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XCVIL. The Demagnetizing Factors for Ellipsoids.

By Epmuxp C. STONER, Sc.D., F.R.S., Professor of Theoretical Physics
at the University of Leeds *.

[Received August 13, 1945.]

1. Introductory.

FormuLz for the demagnetizing field in a uniformly magnetized ellipsoid
of revolution, first derived by Maxwell, are given in many books, but the
numerical evaluation of the expressions, although it presents no essential
difficulty, is somewhat troublesome. No comprehensive table of values
seems to have been published, and the short lists of illustrative values
which are sometimes given are seldom free from significant errors. - As the
need for a reliable set of values of demagnetizing coefficients for ellipsoids
makes itself felt in connection with a variety of magnetic problems, it was
thought that a useful purpose might be served by carrying out the calcu-
lations systematically over the whole of the range of the parameters with
a degree of accuracy which would ensure adequacy for any likely theoretical
or practical application. The results of the calculations are embodied in
the tables in this paper.

The direct practical application of the demagnetizing factors for ellip-
soids, except for such special cases as the sphere and the disc, is rather
limited, though these factors are required in connection with a number of
methods which have been used for measurements on ferromagnetics. In
spite of the difficulty of making accurately ellipsoidal test pieces, the
advantages, for precision work, of uniformity of magnetization throughout
the specimen, would seem to make the development of methods employing
them worthy of fuller consideration. Indirectly, the exactly calculable
fields in magnetized ellipsoids are of very considerable value in providing
a guide in estimating the field and intensity distribution in the variously
shaped pieces of magnetic material used in magnetic and electromagnetic
equipment. Moreover, the range of shapes covered by the term ellipsoid
of revolution is sufficiently wide to include approximations to most of the
shapes of portions of ferromagnetic material which it may be desirable to
consider in connection with the internal structure of ferromagnetic metals
and alloys.

The form in which the general expressions for the demagnetizing factors
of the ellipsoid with three unequal axes is given by Maxwell and later
writers is not appropriate for direct numerical evaluation. These de-
magnetizing factors seldom come into use, and the labour of drawing up
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extensive numerical tables would be out of all proportion to their use-
falness. To supplement the numerical tables for ellipsoids of revolution,
however, it has seemed worth while to re-express the Maxwell formula in
terms of elliptic integrals of standard form, so that with the aid of readily
available tables, numerical values can be obtained, when required, with a
minimum of difficulty. Moreover the interesting inter-relations between
the general demagnetizing factors, for three unequal axes, and the special
factors, for two axes equal, are not clearly or fully brought out by the
expressions which have previously been given.

For a body which is uniformly magnetized, with intensity of magnetiza-
tion I, the usual demagnetizing coefficient, N, may be defined by the
relation

H=H,~NI, . .. . ... - (L)

where H, is the applied field, and H, the total field in the material (the
“ pipe " field), H,, H,, and 1 being co-directional. Except in the special
case where the specimen is magnetized to saturation in very strong fields,
uniformity of magnetization is possible in a uniform applied field only for
an ellipsoid. (Approximate uniformity of magnetization may be ob-
tained by the use of non-uniform fields along limited lengths of bars as
in some permeameter arrangements.) The field, H, due to the magnetiza-
tion atone (putting H, in (1.1) equal to zero) is co-directional with I
for magnetization along the principal axes ; taking these as a, b, ¢ along
the x, y, z directions, the components of the field due to magnetization
of intensity I are given by

=—NJI,, H=—N]L, H=—NJI, . . . (12
N,, N, and N, being the demagnetizing coefficients. Except for the
sphere, the resultant field, H, will not in general be co-directional with the
intensity I. It may be noted that

N4NyN=dmr. . . . . . - - (13

Although the coefficients, N, defined as above, have usually been used
in the past, there are several advantages in using a modified factor, D,
- defined by

DN, < » « = 5w B8

The numerical relations between the various factors then become more
immediately obvious, as illustrated by the form taken by (1.3), namely,

DADAD=L o« . - o o (1B

Moreover, from a practical standpoint, the use of D is no less convenient
than N. The field due to the magnetization is given, in terms of D, by

H——D(4s1)=—D®B—H)=DB/1-D) . . . . (L6)

With an applied field, H,, the field, H,, in the specimen (see (1.1)) is given
by
D(B—H,)

— - (1.7)

H=H,—
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When, as is most usual, data are given for B rather than I, division by
factors such as 4m—N is necessary if the coefficients N are used ; little
purpose is therefore served by multiplying the factors D, which are first
evaluated, by 4=, when this, more often than not, merely renders the
calculations made in applications more troublesome. In the sequel,
therefore, the factors D will be used exclusively, and referred to as de-
magnetizing factors.

In a field which has been so long and so intensively explored as that
involving the geometry of ellipsoids, fundamentally new results are not
to be expected. It so happens, however, that although the physical
problem of the uniformly magnetized ellipsoid was solved, in a funda-
mental sense, some seventy years ago, the results have remained, to a
large extent, in a form which is neither readily intelligible nor readily
applicable. The present paper is a contribution to the filling of a gap
between fundamental theory and its practical application.

2. Ouiline of Derivation of General Formula.

The problem of magnetic induction in an ellipsoid is presented by
Maxwell (‘ Treatise,” Articles 437 and 438) in a very simple manner and his
treatment will be outlined in this paragraph. Following a method due
to Poisson, the theoretical determination of the magnetic potential in a
uniformly magnetized body is shown to be mathematically equivalent to
the determination of the gravitational field in a body of the same shape
and of uniform density. In Maxwell's words, © If V is the potential at a
point (z, ¥, z), due to the gravitation of a body of any form of uniform
density p, then —dV/dx is the potential of the same body if uniformly
magnetized in the direction of x with the intensity I=p"." The proof
given is to the effect that —(dV/dx)dx would be the potential due to a
body of density p together with a body of the same shape and density —p
shifted a distance —dx relative to the first ; elements pdv and —pdv with
the second element shifted —dx relative to the first, are equivalent to
a magnetic element of moment pdvdx, the intensity of magnetization of
the element being pdz ; hence —(dV/dx)dx is the potential due to a body
magnetized with the intensity pdz in the direction of z, and —dV/dx is
that of a body magnetized with intensity p. If the magnetization is to be
uniform and hence also the field due to it (the applied field is assumed to
be uniform, the value zero being tacitly included), the magnetic potential,
Q, must be a linear function of the co-ordinates z, y, 2 within the body, and
the corresponding * gravitational ” potential V must be a quadratic
function of the co-ordinates. To quote Maxwell again, ““ The only cases
with which we are acquainted in which V is a quadratic function of the
co-ordinates within the body are those in which the body is bounded by a
complete surface of the second degree, and the only case in which such
a body is of finite dimensions is when it is an e ipsoid.” The standard
integral expression, in a form equivalent to that given below, for the
potential of an ellipsoid is then introduced, with a reference to Thomson
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and Tait’s * Natural Philosophy,” and the integral forms of the expressions
for the demagnetizing coefficients follow immediately. The explicit
expressions which may be obtained for these coefficients for ellipsoids of
revolution are then given in the often quoted forms, involving the eccen-
tricities.

The inter-relation between the.magnetic potential of a uniformly
magnetized body and the gravitational potential of a body of the same
ghape of uniform density may be shown generally and with brevity by
using vector notation (cf. Stoner, ‘Magnetism and Matter,” p. 28, 1934).

The symbol 7 will be used, where

¢

0 0
V=i o +3 % +k g
i, j and k bemg umt vectors in the z, y, z directions. The dot symbol is
used to denote a scalar product. It may be noted that V- applied to a
vector is equivalent to div, and ¥/ applied to a scalar to grad. A general

expression for the magnetic potential, 2, due to a magnetized body
(obtained by simple generalization of the expression for the potential due

to a dipole) is
1
.Q:-JI-V(;)dV,. A 5
which for uniform magnetization becomes
1
Q——I-.[v(;)dV. L2

1
Since — IV(;)dV gives the gravitational force due to a volume of

uniform unit density of mass (apart from the constant G), or the electric
force due to a volume of uniform unit density of charge, the required
theorem is immediately proved. It may be noticed that (2.1) may be
transformed by Green’s theorem to give the potential in terms of Poisson’s
equivalent surface and volume distributions. With n, as the unit
normal to the surface element dS,

Q=j%(l-n1)dS—I;(v-l)dV.. L. (23

For uniform magnetization, the second term vanishes, and the distribu-
tion can be treated as a surface distribution of magnetic charge of pole
strength per unit area I - n, (equal to 1 cos 8, where 6 is the angle between
I and the outward drawn normal). The great difficulty in predetermining
the fields due to magnetized materials in forms of practical interest, such as
rods and bars and electromagnet pole pieces, is that the second term i8
usually comparable with the first, and it is only by exceedingly laborious
methods that even rough approximations to the distribution and thence
to the value of the integral can be obtained #. The ellipsoid is troublesome
to deal with ; but it is easier than anything else.

* A good account of work in the latter part of the last century on the general
problem of demagnetizing fields is given in the book by Du Bois (1896), and in
a paper by Bozorth and Chapin (1942) on the demagnetizing factors of
references are given to more recent work.
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The potential at an internal point of an ellipsoid of unit uniform density,
with semi-axes a, b, ¢ in the z, y, z directions respectively may be expressed
in the following form which was first given by Dirichlet in 1839 : '

- z* y? z® ds

«mbcj { a*ts b*fs cz—{-s} (a®+8) (b2 8)V2(c2+-8) V2 (2:4)
There is no short cut to this formula, and for its derivation reference must
be made to treatises dealing with potential theory. A detailed treatment
of this classical problem of the ellipsoid is given, for example, in Thomson
and Tait’s ‘ Natural Philosophy ’ (vol. i. part ii., articles 494 and 519-533)
and in Webster’s ‘ Dynamics’ (articles 151-161), in both of which books
an indication is given of the historical sequence of development of the
theory Certain aspects of the mathematical theory are discussed fully in
Jeans’s ‘ Electricity and Magnetism’ in connection with the problem of an
ellipsoid in a uniform electric field, and a more succinct treatment with
reference to the present problem is given in Stratton’s ‘ Electromagnetic
Theory’ (sections 3.27 and 4.18).

From the relation proved above it follows that the z component of the

demagnetizing field for a uniformly magnetized ellipsoid is given by
3 ds
=T ~—teabel, | oo PR o
with similar expressions for H, and H,. The demagnetizing factors, as
defined in (1.2) and (1.4), are therefore given by
a.bc ds

JNE 0 (V2+8)R :
where v=a, b,¢ and R,— {(a2+3)(b2+-8)(c2+5) J2.
These are the general integral expressions for the demagnetizing factors of
an ellipsoid.

(2.5)

(2.6)

3. Bapression of Demagnetizing Factors in Terms of Normal
Elliptic Integrals.

The integrals in the formuls (2.6) for the demagnetizmg factors of an
ellipsoid are elliptic integrals, and for their evaluation it is appropriate
to express them in terms of elliptic integrals which have been tabulated.
The tabulated integrals are Legendre’s normal integrals of the first and
second kinds, na.mely, ‘

ki dz
F dy . @31
(> #)= Jo (1—k? sin? )12 Jo(l—z“)’l“(l—k’z’)m % (1)
*(1—k%*?)2dz

d E(k = — ]2 2 S \U2 o)y — _(______
an (k, $) Jo(l ke sint )rd= |
where k*<C1, z=sin ¢. .

Taking @ >b >¢, by the substitution z2=(a?—c?)/(a®+s), the expressions
(2.6) become

I G = |

where k®=(a*—b?)/(a®—c?), 2*=1—c¥a®

(3.2)
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For v—a, the required transformation is immediately effected since
22 | 1 (1=t
A1 —k2)e & I—ArQ—k2 e (1= ]

For v=b, an integration by parts is necessary, and the required form is
most readily obtained by using the relation

d {::(l—z”)lf2 } (1—22)¥2 2

b 75 == 3 ( S k2) = >
dz ( o= kazz)llz (1 — kﬂzﬁ)lll (1 = 22)1/2( 1— kzzz)al-
For v—c, a similar procedure may be followed, using the relation

d {z(l—kﬂz=)m}_(1—kzz2)m :

9 z -
TV O—AF |~ -2 +1—k) T — e

The formulz finally obtained for the demagnetizing factors in terms of
F and E are
abe 3
Dl= (az_cz)m(az_bz) {F(k’ d’)_E(k’ ¢)}’
abe .
(az__c-z)l/z(az_bz){F(k’ ¢)-E(k’ 95)}

abe c?

¥ (a’—c“’)‘ﬂ(bz—-cg) E(k, ¢) be—c?’

abe b*
D¢=_ (ag__cg)ug(bg__cg) E(kv ¢)+'b7__'(,2)

where k= (a2—b?)/(a®—c?), sin 2p—a2=1—c?a’.

Since the demagnetizing factors depend on the relative and not the
absolute lengths of the semi-axes, it is convenient to express them in terms
of dimensional ratios. The final formulz are therefore set out below in this
form.

For an ellipsoid of semi-axes a, b, ¢ (azb>c),let bla=B, cla=y(1 2B >y)-
Then

Db= ¥

(3.4)

= = g )
D, =i F o 4Bk )

Db= - (I_YS)E;’;(I —B?) {F(k’ ¢)-—E(k, ¢)} L 55

By ¥
Bk, ¢)— 55—
+ A TR
2
Dc=— B‘y E k’ +’_B_'_ ’
T =
where B (1—B/(1—y2), sin*p=a=1—y"

The arguments in tables of incomplete elliptic integrals F(k, ¢) and
E(k, ¢) are usually ¢ and @ where §— sin—1 k. Suitable tables are given
in the collections of Dale (1937), Hayashi (1930) (5-place), and Jahncke-
Emde (1933) (4-place). In all of these, values are given for every degree
of ¢, and every fifth degree of 6. The 9-place tables given in Legendre’s
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treatise (1825-8) at intervals of one degree in both arguments have been
reprinted (1931). The evaluation of the demagnetizing factors for given
values of the dimensional ratios, using (3.5), involves a double interpola-
tion in the tables of integrals, and, with the intervals used in the tables,
higher differences must be taken into account if an acouracy corresponding
to the tabular accuracy is required in the interpolates. The rapid increase
of F(k, $) as k and sin ¢ approach unity would make the use of the tables
in this region inappropriate, but here series developments could be obtained
for each demagnetizing factor, the leading term being that corresponding

to the factor for the ellipsoid of revolution to which the general ellipsoid
approximates.

Fig. 1.

10 T T b | . I

-8#» (Volues on|curves)

(b=c)

- —

-8 1-0
Demagnetizing factors for ellipsoids.
The demagnetizing field, H, is given by H=—4#DIL. Curves are drawn for
varying y, with g constant. The broken curves do not fall in this series,

but are limiting curves for p=y. With a=b>c, D,<D,<D,. The
regions in which the values fall are indicated.

Extensive numerical tables of D,, D, and D, are unlikely to be required,
but a sufficient number of values have been obtained, to 3- or 4-place
accuracy, to make clear the character of the dependence of the values on
the dimensional ratios B(=b/a) and y(=c/a). The curves obtained are
shown in fig. 1.

In fig. 1 the whole range of values is covered, though at the wide
interval of 0-2in B. The two broken curves for =y give the demagnetiz-
ing factors for prolate ellipsoids of revolution, the lower curve along the

S/
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‘polar axis, the upper along the equatorial axis, as functions of the ratio
of the shorter (equatorial) to the longer (polar) axis. The two curves
for =1 (i. e., a=>b) give the demagnetizing factors for oblate ellipsoids of
revolution, the upper along the polar axis, the lower along the equatorial
axis, as functions of the ratio of the shorter (polar) to the longer (equatorial)
axis. The curves all meet at the value 1/3, corresponding to a sphere.
The limiting values on the left-hand side of the figure for >0 depend on
how that limit is approached. For 1>B>y, the limiting values, for
y—>0, are 1, 0 and 0 for D,, D,, and D, respectively ; for =y, the limiting
values are 0-5, 0-5 and 0. For given values of g and y the sum of the three
demagnetizing factors, as shown by (3.4) or (3.5), is unity. This is
brought out clearly in the figure, in which, it should be noticed, the lower
of the B=1-0 curves consists of coincident curves for D, and D,, and the
upper broken curve of coincident curves for D, and D,.

4. The Ellipsoid of Revolution.

Derivation of Formulse.—For ellipsoids of revolution the elliptic inte-
grals in the general expressions (2.6) for the demagnetizing factors
reduce to inverse circular or logarithmic functions. Formul® may be
obtained from (3.4) or (3.5) for the limits b—a (oblate ellipsoid) and
c—b (prolate ellipsoid), the first corresqonding to k*-»0, the second to
k’*=1—k®—0, by expanding the intogrands of F(k, ¢) and E(k, ¢) as
power series in k* or k" as appropriate. It is, however, simpler to
proceed directly from the basic integrals (2.6), putting a=b, or b=c, as
appropriate, or, for the special case of the sphere a=b=c.

To avoid the use of unusual symbols, the convention a>b >c¢ used in
section 3 will not be retained, and in connection with the ellipsoid of
revolution, treated in this section, the following symbols will be used :

a, polar semi-axis ; b, equatorial semi-axis ; m=alb ; p=1/m=b|a.

The entire range is covered by 0<m< o, or by 0<p< o, or by
0<m<1 together with 0 <p<1.
The general formulae (2.6) become

> D=£ __;‘8—__
a2 ) (a*+s)B(b2+s)’
D=£ o ¢ w e cw s (EI)
72 ) (@) BB +-s)*

It is convenient, though not essential, in evaluating the integrals, to
treat separately the cases p<<1 and m<1.
A. Prolate spheroid.
a>b, alb=m>1, bla=u<l.
The substitution z2=(a*—b%)/(a®>+-s) in (4.1) results in

p—_* Ju-ﬂ"' 2de

T, T

P f""z_dz_
T—p ), (1=
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In the expression for D, the integral may be rewritten

2% 1/ 1 1
1—_—Zz=§(m+:5) s ,
and the integration immediately effected. In the expression for D,, an
integration by parts is required, using the relation
d =z 1 222
dz1—2 1-z2+ (1—22)%"
The final formulae may be put in the forms :

_ou 1 14 (1—p2)e
e 527 1]

ln{m+(m3—l)ll?-}_1];, .. (42)

1 m
- e
l !
Dy g [ gyl -1 |,
1 :
L I

The form (4.2) is suitable for numerical evaluation. The simple relation
(4.3), a special case of the general relation (1.5), makes separate
evaluation (and tabulation) of D, unnecessary.

For the prolate spheroid the eccentricity, ¢, is given by

e=1—(b/a)*=1—p?*=(m*—1)/m>.
In terms of the eccentricity, the demagnetizing factor is given by
1—e* (1, 14-€
Da— -eT {Zln i: = l} ’ . . - - . (4.4)

the form originally given by Maxwell.

B. Oblate spheroid.

a<b, alb=m<1, bla=u>1l.
The substitution z2=(b2—a?)/(b*+s) in (4.1) results in
m f“"‘)"‘ 2%dz

P, T
Use of the relation
d z 2% 1
(P (12 (1)

reduces the integral to the standard form

I (1—22)~12 do—sin~ 2,
leading to the formula

D

.l—_m{l—-(-l—;%——g)mcos“m}, . .. . (45)

a form suitable for numerical evaluation. D, is obtained using (4.3).
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For the oblate spheroid the eccentricity, €, is given by
E=1—(afp)=1—mi=(u*— D).
In terms of the eccentricity, the demagnetizing factor is given by

¢=.;l§{]_£l__.'ﬂ,§5in'le}, B € X))

(g

the Maxwell form.

Relation between factors for m>1 and m<1.—The formula (4.2) is in
a practically useful form for m>1 (x<1), but its formal validity is not
restricted to this range, and it is of interest to obtain, from this single
formula, formulae appropriate to the two ranges m>1 and m<1, and
of similar character. From the equations

x=cosh u=13}(e*+¢e7%)
and r=cos u=>}(e"+4e~"),
it is readily shown that
cosh-1 z=In {z+(2*—1)¥?}; cos'z=—iln {r+i(1—a?)12},
Using these relations the formula (4.2) can at once be put in the form

1 m
- e
D= — 1{( 5 1)112°08h m l}, g w ose w RET)
appropriate for m >1, and in the form
e o -1
D"_-l—z{l—(1 2)mcos m}, A € X))
r m< 1

ad (® ds

—— . D¢=—2- 0(——-@2—*—8)5’2’ . (4.9)
which integrates immediately to give
. 1

== )

D=z, -« « « + - - - 410

a result usually obtained by elementary methods dependent essentially
on (2.3).

Series Expansions—Series expansions are of value in showing the
limiting forms of the expressions for the demagnetizing factors, in
indicating in an obvious way the character of the variation, and, for
certain ranges, in facilitating numerical evaluation. They may be
developed from the series for the logarithmic and inverse circular
functions which are given in many books (e.g., Dwight, 1934;
Milne-Thomson and Comrie, 1931). Usually the general expressions for
the coefficients are cumbersome, and it is probably more useful to give

explicitly the coefficients for the leading terms.

seinibielsl
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Elongated Prolate Spheroid.—m> 1, p=1/m<1.
3 15 35
—nd — s == R Pt tti 9,
D,=p {(l—{-zp. - gH -4 T +>ln..m

5 47 319
— (l+ I‘u’-l— ~3—2p¢‘+ -1—9§p°+ 5% )}, . . (411a)
——u¥(In 2m—1)+}u4(3 In 2m—5)
+§1-2.,Le(15 In 2m—47)+ i%jys(‘mo In 2m—319)+. ... (4.11b)
Fig. 2.

I [ (AN | | TTT1

§=mi0,- (2 m-1) ]

| bl A

L 106 =

N\

m?D,

i 78 "'#" d
SANENE

6\11\~H_u Tt

] T——4 1
5 2 3 4 J5789;g 15 20 30 40 50 100

Demagnetizing factors for prolate spheroids.

m=afb; a, polar semi-axis; b, equatorial semi-axis. D,, demagnetizing
factor for polar axis. m?D, is plotted against m (logarithmic). For large
values of m, m*D, approximates to In2m—1. The differences between
m®*D, and In2m—1 are shown on three scales.

This series up to the term in u® gives D, to an accuracy of 1 unit in
the eighth place at m=10(x=0-1), and to 1 unit in the sixth place for
m=>5(u=0-2). For larger values of m (or smaller values of ), for which
the series is useful in practice, the accuracy obtainable by breaking off
at any term can readily be estimated from the nex§ term.

The first term in the series in the form (4.115) is well known. The
character of the approximation provided by this single term is shown
by the logarithmic plot in fig. 2. At m=10, the error is less than
1-7 per cent., at m=100 less than 0-016 per cent.
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The demagnetizing factor, D,, along the equatorial axis, cannot be
conveniently represented with the form of graph used in fig. 2, but the
two broken curves in fig. 1 give D as a function of p, the lower D, and
the upper D,, for the range 0 <p < 1. A double logarithmic plot, which
has been used by Bozorth and Chapin (1942), has advantages for some
purposes.

Flaitened Oblate Spheroid.—m <1, p=1/m> 1.

8 16 128
I s | 6 8
D,=1+42m +3m + 5 +———35 ms4-...

mm 3 15 35 315
MW7 O oy 19 a1 Y met T —m8
5 <1+2m 4 g™ + 16m - l28m +) . (412)
(m/2=1-570 796.)
Fig. 3.
+0 I I I I
.8._. ~
6 Pa =
4 i
e D, ~

\ | | :
=2 +,6 ¢ W
Demagnetizing factors for oblate spheroids.
m=alb ; a, polar semi-axis ; b, equatorial semi-axis. Dg, Dy, demagnet,izing

factors for polar, equatorial axis. The straight lines of slopes —n[2 an
+x/4 are tangential to the curves.

Thisseriesuptotheterminm‘givesD,toana.ccuracyoflunitin
the seventh place at m=0-1(p=10), and to 1 unit in the fifth place at
m—=0-2(u=>5). A graphof D, and D, against m is shown in fig. 3. The
tangent to the D, curve, of slope —m/2, and the tangent to the D, curve,
of slope /4, are also shown in the diagram.

The curves of fig. 3, it may be noted, are the same as the curves for

p=1-0 in fig. 1.

Nearly Spherical Spheroid.—1—p* <1 (prolate) and (1—m?) <1 (oblate).

When the eccentricity, e, approaches zero, series in ¢, that is in (1—m?2)
or (1—u¥), are more convenient than series in (1—m) or (1—p). These
series are readily developed from (4.4) and (4.6).
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For the prolate spheroid, with @ >b, &=1—(b/a)*=1—p*<1,

1 22/ 3 5
D,=5—g(l+7e+ -2-1-5"—}—...). .. (413)
For the oblate spheroid, with a<b, e=1—(a/b)*=1—m*<1,
| 4 8
Dz—'§+-ﬁ'(1+'7'€’+'2—1'€‘+- . ) coe . (419)

These series, though appropriate for small eccentricities, are of limited
utility with reference to the m or p range; with (4.13), which is less
slowly convergent than (4.14), it is necessary to carry the series to the
term in € to obtain an accuracy of 1 unit in the sixth place even for
m=1-1. The series are of interest, however, in giving at once for the
sphere (m=p=1) the value for D, of 1/3, which is not an immediately
obvious limit to the expressions (4.2) to (4.6). -

Fig. 4.
T 1 = = -0
Oblate 4 Prolate o
g Dy
- N
| ' S S |
%5 b < 2 _0, 2 4 © 9 1
«—(1-m?) f——( - p)—

Demagnetizing factors for spheroids as functions of eccentricity.
m=a/b; p=bja; a, polar semi-axis ; b, equatorial semi-axis ; e, eccentriciiy.
For prolate spheroid, e?=1—p?; for oblate spheroids, e*=1—m? The
straight lines of slopes —2/15 and +1/15 are tangential to the curves
at &=0.

A graphical representation of the dependence of the demagnetizing
factors on the eccentricity is given in fig. 4, the straight lines being the
tangents to the curves at €2=0, as given by (4.13) and (4.14) ; the slopes
of the tangents are —2/15 for the D, curve, and +1/15 for the D, curve.

A consideration of the series (4.11) to (4.14) shows that their practical
usefulness is limited to very restricted ranges of the values of the
dimensional . ratio, m=a/b, of an ellipsoid of revolution. Numerical
evaluation of the expressions (4.2) and (4.5) is in general necessary, and
even in the ranges to which the series are in practice applicable, the
series expressions are comparable in convenience only for large and
small values of m (say m>10 and m<0-1) and for values in the
neighbourhood of unity (say m=140-05). The series expressions do.



816 Prof. E. G. Stoner on the

TasrE L.
Demagnetizing Factors for Ellipsoids of Revolution.

m-Table.

m=afb ; a, polar semi-axis ; b, equatorial semi-axis. m<1, oblate spheroid ;
m>1, prolate spheroid. The demagnetizing field is given by H=—4#DIL.

Dy=4(1-D,). (4==12-566 371.)

m. i 3 53 m. |} m. Dy
0-0 1-:000 000 35 0-089 651 20 0-006 749
0-1 0-860 804 36 86 477 21 6 230
0-2 750 484 37 83 478 22 5 771
0-3 661 350 3-8 80 641 23 5 363
0-4 588 154 39 77 954 24 4 998
0-5 0-527 200 4-0 0-075 407 25 0-004 671
0-6 475 826 4-1 72 990 30 3 444
0-7 432 065 4-2 70 693 35 2 655
0-8 394 440 4.3 68 509 40 2116
0-9 361 822 44 66 431 45 1 730
1-0 0-333 333 45 0-064 450 a0 0-001 443
1-1 308 285 4-6 62 562 60 1 053
1-2 286 128 4.7 60 760 70 0 805
1-3 266 420 4-8 59 039 80 0 637
14 248 803 4-9 57 394 90 0 518
1-5 0-232 981 50 0-055 821 100 0-000 430
16 218 713 35 48 890 110 363
17 205 794 6-0 43 230 120 311
1-8 194 056 35 38 541 130 270
19 183 353 7-0 34 609 140 236
240 0-173 564 7-5 0-031 275 150 0-000 209
2:1 164 585 8-0 28 42] 200 125
22 156 326 85 25 958 250 083
2-3 148 710 9-0 23 816 300 060
24 141 669 9:5 21 939 350 045
2:5 0-135 146 10 0-020 286 400 0-000 036
2:6 129 090 11 17 515 500 24
27 123 455 12 15 297 600 17
2-8 118 203 13 13 490 700 13
29 113 298 14 11 997 800 10
30 0-108 709 15 0010 749 900 0-000 008
31 104 410 16 09 692 1000 7
32 100 376 17 08 790 1100 6
33 096 584 18 08 013 1200 5
34 093 015 19 07 339 1300 4
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TasLe II.
Demagnetizing Factors for Ellipsoids of Revolution.
p-Table.
p=bjla=1/m; a, polar semi-axis; b, equatorial semi-axis. p<<1, prolate

spheroid ; p>1, oblate spheroid. The demagnetizing field is given by
H=—4DI. D,=13}(1-D,). (4n=12-566 371.)

TR D,. e D, T8 Dy,

0-0 0-000 000 35 0-673 006 20 0-926 181
0-1 020 286 3-6 679 625 21 929 494
0-2 055 821 37 685 984 22 932 522
0-3 095 370 3-8 692 097 23 - 935 301
0-4 135 146 39 697 979 24 937 860
0-5 0-173 564 40 0-703 641 25 0-940 224
0-6 209 962 4-1 709 097 30 949 778
07 244 110 4-2 714 357 35 956 700
0-8 275 992 4-3 719 432 40 961 944
0-9 305 689 44 724 330 45 966 056
1-0 0-333 333 45 0729 061 50 0-969 366
1-1 359 073 4-6 733 633 60 974 359
1-2 383 059 47 738 055 70 977 961
1-3 405 437 48 742 332 80 980 673
1-4 426 344 4-9 746 473 90 982 790
1-5 0-445 906 50 0-750 484 100 0-984 490
1-6 464 237 55 768 780 110 985 885
1-7 48] 442 6-0 784 585 120 987 048
1-8 497 615 6-5 798 373 130 988 034
1-9 512 843 7-0 810 506 140 988 881
2:0 0-527 200 75 0-821 265 150 0-989 616
21 540 758 80 830 870 200 992 196
2-2 553 578 85 839 497 250 993 749
23 565 717 90 847 288 300 994 786
2-4 577 227 95 854 359 350 995 528
2-5 0-588 154 10 0-860 804 400 0-996 085
2:6 598 539 11 872 125 500 996 866
27 608 422 12 881 743 600 997 388
2-8 617 837 13 890 017 700 997 760
2-9 626 817 14 897 210 800 998 040
3-0 0-635 389 15 0-903 520 900 0-998 257
31 643 581 16 909 101 1000 998 431
3-2 651 417 17 914 071 1100 998 574
33 658 920 18 918 526 1200 998 692
34 666 110 19 922 542 1300 998 793
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however, bring out the character,offthe variation, and they have value

in enabling a rough estimate of the demagnetizing factors to be easily
obtained.

5. Numerical Tables.

Numerical values of the demagnetizing factors for an ellipsoid of
revolution, polar semi-axis a, equatorial semi-axis b, have been
calculated from the expressions (4.2) and (4.5) which are repeated here
for convenience :

1
D= = [(mzinl)mln {m+(m2—l)”2}—l] for a/b=m >1. (5.1,

1 m = ¢
D.=m[1_ (l_mz)wcos 1m] for afb=m<1. . . . (5.2)
The demagnetizing factor along the equatorial axis is given by
1
Dy=5(1—D2. - - - - . - (5.3)

An accuracy higher than 1 in 10° or at most 1 in 10* will seldom be
required in physical applications. For the smaller values of D,
however, & considerably lower accuracy will be sufficient, for it is the
absolute rather than the relative accuracy which is relevant. The
demagnetizing field is given by

He—4:DI, . . « « - . - . (54

and the highest values of 4«1 are of the order 10%. (For iron, for
example, the saturation value of 41 is about 2:16x 104, for 34 per cent.
ferrocobalt about 2:37% 10%.) Thus, even in extreme cases, a value of
D, correct to 1 in the fifth place will give H to about 0-1 oersted. Six
place values of D, will therefore adequately cover all likely requirements.
To ensure accuracy to the sixth place the calculations have been carried
out so as to give an accuracy to 1 unit in the seventh place, and the
rounded six place values are presented in the tables.

It is believed that the most useful form of the tables is with the
dimensional ratio as argument. With m(=a/b) as argument, a number
of changes of interval are necessary if the relevant range is to be covered
with a reasonable number of entries. The smallest interval used is
0-1 over the range 0 <m<5. This interval, however, is too large over
the range 0<m<1, over which D, changes from 1 to 1/3, but the
character of the variation is such that the range can be covered more
conveniently by a complementary table with p(=1/m) as argument
than by the use of intervals smaller than 0-1 in the m table. Two tables,
complementary to each other, have therefore been drawn up, an m table
(Table 1) and a p table (Table IL.), each with 105 entries, the numerical
values of the arguments being the same in each. In the u table there
are 95 entries for u>1, rovering the same range as is covered by the
11 entries for 0<m <1 1n the m table ; and conversely. In general the
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m table will be appropriate for prolate spheroids (m>1, u<1) and the
u table for oblate spheroids (m<1, p>1).

In the calculations, use was made of Barlow’s Tables (Comrie, 1941)
for the powers and roots, and for the logarithms of Chambers’s seven-
place tables (ed. Pryde, 1937), supplemented in certain ranges by the
Peters’s ten-place tables (1922). No suitable table of the inverse circular
functions being available, the inverse cosines were obtained by inverse
interpolation in Gifford’s eight-place table of natural sines (1914). A
Brunsviga 20 12 calculating machine was used.

In each range of the two tables the numbers, usually seven- or eight-
place, were checked by the method of differences. Additional checks
were provided by cross interpolation between the two tables, and by the
use of the series expansions (4.11) to (4.14).

Interpolation may be carried out using Bessel's formula. The
necessary coefficients are given by Comrie (1936). The m table would
ordinarily be used for m >1 and the u table for u >1, but for values slightly
less or greater than 1 the p table will be found more convenient. For the
greater part of each of the ranges in the tables, it is unnecessary to take
into account differences beyond the second to obtain the tabular accuracy
in the interpolates, but in the first part of each range the contribution
from the fourth difference is not negligible. For the accuracy which is
likely to be required in applications differences beyond the second will
seldom be required.

It is a pleasure to acknowledge my indebtedness to Mr. C. W. Gilham,
of the Department of Mathematics, University of Leeds, for guidance on
the reduction of elliptic integrals.

Note added in proof (28 May, 1946).

Since this paper was submitted a paper has appeared, by J. A. Osborn:
(Phys. Rev. Ixvii. p. 351, 1945), on the “ Demagnetizing Factors of the
General Ellipsoid.” Expressions are given for the demagnetizing factors
in forms essentially the same as those obtained in section 3 of the present
paper, and there are three figures together equivalent to fig. 1, but on
a larger scale, and with the curves at smaller intervals. In addition
two numerical tables are given for ellipsoids with three unequal axes.
The first of these gives the values of c/a, bja and the associated
demagnetizing factors corresponding to appropriate sets of equidistant
tabular values in the elliptic integral tables. The second gives values of
the demagnetizing factors for bja at intervals of 0-1 from 0-1 to 1-0, in
each case for a series of values of c/a, this set of values having been
obtained by graphical interpolation from the first set. The values, it
is stated, ““are accurate to three decimal places and are probably in
error several units in the fourth place.” This accuracy seems adequate
for any likely requirements in connection with the general ellipsoid, and
the tables form a useful complement to those given here for the ellipsoid
of revolution.
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SUMMARY.

The paper deals with the demagnetizing factors, D, of ellipsoids, D,
being defined by the relation H=—4=DI, where H is the demagnetizing
field and I the intensity of magnetization, H and I being co-directional.

The derivation of the usual integral formulae for the demagnetizing
factors for the three principal axes of an ellipsoid with three unequal
axes is outlined. These integral formulae are re-expressed in terms of
normal elliptic integrals of the first and second kinds, enabling the
factors to be evaluated without difficulty with the aid of standard tables
of these integrals. The variation of the three demagnetizing factors
with the ratio of the smallest to the greatest principal axis for a series
of constant values of the ratio of the intermediate to the greatest axis
is shown in a figure. Particular curves in this figure correspond to an
ellipsoid of revolution.

The formulae for the demagnetizing factors, D, and D, of an ellipsoid
of revolution (a, polar semi-axis; b, equatorial semi-axis) are derived,
and the various alternative forms, and the relations between them and
the expressions for an ellipsoid with three unequal axes are discussed.
Series expansions are obtained in terms of the dimensional ratio,
m(m=ay/b), or its inverse, u(u=>b/a), suitable for m>1, m<1 and m=;1.
Values of D, are given to six places of decimals in two numerical tables,
an m-table and a p-table, each with 105 entries. Values of the argument,
m or p, range from 0 to 1300, the range being covered with the intervals
shown in brackets: 0-0 (0-1) 5:0 (0-5) 10-0 (1) 25 (5) 50 (10) 150 (50)
400 (100) 1,300. The first table is most useful for prolate spheroids
(m>1), the second for oblate spheroids (u=1/m>1). The demagnetizing
factor along an equatorial axis, D,, is not tabulated, as it is easily
obtained from D,, being equal to §(1—D,).
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ABSTRACT.

Some factors affecting the size and shape of the electron-diffraction
rings obtained with transmission specimens are considered. The most
important of these are the accumulation of electric charge on the
photographic plate and the presence of weak stray magnetic fields.

In an earlier paper ® we have discussed the problem of the
measurement of the radii of the Debye-Scherrer rings produced by the
diffraction of electrons by polycrystalline specimens, and we have shown
that it is possible to measure these radii with an accuracy of about one
part in ten thousand. Measurements of this precision reveal a number
of unexpected features, which are partly instrumental in origin and in
part are related to the crystal structure of the specimen. These
peculiarities have mostly escaped notice because the accuracy of previous
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