 100		
		10011	$(5, \pm, 5)$ (5/2+)	-07.171 (11) 65.07 (8)	0.94 ± 0.03 s		β^{-} 100 β^{-} $p = 1.04$			108	0+	-89.521 (3)	stable	$26.46\% \pm 0.09\%$			
		101	(J/Z+) Highl	-61 21 (20)	0.45 ± 0.02 s		$\beta = 100, \beta = n \cdot 1.94$ $\beta^{-} = 100, \beta^{-} = 1.00, \beta^{-}$			109	5/2+	-87.603 (3)	13.7012 ± 0.0024 h		β^{-} 100		
		102	ringinj	-01.21 (20)	0.50 ± 0.043		$\beta 100, \beta n 4.9, \beta 100, \beta^{-}n 4.9$			109m	11/2-	-87.414 (3)	$4.696 \pm 0.003 \text{ m}$	11 700/ 1 0 000/	11/100		
		103	(5/2+)	-58 5 (10)	0.23 ± 0.02 s		$\beta^{-} 100; \beta^{-} n 8$			110	0+	-88.348 (7)	stable	$11.72\% \pm 0.09\%$	2- 100		
		103	0	-54 1 (4)	197 ± 4 ms		$\beta^{-100}, \beta^{-n0}$			111	5/2+	-86.003 (7)	$23.4 \pm 0.2 \text{ m}$		β^{-} 100		
		105	0	-50.8 (5)	$85 \pm 5-4$ ms		$\beta^{-}:\beta^{-}n < 82.00$			111m	11/2-	-85.831 (7)	5.5 ± 0.1 h		$11.73; \beta^{-} 27$		
		105	0	-46.1 (5)	$62 \pm 25 - 14$ ms		β^{-} , β^{-} $n < 02.00$			112	0+	-86.323 (7)	21.03 ± 0.05 h		β^{-} 100		
		107	(5/2+)	-42.4 (5)	$41 \pm 15-9$ ms		β^{-} 100			113	(5/2+)	-83.591 (7)	$93 \pm 5 \mathrm{s}$		β^{-} 100		
		107	0	-42.4 (3)	41 +13-9 IIIS		$\beta 100$			113m	(9/2-)	-83.51 (7)	$0.3 \pm 0.1 \text{ s}$		IT 100		
40	7 r	70	0	-37.3 (0)	25 ± 00^{-10} ms		ρ ; ρ n			114	0+	-83.491 (7)	$2.42 \pm 0.06 \text{ m}$		β^- 100		
40	21	80	0	-1/.1 (4)	16 ± 0.6		$\epsilon , \epsilon p$			115	(5/2+)	-80.426 (14)	$25 \pm 2 s$		β^- 100		
		00 Q1	(2/2)	-55.5 (15)	$4.0 \pm 0.0 \text{ s}$ 5.5 ± 0.4 c		e_{100}, e_p			115m	(11/2-)	-80.337 (14)	$50 \pm 3 \text{ s}$		β^- 92; IT 8		
		01 01	(3/2-)	-30.4 (10)	5.5 ± 0.4 S		$\epsilon 100; \epsilon p 0.12$			116	0+	-79.831 (7)	$11.8\pm0.4~{ m s}$		β^- 100		
		02 82	(1/2)	-03.74 (20) 65.012 (7)	34 ± 38		e 100			117	(5/2+)	-76.424 (7)	$4.3 \pm 0.3 \text{ s}$		β^- 100		
		03 04	(1/2-)	-03.912 (7)	$41.0 \pm 2.4 \text{ S}$		ε 100; εp			118	0+	-75.391 (8)	$1.9\pm0.1~{ m s}$		β^- 100		
		04 95	(7/2.)	-/ 1.422 (6)	$25.0 \pm 0.5 \text{ m}$		€ 100 100			119	0	-71.408 (8)	$0.92\pm0.01~{\rm s}$		β^- 100		
		85 85	(1/2+)	-/3.1/5(/)	$7.80 \pm 0.04 \text{ m}$		$\epsilon 100$			120	0+	-70.31 (9)	$0.5\pm0.1~{ m s}$		β^- 100		
		85m	(1/2-)	-/2.883 (/)	10.9 ± 0.3 S		$TT \leq 92.00; \epsilon > 8.00$			121	(3/2+)	-66.3 (5)	$285\pm24~ms$		eta^- 100; $eta^- n \leq 0.80$		
		86	0+	-77.969 (4)	16.5 ± 0.1 h		$\epsilon 100$								Continued on next page		

t page

	Table 8.1 – Continued from previous page							Table 8.1 – Continued from previous page								
Ζ	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \dot{\Gamma}$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T_{1/2}}, \check{\Gamma}$	Abundance	Decay Mode	
		96	0+	-86.0804 (15)	stable	$5.54\% \pm 0.14\%$	· · · · · ·			87	(9/2)+	-79.348 (4)	$1.68\pm0.01~{ m h}$		e 100	
		97	5/2+	-86.12 (3)	$2.83 \pm 0.23 \text{ d}$		$\epsilon 100$			87m	(1/2)-	-79.012 (4)	$14.0 \pm 0.2 \text{ s}$		<i>IT</i> 100	
		98	0+	-88.225 (6)	stable	$1.87\% \pm 0.03\%$				88	0+	-83.629 (6)	$83.4 \pm 0.3 \text{ d}$		€ 100	
		99	5/2+	-87.6202 (20)	stable	$12.76\% \pm 0.14\%$				89	9/2+	-84.877 (4)	78.41 ± 0.12 h		<i>€</i> 100	
		100	0+	-89.2222 (20)	stable	$12.6\% \pm 0.07\%$				89m	1/2-	-84.289 (4)	4.161 ± 0.017 m		$IT 93.77; \epsilon 6.23$	
		101	5/2+	-87.9529 (20)	stable	$17.06\% \pm 0.02\%$				90	0+	-88.7742 (22)	stable	$51.45\% \pm 0.4\%$,,	
		102	0+	-89 1012 (20)	stable	$31.55\% \pm 0.14\%$				90m	5-	-86 4552 (22)	809.2 ± 2 ms		<i>IT</i> 100	
		103	3/2+	-87 262 (20)	39247 ± 0.013 d		β^{-} 100			91	5/2+	-87 8973 (22)	stable	$11.22\% \pm 0.05\%$		
		104	0+	-88 092 (3)	stable	$1862\% \pm 0.27\%$	p 100			92	0+	-88 4607 (22)	stable	$17.15\% \pm 0.08\%$		
		101	3/2+	-85 931 (3)	444 ± 0.02 h	10.02 /0 ± 0.27 /0	8- 100			93	5/2+	-87 1238 (22)	$1.61E+6 \pm 0.05E+6 v$	17.1070 ± 0.0070	β^{-} 100	
		106	0+	-86 321 (6)	$371.8 \pm 1.8 d$		β^{-} 100			94	0+	-87 2725 (23)	stable	$1738\% \pm 0.28\%$	β 100	
		107	(5/2)+	-83 859 (9)	3.75 ± 0.05 m		β^{-} 100			95	5/2+	-85 6633 (22)	$64.032 \pm 0.006 d$	17.0070 ± 0.2070	β^{-} 100	
		108	(0, 2)	-83 658 (9)	$455 \pm 0.05 \text{ m}$		β^{-} 100			96	0+	-85 4477 (25)	$235E+19 \pm 0.21E+19 v$	$2.8\% \pm 0.09\%$	28-	
		100	(5/2+)	-80 735 (9)	4.05 ± 0.05 m 34 5 + 1 s		β^{-} 100			97	1/2+	-82 9515 (25)	$16749 \pm 0.008 \text{ h}$	2.070 ± 0.0770	β^{-} 100	
		110	0+	-80.069 (9)	116 ± 0.6		β^{-} 100			98	0+	-81 296 (9)	30.7 ± 0.4 s		$\beta = 100$	
		111	5/2+	-76782(10)	212 ± 0.07 s		β^{-} 100			90	$(1/2_{+})$	-77.626(11)	21 ± 0.1 s		$\beta = 100$	
		112	0+	-75.627(10)	1.75 ± 0.07 s		β 100 β^{-} 100			100	(1/2+)	-76 384 (8)	2.1 ± 0.13 7.1 ± 0.4 s		β 100 β^{-} 100	
		112	(1/2)	-75.027(10)	0.80 ± 0.05		$\beta = 100$ $\beta = 100, \beta = 100$			100	(2/2)	72 172 (0)	7.1 ± 0.43		$\beta = 100$	
		113	(1/ 4 +)	71.07(4)	0.50 ± 0.05 s		$\beta = 100, \beta = 100$			101	(3/2+)	71 505 (0)	2.5 ± 0.15		β 100 β^{-} 100	
		115	(2/2)	-70.213 (12)	0.52 ± 0.05 s		β^{-} 100 β^{-} 100 β^{-} m .			102	(5/2)	67 825 (10)	2.9 ± 0.23		$\beta = 100; \beta = \pi < 1.00$	
		115	(3/2+)	-00.19 (9)	310 ± 19 ms		β^{-} , β^{-} 100, $\beta^{-}n$; β^{-} 100; $\beta^{-}n$; β^{-} 100;			103	(3/2-) 0+	-65 733 (10)	1.52 ± 0.118 0.87 ± 0.06 s		$\beta = 100; \beta = n \le 1.00$ $\beta^{-} = 100; \beta^{-} = n \le 1.00$	
							β^{-} 100, β^{-} n , β^{-} 100, β^{-} n			104	0	-05.755(10)	0.67 ± 0.00 s		$\beta = 100; \beta = n \le 1.00$	
		116	0+	-64 16 (20)	204 + 32 - 29 ms		β- β-			105	0	-01.474 (12) 50 (2)	0.00 ± 0.07 s		$\beta = 100, \beta = n \le 2.00$	
		117	0	-59.56 (20)	142 + 18 - 17 ms		β^{-} 100			107	0+	-54 3 (3)	131 ± 19 IIIS 138 ± 4 ms		$\beta = 100, \beta = n \le 7.00$ $\beta^{-} = 100, \beta^{-} = \le 22.00$	
		118	0+	-57.3 (3)	123 + 48 - 35 ms		β^{-} 100: $\beta^{-}n$			107	0	-54.5 (5)	$73 \pm 4 \text{ ms}$		$\beta = 100; \beta = n \le 23.00$ $\beta^{-} = 100; \beta^{-} = n$	
45	Rh	90	0	-52 (4)	12 +9-4 ms		e?:e?			100	0	-46.2 (5)	73 ± 4 ms		β 100, β n $\beta^{-} \cdot \beta^{-} n$	
		91	(9/2+)	-58.8 (4)	$1.47 \pm 0.22 \text{ s}$		6:6			110	0	-42.9 (6)	$37 \pm 17-9$ ms		β , β n	
		92	(6+)	-62.999 (4)	$4.66 \pm 0.25 \text{ s}$		<i>ϵ</i> 100; <i>ϵ</i> 100	41	Nb	82	(0+)	-52 2 (3)	50 + 5 ms		ρ c 100: cm	
		93	(9/2+)	-69.017 (3)	$12.2\pm0.7~\mathrm{s}$		$\epsilon 100$	11	110	83	(5/2+)	-58.4 (3)	38 ± 0.2 s		€ 100, Ep	
		94	(4+)	-72.907 (4)	$66 \pm 6 s$		$\epsilon p \ 1.8; \epsilon \ 100$			84	(0, 2+) (1+2+3+)	-61 (3)	98 ± 0.9 s		e 100 e 100: en	
		94m	(8+)	-72.607 (4)	$25.8\pm0.2~\mathrm{s}$		€ 100			85	(9/2+)	-66 28 (4)	205 ± 1.2 s		$\epsilon 100, \epsilon p$	
		95	9/2+	-78.342 (4)	5.02 ± 0.1 m		ϵ 100			86	(5, 2, 1) (6+)	-69 134 (6)	88 ± 1 s		e 100	
		95m	(1/2)-	-77.799 (4)	1.96 ± 0.04 m		IT 88; <i>\epsilon</i> 12			87	(1/2-)	-73 875 (7)	375 ± 0.09 m		e 100	
		96	GE 6+	-79.688 (10)	$9.90\pm0.1~\mathrm{m}$		<i>ϵ</i> 100			87m	(9/2+)	-73 871 (7)	26 ± 0.05 m		6	
		96m	3+	-79.636 (10)	1.51 ± 0.02 m		IT 60; ϵ 40			88	(9/21)	-76 18 (5)	$14.55 \pm 0.06 \text{ m}$		e 100: e 100	
		97	9/2+	-82.6 (4)	30.7 ± 0.6 m		$\epsilon 100$			89	(9/2+)	-80.65 (3)	2.03 ± 0.07 h		e 100, e 100	
		97m	1/2-	-82.34 (4)	46.2 ± 1.6 m		ε 94.4; IT 5.6			89m	(1/2)-	-80.62 (3)	$66 \pm 2 \text{ m}$		e 100	
		98	(2)+	-83.175 (12)	8.72 ± 0.12 m		<i>ϵ</i> 100; <i>IT</i> 89; <i>ϵ</i> 11			90	8+	-82 663 (5)	14.60 ± 0.05 h		e 100	
		99	1/2-	-85.577 (7)	$16.1 \pm 0.2 \text{ d}$		$\epsilon 100$			90m	4-	-82,538 (5)	18.81 ± 0.06 s		IT 100	
		99m	9/2+	-85.512 (7)	$4.7\pm0.1~{ m h}$		$\epsilon > 99.84; IT < 0.16$			91	9/2+	-86 639 (4)	$6.8E+2 \pm 1.3E+2$ v		€ 100	
		100	1-	-85.587 (18)	$20.8\pm0.1~\text{h}$		$\epsilon 100$			91m	1/2-	-86 535 (4)	$60.86 \pm 0.22 \text{ d}$		$IT 96.6: \epsilon 3.4$	
		100m	(5+)	-85.479 (18)	4.6 ± 0.2 m		$IT \approx 98.30; \epsilon \approx 1.70$			92	(7)+	-86.455 (3)	$3.47E+7 \pm 0.24E+7 v$		$\epsilon 100: \beta^- < 0.05$	
		101	1/2-	-87.412 (6)	$3.3\pm0.3~\mathrm{y}$		$\epsilon 100$			92m	(2)+	-86,319 (3)	$10.15 \pm 0.02 d$		€ 100, β < 0.00	
		101m	9/2+	-87.254 (6)	$4.34 \pm 0.01 \text{ d}$		ε 92.8; IT 7.2			93	9/2+	-87 2142 (23)	stable	100%	. 100	
		102	(1-,2-)	-86.778 (5)	$207.3 \pm 1.7 \text{ d}$		ϵ 78; β^- 22			93m	1/2-	-87.1834 (23)	$16.12 \pm 0.12 \text{ v}$	10070	<i>IT</i> 100	
		102m	6(+)	-86.638 (5)	$3.742 \pm 0.01 \text{ y}$		ε 99.77; IT 0.23			94	6+	-86,3704 (23)	$2.03E+4 \pm 0.16E+4 v$		β^{-} 100	
		103	1/2-	-88.026 (3)	stable	100%				94m	3+	-86.3295 (23)	6.263 ± 0.004 m		$T 99.5: \beta^{-} 0.5$	
		103m	7/2+	-87.986 (3)	$56.114 \pm 0.009 \text{ m}$		<i>IT</i> 100			95	9/2+	-86.7863 (16)	$34.991 \pm 0.006 d$		β^{-} 100	
		104	1+	-86.953 (3)	$42.3\pm0.4~\text{s}$		β^{-} 99.55; ϵ 0.45			95m	1/2-	-86,5506 (16)	3.61 ± 0.03 d		$TT 94.4: \beta^{-} 5.6$	
		104m	5+	-86.824 (3)	$4.34\pm0.03\ m$		β^{-} 0.13; IT 99.87			96	6+	-85.608 (4)	23.35 ± 0.05 h		$\beta^- 100$	
		105	7/2+	-87.849 (4)	$35.36 \pm 0.06 \text{ h}$		β^- 100			97	9/2+	-85.6103 (23)	72.1 ± 0.7 m		$\beta^- 100$	
		105m	1/2-	-87.719 (4)	$42.9\pm0.3~\mathrm{s}$		<i>IT</i> 100			97m	1/2-	-84,8669 (23)	58.7 ± 1.8 s		IT 100	
		106	1+	-86.36 (6)	$30.07\pm0.35~s$		β^- 100			98	1+	-83,533 (6)	2.86 ± 0.06 s		$\beta^- 100$	
		106m	(6)+	-86.223 (6)	131 ± 2 m		β^- 100								Continued on next page	

Continued on next page

t page

	Table 8.1 – Continued from previous page								Table 8.1 $-$ Continued from previous page								
Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$\mathbf{T}_{1/2}, \vec{\Gamma}$	Abundance	Decay Mode	Z	El	Α	\mathbf{J}^{π}	Δ [MeV]	$T_{1/2}, \tilde{\Gamma}$	Abundance	Decay Mode		
		98m	(5+)	-83.449 (6)	51.3 ± 0.4 m		β^{-} 99.9; $IT < 0.20$			115	0	-44.7 (4)	51 +79-19 ms		$\beta^-;\beta^-n$		
		99	9/2+	-82.33 (12)	$15.0 \pm 0.2 \mathrm{~s}$		β^{-} 100	43	Tc	85	0	-46 (4)	$\approx 0.5 \text{ s}$		<i>p</i> ?		
		99m	1/2-	-81.965 (12)	2.5 ± 0.2 m		$\beta^- > 96.20$: $IT < 3.80$			86	(0+)	-51.3 (3)	$54 \pm 7 \text{ ms}$		$\epsilon 100; \epsilon p$		
		100	1+	-79.806 (8)	$1.5 \pm 0.2 { m s}$		$\beta^- 100$			87	(9/2+)	-57.69 (4)	$2.2\pm0.2~{ m s}$		€ 100		
		100m	(5+)	-79.492 (8)	2.99 ± 0.11 s		β^- 100			88	(3+)	-61.679 (4)	5.8 ± 0.2 s		ε 100: ε 100		
		101	(5/2+)	-78.886 (4)	7.1 ± 0.3 s		β^{-} 100 β^{-} 100			89	(9/2+)	-67.395 (4)	12.8 ± 0.9 s		€ 100		
		102	(4+)	-76.314 (4)	43 ± 0.4 s		β^{-} 100 β^{-} 100			89m	(1/2-)	-67.332 (4)	12.9 ± 0.8 s		$\epsilon 100^{\circ} IT < 0.01$		
		103	(5/2+)	-75023(4)	$15 \pm 0.2 s$		β^{-} 100, β^{-} 100			90	1+	-70724(3)	87 ± 0.05		€ 100		
		104	(0, -1)	-71 828 (4)	49 ± 0.3 s		β^{-} 100: $\beta^{-}n = 0.06$			90m	(6+)	-70 224 (3)	492 ± 0.4 s		e 100		
		104 104m	0	-71 613 (4)	4.9 ± 0.03		β^{-} 100; β^{-} n 0.00			91	$(9/2)_{\pm}$	-75 987 (3)	3.14 ± 0.02 m		c 100		
		10411	$(5/2_{\perp})$	-69.91 (4)	2.95 ± 0.06 s		$\beta = 100, \beta = n 0.03$ $\beta^{-} = 100, \beta^{-} = n 1.7$			91m	$(1/2)_{-}$	-75.848 (3)	33 ± 0.1 m		$< 100 \cdot IT < 1.00$		
		105	0	-66 198 (5)	2.93 ± 0.003		$\beta^{-100}, \beta^{-n}, 1.5$			02	(8)+	-78 925 (4)	4.25 ± 0.15 m		< 100		
		107	0	-00.170 (5) 62 718 (8)	300 ± 0.043		$\beta = 100, \beta = n 4.5$			02	$(0)^{+}$	-70.923 (4) 82.607 (4)	4.25 ± 0.15 m		e 100 - 100		
		107	$(2 \downarrow)$	-03.718 (8)	$300 \pm 9 \text{ms}$		$\beta = 100; \beta = n.8$			93 02m	9/2+ 1/2	-03.007 (4) 82 215 (4)	2.75 ± 0.05 m		E 100		
		100	(2+) (5/2)	-59.50 (10)	106 ± 9 ms		$\beta = 100, \beta = n.8$ $\beta = 100, \beta = m < 15.00$			9311	1/2-	-03.213 (4) 84 158 (4)	43.3 ± 1 m		- 100		
		109	(3/2)	-30.8 (3)	100 ± 9 ms		$\beta = 100, \beta = n < 15.00$			94 04m	(2)	-04.130 (4)	$293 \pm 1 \text{ m}$		£ 100		
		110	(E /2)	-32.3 (3)	60 ± 0 IIIS		$\beta 100; \beta n 40$			9411	(2)+	-04.002 (4) 86.001 (E)	32.0 ± 1 III		$\epsilon 100; 11 < 0.10$		
		111	(3/2+)	-49 (4)	31 +0-5 IIIS		β			95	9/2+	-00.021 (5)	20.0 ± 0.1 h		ε 100 0< 12 μπ 2.00		
40	M-	112	(2+)	-44.4 (5)	33 +9-6 ms		β			95m	1/2-	-65.962 (5)	$61 \pm 2 d$		ε 96.12; 11 3.88		
42	IVIO	83	0	-46.7 (4)	6 +30-3 ms		ε 100 100			96	/+	-85.822 (5)	4.28 ± 0.07 d		ε 100 μπ. οο		
		84	0+	-54.5 (4)	2.3 ± 0.3 s		ϵ 100; ϵp			96m	4+	-85.787 (5)	$51.5 \pm 1 \text{ m}$		$TT 98; \epsilon 2$		
		85	(1/2-)	-57.51 (16)	3.2 ± 0.2 s		ϵ ; $\epsilon p \approx 0.14$			97	9/2+	-87.224 (4)	$4.21E+6 \pm 0.16E+6 \text{ y}$		ε 100		
		86	0+	-64.11 (4)	$19.1 \pm 0.3 \mathrm{s}$		$\epsilon 100$			97m	1/2-	-87.128 (4)	$91.0 \pm 0.6 \text{ d}$		11° 96.06; ϵ 3.94		
		87	7/2+	-66.883 (4)	$14.02 \pm 0.26 \text{ s}$		ϵ 100; ϵp 15			98	(6)+	-86.432 (4)	$4.2E+6 \pm 0.3E+6 y$		β^{-} 100		
		88	0+	-72.686 (4)	$8.0 \pm 0.2 \text{ m}$		$\epsilon 100$			99	9/2+	-87.32/1 (17)	$2.111E+5 \pm 0.012E+5 \text{ y}$		β 100		
		89	(9/2+)	-75.015 (4)	$2.11 \pm 0.1 \text{ m}$		$\epsilon 100$			99m	1/2-	-87.1844 (17)	6.0067 ± 5.0 E-4 h		$TT 100; \beta^{-} 0.0037$		
		89m	(1/2-)	-74.627 (4)	$190 \pm 15 \text{ ms}$		11 100			100	1+	-86.0202 (20)	$15.46 \pm 0.19 \mathrm{s}$		β^{-} 100; ϵ 0.0026		
		90	0+	-80.174 (6)	5.56 ± 0.09 h		ϵ 100			101	9/2+	-86.339 (24)	$14.02 \pm 0.01 \text{ m}$		β^{-} 100		
		91	9/2+	-82.208 (11)	$15.49 \pm 0.01 \text{ m}$		$\epsilon 100$			102	1+	-84.569 (9)	5.28 ± 0.15 s		β^{-} 100; β^{-} 98; <i>IT</i> 2		
		91m	1/2-	-81.555 (11)	$64.6 \pm 0.6 \mathrm{s}$	11	ϵ 50; TT 50			103	5/2+	-84.6 (10)	$54.2 \pm 0.8 \text{ s}$		β^{-} 100		
		92	0+	-86.809 (4)	stable	$14.53\% \pm 0.3\%$				104	(3+)	-82.509 (25)	$18.3 \pm 0.3 \text{ m}$		β^{-} 100		
		93	5/2+	-86.808 (4)	$4.0E+3 \pm 0.8E+3$ y		ϵ 100			105	(3/2-)	-82.29 (4)	$7.6 \pm 0.1 \text{ m}$		β^{-} 100		
		93m	21/2+	-84.383 (4)	6.85 ± 0.07 h	0.4=0(IT 99.88; ϵ 0.12			106	(2+)	-79.774 (13)	$35.6 \pm 0.6 \text{ s}$		β^{-} 100		
		94	0+	-88.4141 (15)	stable	$9.15\% \pm 0.09\%$				107	(3/2-)	-78.746 (9)	$21.2 \pm 0.2 \text{ s}$		β^{-} 100		
		95	5/2+	-87.7119 (15)	stable	$15.84\% \pm 0.11\%$				108	(2)+	-75.919 (9)	$5.17\pm0.07~{ m s}$		β^- 100		
		96	0+	-88.7949 (15)	stable	$16.67\% \pm 0.15\%$				109	(5/2+)	-74.279 (10)	$0.86\pm0.04~{ m s}$		β^{-} 100; $\beta^{-}n$ 0.08		
		97	5/2+	-87.5448 (15)	stable	$9.6\% \pm 0.14\%$				110	(2+)	-71.031 (10)	$0.92\pm0.03~{ m s}$		eta^- 100; $eta^- n$ 0.04		
		98	0+	-88.1161 (15)	stable	$24.39\% \pm 0.37\%$				111	(5/2+)	-69.021 (11)	$350\pm21~\mathrm{ms}$		β^{-} 100; $\beta^{-}n$ 0.85		
		99	1/2+	-85.9702 (15)	65.976 ± 0.024 h		β^- 100			112	0	-65.253 (6)	$0.29\pm0.02~{ m s}$		eta^- 100; eta^-n 4		
		100	0+	-86.1878 (20)	$7.3E+18 \pm 0.4E+18 \text{ y}$	$9.82\% \pm 0.31\%$	$2\beta^-$ 100			113	>5/2	-62.88 (10)	160 +50-40 ms		eta^- ; $eta^- n$ 2.1		
		101	1/2+	-83.5147 (20)	$14.61 \pm 0.03 \text{ m}$		β^- 100			114	>3	-58.85 (20)	$100 \pm 20 \text{ ms}$		β^{-} 100; $\beta^{-}n$?; β^{-} 100;		
		102	0+	-83.573 (9)	11.3 ± 0.2 m		β^- 100			445	0	F(1 (0)	02 00 12		$\beta^- n$?		
		103	(3/2+)	-80.97 (10)	$67.5 \pm 1.5 \text{ s}$		β^- 100			115	0	-56.1 (3)	83 +20-13 ms		$\beta^-;\beta^-n$		
		104	0+	-80.359 (9)	$60 \pm 2 \mathrm{s}$		β^- 100			116	0	-51.5 (3)	56 +15-10 ms		β^{-}		
		105	(5/2-)	-77.346 (9)	$35.6\pm1.6~\mathrm{s}$		β^- 100			117	(5/2+)	-48.4 (4)	85 +95-30 ms		β^{-}		
		106	0+	-76.144 (9)	$8.73\pm0.12~{ m s}$		β^- 100	44	Ru	88	0+	-54.4 (3)	1.2 +0.3-0.2 s		ϵ 100		
		107	(5/2+)	-72.561 (10)	$3.5\pm0.5~{ m s}$		β^- 100			89	(9/2+)	-58.1 (3)	$1.5\pm0.2~{ m s}$		ϵ 100; $\epsilon p < 0.15$		
		108	0+	-70.766 (10)	$1.09\pm0.02~{ m s}$		β^- 100; $\beta^- n < 0.50$			90	0+	-64.883 (4)	11.7 ± 0.9 s		ϵ 100		
		109	(7/2-)	-66.676 (11)	$660\pm45~\mathrm{ms}$		eta^- 100; $eta^- n$ 1.3			91	(9/2+)	-68.239 (3)	$7.9\pm0.4~ m s$		ϵ 100; <i>IT</i> ; ϵ > 0.00; ϵp >		
		110	0+	-64.552 (24)	$0.27\pm0.01~{\rm s}$		eta^- 100; eta^-n 2			0.0	0	E4 201 (2)			0.00		
		111	0	-60.06 (20)	220 +41-36 ms		eta^- ; $eta^-n \leq 12$			92	0+	-74.301 (3)	$3.65 \pm 0.05 \text{ m}$		ε 100		
		112	0+	-57.6 (3)	120 +13-11 ms		β^{-}			93	(9/2)+	-/7.214 (4)	$59.7 \pm 0.6 \text{ s}$		<i>ϵ</i> 100		
		113	0	-52.9 (3)	78 +6-5 ms		β^{-}			93m	(1/2)-	-/6.4/9 (4)	$10.8 \pm 0.3 \text{ s}$		ϵ 78; <i>IT</i> 22; ϵp 0.03		
		114	0+	-50 (4)	60 +13-9 ms		β-			94	0+	-82.579 (4)	51.8 ± 0.6 m		€ 100		
										45	5/14	-83 458 (111)	1.643 ± 0.013 h		< 100		