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Abstract—In this work, we evaluate the feasibility of deploying
ubiquitous WiFi sensing systems at the edge and consider the
applicability of existing techniques on constrained edge devices
and what challenges still exist for deploying WiFi sensing devices
outside of laboratory environments. Through an extensive
survey of existing literature in the area of WiFi sensing, we
discover common signal processing techniques and evaluate the
applicability of these techniques for online edge systems. Based
on these techniques, we develop a topology of components
required for a low-cost WiFi sensing system and develop a
low-cost WiFi sensing system using ESP32 IoT microcontroller
edge devices. We perform numerous real world WiFi sensing
experiments to thoroughly evaluate machine learning prediction
accuracy by performing Tree-structured Parzen Estimator (TPE)
hyperparameter optimization to independently identify optimal
hyperparameters for each method. Additionally, we evaluate our
system directly on-board the ESP32 with respect to computation
time per method and overall sample throughput rate. Through
this evaluation, we demonstrate how an edge WiFi sensing system
enables online machine learning through the use of on-device
inference and thus can be used for ubiquitous WiFi sensing
system deployments.

Index Terms—WiFi Sensing, Device-Free Sensing, Channel
State Information, Edge Inference, Signal Processing, TinyML

I. INTRODUCTION

WiFi sensing has recently appeared as a novel method in
modern research literature for general sensing through the
use of WiFi radio-frequency (RF) signals propagating in the
environment [1], [2], [8]. RF signals bounce off of physical
objects within the environment such as static objects like
walls or furniture as well as any humans in the environment.
WiFi devices use channel state information (CSI) to describe
environmental effects on amplitude and phase of the signal.
CSI provides a richer source of data than previously used
signal metrics such as Received Signal Strength Indicator
(RSSI) by modeling the received wireless signal over multiple
subcarrier frequencies. This enables more insight into subtle
details of the physical environments surrounding the radio and
allows for much finer-grained WiFi sensing tasks. WiFi sensing
enables a better platform for sensing and tracking in indoor
environments compared to other indoor tracking sensors (i.e.,
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motion sensors and magnetic door sensors) as WiFi sensing
can leverage ubiquitously available WiFi devices in our homes,
offices and retail stores without requiring additional single-
task hardware. Additionally, compared to wearable sensor
systems which require cumbersome sensors on the body and
camera based systems which can be privacy invasive, WiFi
sensing can sense physical activities in a device-free manner
without requiring sensors to be worn by the tracked individ-
uals. Furthermore, WiFi signals can propagate through walls
which allows sensing to be performed even in non-line-of-
sight (NLOS) scenarios which increases the sensing coverage
over camera based systems.

Despite the variety of studies benefiting from CSI collection,
there are very few tools used to capture CSI data. That is,
most studies use either the Intel 5300 Network Interface Card
(NIC) with the Linux 802.11n CSI Tool [9] or the Atheros line
of NICs with the more recently developed Atheros CSI Tool
[10]. NICs however cannot act as standalone devices, instead
they require a laptop if not a full desktop computer to capture
CSI. Furthermore, research works typically evaluate features
such as prediction accuracy, training speed and inference
speed when running on high powered desktop-level GPUs or
even multi-GPU server-level systems [11], [12]. As a result,
deploying WiFi sensing capable devices is far too costly
and bulky for scalable deployments in the real-world, thus
constraining the practicability of on-the-edge WiFi sensing
systems. Another recent work [13] presents a method where
any device with Broadcom chipset can be made to access CSI
data, including the Google Nexus smartphone. However, costs
associated with the use of full smartphone devices are not
appropriate for large deployments at the edge where low-cost
sensors are expected and necessary due to the high number
of deployed devices. Universal Software Radio Peripheral
(USRP) devices [14], [15] have been used for WiFi sensing
studies due to their ease of configuration and ability to achieve
extremely high sampling rates (i.e., 10, 000Hz [16]), however
these devices are even more costly and more specialized as
laboratory testing equipment. Furthermore, while USRPs are
often used at the same frequency bandwidths as standard WiFi
devices (i.e., 2.4 GHz and 5.0 GHz), other parameters such as
channel bandwidth may not conform directly to requirements
for real-world WiFi communication.

In this work, we explore the standalone ESP32 microcon-
troller which allows access to this rich CSI data directly from
the WiFi-enabled microcontroller as a standard user-level ap-
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plication.1 This unique feature of the ESP32 allows us to easily
deploy a lightweight, standalone and low cost device for CSI
collection and recording as well as for signal processing and
prediction making at the edge. We evaluate existing CSI signal
processing techniques which are historically computed with
powerful computers and demonstrate that these techniques can
be performed on much smaller microcontroller devices which
allows for an immediate improvement in scalability of WiFi
sensing systems. Furthermore, we also demonstrate in this
work that the ESP32 is capable of running machine learning
inference directly on-board, further reducing its dependency
on external devices and thus demonstrating the possibility of
performing WiFi sensing on a standalone edge system. The
main contributions of this work can be summarized as follows:

• We develop a taxonomy for edge WiFi sensing systems
which considers theory, signal processing, data prepara-
tion, prediction making, systems-level and hardware-level
concerns along with important evaluation metrics.

• We perform a thorough survey into WiFi sensing studies
to identify common signal processing techniques and to
determine the feasibility of running such methods on a
low-level microcontroller on the edge. We also consider
which techniques require environment-specific calibration
and evaluate how calibration can be performed in a new
online setting unlike previous research which perform
calibrations offline.

• We evaluate a number of signal processing techniques
found through our survey on a variety of tasks to
demonstrate the use of WiFi sensing for different real-
world online use-cases including (i) small-scale hand
gesture recognition which can be used for novel device-
free human-computer interaction (HCI), (ii) medium-
scale human activity recognition which can be used to
track behaviours of a person over time, and (iii) large-
scale human activity and localization sensing which can

1Our initial findings for this tool has appeared in [17] where we only
used the tool for CSI data collection. In this work, we look at the full stack
implementation of most common techniques used in various WiFi sensing
applications and perform a thorough analysis. All results and figures within
this work are created specifically for this study.

be used to understand the movements and behaviours of
people throughout an environment.

• We evaluate different aspects of an ESP32-based WiFi
sensing system such as (i) achievable CSI sampling rates,
(ii) computation time required for the surveyed signal
processing techniques, (iii) machine learning model in-
ference rate, and (iv) energy consumption.

There are some previous surveys on WiFi sensing, however
they typically focus on applications of WiFi sensing or deep
learning techniques. However, our focus in this work for the
first time emphasizes the use of WiFi sensing on-board em-
bedded edge devices. Table I compares this paper to previous
WiFi sensing surveys.

The organization of this survey is shown in Fig. 1 where
we group each section within this paper into one of the three
categories: theory, evaluation, and discussion. We first provide
background in Section II about orthogonal frequency division
multiplexing, channel state information and review various
device-free applications which are possible as a result of WiFi
sensing. Next, we discuss our observations from our extensive
survey to uncover common signal processing techniques found
throughout the WiFi sensing literature in Section III. We
evaluate the identified signal processing techniques on WiFi
sensing tasks in Section IV through a series of representative
experiments to demonstrate the prediction capability from
small-scale hand gesture recognition tasks to medium-scale
human activity detection and large-scale human-activity and
localization tracking. We then evaluate the edge-based WiFi
sensing system to understand the feasibility of the system in
real world scenarios in Section V. Finally, we conclude this
work with a discussion of lessons learned in Section VI, future
challenges for WiFi sensing in Section VII and our concluding
remarks in Section VIII.

II. BACKGROUND

A. Orthogonal Frequency-Division Multiplexing (OFDM)

Orthogonal frequency-division multiplexing (OFDM) is a
modulation scheme used in wireless communication systems
such as 802.11n which encodes data streams into multi-
ple overlapping subcarrier frequencies. OFDM signals are
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Fig. 1: Organization of this survey.

modelled in the frequency domain as B8=2( 5 ) = B8=( 5 )
5

as
presented in Fig 2a. This frequency-domain representation can
be transformed into the time-domain through the Inverse Fast
Fourier Transform (IFFT) to produce an approximate rectangle
function as shown in Fig. 2b. The sinc function is selected
because it allows each subcarrier to be placed orthogonally to
one another as shown in Fig. 2c where five sinc functions
are placed such that the peak center subcarrier frequency
(denoted in red) is located at a frequency where all other sinc
functions are zero. As a result of the orthogonal placement,
when taking the summation of all five selected subcarriers as
shown in Fig. 2d, the peaks (denoted in red) are retained. Each
subcarrier represents a single OFDM symbol transmitted over
a time period of 3.2`B with 0.8`B guard period [18] and can be
modulated through methods such as binary phase-shift keying
(BPSK), quadrature phase-shift keying (QPSK) or quadrature
amplitude modulation (QAM) depending on the desired data
transmitted per OFDM symbol. Each OFDM symbol encodes
binary data as a complex number through I/Q samples where I
is the in-phase component representing the real part and Q is
the quadrature component representing the imaginary part. As
an example, 16-QAM is able to represent 4-bits of information
with a single complex number [19].

Frequency selective fading may occur due to constructive
and destructive interference caused by signals propagating over
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Fig. 2: Representations of subcarrier symbol encoding in
OFDM systems. (a) Single subcarrier modelled as a sinc
function in the frequency-domain. (b) Same subcarrier in the
time-domain after applying IFFT. (c) By selecting orthogonal
subcarrier frequencies, the peak of the sinc function for each
subcarrier corresponds to a zero valued frequency response
from all other subcarriers. (d) After summation of all subcar-
riers in the frequency domain, the peak values marked in red
are retained as a result of this orthogonality.
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multiple paths of varying distances. Note that, because each
subcarrier has slightly different frequency, not all subcarriers
will witness the same constructive or destructive interference.
This is an important feature of OFDM to ensure that data can
still be transmitted reliably. Even so, it is important for the
receiver to recognize these variations across a single OFDM
symbol. As such, some subcarriers act as pilot subcarriers
where the I/Q encoded symbols are already known by both the
transmitter and the receiver. Through these pilot subcarriers,
OFDM can correct for variations in the received signal in
different subcarriers through subcarrier equalization [19].

Given a standard WiFi channel with a bandwidth of 20MHz,
64 subcarriers are created and centered around some car-
rier frequency (i.e., WiFi Channel 1 has a center frequency
of 2.412GHz and a frequency range from 2.401GHz to
2.423GHz2) such that each subcarrier represents 312.5kHz
of spectrum. Subcarriers are indexed based on this center
frequency such that subcarrier 0 is the direct-current (DC)
subcarrier, subcarriers −21,−7, 7, 21 are pilot subcarriers, all
other subcarriers between −26 and 26 contain actual encoded
data while the remaining subcarriers are null guard band
subcarriers as illustrated in Fig. 3.

B. Channel State Information (CSI)

CSI is the metric used in OFDM systems for describing
amplitude and phase variations across subcarrier frequencies
as wireless signals are transmitted between a transmitter and
a receiver. Channel estimation is the process used to detect
variations across the subcarriers in OFDM systems through the
transmission of a set of known shared pilot symbols in a comb-
type pilot pattern [20] where the same subset of subcarriers
are used as pilot subcarriers over time. The CSI matrix (H)
can then be estimated as:

H = HG + [, (1)

where H is a vector indicating the signal detected at the
receiver, G is the signal vector that was transmitted based on
the agreed upon pilot symbols and finally [ is an additive white
Gaussian noise vector. H is a complex matrix containing a
complex value for each subcarrier (8) representing the Channel
Frequency Response (CFR) denoted as h8 and represented as

h8 = �84 9 q8 , (2)

consisting of both real (R(h8)) and imaginary (I(h8)) parts.
Combining the real and imaginary parts of each subcarrier, we
can determine the amplitude (�8) and phase (q8) for subcarrier
8 by the following equations:

�8 =
√
(I(h8))2 + (R(h8))2 (3)

q8 = 0C0=2 (I (h8) ,R (h8)) . (4)

Due to the complexity of any given environment, the
signal received is not only a result of a direct line of sight
(LOS) transmission, but is also affected by the environmental

2The frequency range for WiFi channels are actually 22MHz due to older
versions of the 802.11 standard while OFDM only considers a reduced
bandwidth of 20 MHz.

Fig. 3: Layout of subcarrier types in the WiFi frequency
domain.

multipath which is the multiple physical paths that the signal
travels from transmitter (TX) to receiver (RX). Thus,

h8 =
#∑
<=1

�<4
−2c 583<

2
+ 9 q< (5)

where �<, q< and 3< are the resulting amplitude, phase
and distance, respectively, from a given single multipath route
where 58 is the frequency for the given subcarrier 8 and 2

is the speed of light. Each multipath thus affects the signal
through amplitude attenuation caused by the environment and
time delay and phase shifts caused by the distance of the path.
While the multipath lengths are the same across subcarriers,
each subcarrier will exhibit different frequency-selective fad-
ing due to in-phase or out-of-phase multipath interference.
OFDM systems are able to combat this frequency selective
fading because each subcarrier has a unique frequency ( 58) and
as such, whenever some set of subcarriers exhibit destructive
fading, the other subcarriers should be free of destructive
fading thus allowing communication to continue.

Given the problem of device-free sensing of human targets,
two sets of paths can be considered. The first set (ΩB) represent
static paths in an environment. Examples of these static paths
would be transmitted signals reflected off of walls unrelated to
the human target. The second set (Ω3) represent the dynamic
paths, or those which are affected by the movement of a given
target in the environment. Considering these two sets of paths,

h8 =
∑
<∈ΩB

�<4
−2c 583<

2
+ 9 q<

︸                      ︷︷                      ︸
hstatic

+
∑
=∈Ω3

�=4
−2c 583=

2
+ 9 q=

︸                    ︷︷                    ︸
hdynamic

, (6)

and because hstatic is static over time, hstatic becomes a constant
value which can then be eliminated leaving only hdynamic. This
is important, specifically because one of the paths found in
this static component is the LOS path between transmitter and
receiver. When unobstructed, the LOS path produces a signal
which overwhelms other paths because of higher amplitude
of the LOS path. Further, by removing hstatic, the remaining
paths are only affected by the actions performed by the human
target which can allow predictions to be better resistant to
static environmental changes [21].

CSI is represented in the frequency-domain and as such
can be converted to the time-domain through the Inverse Fast
Fourier Transform (IFFT) by:

H= =

#−1∑
<=0

h<4− 92c=</# , (7)
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where H= is the Channel Impulse Response (CIR) for time =.
CIR can be transformed back to the frequency domain through
the Fast Fourier Transform (FFT)

h< =
#−1∑
==0

H=4
92c=</# . (8)

Some signal processing techniques such as in [22] require
filters to be applied to the CIR before converting back to the
CFR for further signal processing.

Throughout this work, we collect multiple CSI samples over
a time window of size F which can be represented as the (×F
matrix

H[C] =


h1 [C − F + 1] h1 [C − F + 2] . . . h1 [C]
h2 [C − F + 1] h2 [C − F + 2] . . . h2 [C]

...
...

. . .
...

h( [C − F + 1] h( [C − F + 2] . . . h( [C]


, (9)

where ( is the number of subcarriers and F is the number of
time frames where CSI is collected. After signal preprocessing
steps, H[C] can be passed as the input into a machine learning
model to make WiFi sensing predictions.

C. WiFi Sensing Applications

WiFi sensing with CSI has been leveraged in a number
of sensing application tasks since its inception. Through our
survey of WiFi sensing literature, we find that localization
and human activity recognition are the two most common
tasks for WiFi sensing followed by hand gesture recognition,
crowd counting, occupancy detection and health tracking such
as respiration sensing. Table II shows a breakdown of these
applications as well as a few examples of related sub-topics.
Localization: One popular WiFi sensing research task is local-
ization where the location of a target can be tracked throughout
an environment using ambient WiFi signals. In the traditional
WiFi based localization approaches, the target being tracked
must have some transmitting or receiving hardware on their
body such as in [23] where some set of static WiFi devices are
placed in the environment. UAVs with on-board WiFi antennas
have also been used as both CSI transmitters and receivers for
device-to-device localization [24], [25]. More recent works
track the location of human targets in a device-free manner
(i.e., without requiring a WiFi device to be placed on the
individual). For example, CS-Dict [26] and the work of Zhou
et al. [27] use CSI data to build a database of environmental
signal fingerprints when the target is standing at different
physical positions throughout an indoor environment. How-
ever, in localization tasks, physical changes in the environment
may reduce the accuracy of a WiFi sensing system due to
changes in the multipath environment. To account for this,
some techniques have appeared such as Domain Adaption
(DA) [28], [29] and Transfer Learning (TL) [30].
Human Activity Recognition: The next most common use
for WiFi sensing is to perform Human Activity Recognition
(HAR). Similar to the localization task where signals propa-
gating through the environment may bounce off of a human
target as the signal propagates from a transmitter to a receiver,
we can also capture even finer detail about the action that

TABLE II: Most common WiFi sensing tasks in our literature
survey along with some examples. (# = 658)

Applications Sub-Topics Example

Localization (14.0%) Device-Based [23]
Device-Free [28]

Human Activity
Recognition (13.1%)

Exercise [31]
Daily Activity Tracking [32]

Gesture Recognition (9.4%) Hand Movement [33]
Finger Movements [34]

Health (7.9%)
Respiration [35]
Heart Rate [36]
Sleep [37]

Crowd Counting (4.9%) Indoor [38]
Outdoor (Pedestrians) [39]

Occupancy (3.3%) Security [40]
Context-Aware Applications [41]

is being performed by the target if we watch variations in
CSI over time. As such, some of the most common actions
recognized are stationary activities like sitting or standing as
well as mobile activities like walking and running [42], [43].
This can be useful to judge the occupancy of a room for
applications such as smart home environments [44]. Training a
model for all possible actions that a human target can perform
would be infeasible due to the sheer number of possible
states. Using natural language semantics, it has been shown
in [45] that a model can be trained on a single action; say
walking, and then used to recognize other unseen actions; for
example running, due to the semantic relation between the two
actions (i.e., running is like walking at a higher pace). Fall
detection [42], [46], [47] can help ensure the safety of elderly
or sick individuals without sacrificing their privacy within their
own home as would be the case with camera based systems.
Low resistance calisthenic exercise tracking provides another
set of novel physical actions for device-free WiFi sensing [31],
[48], [49]. WiLay [50] uses a layered approach combining both
device-free localization with HAR where initially, a model
recognizes the approximate physical location of the target
in the environment and then determines the human activity
through the use of a model trained specifically on that target
location.
Gesture Recognition: Many studies look to recognize human
movements at an even greater detail such as at the hand
and finger level through gesture recognition. Recognizing
such fine-grained gestures can allow for novel gesture-based
interactions with smart home environments [22], [33] and
in-vehicle control [51]. Gestures performed by individuals
can reveal unique characteristics which can then be used to
authenticate valid users for a given system as shown in [33].
Finger position recognition can be used as a novel method for
text input into a computer such as through recognizing the
number of fingers held up by a target [52], [53], as well as
through sign language and finger spelling [34], [54]. Similarly,
tracking finger movement through the air can allow in-the-air
handwriting recognition [55], [56]. CSI can also be used to
reveal information that should not be publicly available such
as passwords through keystroke detection [57], [58].
Indoor Crowd Counting and Occupancy Detection: Under-
standing the movement of people through indoor environments
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can be useful in gathering real-world customer mobility analyt-
ics as suggested in [59], for monitoring secure locations [60],
as well as for detecting people indoors during rescue mis-
sions [61]. Typically, crowd counting is performed when the
targets are constantly moving through an environment such
as in [38]. Stationary crowd sizes can be estimated through
WiFi CSI by recognizing the small fidgeting movements made
randomly by members in the crowd [62]. Understanding the
movement of a crowd through an indoor environment can
also improve safety during emergency building evacuations by
tracking the number of people exiting the building as well as
the number of people still within the building [63]. However,
adversaries can also leverage this same ambient WiFi signals
to track individuals in non-public environments which reduces
privacy [64].
Health Sensing: In private residences it can be useful to mon-
itor health related activities at all times. However, wearable
sensors can be cumbersome to the user and camera based
systems are too privacy invasive. WiFi sensing has gained
traction in health monitoring tasks because it is both device-
free and less invasive. Specifically, respiration tracking [35],
[65] is one of the most common health related WiFi sensing
tasks, which can be achieved by recognizing peaks in signal
variation over time. Tracking the breathing patterns of multiple
people in a given environment has been shown to be possible
through Blind Source Separation (BSS) [66]. Moreover, track-
ing respiration with CSI can help reveal irregular breathing
patterns such as apnea or tachypnea [67]. Similarly, monitoring
people during sleep periods can help detect unhealthy sleep
actions such as rhythmic movement disorders [37] as well as
nocturnal seizures [68]. Even more fine-grained sensing has
been performed with CSI to track heart rates of individuals
which can help identify variability in heart rhythms [36], [69].
However, we find that the transmitter and receiver typically
must be placed very close to the chest which makes the setup
impractical in real-world environments.
Additional Novel Use Cases of WiFi Sensing: While the previ-
ously discussed applications for WiFi sensing have numerous
associated research studies, there are a few use cases for
WiFi sensing which have only appeared in a small number
of research studies. For example, EmoSense [70] uses CSI to
predict the emotion of a human subject based on the physical
movements that the subject performs which can be useful
for measuring the mental health of an individual. WiEat [71]
leverages human movements to recognize the eating behavior
of the individual to aid in health and dietary tracking. WiFi
sensing has also been applied to track food and agricultural
properties such as to detect fruit ripeness [72] as well as to
track the moisture levels of wheat [73] to ensure that the mois-
ture level does not cross a critical threshold which may result
in crop spoilage. The moisture levels of soil [74] has also been
tracked with WiFi sensing to ensure adequate water coverage
while reducing overwatering for agricultural farmland. Liquid
level tracking [75] as well as liquid identification [76] have
been achieved with WiFi sensing through the measurement
of dielectric properties of the liquid as well as the resonance
frequency response of the liquid due to vibration. Vibration
detection [77] through WiFi sensing has also been used for

detecting faults in factory equipment.

III. SURVEY OF COMMON CSI SIGNAL TECHNIQUES

To produce an edge-based WiFi sensing system, it is
important to understand common existing techniques used
in current CSI-based WiFi sensing research. Since existing
studies typically use high-powered desktops or servers, the
complexity of signal processing algorithms has not been much
of a concern in these studies. However, because we consider
the use of low-power microcontroller devices for WiFi sensing,
the complexity of signal processing algorithms becomes a
much more important area to focus on. Each technique has
unique characteristics that determine its applicability in this
new scenario. Most existing research ignores the need for real-
time data processing and assumes that data will instead be
processed offsite at a powerful server. Since we target a WiFi
sensing system on the edge, such techniques would not be
possible, thus we must survey available techniques to validate
their use for our proposed system.

Through a thorough survey of existing works, we develop
a taxonomy of components necessary for edge based WiFi
sensing systems as shown in Fig. 4. In Section II, we discussed
the background theory of WiFi sensing with CSI. CSI can be
collected from WiFi-enabled devices such as the Intel 5300
NICs [9], Atheros NICs [10] or with edge microcontrollers
such as the ESP32 [17].

In this section, we discuss four components from our
taxonomy, namely: signal processing, data preparation, pre-
diction making, and systems and hardware. We also consider
the applicability of each technique in resource constrained
microcontroller devices. Specifically, we focus on the online
calculations that need to be performed for every received CSI
sample rather than focusing on computations that can be done
beforehand during an initialization phase.

A. Signal Processing

The first component after CSI data collection is to run the
collected CSI data through signal processing. These signal
processing techniques are standard tasks which will typically
be applied in any WiFi sensing application. The purpose of
signal processing is to achieve improved accuracy through
steps like feature extraction, denoising, and dimensionality
reduction. Most methods have a unique set of parameters
which can be tuned to improve the accuracy of the technique
for different applications. Table III shows an overview of the
discussed signal processing techniques, along with their mem-
ory complexity, time complexity as well as advantages and
disadvantages of each technique. For each method, we provide
multiple reference sources which explain each method in a
different way or use a unique mathematical formulation rather
than citing studies which simply apply the given method.
We take this approach to allow the reader to gain a greater
understanding of the methods from different points of view.
The variables used in the table are described in Table IV.
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Fig. 4: Taxonomy of subjects necessary for edge-based WiFi sensing systems.

1) Feature Extraction: We begin evaluating signal pro-
cessing techniques by reviewing common feature extraction
methods. Feature extraction transforms raw CSI data into
meaningful features for further processing and for machine
learning model injection.

Amplitude and Phase: The most fundamental feature extrac-
tion method for WiFi sensing is to convert CSI into amplitude
(�) or phase (q) features as shown in Equation (3) and
Equation (4), respectively. For each CSI frame collected, (
subcarriers are received which can then immediately be con-
verted to either amplitude or phase with memory complexity
and time complexity of $ ((). For the following sections,
ℎ[C] will denote a single CSI signal measurement for some
subcarrier B at time C which could be either amplitude, phase
or some other derived signal value.

Temporal Difference: For both amplitude and phase, the abso-
lute value may not be as important as the relative change of the
feature over time [69]. Instead, using the temporal difference
over subsequent time steps (i.e., ℎdiff [C] = ℎ[C] − ℎ[C − 1]) is a

common feature extraction step. With amplitude for example,
when the temporal difference is negative the amplitude has
decreased which possibly indicates that the line-of-sight (LOS)
between TX and RX has been blocked by some obstruction
such as a human target and alternatively, when the temporal
difference is positive, this may indicate the LOS has been
cleared of an obstruction. Due to the noisy nature of received
phase, some studies [81] have used the relative phase from the
temporal difference after applying phase unwrapping to better
understand how much change occurred over some time span.

Statistical Features: Standard statistical aggregation functions
(e.g., mean, standard deviation, median, kurtosis) are used to
compress the high dimensional subcarrier data per frame down
to a single higher-level feature value. Furthermore, spectral
statistical functions (e.g., spectral kurtosis, spectral spread,
spectral slope) can be used given that the data is represented
in the frequency domain rather than in the time domain.
Depending on the statistical function, the time complexity and
the memory complexity may change, but in general, when
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TABLE III: Overview of signal processing techniques.

Technique Complexity per Frame Sources Advantages Disadvantages
Memory Time

Fe
at

ur
e

E
xt

ra
ct

io
n

Amplitude $ (() $ (() [34], [78], [79] Default CSI representation. May contain anomalies which
require denoising.

Phase $ (() $ (() [80], [81], [82] Default CSI representation. Requires multiple antennas for
phase correction.

Temporal Difference $ (() $ (() [43], [69], [81] Tracks relative change, not ab-
solute change.

Typically used with CSI phase.

Statistical Features $ (() $ (() [83], [84], [85] Easy to compute. Reduces di-
mensionality per CSI frame.

Loses important per-subcarrier
information.

PSD $ (F) $ (F;>6F) [42], [60], [71] Creates frequency-domain fea-
tures.

Applied to a single subcarrier.
Loses other subcarrier infor-
mation.

Wavelet Transform $ (( |k |� ) $ (( |k |� ) [80], [86], [87] Creates frequency-domain fea-
tures.

Higher complexity than other
feature extraction methods.

D
en

oi
si

ng
Fi

lte
r

Windowed
Statistical Filter $ (F() $ (F() [50], [88], [89] Simple implementation. Does not retain original wave-

form.
Savitzky-Golay
Filter $ (F() $ (F() [65], [90] Closely maintains steep peaks

and valleys in waveform.
Poor anomaly filtering.

Hampel Filter $ (F() $ ((F;>6F) [26], [37], [52] Retains exact waveform except
for anomalies.

Anomalies detected may in-
fact be important.

Butterworth Filter $ (F() $ (F() [58], [91], [92] Filters noise outside of fre-
quency ranges of interest.

Frequency ranges dependant
on application.

DWT $ (( |k |� ) $ (( |k |� ) [93], [94], [95] Frequency-domain filtering
can be applied to multiple
frequency ranges in one-pass.

Frequency filtering is more
coarse than Butterworth filter.

FFT Frequency
Filter $ (() $ ((;>6() [22] Filters noise due to multipath

environment.
Filter is applied per-frame, not
applied over time range.

D
im

en
si

on
al

ity
R

ed
uc

tio
n

Subcarrier
Stat. Features $ (() $ (() [22], [43] Simple calibration phase. Sim-

ple online phase.
Filtered subcarriers may still
have useful information.

Subcarrier
Correlation $ (() $ (() [96], [97] Simple online phase. Correlated subcarriers may

contain redundant information.

PCA $ ((�) $ ((2�) [58], [98], [99] Mixes subcarriers before re-
duction to retain information.

Complex calibration phase.

ICA $ ((�) $ ((2�) [66], [100] Designed to separate signal
into � independent sources.

Typically used with multi-
antennas.

TABLE IV: Variable definitions for Table III and Table V.

Variable Description
( Number of subcarriers
F Window size
|k | Length of discrete wavelet
� Number of wavelet decomposition levels
� Number of components extracted from PCA and ICA

the functions are applied to the subcarriers from a single CSI
frame, the time and memory complexity are $ (().

More commonly, statistical features are extracted from a
time-series window of size F independently per subcarrier.
To accomplish this, a buffer of size $ (F() can be allocated
to store the data for aggregation. Due to the addition of a
windowed buffer, the time complexity also increases for per-
forming the aggregation for each subcarrier. However, trivial
statistical functions such as mean (`(·)) can achieve reduced
time complexity in an online system through an iterative
implementation. For example, for a single subcarrier B at time
C, `(C) = 1

F

∑F−1
8=0 ℎ[C − 8] takes $ (F) time while a recursive

implementation `(C) = `(C−1)+ 1
F
(ℎ[C] − ℎ[C − F]) has $ (1)

time complexity per subcarrier while still requiring the same
memory complexity of $ (F) per subcarrier.

Power Spectral Density: Power Spectral Density (PSD)3 [60]
converts the time-series CSI signal (ℎ) into the frequency
domain (ℎ̃). Typically, we find that this conversion is only
applied to a single subcarrier, however it is also possible to
compute this value independently per subcarrier. To compute
PSD, we keep a buffer of window size F and compute

ℎPSD [C] =
|��)F (ℎ[C − F + 1 : C]) |2

F
. (10)

On a single subcarrier, this method has a time complexity of
$ (F;>6F) and a memory complexity of $ (F). This produces
a vector of size |ℎPSD [C] | = F even though the input is only a
single subcarrier.

Wavelet Transform: Wavelet transformations compress a signal
from a time-series representation and transform it into a set
of time-frequency domain components. Wavelet transform is

3Energy Spectral Density (ESD) is another term used when PSD is
computed over small time windows [101].
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Fig. 5: Wavelet decomposition.

achieved by decomposing the input signal recursively into a
vector of approximation coefficients (U (� ) ) as well as a set of
detail coefficient vectors {V (1) , V (2) , · · · , V (�−1) , V (� ) } where
� is the number of decomposition levels. Both approximation
coefficient vector and detail coefficient vectors can be com-
puted through downsampling convolutional equations [102]:

U (� ) [C] =
|k |−1∑
8=0

6[8]U (�−1) [C − 8], � ∈ Z (11)

V (;) [C] =
|k |−1∑
8=0

ℎ[8]U (�−1) [C − 8], ; ∈ 1, · · · , � (12)

where 6 is the high-pass filter and ℎ is the low-pass filter
derived from the wavelet basis function (k) (i.e., Haar or
Daubechies Wavelets) such that 6[|k | − =+1] = (−1)= × ℎ[=],
where |k | is the length of the coefficients for the wavelet
basis function and = ∈ {1, . . . , |k |}. Both U (� ) and V (;) are
downsampled to remove every other element in the array
such that |U (� ) | = 1

2 |U
(�−1) | and |V (;) | = 1

2 |V
(;−1) |. Note that

the initial approximation vector U (0) [C] = ℎ[C], our original
CSI signal measurements, and as such, |ℎ[C] | = |U (0) [C] | =
|U (1) [C] |+|V (1) [C] | = |U (� ) [C] |+∑�

;=1 |V (;) [C] | which shows that
even though we are downsampling at each level, the number
of elements retained is always |ℎ[C] | no matter the value for
� when computed using the pyramid algorithm [103].

Each level of decomposition also results in a halving of
the sampling rate and as such, a halving of the frequency
spectrum. For example, given CSI sampling rate of 'Hz, the
detail coefficient vector V (;) for level ; captures frequency
ranges from '

2; Hz to '

2;+1 Hz and U (;) captures frequency ranges
from '

2;+1 Hz to 0Hz. As such, different sub-ranges of frequency
bands reveal more relevant information depending on the
task. For example, in [86], it was found that when using
six-level wavelet decomposition, the detail coefficient vectors
V (4) , V (5) , V (6) and approximation coefficient vector U (6) are
most effective at revealing motion-induced variations for the
task of occupancy detection. Similarly, in [80] a four-level
wavelet decomposition was applied where both V (3) and V (4)

were used as input for the task of breathing rate detection.
For a real-time online data processing system, a few im-

portant algorithm design issues must be considered. Given a
�-level wavelet transform decomposition, due to the recursive
nature of the wavelet transform, at time C, U (� ) [C] is a
function of our signal from time C all the way back to time

C − ∑�
;=1 ( |k | − 1)2�−1 where |k | is the length of the wavelet

function coefficients. As such, for the previous examples
in [86] where � = 6 and k = “db6” such that |k | = 12, both
U (� ) [C] and V (� ) [C] are functions of 694 input CSI samples.
This not only introduces significant lag into the system, but
also suggests a large amount of computation work.

A simplified example of wavelet decomposition is shown in
Fig. 5 where the first layer of blocks represents distinct signal
samples over time and each lower layer represents the � = 3
recursive decomposition of the approximation coefficient vec-
tor U (;) and finally |k | = 4. In each layer, |U (;) | = 1

2 × |U
(;−1) |

due to downsampling. In the illustration, for decomposition
layer ; = 1 (second layer), we can see that U (1) [C] depends on
four consecutive signal samples because |k | = 4 highlighted
in blue. Similarly for the second decomposition layer we can
see that U (2) [C] relies on four coefficients from U (1) which
recursively have their own dependencies in U (0) . As such,
U (2) [C] is a function of 10 original signal samples from ℎ.
Finally in the third decomposition layer, U (3) [C] again only
has four direct dependencies from U (2) [C], but because of
the recursive nature of the algorithm, a total of 22 signal
samples are required to make up U (3) [C]. If another layer of
decomposition was attempted, then 46 signal samples would
be required to compute U (4) [C] and so on. If we perform
10-layer decomposition, then 3070 input samples would be
required to compute U (10) [C]. Luckily, the recursive structure
of the wavelet decomposition ensures that results can be
cached rather than recomputed at each time point. In the
illustration, when a CSI sample arrives at time C, only the
blue boxes are required for the computation which means that
the memory complexity for each arriving CSI sample (per
subcarrier) is only $ ( |k |� + 1) and due to the convolution
operation, the time complexity is $ ( |k |2�). We can see in
Fig. 5 that there is some lag introduced between the compu-
tation of U (� ) [C] and U (� ) [C + 1] because the approximation
coefficient vector for lower intermediate levels needs to be
computed before U (� ) [C+1] can be computed. This lag can be
counted by the number of CSI signal samples and is equal to
2� samples. This means that as � increases, the prediction rate
will decrease because the approximation coefficient vector and
all detail coefficient vectors need to be fully computed before
subsequent predictions can be performed.

2) Denoising Filters: Noise in the collected CSI data has
been a great concern for many studies. Noise can originate
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from a number of sources including difference in hardware
such as with Central Frequency Offset (CFO) errors and Sam-
pling Frequency Offset (SFO) errors. It can also come from
environmental conditions such as through signal shadowing
due to LOS interference or multipath fading where the signal
arrives to the receiving antenna from multiple NLOS paths
through the environment causing destructive interference. As
such, a large number of unique methods have been proposed
for denoising the incoming signal. Denoising is most com-
monly performed independently per subcarrier.

Windowed Statistical Filter: Through our survey, we find that
simple denoising filters such as the mean [50] and median [88]
windowed filters are commonly used. The mean filter com-
putes ℎ̂[C] = 1

F

∑F−1
8=0 ℎ[C − 8] which can be calculated on a

rolling basis as new data appears. Similarly, a weights vector
6 of length F can be used to produce a weighted moving
average ℎ̂[C] = 1

F

∑F−1
8=0 6[8]ℎ[C − 8] which can give less

weight to time instances further away from the current time
instance and greater weight to more recent time instances. The
median filter on the other hand requires a slightly higher time-
complexity due to the use of the median function (Med(·)) as
so: ℎ̂[C] = Med({ℎ[C−F +1], ℎ[C−F +2], . . . , ℎ[C−1], ℎ[C]}).
Median filter makes up for this higher complexity by more
robustly handling highly anomalous noise within the signal.

Savitzky-Golay Filter (SG): This filter fits a rolling window
of data points with a low-degree polynomial through linear
least squares to smooth out the incoming signal. In [90] it
is suggested that SG filter can maintain the shape of the
waveform better than a standard infinite impulse response (IIR)
low-pass filter. To perform this smoothing, a coefficients vector
,SG of size :SG = |,SG | is used such that

ℎSG [C] = (,SG ∗ ℎ) [C]

=

:SG−1∑
8=0

,SG [8]ℎ[C − 8] .
(13)

Obviously, when ,SG [8] = 1
:SG
,∀8 ∈ {0, . . . , :SG − 1} then∑:SG−1

8=0 ,SG [8] = 1, and SG filter will simply compute the
rolling average window. With more complex selection of ,SG,
polynomial fitting can be achieved [104]. Due to the simple
convolution operation, SG filter requires a memory complexity
and time complexity of $ (:SG) = $ (F) per subcarrier. The
SG filter has been suggested [105] because it preserves the
steep peaks and valleys of the original signal ℎ.

Hampel Filter: The Hampel filter [85] is used to remove
anomalies without changing the signal values for non-
anomalous values through:

ℎ̂[C] =
{
ℎ[C] |ℎ[C] −MedC ,F (ℎ) | ≤ 3 ×MADC ,F (ℎ)
MedC ,F (ℎ) otherwise,

(14)
where MADC ,F (·) is the Median Absolute Deviation (MAD)
function for the signal window from ℎ[C − F + 1] until ℎ[C]
and MedC ,F (·) is the median function over the same window

buffer.4 Filtering anomalous data in this way is useful for
filtering out outliers caused by hardware related errors such
as through quantization errors while also retaining much of
the original, non-anomalous signal values.

Butterworth Filter: Noise will be mostly produced by other
physical phenomenon in the environment. For example, when
recording human hand gestures, the human body may slowly
move during the gestures. Furthermore, background items
such as fans may produce fast variations in the noise. Thus,
high-pass, low-pass and band-pass filters have commonly
been employed, most commonly in the form of Butterworth
filters [91]. The goal of the Butterworth filter is to produce
a maximally flat amplitude response in the defined frequency
bands while also reducing the amplitude response outside of
the specified frequency bands [106]. Butterworth filters apply
a rational transfer function to the input data given as a set of
coefficients 0 and 1, where |0 | = |1 | = = + 1 = :BF where
= is the order of the Butterworth filter. Output ℎBF [C] of the
transfer function is calculated recursively using the Direct-
Form-II (DF-II) structure [106]:

ℎBF [C] =
(
:BF−1∑
8=0

1[8]ℎ[C − 8]
)
−

(
:BF−1∑
8=1

0[8]ℎBF [C − 8]
)
. (15)

The key observation here is that while the Butterworth filter is
an IIR filter; which means that each ℎBF [C] is a function of all
previously seen signal elements in ℎ, the buffer size required
for computing ℎBF [C] is only of size $ (F) to store 0, 1 and
ℎBF. This makes both the time and memory complexity $ (F).
Thus, the Butterworth filter is another reasonable candidate for
computation and memory constrained systems such as low-
power IoT devices.

Discrete Wavelet Transform: Another very common method
for denoising is through the discrete wavelet transform
(DWT) [93]. DWT is used to decompose time-domain signals
into a time-frequency domain representation. Denoising with
DWT is performed in three stages, first the signal is decom-
posed recursively through DWT into a vector of approximation
coefficients (U (� ) ) as defined in Equation (11) as well as a set
of detail coefficient vectors (V (1) , V (2) , · · · , V (�−1) , V (� ) ) as de-
fined in Equation (12) where � is the number of decomposition
levels. After decomposing the signal into � detail coefficient
vector levels, threshold based denoising is applied. For each
coefficient element (V (;) [8]) within each level of detail (;), we
can then apply either a soft threshold [102] by:

Ṽ (;) [8] =
{
B86=(V (;) [8]) ( |V (;) [8] | − g) if |V (;) [8] | ≥ g
0 otherwise,

(16)

or a hard threshold by:

V̄ (;) [8] =
{
V (;) [8] if |V (;) [8] | ≥ g
0 otherwise,

(17)

4These filters are described assuming that the current time point is the final
value in the window function. Some studies consider the current time point
as the center of an odd-sized window. This may be helpful during rising-edge
and falling-edge cases, but introduces some lag in signal processing. Only
trivial changes are required to alter these windowing methods.
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where g is a pre-defined threshold. After applying this thresh-
old method, we can reconstruct the original time-domain
signal from this frequency representation. This reconstruction
stage reverses the decomposition steps as illustrated in Fig. 5.
To accomplish reconstruction, the inverse discrete wavelet
transform (IDWT) is used [93], [102]:

U (;) [C] =
F−1∑
8=0

6̄[8]U (;+1)UP [C − 8] +
F−1∑
8=0

ℎ̄[8] V̂ (;+1)UP [C − 8], (18)

where U (;)UP is an upsampled version of U (;) accomplished by

U
(;)
UP [=] =

{
U (;) [b =2 c] if = is even
0 otherwise,

(19)

which allows |U (;)UP | = 2|U (;) | = 2|U (;+1)UP | and 6̄ and ℎ̄

are the reconstruction high-pass and reconstruction low-pass
filters, respectively, such that 6̄[=] = 6[|k | − = + 1] and
ℎ̄[=] = ℎ[|k | − = + 1] when = ∈ {1, . . . , |k |}. This recursive
operation is performed from ; = � until ; = 0 at which point
| ℎ̂| = |U (0) | which implies that |U (0) | = |ℎ| showing that the
computed signal length after DWT denoising (decomposition,
thresholding, reconstruction) is the same as the length of the
initial signal. However, depending on the levels of decompo-
sition, there will be lag introduced relative to the size of the
selected � and |k |.

FFT Frequency Filter: A single CSI sample contains many
subcarriers, each of which is a frequency-domain representa-
tion of the signal. This means that we can use the Inverse Fast
Fourier Transform (IFFT) to capture the power delay profile
(PDP) in the time-domain [22]:

ℎ̃[C] =
#∑
8=1

084
− 9 \8X(C − C8), (20)

where # is the multipath count, 08 and \8 are the amplitude
and phase angle of the given multipath, C8 is the time delay
introduced by the given multipath and X(·) is the Dirac delta
function. Given an initial CSI sample with 64 subcarriers, the
output of IFFT will also be of size 64 where each element of
the vector represents time. Due to the time delay introduced
by different multipaths in the environment, each element in
PDP will be affected slightly differently. This understanding
has been used to achieve denoising by performing multi-path
mitigation [22]. To do this, after transforming CSI into PDP,
components with large time delays are removed as so:

ℎ̃′[C] =
{
ℎ̃[C] if C < TPDP

0 otherwise,
(21)

where TPDP is the allowed time delay. After this, it is possible
to convert PDP from the time-domain representation back
to a frequency-domain CSI representation through standard
Fast Fourier Transform (FFT). The FFT Frequency Filter is
computed immediately on each incoming CSI sample inde-
pendently and thus, this method will not introduce lag for a
real-time system.

3) Dimensionality Reduction: Each collected CSI sample
comprises of a complex vector of ( subcarriers. It has been
shown in previous studies (e.g., [107]) that some subcarriers
have similar and thus redundant information while other
subcarriers are plagued with high amounts of noise. To com-
bat these issues, dimensionality reduction can be applied to
remove the data from these useless subcarriers thus reducing
the number of subcarriers to (̂ < (.

Subcarrier Statistical Feature: A simple method for select-
ing subcarriers is to consider statistical properties of each
subcarrier over some pre-defined time frame. For example,
many studies [107], [108] select subcarriers which exhibit
the highest variance indicating that the subcarrier has a high
sensitivity for the environment. Variance can be calculated
on a moving window to allow subcarrier selection to change
over time as shown in [107] or more commonly the variance
per subcarrier can be computed beforehand in a calibration
phase for the environment [108]. When computing the mov-
ing window, a buffer of size $ (F() is required while pre-
computed subcarrier variance values can allow the system to
immediately filter out low quality subcarriers with only $ (()
time and memory complexity. Other metrics such as signal-to-
noise ratio (SNR) [68] and mean absolute deviation [69] have
also been used as metrics that can be computed independently
per subcarrier for the task of subcarrier selection.

Subcarrier Correlation: Another common method for sub-
carrier selection is to look at the relationship between each
individual subcarrier by computing a correlation coefficient
matrix of size ( × ( [109]. The goal is that subcarriers with
high correlation are in agreement about the true state of the
environment and thus we can assume that the noise present in
the signal is appearing due to the environment rather than
from some spurious noise source. Interestingly, in [105] it
was shown that the phases of some subcarriers have highly
negative correlation which implies that the subcarriers are
being affected by the same environmental events but are being
affected in opposite directions, so the absolute correlation
coefficient matrix may be preferred. Subcarrier correlation will
typically be computed during the calibration step to determine
which subcarriers to keep and which subcarriers to filter for
each CSI frame. As such, the online time complexity and the
memory complexity remains at $ (().

Principal Component Analysis (PCA): Principal Component
Analysis (PCA) [124], [125] is a common method for dimen-
sionality reduction with the added benefit of also increasing
the SNR of the data through a linear transformation. PCA
relies on an initial calibration phase to compute a components
coefficients matrix CPCA of size :PCA × ( through eigende-
composition where :PCA is the desired number of components
to retain. To compute the :PCA principal components at time
instance, C:

ℎPCA [C] = CPCA × (ℎ[C] − `), (22)

where ` is the vector of subcarrier means found during the
calibration phase such that |` | = (. This process results in a
reduction in dimensionality for the CSI sample from size (
subcarriers down to :PCA principal components. The memory
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TABLE V: Overview of data preparation techniques.

Technique Complexity per Frame Sources Advantages Disadvantages
Memory Time

D
et

re
nd

in
g Least Squares

Baseline Removal $ (F() $ (F() [110] High quality over long
timeframes.

Requires hours of data col-
lection before processing.

Moving Average
Trend Removal $ (F() $ (F() [111] Real-time detrending. Poor quality with longer

timeframes.

In
te

rp
ol

at
io

n Linear
Interpolation $ (() $ (() [112], [113], [114] Anomalies reduced through

averaging.
Alters real CSI through av-
eraging.

Nearest
Neighbor $ (() $ (() [115], [116] Simple implementation.

Retains real CSI values
without alterations.

Anomalies may propagate
over time.

Se
gm

en
ta

tio
n

Fixed
Window $ (F() $ (F() [88], [109] Simple. Default method for

ML.
Constant model inference,
high computation use.

Statistical
Window $ (F() $ (F() [32], [117], [118] Low computation statistical

functions.
Movements are lost with
poorly selected threshold.

Sentinel
Detection $ (F() Dependent on

Classifier [93], [119] Uses lightweight ML sen-
tinel model.

Requires user to initiate
sensing period.

Fe
at

ur
e

Sc
al

in
g

Max-Min
Normalization $ (() $ (() [73], [120] Constrains data to exact

bounds.
Outliers cause issues with
data distribution.

Z-Score
Standardization $ (() $ (() [121], [122] Constrains subcarriers to

same scales.
Outliers may cause model
confusion.

Quantization $ (() $ (() [123] Reduces ML model size.
Increases inference rate.

Reduces data resolution.

complexity for computing this value per sample is $ (:PCA()
due to the size of CPCA and the time complexity for each
sample is $ (:PCA(

2) due to the matrix multiplication required
at each time instance.

Independent Component Analysis (ICA): Signal variations in
the received CSI is affected directly by different noise sources
such as environmental noise or specific physical movements.
Independent Component Analysis (ICA) attempts to solve the
blind-source separation problem by splitting out the noise
caused by each unique source (i.e., each individual human
in an environment or each distinct body part during single
human body movements). ICA has been used in WiFi sensing
tasks such as for separating out respiration signals [66]. ICA
relies on an initial calibration phase to compute a components
coefficients matrix CICA of size :ICA×( through singular value
decomposition (SVD) where :ICA is the desired number of
components to retain.

It should be noted that while both PCA and ICA are looking
to accomplish very different tasks; computationally, both meth-
ods use Equation (22) to perform dimensionality reduction. As
such, both methods behave exactly the same while performing
the algorithm online. The only unique aspects are how CPCA
and CICA are computed during the calibration phase.

B. Data Preparation

Data preparation techniques, unlike signal processing are
more application-specific and thus are not appropriate for use
in all tasks. Table V shows an overview of the discussed data
processing techniques, along with their memory complexity,
time complexity as well as their advantages and disadvantages.

1) Detrending: For real world implementations of WiFi
sensing, the environment will inevitably change in some ways

which will cause the absolute CSI value to fluctuate over time.
Such fluctuating trends may appear over the course of a single
day or in longer running systems over multiple weeks. We find
that very few WiFi sensing works consider these long-term
variations because the current research systems are typically
used for short periods of time and in controlled scenarios.
WiFi-Sleep [110] on the other hand requires CSI collection to
occur throughout a full sleep cycle for an entire night which
means that drift is more likely to be observed in the measured
signal.

The first method for removing drift by detrending is to fit a
least squares regression line [110]. After fitting this baseline,
the difference between the original signal and this baseline
is calculated. WiFi-Sleep for example finds that data trends
non-linearly over an eight hour experiment, thus a higher-
order polynomial curve is selected as the baseline. However,
finding the least squares baseline at the end of the sleep period
precludes the real-time online system that we target in this
study.

An alternative approach is to perform Moving Average
Trend Removal [111] where; similar to the previous method,
a baseline 1[C] is calculated and removed from the original
signal. To accomplish this in real time, a rolling baseline is
calculated as 1[C] = 1

F

∑F−1
8=0 ℎ[C − 8] where F is an important

variable which will determine how well the baseline matches
to the actual drift appearing in the signal. In this work,
we find that the experiments that we perform do not result
in noticeable levels of drift, thus we do not evaluate these
detrending methods. However, more work into detrending
methods will be required for real world online WiFi sensing
system implementations.
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Fig. 6: Probability distribution function showing the timestamp
difference between consecutively recorded CSI frames when
transmitted at a sampling rate of 100Hz.

2) Interpolation (of Missing Frames): Due to the wireless
communication method used for WiFi sensing, CSI sampling
jitter can occur due to packet loss or even due to computation
delays from the multi-process operating systems used [95] as
well as the bursty nature of WiFi communication [126]. As
a result, the timestamp for received CSI samples will not be
exactly equally spaced. To account for this, the most common
technique is to apply linear interpolation [112] such that

ℎ̂[C] = ℎ[C − 1] + (T̂ [C] − T [C − 1]) ℎ[C] − ℎ[C − 1]
T [C] − T [C − 1] , (23)

where C is the index of the current time instance, ℎ[C] is
the actual CSI value at the actual time T [C] and ℎ̂[C] is
the interpolated CSI value for the interpolated time T̂ [C].
Alternatively, nearest neighbor interpolation [115], which is
computed as

ℎ̂[C] =
{
ℎ[C] if

��T̂ [C] − T [C]�� < ��T̂ [C] − T [C − 1]
��

ℎ[C − 1] otherwise,
(24)

has also successfully been applied for WiFi sensing tasks. Both
of these interpolation techniques can be achieved with $ (1)
time complexity and $ (1) memory complexity per subcarrier
because only the current CSI sample and the previous CSI
sample are required. Fig. 6 shows an example where our
system was set to transmit and receive CSI frames every
10ms (100Hz). We can see that the majority of the frames
appear at 10ms, but there is some probability that the frame
will appear slightly earlier or slightly later than every 10ms.
When interpolation is applied to a stream of CSI samples, an
interpolated sample will be generated for every interpolation
interval (i.e., every 10ms) whether or not the CSI sample
arrived early, late or exactly on time or even if the CSI sample
was missing entirely.

3) Segmentation: As CSI samples arrive at the RX, the
system must make a decision: should the samples be used to
make a prediction or should the samples be ignored? We find
that most of the studies assume that all CSI samples should be
used for prediction making. To accomplish this, these studies
(e.g., [109], [127]) use a fixed window where a window of
size F CSI samples are input into the classification algorithms
with a step size of Bstep which indicates how many CSI samples
should be collected between subsequent predictions. However,
the human target may not be performing any physical actions
at all times of the day. To account for this, a special predicted

output class of “none” or“empty” is often used (e.g., in [128])
for indicating when no actions are recognized by the system.
This simplifies the structure of the overall system but can result
in an overwhelming number of useless predictions. We argue
that this is an even more pressing problem for low-resource
embedded systems because the full inference workflow can
be both time consuming and most importantly highly energy
consuming. Furthermore, because we can assume that in real
world systems the “none” class may occur with much higher
frequency than other actions, the model may become overfit
to this “none” class which will cause class imbalance due to
oversampling of that single class. However, we find in some
studies such as [128] that each of the actions used to train the
classifier model is given equal amounts of training and testing
data per class including the “empty” class. Evaluating without
considering class imbalance is unrealistic.

Some studies have attempted to reduce how often predic-
tions need to be made in their systems through segmentation.
Segmentation helps identify the starting points and the ending
points for potential actions. It is usually assumed that each
action segment will be neighbored directly by a time period
of static environmental CSI collection before and after the
action. Thus, simple rolling window statistical thresholds are
used to detect changes in state. Most commonly, we find that
moving-window variance [129] is used to indicate the starting
points and ending points of individual physical activities.
The idea is that when an activity is being performed, the
physical movements cause more noise from appearing in the
CSI signal compared to the static environment both before and
after the activity is performed. However, this method assumes
that activities will always be surrounded by distinct periods
without any movements, which may not be the case in practice
because, for example, a walking activity may immediately be
followed by another activity such as sitting down. Further-
more, when more than a single person is in the environment,
activities are likely to overlap, preventing static periods from
appearing in the environment. An opposite approach is to
use a motion detector algorithm [40] to recognize when large
motions are being performed in the environment and filter out
any CSI collected during these large motions. This approach
especially can be helpful if we are trying to monitor very small
actions such as respiration as it can remove the unrelated large
motions that are likely to overpower the smaller movements
that are being tracked.

One other segmentation method commonly employed is to
use a specific start and stop sentinel movement where the
user must perform a given action such as moving their hand
close and far away from the receiver multiple times [119].
These sentinel movements should be easy to classify by the
device with low computational complexity algorithms. After
performing the sentinel movement though, the device can be
“woken up” and can begin to compute higher complexity
algorithms such as deep learning inference. This is more useful
for gesture recognition tasks and smart home type interactions
where a user is actively involved with interactions with the
system rather than passive sensing tasks such as surveillance.

4) Feature Scaling: When data is input into machine learn-
ing algorithms, the relative magnitude of each input dimension
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can have great effect on the overall prediction ability of the
algorithm. If any dimension has much higher magnitude than
other input dimensions, the contribution of this dimension
may begin to overshadow the other dimensions. The process
of equalizing input dimensions is called normalization. The
most common type of normalization is max-min normaliza-
tion [120] where given a signal ℎ of length ) , the normalized
value ℎ̂[C] = ℎ [C ]−min(ℎ)

max(ℎ)−min(ℎ) . This compresses the signal range
such that 0 ≤ ℎ̂[C] ≤ 1,∀C ∈ {1, 2, . . . , ) − 1, )} a condition
which holds true only if all elements in ℎ are known fully up-
front such as in an offline system. An alternative approach is to
use Z-score standardization with ℎ̂[C] = ℎ−` (ℎ)

f (ℎ) where `(ℎ) is
the mean value of the signal and f(ℎ) is the standard deviation
value of the signal. Z-score standardization is more forgiving
in that as it allows `(ℎ) and f(ℎ) to be computed on smaller
subsets of the signal (i.e., from an initial calibration phase).
Feature scaling is an important factor in machine learning on
low-resource embedded devices. Namely, feature input must
be scaled and also quantized to better reduce the computation
and memory complexity of the algorithms. Quantization [130]
can reduce the number of bits used for encoding machine
learning model weights, model input as well as model output.
For example, machine learning systems will typically encode
numerical values as 32-bit floating point values. These values
can be quantized down to 16-bit or 8-bit representations to
(i) reduce the memory usage of the machine learning model;
(ii) reduce computation time especially in cases where Single
Instruction, Multiple Data (SIMD) instructions are available;
and (iii) can thus reduce energy consumption.

C. Prediction Making

With the CSI signal data processed and prepared for ma-
chine learning, next we can use the data to make predictions
about the environment.

1) Classification and Machine Learning: Through our sur-
vey of WiFi sensing systems, we find that many different
classification algorithms have been used for a wide range
of tasks from simple linear and non-linear regression al-
gorithms, and similarity based algorithms such as :-nearest
neighbors (KNN) and dynamic time warping (DTW), to ma-
chine learning algorithms such as support vector machines
(SVM) dense neural networks (DNN), convolutional neural
networks (CNN), as well as deep learning algorithms such
as long short-term memory networks (LSTM) and generative
adversarial networks (GAN). While there are many common
signal processing techniques used throughout WiFi sensing
literature, the number of unique classifier model architectures
is much larger and more diverse. While DNN and CNN
may be used to describe a given model, the architecture
of the model can still be structured in a great number of
configurations. For example, a CNN model may begin with
an arbitrary number of convolutional layers which capture
spatial features in the CSI data which are then passed into
an arbitrary number of standard dense layers which capture
patterns from the extracted features. Each of these layers
can have unique hyperparameters such as number of neurons,

filter-size, activation function and a growing number of other
hyperparameters.

Existing surveys such as [6] and [7] consider the use of
deep learning for WiFi sensing and wireless sensing tasks,
however, we are focused on performing inference on low-
resource microcontrollers which have not yet been considered
in these surveys or in existing research literature. As such, we
focus on common steps used for running machine learning
models on-board constrained microcontroller devices rather
than focusing on machine learning model training methods
or architecture designs.

When using any type of classification model in a constrained
microcontroller device, it is important to be considerate of
memory consumed by the model, computation time required
for the model and finally energy usage of the model. Increasing
the model size increases both memory consumption as well
as computation time which subsequently increases energy
consumption. As such, we can decrease all three by reducing
the size of the machine learning model. Indeed, a number of
methods have been used outside of the WiFi sensing research
area to decrease the memory consumed by machine learning
models in microcontroller environments.

A simple first step towards designing a machine learning
model that is applicable in low-resource microcontrollers is to
begin with an efficient architecture such as SqueezeNet [131],
MobileNets [132] and EfficientNet [133] which are designed
for use in embedded vision tasks. Considering the size and
complexity of the selected model architecture before training
and evaluation can greatly reduce the amount of work that
must be performed afterwards.

In cases where an inefficient model is selected initially
which either does not fit in memory or does not produce
predictions quickly enough, model compression can be per-
formed. Quantization [123], [130] is one such compression
method which reduces the number of bits used for encoding
numeric values for machine learning models, thus allow-
ing model weights to be stored in a more compact space.
Two methods for training quantized models have been ex-
plored in the research literature: post-training quantization and
quantization-aware training (QAT). The first method trains
the given model like normal using standard 32-bit floating
point computations. After training, the model weights are com-
pressed for use in the inference phase. However, because the
model is trained without considering these compressed repre-
sentations, quantization error can add up resulting in increased
error from the model. Instead, QAT uses these compressed
numerical representations during the training phase which
allows the model to become less prone to errors introduced by
post-training quantization. Binarized Neural Networks [134]
take the idea of quantization to its limits by compressing all
numeric values in the model to a single bit indicating +1 and
−1 values during both inference and training phases.

Another method for compressing model architectures is to
perform network pruning [123], [135] which can be thought
of as a three-step pipeline. First, a large and inefficient model
is selected and trained. Next, some set of pruning algorithms
are used to identify and remove useless connections in the net-
work while retaining important weights and connections thus
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reducing the amount of computation that must be performed.
The third and final step is to retrain the pruned model to fine-
tune the model with this updated architecture. However, it has
been suggested in [136] that the three-stage pruning pipeline
can be bypassed by simply starting with the smaller pre-pruned
architecture with randomly initialized weights. This suggestion
leads us back to the idea of beginning with an efficient model
architecture from the beginning.

To account for the additional considerations required for
designing and evaluating machine learning models on micro-
controllers, it is suggested in [137] that the hardware used
for model deployment should not be an afterthought when
evaluating machine learning models. Instead, factors like on-
board computation time and model size should be combined
with model accuracy while evaluating the model to ensure that
the model is optimized not only for prediction accuracy, but
also for the constraints of the embedded system. To achieve
this, on-device benchmarks should be performed continuously
to capture real-world metrics for memory usage, computation
time when using techniques like SIMD as well as energy con-
sumption. This is particularly important when using automated
evaluation methods such as Neural Architecture Search [138]
which attempts to increase model accuracy by evaluating
numerous diverse model architectures automatically.

2) State Validation: State validation is used to ensure that
the predictions that are output by the classifiers are valid and
possible given the previous predictions made by the system.

Finite State Machine (FSM): FSMs can be used to track the
process of different physical properties over time. For example,
in [139], the FSM tracks the beginning and ending of each
individual step as a person walks. When the FSM enters
specific states, the event is shared with a separate module to
estimate the stride length of the person.

Markov Chain: Similar to the FSM approach, a Markov chain
(MC) can be used to understand the probability that a transition
will occur at any given time. In [140], MCs are used to track
the periodic breathing behaviour of the participant while [121]
uses MCs to track longer-term human activity transitions such
as transitioning from sitting to standing and walking.

Overall, while state validation may be used to ensure
the legitimacy of predictions, state validation is not a very
common step used throughout WiFi sensing literature.

3) Voting: Voting accomplishes a similar aim as state
validation in that it attempts to improve the validity of the pre-
dicted actions. However, voting will use the predictions from
multiple unique classifiers to improve the overall accuracy of
the prediction system.

Majority Voting: A simple method to achieve consensus with
multiple classifiers is to take a “majority vote”. For the
work in [141] and [127], one classifier is trained per TX-
RX antenna pair, then a majority voting scheme is used to
make predictions. In [142] majority voting is used based on a
set of binary classifiers which can be simpler than multi-class
classifiers, however, as the number of classes increases, many
more binary classifiers must be added to the system which
would only increase the complexity of the system.

Ensemble Learning: Another popular method for voting is to
use a process such as Boosting and Bootstrap Aggregation
(Bagging) that specifically trains ensembles of classifiers using
a different population of training data per classifier. Through
this method, ensemble learning can ensure that any classifiers
with poor prediction power on a given subset of data samples
are supplemented with another classifier which is specifically
trained on these hard-to-predict samples. In [54], this is used
to train an ensemble of SVM models for gesture recognition.

D. Systems and Hardware
Next, we briefly discuss some systems-level and hardware

components that are required for a complete WiFi sensing
system.

1) Clock Synchronization: When multiple devices are used
in a WiFi sensing system, it is important to keep internal
clocks synchronized between each device in the network.
For example, highly synchronized clocks are important when
using phase from multiple distinct and unconnected devices. A
fast phase correction algorithm was proposed in [143], which
was used for vehicle speed estimation through the MUSIC
algorithm [144]. A wired connection between transmitter and
receiver devices as suggested in [145] allows for fine-grained
and accurate synchronization, yet a wired connection defeats
the purpose of WiFi communication itself and would not be
possible with independently mobile TX and RX.

Coarse-grained clock synchronization is easier to accom-
plish. For example, using a Real-Time Clock (RTC) module
like the DS3231 [146], we can achieve clock synchronization
accurate to within a few seconds per year. This can be
important in large networks of WiFi sensing devices which
remain in sleep mode for long periods of time followed by
short bursts of TX to RX transmissions such as in [74].
The lower the accuracy of the clock synchronization across
devices, the more time devices must wait for paired devices to
awake, and thus, the higher energy wasted. The Network Time
Protocol (NTP) is used at the beginning of each experiment in
both [24] and [147]. Another method is to use the timestamp
returned within GPS responses as a source of truth as used
in [94].

2) Data Annotation: Annotating WiFi sensing data can be
thought of as the process of labelling when physical activities
have occurred while collecting the CSI data. Thus, it is an
important step for both deploying the system as well as
allowing the system to continue to be effective in the face of
changes in the multipath within the environment. Recording
camera feeds [148], [149] while performing experiments can
allow for accurately tracking physical actions while capturing
data to train a WiFi sensing model. Wearable sensor can
also be commonly used to record baseline measurements,
for example, the Neulog Respiration Belt [66] is commonly
used to track health related metrics such as breathing rate.
Other works specifically instruct volunteers when to perform
different actions through the use of an auditory sound like a
beep [150] or a voice cue [151] as well as through tools like
a metronome [152].

The clock synchronization component mentioned in the
previous section is not only important for keeping WiFi
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Fig. 7: Activities performed for each experiment type. (a) Small-scale hand gesture recognition with three different gestures. (b)
Medium-scale human activity recognition with five different actions. (c) Large-scale human localization and activity tracking
in a home environment with nine actions and three transmitter/receiver links.

sensing device in sync, but can also be important for data
annotation systems which require external sensors such as
in [115] which uses NTP to synchronize a VICON camera-
based motion capture system with the proposed WiFi sensing
system.

3) Device-to-Device Communication: While a few
works [153], [154] consider the use of multiple TX/RX pairs,
most works in the literature assume only a single TX/RX pair
is deployed in a given environment. However, by reducing
the hardware cost and performing WiFi sensing at the edge,
we can achieve much more scalable systems and thus we can
introduce larger networks of WiFi sensing devices. However,
by increasing the number of devices we will find additional
challenges. Namely, if different pairs of devices are making
predictions independently, it is important to coordinate and
aggregate their predictions together to achieve a holistic view
into the environment that is being sensed. A fundamental
feature to accomplish this is device-to-device communication.
Luckily, WiFi sensing by definition has the capabilities
of performing communication between nodes through the
already existing WiFi protocols. Other communication
methods are also an option such as Bluetooth which can be
found on-board the ESP32 WiFi sensing microcontroller, or
LoRa [5] which allows for a larger communication range.

4) Cyber Physical System Integration: The aim of this
work is in allowing WiFi sensing to be performed on the
edge using low cost embedded devices. By achieving this, we
should then be able to integrate these systems into different
cyber physical systems. For example, WiFi sensing can be
used to track the occupancy of a building to intelligently
control HVAC systems. Additionally, by using WiFi sensing
to track health related behaviours such as irregular breathing
or heart rate as well as falling, WiFi sensing systems could
be integrated with emergency alerting systems to rapidly
request emergency aid. While there has been much work in
understanding the capabilities of WiFi sensing, very little work
has been undergone to successfully integrate WiFi sensing into
real existing cyber physical systems. By moving away from
non-scalable batch-based systems to edge-based systems, we
believe that WiFi sensing can continue to grow into more real-
world use cases.

IV. EVALUATION OF CSI PROCESSING TECHNIQUES

Now that we have identified a number of CSI signal pro-
cessing techniques through our survey, we next evaluate how
well each of these techniques perform with regards to model
accuracy. To this end, we evaluate each technique on three
experimental scales which represent unique use cases for WiFi
sensing. Namely, small-scale hand gesture recognition can be
used as a novel device-free method for HCI; medium-scale
human activity recognition can be used to track behaviours of
a person over some time period; and large-scale human activity
and localization sensing can be used to understand human
behaviours throughout an entire environment. Through these
three diverse applications, we can generalize which techniques
achieve high prediction accuracy for different use cases. The
three tasks that we evaluate are illustrated in Fig. 7.

A. Experiment Descriptions

For the small-scale experiment, we train our system to
recognize hand movements along three axis of motion: Z-axis
(push/pull), X-axis (swipe left/right) and Y-axis (raise/lower).
For each of these three physical actions, we repeat each hand
movement 30 times in round-robin order to ensure that actions
are interleaved over time.

The second set of experiments that we perform are for
medium-scale human activity recognition. For this experiment,
we perform five of the most common actions that we have
identified in WiFi sensing studies, namely: walking, standing,
sitting, laying, falling as illustrated in Fig. 7b. For these
experiments, we repeat all actions 8 times in an interleaved
round-robin order as we did in the small-scale experiment.

Finally, the third set of experiments that we perform are for
large-scale localization and activity recognition tasks. In this
case, we perform actions in nine distinct locations within a
home-environment as shown in Fig. 7c. Namely, we perform
three actions in the kitchen: (1) wash dishes at the sink, (2)
cook on stove-top, (3) open fridge; three actions in the dining
room: (4) write in a book at table, (5) open and close closet
door, (6) wash hands in washroom; and three actions in the
living room: (7) walk up and down stairs, (8) sit on sofa,
(9) walk around. For this experiment we collect data from
three distinct TX-RX pairs. In our initial evaluation of these
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TABLE VI: Description of the three device-free experiments performed and evaluated using CSI collected from ESP32s.

Scale Sensing Task # Actions # Repetitions # Links Sampling Rate Sensing Area Figure
Small-Scale Gesture Recognition 3 30 1 100Hz 1.0m × 1.0m Fig. 7a

Medium-Scale Human Activity Recognition 5 8 1 100Hz 2.5m × 4.0m Fig. 7b
Large-Scale Localization/Activity Recognition 9 13 3 100Hz 5.0m × 10.0m Fig. 7c

large-scale experiments we use the second TX-RX pair by
itself to predict all nine actions. Later on in this work, we
will evaluate methods for leveraging predictions from multiple
devices within a single environment.

Additional information about the experimental setting are
shown in Table VI. For example, for all three scales, we
collect CSI at a sampling rate of 100Hz. Additionally, each
experimental scale has a progressively larger sensing area
where actions are performed.

B. Hyperparameter Optimization

For our initial evaluation of each of the three experimental
scales, we wish to identify how feature extraction, denoising
and dimensionality reduction techniques affect the accuracy of
our model. Different hyperparameter settings such as learning-
rate, number of hidden neurons and regularization methods
may result in varying prediction accuracy for each methods.
Additionally, each technique itself has a unique set of hy-
perparameters which must also be tuned to achieve better
model accuracy for the given task. Table VII shows the list of
hyperparameters and possible hyperparameter-values that we
used during our evaluations. The six hyperparameters marked
as global are model specific parameters that are present no
matter which feature extraction, denoising, or dimensionality
reduction technique is used. We can see that the Hampel,
window statistical filter and Savitzky Golay denoising meth-
ods each have window-size as a common hyperparameter,
however each of these methods also has other technique-
specific hyperparameters as well. Performing a grid-search
to evaluate every possible combination of hyperparameters
would be infeasible. Instead we use the Tree-structured Parzen
Estimator (TPE) using the Optuna framework [155] where
we perform 100 trails, each with a uniquely selected set
of hyperparameters. In the first few trials, hyperparameter
values are selected randomly from the set of options shown
in Table VII. Subsequent trials with TPE use the results
of previous trials to guide the hyperparameter optimization
towards maximizing the model accuracy. For each trial, the
models train for 100 epochs, however to reduce the search
time spent training the model on non-optimal hyperparameter
values, trials are pruned early (i.e., before 100 epochs) if
the trial validation accuracy is below the median validation
accuracy of all previous trials.

Table VIII shows the result of this hyperparameter opti-
mization method when evaluated on five feature extraction
methods, five denoising methods and four dimensionality
reduction methods for each of the three scales of experiments.
Through this method, we perform a total of 4, 200 independent
hyperparameter optimization trials. At the top of the table, we
can see the accuracy of a randomly guessing model for each
experimental scale based on the number of actions performed

TABLE VII: List of hyperparameters and possible values used
during hyperparameter optimization.

Technique Parameter Name Values

Global Input Window Size {25, 50, . . . , 475, 500}
Global Learning Rate {14−9, 14−8, . . . , 140, 141 }
Global # Hidden Neurons {25, 50, . . . , 475, 500}
Global Dropout {0.0, 0.1, . . . , 0.8, 0.9}
Global Kernel Regular. {True, False}
Global Activity Regular. {True, False}

Feature Extraction
Amplitude None N/A
Phase None N/A
Temporal Diff. None N/A
Stat. Features Stat. Function {Mean,Median, STDev,Var.}
PSD None N/A
Wavelet Transf. Threshold {0.0, 0.25, . . . , 3.75, 4.0}
Wavelet Transf. Mode {Hard, Soft}

Denoising
Win. Stat. Filter Window Size {50, 100, . . . , 450, 500}
Win. Stat. Filter Stat. Function {Mean,Median, STDev,Var.}
Savitzky Golay Window Size {51, 101, . . . , 451, 501}
Savitzky Golay Poly. Order {1, 2, . . . , 8, 9}
Hampel Window Size {50, 100, . . . , 450, 500}
Hampel Threshold {0.25, 0.5, . . . , 3.75, 4.0}
Butterworth Order {1, 2, . . . , 10, 11}
Butterworth Frequency {1, 2, . . . , 49, 50}
Butterworth Type {Lowpass,Highpass}
DWT Threshold {0.0, 0.25, . . . , 3.75, 4.0}
DWT Mode {Hard, Soft}
FFT Freq. Filt. # Zeros {0, 1, . . . , 63, 64}

Dimensionality Reduction
Subcarrier Stat. Max/Min {Max,Min}
Subcarrier Stat. Stat. Function {Mean,Median, STDev,Var.}
Subcarrier Corr. Max/Min {Max,Min}
PCA None N/A
ICA None N/A

at each scale. Specifically, the small-scale would achieve an
accuracy of 33.33% with three actions, medium-scale would
achieve an accuracy of 20.00% with five actions, and large-
scale would achieve an accuracy of 11.11% with nine actions.

C. Independent Evaluation of Each Method

In this study, we begin by evaluating each signal processing
technique independently to recognize if there are any tech-
niques which clearly perform better across the board. For ex-
ample, when evaluating feature extraction methods, we do not
apply any denoising or dimensionality reduction techniques.
However, when we evaluate denoising and dimensionality
reduction, we keep the amplitude feature as the default because
it is so commonly used throughout the research literature and
because without it, the raw CSI is essentially meaningless.

Amplitude and PSD feature extraction methods achieve the
highest prediction accuracy for all three scales. For medium-
scale, this is significant at 86.00% and 76.12% accuracy re-
spectively, but for small-scale and large-scale, neither method
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TABLE VIII: Comparison of feature extraction methods, denoising filter and dimensionality reduction methods on the prediction
accuracy for medium scale human activity recognition.

Feature
Extraction Denoising Dimensionality

Reduction
Accuracy

Small Scale Medium Scale Large Scale
Random Guess 33.33% 20.00% 11.11%

Feature Extraction
Amplitude

Default: None Default: None

40.33% 86.00% 53.99%
Phase 36.01% 25.05% 11.81%

Amplitude (Diff.) 36.36% 26.00% 40.02%
Phase (Diff.) 34.75% 24.76% 23.40%
Stat. Features 38.35% 39.91% 26.57%

PSD 40.75% 76.12% 48.94%
Wavelet Transform 36.75% 76.78% 25.20%

Denoising

Default: Amplitude

Window Stats Filter

Default: None

50.20% 81.31% 59.50%
Savitzky Golay 38.81% 97.22% 57.58%

Hampel 46.85% 76.76% 54.82%
Butterworth 41.65% 89.57% 52.98%

DWT 41.47% 86.06% 53.41%
FFT Freq. Filter 38.52% 52.68% 17.07%

Dimensionality Reduction

Default: Amplitude Default: None

Subcarrier Stats 38.91% 36.70% 13.09%
Subcarrier Correlation 36.69% 64.87% 26.05%

PCA 87.36% 100.00% 71.24%
ICA 81.82% 87.26% 72.79%

alone can surpass even 55% accuracy. This shows that using
feature extraction techniques alone may not be sufficient for
all types of tasks. It also shows that the actions performed
during the medium-scale experiments are easier to distinguish
than the small-scale and the large-scale experiments.

Moving to denoising techniques, we can see that once again,
medium-scale is able to achieve greater than 80% accuracy
for all denoising methods except for the Hampel filter and the
FFT frequency filter. We must note however that while these
denoising methods achieve good accuracy values; window
statistical filter performs worse than when using amplitude
without a denoising filter and DWT achieves essentially the
same prediction accuracy. For the small-scale experiment,
all denoising methods increase the accuracy compared to
no denoising method except for the Savitzky Golay filter
and the FFT frequency filter. The window statistical filter
increases the accuracy the greatest by +9.89%. Three out of
six denoising methods increase the accuracy for the large-
scale experiment, namely Hampel filter (+0.83%), window
statistical filter (+5.51%), and Savitzky Golay (+3.59%). FFT
frequency filter performs consistently much worse than all
other denoising methods likely due to the fact that it is
calculated independently over each CSI frame rather than
being calculated over a window of CSI frames. None of
the evaluated denoising methods performs better in all three
experimental scales. In fact, for all denoising methods, at least
one of the experimental scales results in a decrease in model
accuracy compared to the baseline of using just amplitude.
This shows that denoising methods are use-case specific and
will not be guaranteed to provide improved accuracy.

Finally, we move on to evaluating dimensionality reduction
techniques which have consistent results across each exper-
imental scale. Using subcarrier statistics for dimensionality
reduction achieves only a small improvement to the accuracy
of a randomly-guessing model, thus subcarrier statistics are not
a wise choice for dimensionality reduction. Using subcarrier

correlation for dimensionality reduction achieves a slightly
higher accuracy for both medium-scale and large-scale, but
the prediction accuracy is still significantly lower than using
the baseline amplitude without dimensionality reduction. Fi-
nally, PCA and ICA achieve the highest accuracy among all
evaluated techniques across the three experimental scales. For
small-scale and medium-scale, we find that PCA performs
significantly better results than ICA, while in the large-
scale experiment, both PCA and ICA achieve approximately
the same prediction accuracy. Based on these results, PCA
achieves the highest accuracy for all experimental scales.

D. Dimensionality Reduction
When we evaluate the four dimensionality reduction meth-

ods with hyperparameter optimization, we define 3 = 10 such
that we reduce the CSI data from a subcarrier vector of size
64 down to a subcarrier vector of size 10. In Fig. 8, we use
the same optimal hyperparameters found for Table VIII, but
we change the value for 3 to understand how dimensionality
affects the accuracy of the model. For all three scales, we
can see that Subcarrier Statistics and Subcarrier Correlation
each achieve the same accuracy no matter how the value for
3 changes. For PCA and ICA, we can see that the accuracy
starts low when 3 = 1 but quickly reaches a plateau by 3 = 8
where the accuracy remains relatively stable while 3 continues
to increase. However, in the small-scale evaluation we find
that ICA reaches a peak accuracy when 3 = 24, but after-
wards, the accuracy decreases. This implies that increasing
the dimensionality with ICA results in more noisy components
which makes it harder for the model to distinguish different
CSI samples. PCA on the other hand exhibits robustness even
as 3 increases. In this case, PCA seems like the better choice
for dimensionality reduction.

In Section III, when we discussed different signal processing
techniques we focused primarily on the steps that run on-
device for every incoming CSI sample. For each of the
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Fig. 8: Accuracy of dimensionality reduction techniques when
dimensionality (3) changes.
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Fig. 9: Accuracy of dimensionality reduction techniques when
different number of CSI-samples are used to calibrate the
technique.

dimensionality reduction methods, there is also a calibration
phase which runs only when the device is deployed in the
environment. For example, when subcarrier statistics are used
for dimensionality reduction, we need to collect some number
(#calibration) of CSI samples to calculate some statistics of
each subcarrier. Similarly, for PCA and ICA, we calculate a
components coefficients matrix with #calibration CSI samples.
We can assume that the calibration phase only runs once when
the system is deployed, so we do not need to worry about the
exact time-complexity of the algorithm. However, we should
consider how many CSI samples (#calibration) are required to
successfully calibrate each dimensionality reduction method.
In the experiments shown in Table VIII we allow each method
to calibrate on 100% of the available training data and 0%
of the testing data. It is important to not allow the model
to see any data from the testing data for fairness. In Fig. 9,
we evaluate the accuracy as we change #calibration. At 100Hz,
the range for the G-axis of this plots shows a maximum
of 20 seconds of calibration data when #calibration = 2, 000.
Similar to Fig. 8, only PCA and ICA show variation as
parameters change. Specifically, as #calibration increases, the
accuracy also increases but after #calibration = 500, we can
see that the accuracy flattens out. This shows that we can
calibrate our system in a new location with only 5−10 seconds
worth of CSI-samples which can be achieved quickly and
passively. However, while small-scale and large-scale achieve
approximately the same accuracy in both Table VIII and
Fig. 9 when #calibration = 2, 000, medium-scale only achieves
77.6% for PCA when #calibration = 2, 000 compared to 100.0%
in Table VIII. This shows that while sufficient prediction
accuracy is possible with low values for #calibration, if we are
able to collect more data, we might be able to increase the
accuracy slightly. However, increasing #calibration results in an

TABLE IX: Effect of interpolation on model accuracy.

Small-Scale Medium-Scale Large-Scale
None 87.36% 100.00% 71.24%
Nearest Neighbor 90.06% 100.00% 67.18%
Linear 89.34% 100.00% 68.97%

TABLE X: Effect of feature scaling on model accuracy.

Small-Scale Medium-Scale Large-Scale
None 87.36% 100.00% 71.24%
Max-Min Normalize 83.80% 99.51% 69.00%
Z-Score Standardize 70.39% 97.43% 53.19%
Quantize 69.99% 99.92% 55.14%

increase in the time to collect CSI data for calibration and also
increases the computation time required during the calibration
phase.

E. Interpolation

Interpolation has been used in other studies to account for
sample jitter due to packet loss or computation delays. In
Table IX, we compare the accuracy achieved by two such
interpolation methods: nearest neighbor and linear interpo-
lation as well as the accuracy achieved without applying
interpolation (i.e., none). We used the optimal hyperparameters
identified when using Amplitude for feature extraction and
PCA for dimensionality reduction. We find that interpolation
does not result in much change in the accuracy for any of
the experimental scales. As we showed in Fig. 6, the time
difference between subsequent CSI samples collected using
our system is relatively precise, meaning that interpolation is
not needed when CSI is received at a constant rate of 100Hz.
Interpolation may be more important when the CSI sampling
rate is not controlled by the system or if environmental noise
results in higher packet-loss.

F. Feature Scaling

Feature scaling can be used in machine learning workflows
to ensure that features with a large range of values do
not overshadow features with a smaller range of values. In
Table X, we compare three feature scaling methods: max-
min normalization, z-score standardization, and quantize with
a model trained and evaluated without feature scaling (i.e.,
none). As a baseline, we again use the optimal hyperparame-
ters identified when using Amplitude for feature extraction and
PCA for dimensionality reduction. We apply feature scaling
using statistical metrics taken from the entire CSI matrix.
For example, with max-min normalization, we find a single
maximum value and a single minimum value using CSI
measurements across all time instances and all subcarriers.
Typically, normalization and standardization will find these
statistical metrics individually for each feature (i.e., subcarrier
or PCA component) to prevent individual features with higher
ranges from overshadowing features with smaller ranges of
possible values. However, with PCA, we find that the first
component has the largest range of values followed by the
second component and then the third component and so on.
This is expected and beneficial because each subsequent com-
ponent is known to have less important information. Scaling
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each PCA component independently removes this relative
scale and makes it harder for the model to understand the
relative importance of each component and thus, it is harder
for the model to make accurate predictions. As such, we find
that feature scaling does not result in an improvement to
the prediction accuracy of the model and in fact results in
decreased prediction accuracy for all experimental scales.

V. EVALUATION OF EDGE-BASED WIFI SENSING SYSTEM

Now that we have reviewed the accuracy of our ESP32-
based WiFi sensing system when used for WiFi sensing
tasks ranging from small-scale hand gestures to medium-scale
human activity recognition up to large-scale localization and
activity recognition, we next evaluate the feasibility of de-
ploying our WiFi sensing hardware into real-world scenarios.
Specifically, we consider how WiFi sensing can be deployed
on resource-constrained ESP32 microcontrollers. To judge the
feasibility of this ESP32 system, we must evaluate both the
hardware and the software running on-board. We begin by
reviewing the sampling rate achievable with the ESP32 and
compare these rates to existing WiFi sensing literature. After
this, we consider the rate at which the ESP32 can compute
different signal processing steps as well as machine learning
prediction (i.e., model inference on-board). We compare these
rates to the inference rates achieved in other WiFi sensing
studies in the literature. Finally, we review energy consumed
by each component of the system to understand the feasibility
of deploying the system at the edge.

A. Sampling Rate

Sampling rate in our evaluations indicates the number of
CSI frames received by the ESP32 per second. To evaluate
this sampling rate, we begin with a single TX set to transmit
frames at a constant known TX rate as shown in Fig. 10. The
RX rate indicates the number of CSI samples collected in a
single second and may be different from the TX rate in cases
where packets are missed due to interference or packets are
dropped due to cyclic redundancy check (CRC) errors or other
communication issues. For each TX rate value, we transmit
for a period of 60 seconds such that the lines in the figure
indicate the mean sampling rate and the error bars indicate
one standard deviation from the mean.5

We begin by considering the active setting where the RX is
the destination for each packet transmitted by the TX. The RX
rate increases almost linearly as TX rate increases to 1000Hz.
Small dips in RX rate appear due to the tick interrupt rate of
the real-time operating system (RTOS) running on-board the
ESP32 TX device which artificially reduces the actual number
of frames that are sent. Overall, this shows that the ESP32 can
collect CSI samples at a RX rate upwards of 1000Hz in the
active scenario.

Next we evaluate the passive setting where a third device
(PX) is passively listening to the communication between the
TX and RX. In this scenario, because the packet destination

5We calculate RX rate without sending the CSI data over serial from the
ESP32 to the host device. The baud rate of the serial interface limits the CSI
throughput and is not necessary for on-device model inference.
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Fig. 10: Number of packets received per second at an active
(i.e., connected) and passive (i.e., sniffing) receiver when a
transmitter sends CSI frames at varying rates.

is not PX, the PX can not request packet retransmission when
communication errors may occur. As a result of this, we find
the RX rate for PX is between 13% and 37% lower than
the active scenario. Additionally, compared to the active case,
we can see a higher standard deviation for all values of TX
rate indicating that there is a large variance in the number of
samples collected over the 60 second period. In the case of
TX rate of 1000Hz, this results in a RX rate of 662Hz for the
PX and a standard deviation of 55Hz.6

Optimal sampling rates for a given sensing task can be se-
lected based on the Nyquist-Shannon sampling theorem [156]
which suggests that a sampling rate of at least 2'Hz must be
used to capture an activity performed at 'Hz. For example,
in [157] it is stated that indoor exercise activities produce
motion-induced frequency shifts at a rate below ' = 40Hz
and as such, a rate of 100Hz is selected which is greater
than 2'Hz and thus should be able to capture the important
movements during these activities. We found 176 research
studies which specify the CSI sampling rate used in their
data collection. Fig. 11 shows the CDF plot of the sampling
rate used in these works. From this figure, we can see that
almost 50% of works set a sampling rate of 100Hz or lower.
Both the active and passive scenarios shown in Fig. 10 can
achieve rates above 100Hz, and as such, we would expect
that the ESP32 could be used for WiFi sensing in most of
the scenarios discussed in these works. We find that when
higher sampling rate is used, they are often manually reduced
afterwards to decrease computation complexity as well as
memory requirements. For example, in [158], a sampling rate
of 1, 000Hz was selected, but the signal was passed through a
band-pass filter between the ranges of 5Hz and 80Hz to capture
the frequency changes caused by human walking within these
bands. Using the Nyquist theory here, we may assume that a
sampling rate of 160Hz would have been sufficient. As such,
while the ESP32 is unable to achieve rates as high as 1, 000Hz,
the actions performed are still likely to be captured at the lower
frequencies which the ESP32 is able to capture.

Effect of Sampling Rates on Accuracy: In this work, we use a
sampling rate of ' = 100Hz as the baseline for our small-scale,
medium-scale and large-scale experiments. To understand how

6PX captures CSI from the two way communication between TX and RX.
In our results, we ignore half of the frames (i.e., from RX) to allow for a
better understanding of packet loss with PX compared to the active RX.
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Fig. 12: Decreasing the sampling rate results in lowered
accuracy for all experimental scales.

sampling rate affects prediction accuracy, we decrease ' while
using the optimal hyperparameter values as used in Table VIII.
In addition to reducing the sampling rate, we must also reduce
the window size F down to F̂ = b F'100 c so that each window
still covers the same span of time no matter the value of '.
From Fig. 12, we can see that there is a general trend where
the accuracy decreases if ' decreases. For small-scale, we
achieve an accuracy of 52.27% and 88.11% when ' = 1
and ' = 100, respectively (35.84% difference) while in the
medium-scale accuracy is 86.00% and 100.00% when ' = 1
and ' = 100, respectively (14.00% difference) and finally
large-scale accuracy is 39.77% and 70.86% when ' = 1 and
' = 100, respectively (31.09% difference). Medium-scale is
the best at handling lower values of ' and can even achieve
an accuracy of 99.88% when ' = 20. Small-scale sees the
largest decrease in accuracy as ' decreases which makes sense
considering that the small-scale movements are both small and
performed very quickly. From these results, we can say that
increasing ' will result in an increase in model accuracy.
However, we must also recognize that each increase for '
will not result in a linear increase in accuracy. For example,
increasing ' from 10 up to 20 results in an increase of
+12.37%, +1.95% and +3.64% for small-scale, medium-scale
and large-scale experiments, respectively. However, increasing
' from 50 up to 100 only results in an increase of +4.18%,
+0.001% and +7.47% for small-scale, medium-scale and large-
scale experiments, respectively. This demonstrates that the
curves in the figure are non-linear and as such, increasingly
higher values for ' would be required to continue to push the
accuracy higher. Of course very high sampling rates are not
reasonable for edge based devices which have low computation
resources and low power budgets.

TABLE XI: Time to compute each signal processing method
on an ESP32 microcontroller as well as the maximum rate at
which each method could be performed independent of other
computation tasks.

Method Parameters Time (ms) Max. Rate (Hz)

Feature Extraction
Amplitude None 0.54 1,855
Phase None 0.13 7,710
Temporal Diff None 0.03 30,581
Statistical Features Mean 0.02 64,935
PSD F = 16 0.57 1,742
PSD F = 64 2.11 473
PSD F = 128 4.38 228
Wavelet Transform k = 314 0.47 2,111
Wavelet Transform k = 315 0.62 1,621

Signal Denoising
Hampel F = 10 1.21 828
Hampel F = 50 4.59 217
Hampel F = 100 9.51 105
Statistical Window Filter F = 10 0.40 2,528
Statistical Window Filter F = 50 1.78 561
Statistical Window Filter F = 100 3.48 287
Savitzky Golay F = 10 0.77 1,304
Savitzky Golay F = 50 3.69 271
Savitzky Golay F = 100 7.33 136
Butterworth F = 10 1.42 705
Butterworth F = 50 7.22 138
Butterworth F = 100 14.56 68
DWT k = 314 0.72 1,390
DWT k = 315 0.88 1,135
FFT Frequency Filter None 0.08 12,121

Dimensionality Reduction
Subcarrier Stats. : = 10 0.01 121,951
Subcarrier Stats. : = 32 0.01 89,285
Subcarrier Stats. : = 64 0.02 65,359
Subcarrier Correlation : = 10 0.01 120,481
Subcarrier Correlation : = 32 0.01 89,285
Subcarrier Correlation : = 64 0.02 65,359
PCA : = 10 0.77 1,300
PCA : = 32 2.40 416
PCA : = 64 4.78 209
ICA : = 10 0.77 1,303
ICA : = 32 2.40 416
ICA : = 64 4.79 208

B. Inference Rate with Signal Processing Techniques

Capturing CSI at a consistent rate is the first step towards
developing a complete WiFi sensing system on the ESP32.
After capturing the CSI, we must then use the CSI to make
predictions in the environment. Inference rate indicates the
number of samples that can be processed per second. As
mentioned in Section III, WiFi sensing systems will begin with
signal processing followed by machine learning prediction
making. As such, we begin our evaluation by reviewing the
rate at which we can compute different signal processing
methods directly on the ESP32. After this, we then review
the effect of machine learning model architecture on inference
rates. Finally, we compare the rates which our system can
achieve to the rates achieved in other works.

For each CSI frame received by the system, we can perform
signal preprocessing steps to extract certain features, denoise
our signal or reduce the dimensionality of the CSI vector. In
Table XI, we review the computation time for a set of these
preprocessing steps when implemented and run on an ESP32.
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For preprocessing methods with relevant parameters, we also
evaluate their effect on computation time and maximum
sample throughput rate. We repeat the computation directly
on-board the ESP32 10 times and capture the average run-
time. Starting with feature extraction, we begin by looking
at the computation time for transforming the raw data to
amplitude and phase. We can see that computing amplitude
takes 0.54ms while phase takes just 0.16ms due to the square
power required for computing amplitude. Using just these
signal preprocessing techniques individually, we can achieve a
maximum throughput of 1, 855Hz and 6, 134Hz, respectively
which should both far exceed our CSI sampling rate. However,
note that subsequent signal preprocessing steps typically as-
sume that either amplitude or phase is computed beforehand.
For example, the temporal difference feature extraction method
takes only 0.2ms to compute and thus can be computed at a
maximum rate of 63, 291Hz, however if the amplitude feature
extraction method was performed first we must consider a
summation of computation times for all methods to determine
the maximum achievable rate. In this example, computing am-
plitude takes 0.54ms while computing the temporal difference
takes 0.02ms which means that our achievable rate when using
both methods together would be 1,000

0.54+0.02 =
1,000
0.56 = 1, 785Hz.

Given # signal preprocessing steps where )= is the time to
compute the =-th preprocessing step in milliseconds where
= ∈ {1, 2..., # − 1, #}, the maximum achievable rate can be
formally calculated as

'<0G =
1, 000∑#
8=1 )=

. (25)

For signal denoising methods, each method except DWT
and FFT frequency filter uses a window size (F) when
performing the filtering computation. DWT instead uses dif-
ferent wavelet functions k where the lengths are typically
much smaller while FFT frequency filter is computed only
over a single CSI frame rather than over a window of
frames. When F = 100, the maximum achievable rates
were 105, 287, 136, and, 68Hz for the Hampel filter, statistical
window filter, Savitzky Golay filter and Butterworth filter,
respectively. Out of all of the evaluated signal preprocessing
steps, Butterworth with F = 100 is the only method which
is unable to achieve greater than 100Hz and Hampel with
F = 100 is the filter with the second lowest rate of 105Hz. This
implies that if we want to increase the number of predictions
possible per second, we must reduce F for these methods to
ensure that the total sample preprocessing time is low enough.
With DWT, k = 314 has a filter length of only |k | = 8 while
k = 315 has a filter length of |k | = 10. Even so, because
of the recursive nature of the method, the time to compute
is relatively high and thus the maximum achievable rate is
only 582Hz and 427Hz per wavelet type. Notice, for each CSI
sample passed into DWT, the number of decomposition and
reconstruction levels may vary as shown in Fig. 5. To reliably
calculate the average computation time in our evaluations,
we assume the worst case for DWT where ! = 3 levels
of decomposition and ! = 3 levels of reconstruction are
performed for the incoming sample. As such, DWT can be

expected to achieve higher rates when run in real world
scenarios.

For dimensionality reduction methods, we can see that the
subcarrier statistics methods and subcarrier correlation meth-
ods can be computed faster than any other method. With these
reduction methods, the most time-consuming computations are
calculated during the initial calibration steps where a subset of
subcarriers is preselected based on statistics of each subcarrier.
For each incoming CSI sample, we only need to select
the : subcarriers that were preselected during this process.
This allows dimensionality reduction to be an extremely low-
cost operation. PCA and ICA on the other hand both take
approximately the same time to compute because the online
portion of these algorithms is the exact same computation.
The calculations performed during the initial calibration phase
is what sets the two methods apart. When : = 64, we can
see that both methods can only achieve a maximum sampling
rate of just over 200Hz, however performing PCA or ICA to
transform a 64 subcarrier CSI vector down to a vector of size
64 does not actually achieve dimensionality reduction. In such
a case, PCA and ICA will only be acting as denoising methods.
Instead, : will typically be less than 64 so that PCA and
ICA will not only denoise the incoming signal, but will also
reduce the dimensionality and thus increase the throughput
of the signal. For example, in Table VIII, when evaluating
these dimensionality reduction methods, we set : = 10, in
which case, both PCA and ICA would be able to achieve
a maximum rate of 1, 300 Hz or when combined with the
amplitude feature extraction method can achieve a maximum
rate of 1,000

0.54+0.77 = 763Hz.

C. Inference Rate with On-board Machine Learning

After performing signal preprocessing, we can pass the
filtered CSI data into a machine learning classifier model.
Throughout our experiments in Section IV, we used a dense
neural network (DNN) with four layers (one input layer, two
hidden layers, one output layer) where the hidden layers each
contain some number of hidden neurons (we call this number
the hidden size). The input for the DNN is a matrix of ( × F
where ( indicates the number of subcarrier dimensions and
F indicates a window size parameter where F consecutive
CSI samples are collected and passed into the model. We use
Tensorflow-Lite7 (TFLite) which offers a method for running
our machine learning models directly on embedded devices
such as the ESP32.

The ESP32 microcontroller is a highly resource constrained
device with lower available resources than would be expected
on a typical ML server used for training and evaluating WiFi
sensing models in the existing literature. For example, the
ESP32 is limited to a maximum of 240MHz clock rate and
520kB of RAM. Furthermore, by default, the ESP32 only
allows for 160kB of storage to be allocated to the Dynamic
RAM (DRAM) Heap which is the default method for storing
data such as the machine learning model definition as well
as the TFLite library implementation. In Table XII, we list
the prediction rate achieved along with the model size when

7https://www.tensorflow.org/lite.
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TABLE XII: TFLite inference rate without PSRAM for differ-
ent model hyperparameters and quantization methods. Only
small values for hidden size and input size are used because
RAM space is so limited.

Quantization Hidden Size Input Size Rate (Hz) Size (kB)

NONE 10 4 × 10 9717 4.6
NONE 10 4 × 50 5054 10.9
NONE 10 4 × 100 3170 18.7
NONE 10 16 × 10 5717 9.3
NONE 10 16 × 50 1832 34.3
NONE 10 16 × 100 – 65.6
NONE 50 4 × 10 1915 29.9
NONE 50 4 × 50 – 61.2
NONE 50 4 × 100 – 100.3
NONE 50 16 × 10 – 53.4
NONE 50 16 × 50 – 178.4
NONE 50 16 × 100 – 334.6
NONE 100 4 × 10 – 96.7
NONE 100 4 × 50 – 159.3
NONE 100 4 × 100 – 237.4
NONE 100 16 × 10 – 143.6
NONE 100 16 × 50 – 393.6
NONE 100 16 × 100 – 706.1
INT8 10 4 × 10 2620 3.5
INT8 10 4 × 50 1607 5.0
INT8 10 4 × 100 1087 7.0
INT8 10 16 × 10 1778 4.7
INT8 10 16 × 50 662 10.9
INT8 10 16 × 100 372 18.7
INT8 50 4 × 10 996 9.8
INT8 50 4 × 50 567 17.6
INT8 50 4 × 100 369 27.4
INT8 50 16 × 10 636 15.7
INT8 50 16 × 50 – 46.9
INT8 50 16 × 100 – 86.0
INT8 100 4 × 10 399 26.5
INT8 100 4 × 50 – 42.2
INT8 100 4 × 100 – 61.7
INT8 100 16 × 10 – 38.3
INT8 100 16 × 50 – 100.8
INT8 100 16 × 100 – 178.9

Inference rates marked (–) indicate that the model was unable to run on the microcontroller due a lack of space in RAM or PSRAM.

run on the ESP32 with two different quantization methods
as well as varying number of hidden neuron size and CSI
input size. We can see that 19 of the rows do not have an
associated prediction rate. This is because the model size
was too large to fit in the available DRAM Heap after all
other overhead was accounted for. The largest model size
that was able to run on-board the ESP32 was 34.3kB when
hidden size was set to 10 and input size was 16 × 50. It is
important to notice that when we use INT8 quantization, this
same model can be reduced from 34.3kB to 10.9kB. This
shows that quantization greatly reduces model size on-board
the ESP32. Interestingly, in both cases where quantization is
used (INT8) and where quantization is not used (NONE),
using quantization counter-intuitively decreases the prediction
rate. This is because, while INT8 quantization reduces the
size of the model by converting 32-bit floating point numbers
to 8-bit integers for model weights, additional quantization-
specific layers are automatically added throughout the model
architecture which results in additional computation that must
be performed for the quantized model compared to the non-
quantized model. Out of the 17 models that are able to fit

TABLE XIII: TFLite inference rate with PSRAM. Hidden sizes
and input sizes are larger than in Table XII because PSRAM
is able to accommodate these larger machine learning models
during model inference.

Quantization Hidden Size Input Size Rate (Hz) Size (kB)

NONE 25 16 × 25 145.0 46.3
NONE 25 16 × 100 41.3 163.5
NONE 25 16 × 500 8.7 788.5
NONE 25 64 × 25 41.3 163.5
NONE 25 64 × 100 7.6 632.2
NONE 25 64 × 500 1.5 3132.2
NONE 100 16 × 25 28.3 237.4
NONE 100 16 × 100 9.6 706.1
NONE 100 16 × 500 – 3206.0
NONE 100 64 × 25 9.6 706.1
NONE 100 64 × 100 2.7 2581.1
NONE 100 64 × 500 – 12581.1
NONE 500 16 × 25 2.5 2740.4
NONE 500 16 × 100 – 5084.3
NONE 500 16 × 500 – 17584.3
NONE 500 64 × 25 – 5084.3
NONE 500 64 × 100 – 14459.3
NONE 500 64 × 500 – 64459.3
INT8 25 16 × 25 492.1 13.9
INT8 25 16 × 100 100.3 43.1
INT8 25 16 × 500 21.3 199.5
INT8 25 64 × 25 100.3 43.2
INT8 25 64 × 100 26.4 160.3
INT8 25 64 × 500 4.0 785.3
INT8 100 16 × 25 71.0 61.6
INT8 100 16 × 100 25.2 178.8
INT8 100 16 × 500 5.7 803.8
INT8 100 64 × 25 25.2 178.9
INT8 100 64 × 100 7.0 647.6
INT8 100 64 × 500 1.1 3147.5
INT8 500 16 × 25 6.7 687.5
INT8 500 16 × 100 3.6 1273.3
INT8 500 16 × 500 – 4398.4
INT8 500 64 × 25 3.6 1273.3
INT8 500 64 × 100 – 3617.2
INT8 500 64 × 500 – 16117.2

in DRAM, only 6 are possible without quantization while 11
are possible with quantization, showing that quantization is
still important to allow for larger machine learning models.
However, 16 × 100 is the largest input size that was possible
in a single case when quantization was INT8 and the hidden
size was a paltry 10. Only a single model evaluated in the table
was able to increase the hidden size to 100 hidden neurons,
but this was only achievable when the input size was a meager
4×10 matrix. This shows that by default, the ESP32 is unable
to allocate large architecture models with only DRAM.

However, while ESP32 modules by default are limited to
520kB of available RAM and 160kB of compile-time DRAM,
some boards offer an additional PSRAM (Psuedo-Static RAM)
up to a maximum size of 4MB. By using PSRAM and
statically allocated TFLite models, we are able to increase the
allowable size for the machine learning model definition and
thus increase the hidden size and the CSI input size compared
to the default ESP32 without PSRAM.

We compare on-board inference rate and model size with
different quantization methods, hidden size and input sizes in
Table XIII. With PSRAM, the largest machine learning model
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Fig. 13: CDF of machine learning inference rates from sur-
veyed literature (# = 11).

which can be used on-board the ESP32 for edge inference
has a size of 3, 147.5kB when quantization is set to INT8,
hidden size is set to 100, and CSI input size matrix is of size
64×500. It is important to achieve such high values because the
hyperparameters we used during our hyperparameter search
as detailed in Table VII are similarly high, with a maximum
of 500 for hidden size, and a maximum CSI input size of
64×500. It has been suggested in [138] that it can be useful to
consider not only increasing the accuracy of the models during
hyperparameter optimization, but to also increase the on-board
inference rate and reduce the model size. For simplicity, valid
model sizes could be constrained to the maximum space
available on the ESP32 for model definitions.8

Depending on the hyperparameters used, we can achieve
inference rates from 145Hz to 1.5Hz when not using quanti-
zation or 492.1 down to 1.1Hz when using INT8 quantization.
Using INT8 quantization can achieve much greater inference
rate compared to a non-quantized model because the model
definition is stored in PSRAM which has a relatively slow-
speed Serial Peripheral Interface (SPI) data bus. This means
that the larger the model size, the longer it takes to transfer the
model over the SPI interface. As such, models with the same
hidden size and input size achieve much higher prediction
rates with quantization. However, if we compare models with
similar sizes such as quantization: NONE, hidden size: 25,
input size: 64×25 where the model size is 163.5kB compared
to the quantized model with quantization: INT8, hidden size:
25, input size 64 × 100 where the model size is 160.3kB, we
find that they achieve a prediction rate of 41.3Hz and 26.4Hz,
respectively even though the quantized model is slight smaller
in size. This shows that models of similar size in memory are
still slower with quantization than without. Even so, it is still
the case that out of the 10 models that are too large to fit
in PSRAM, only 3 models use INT8 quantization while the
other 7 models do not use quantization. Thus, quantization
still proves to be an important method to increase the model
architecture size when run on-board the ESP32 hardware.

With such a diverse set of possible inference rates based on
the signal preprocessing steps and the model hyperparameters,
we should consider what other WiFi sensing research works
are able to achieve. In Fig. 13, we show the CDF plot for
the inference rates found during our survey of WiFi sensing

8We do not use on-board inference rate nor model size when performing
hyperparameter search in Section IV due to the additional time required to
perform these evaluations as well as the additional hardware and software
requirements.
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Fig. 14: Energy consumed by individual components of our
ESP32 system.

literature. While we were able to find at least # = 176
papers which discuss the CSI sampling rate, inference rate was
discussed in far fewer (# = 11) research works. Furthermore,
out of the 11 works which discussed achievable inference rate,
more than half of the works use one or more GPU devices
which would not be reasonable to deploy at the edge. Two
of the eleven sources explicitly use CPUs rather than GPUs
for inference, for example, [28] uses a GPU for training and
CPU for testing and is able to achieve an inference rate of
12.5Hz on an Intel Core i5 CPU while [107] uses an Intel
Core i5 CPU for both training and testing because of a lack
of access to GPU and achieved an inference rate of less than
1Hz. The highest inference rate was achieved in [115] at
approximately 60Hz when using an NVIDIA Titan XP GPU.
Based on the figure, more than 50% of the works noted can
only achieve an inference rate of 10Hz or less even though the
models are run on far more powerful computers and servers
compared to the ESP32. Due to the relatively low number
of works discussing inference rate, we suggest that inference
rate should be more commonly evaluated in the broader WiFi
sensing research community. Otherwise, as machine learning
architectures become deeper and more complex, we will not
be able to gauge if the architectures are reasonable in real-time
edge scenarios.

D. Energy Consumption

In Fig. 14, we show the energy consumption for different
individual tasks running on the ESP32. Specifically, we look
at the energy consumption for the active RX, as well as
the active TX and passive RX for different CSI sampling
rates. In addition to these three applications, we look at the
energy consumed by an ESP32 performing model inference
with TFLite as well as the default energy consumption of an
ESP32 when not running any specific computation tasks. We
can see that the active RX line requires the highest amount
of energy. Additionally, the energy requirement for RX also
increases to 121mA when the CSI sampling rate is set to
200Hz compared to 110mA when the sampling rate is set
to 10Hz. The RX acts as an access point and thus must take
on additional overhead tasks such as broadcasting of the SSID
and listening for probe requests from new stations. The TX on
the other hand has a reduced energy consumption compared to
the RX but still shows an increase from 95mA when the CSI
sampling rate is 10Hz up to 105mA when the rate is increased
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to 200Hz. In the passive experiment, we setup a TX and RX
to communicate with one another while the passive module
simply listens passively to this communication traffic. In this
passive case, the energy consumption does not change much
as the CSI rate increases, achieving 92mA and 93mA when
the sampling rate is set to 10Hz and 200Hz, respectively.

To evaluate energy consumption when performing TFLite
inference on-board, we allow the model to perform inference
at the maximum achievable rates that we found in Table XIII.
We find that the energy consumption is similar no matter the
sampling rate, for example with quantization method: INT8,
hidden size: 25, input size: 16 × 25, the energy consumption
is measured at 74.5mA when performing 492.1 samples per
second while with quantization method: INT8, hidden size: 10,
input size: 64 × 100 which only achieves an inference rate of
7.0 samples per second, the energy consumption is measured
at 75.0mA. Additionally, we find that quantization has no
effect on energy consumption. Since in these experiments
we perform inference back to back without allowing the
microcontroller to idle between predictions, the ESP32 is
continuously performing computations at all times whether the
sampling rate is low or high. As such, if we wish to decrease
the energy consumed by the ESP32, we would need to allow
idle time between each model inference computation so that
the ESP32 is not continuously performing computational work.

By default, when the ESP32 is running in standby idle mode
(i.e., no computations are being performed and the WiFi radio
is not enabled), the energy consumption is 58mA. Compare
to this, performing TFLite inference increases the energy
consumption by approximately +17mA. Similarly, when using
the WiFi radio interface, the energy consumption can increase
anywhere from approximately +35mA when using the passive
application mode up to as much as +63mA when using
the active RX application. As such, the active RX increases
energy consumption by +108.6% while the passive application
increases it by +60.3% and the TFLite application increases it
by +29.3%. Energy consumption may be an important concern
when the ESP32 is powered by a battery. For example, a
9, 000mAh rechargable battery may power an ESP32 active
RX for 9,000mAh

120mA = 75 hours on a full charge or 9,000mAh
93mA = 96.8

hours when running the passive firmware. The length of time
required on battery is highly dependant on the application
being performed and whether or not it is possible to attach
the ESP32 to some central power source indoors. Furthermore,
collecting CSI may not be required 24 hours every day such
as cases where the indoor location is unoccupied. In which
case, the ESP32 can switch to idle standby mode when WiFi
sensing is not needed and can achieve 9,000mAh

93mA = 155.2 hours
on standby. Typically, when CSI is not being collected, the
ESP32 can be put into an even lower power mode such as
deep sleep mode which can achieve up to 9,000mAh

7mA = 1, 285.7
hours of battery life.

VI. LESSONS LEARNED

A. Selecting Signal Processing Techniques

We surveyed a number of signal processing techniques
in Section III which are then evaluated based on accuracy

in Section IV, and based on system concerns such as achiev-
able inference rates and energy consumption in Section V.
As a result of these evaluations, here we summarize our
observations.

1) Feature Extraction: Through our evaluation, we find
that amplitude can achieve greater accuracy compared to
phase in the experimental datasets evaluated. This is because
phase typically requires denoising methods which are only
possible when multiple antennas with synchronized oscillator
frequencies are available. Furthermore, while other feature
extraction methods (i.e., statistical feature, PSD, and wavelet
transform) are more specialized compared to strictly amplitude
features, we find that none of these other feature extraction
methods are able to achieve consistent higher accuracy than
amplitude. Additionally, these other methods also require more
computation and thus increase energy consumption and reduce
the inference rate. Even so, we find that amplitude alone is
still not a sufficient choice as input into a machine learning
classifier.

2) Denoising Filters: None of the explored denoising fil-
ters achieved top performance across all experimental scales
(small, medium, large). However, we do recognize that ap-
plying certain denoising methods still improves the accuracy
compared to using the default noisy amplitude signal. Since
denoising filters appear to increase accuracy uniquely on a per-
application basis, we suggest that selecting denoising filters
should only be used when smaller accuracy improvements are
required. This is especially true when denoising is used in
addition to dimensionality reduction techniques. However, we
find that denoising can greatly reduce the inference rate of a
WiFi sensing system and as such, hyperparameters selected
per denoising method must be selected appropriately.

3) Dimensionality Reduction: Through this work, we iden-
tified that both PCA and ICA provide the most consistent re-
sults out of each of the evaluated signal processing techniques
when it comes to model accuracy for all three experimental
scales. As such, as a baseline, we suggest that by default,
PCA or ICA should be used for dimensionality reduction.
In addition, dimensionality reduction like PCA and ICA also
decreases the input size for the model, thus further increasing
the inference rate and decreasing the training time.

B. Feasibility of WiFi Sensing at the Edge

The goal throughout this work is to identify a taxonomy
of components required for a full edge WiFi sensing system
(i.e., signal processing, data preparation, prediction making,
and systems and hardware). Through this survey, we have
evaluated and recognized important metrics such as accuracy,
inference rate, and energy consumption which must be consid-
ered to achieve edge-based WiFi sensing systems. Through this
effort, we performed initial evaluations on each of these met-
rics to compare techniques such as feature extraction, signal
denoising, and dimensionality reduction which are applicable
to most WiFi sensing applications.

1) Identify ESP32 for Edge WiFi Sensing: Towards the goal
of understanding the feasibility of WiFi sensing at the edge,
we have identified a hardware candidate capable of achieving
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edge WiFi sensing; namely the ESP32 microcontroller. This
low-cost microcontroller provides WiFi communication on-
board and offers access to the important CSI metric which
is integral to achieving WiFi sensing tasks. Furthermore,
with reasonable machine learning architectures, we can even
perform prediction making directly on-board the ESP32, thus
allowing for a standalone WiFi sensing device which can be
leveraged in scenarios similar to any standard sensor. This is
important in ensuring the scalability of WiFi sensing systems
towards greater ubiquity for daily sensing tasks.

2) Evaluated ESP32 for different use cases: Within this
work, we further evaluated the use of the proposed ESP32
for different use cases, specifically: small-scale hand gesture
recognition, medium-scale human activity recognition, as well
as large-scale localization and activity recognition. While there
are many different use cases that are possible with WiFi
sensing, by demonstrating the capability of the ESP32-based
edge WiFi sensing in these varying scales, we show that the
ESP32 is a feasible candidate for a variety of tasks. Thus, we
believe that this work will encourage further efforts in edge-
based WiFi sensing with the ESP32 microcontroller.

In addition to these evaluations on different use cases,
another important step to evaluate is the feasibility of per-
forming prediction making directly on-board these small edge
devices. There are a number of important issues to consider
when running data processing and machine learning such as
energy consumption and the low amount of storage available
on-board edge devices. Towards improving this, we look at
model quantization which is able to reduce storage usage as
well as reduce the amount of computation and thus energy
consumed in machine learning inference. While quantization
is one method for improving model inference on edge devices,
there are many other methods that can still be explored.

C. New Considerations for Edge WiFi Sensing
Through our efforts, we believe we have demonstrated the

feasibility of WiFi sensing at the edge which is an important
step towards achieving real-world and scalable systems which
rely on WiFi sensing. However, allowing for edge-based
sensing introduces some new considerations which must be
taken in future research works.

1) Need for Inference Rate Evaluations: Through our sur-
vey, we identified that very few works discuss the inference
rate offered by their model architectures. Furthermore, we find
that the research works that discuss inference rate tend to use
high powered GPU-based systems which are not appropriate
for real-world systems. Increasing inference rates offers a
number of improvements including (i) improved real-time
human-computer interaction responsiveness, (ii) the opportu-
nity to decrease energy consumption by adding gaps between
each prediction, and (iii) more processing time for other tasks
such as communicating results with neighboring devices.

2) Need for Lightweight Model Architecture Designs: As
the popularity of deep learning continues to increase, model
architectures are becoming more accurate while also becoming
far more complex. While deep learning may be reasonable on
highly powerful systems, they are not appropriate for edge-
based systems where low-costs are required and thus only

low-powered devices are available. Based on this observation,
we believe that it is important that WiFi sensing researchers
should consider developing lightweight model architectures
to accommodate this edge-based scenario. One method we
discuss through this work to achieve more lightweight archi-
tectures is through the use of quantization where full 32-bit
floating weights can be reduced down to 8-bit integers, thereby
reducing the overall size of the model. However, there is far
more room to explore in this direction.

3) Edge Hardware Considerations: We also found that it
is important to take the hardware into consideration when
developing edge-based WiFi sensing solutions. For example,
towards using the ESP32-MCU for WiFi sensing tasks, we
identify that larger model sizes can be achieved through the
use of on-board PSRAM modules, however, this results in
a slight reduction in inference rate due to slow SPI speeds
compared to standard RAM. Furthermore, the availability of
neural accelerator hardware can offer additional improvements
in inference speed. However, because these accelerators are not
designed as general-purpose computation systems, they often
require workflows to be converted to match the expectations
of the accelerator.

VII. FUTURE CHALLENGES

A. Multiple TX/RX Links

Typical WiFi sensing experiments assume a single TX and
a single RX device. However, in real world environments
we might have multiple TX devices such as our laptops,
smartphones, and IoT devices. Leveraging multiple links that
are dispersed throughout an environment may allow WiFi
sensing systems to better identify physical actions in much
larger environments. For example, in our large-scale experi-
ment; as illustrated in Fig. 7c, we deploy three transmitters
in three unique locations throughout the home environment.
The transmitters send CSI-frames to the receiver location in
the center of the environment.

So far through this work, we have only considered the
model accuracy when using a single pair in this large-scale
experiment. If we train our a model for each of the links
independently, we expect that some of the links will work
well for some of the classes while other links will work better
on other classes. In Fig. 15, we can see the prediction accuracy
for each of the nine activities when using models trained
independently at each of the three links. The model trained on
CSI from Link 1 (Fig. 15a) achieves poor prediction quality for
three classes: Wash Dishes, Writing at Table, and Walking in
Living Room. However, the model trained on CSI from Link
2 and Link 3 (Fig. 15b and Fig. 15c) are able to supplement
these inadequacies by achieving much higher accuracy for
these three classes. In Table XIV, we can see the accuracy
achieved by each link independently as well as if we perform
different link-selection methods. The first method; labelled
Best Case, indicates the accuracy if any of the three locations
make a correct prediction while the second method; labelled
Worst Case, indicates the accuracy if any of the three locations
makes an incorrect prediction. This gives us our bounds for
how well our WiFi sensing system could perform when using

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3209144

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 24,2022 at 23:45:35 UTC from IEEE Xplore.  Restrictions apply. 



HERNANDEZ AND BULUT: WIFI SENSING ON THE EDGE: SIGNAL PROCESSING TECHNIQUES AND CHALLENGES FOR REAL-WORLD SYSTEMS 27

Wash Dishes
Oven

Fridge
Table

Open Closet

Wash Hands
Stairs Sofa

Walking

0

0.5

1

A
c
c
u
ra

c
y

(a)
Wash Dishes

Oven
Fridge

Table

Open Closet

Wash Hands
Stairs Sofa

Walking

0

0.5

1

A
c
c
u
ra

c
y

(b)
Wash Dishes

Oven
Fridge

Table

Open Closet

Wash Hands
Stairs Sofa

Walking

0

0.5

1

A
c
c
u
ra

c
y

(c)

Fig. 15: Prediction accuracy for all 9 classes of activities given different TX/RX links pairs. (a) TX/RX Link 1. Total Accuracy:
58.52%. (b) TX/RX Link 2. Total Accuracy: 71.24%. (c) TX/RX Link 3. Total Accuracy: 49.89%.

the three independently trained model. The best case scenario
shows an improvement of +17.90% compared to using a Link
2 and +39.25% for Link 3. Thus, we can see that leveraging
multiple links leaves room for major improvements for the
accuracy of a WiFi sensing system.

A few methods for link selection have appeared due to
the multiple antennas available on hardware like the Intel
5300 NIC. For example, WiWrite [55] selects two of the
on-board antennas with the highest correlation while Wi-
Mose [159] uses the antenna link with the highest variance.
More research must be performed to (i) identify methods
for leveraging diversely positioned devices, (ii) communicate
predictions amongst these devices, (iii) leverage additional
links such as from IoT devices.

B. Long-Term Model Adaptation

In this work, we primarily focused on understanding the
feasibility of running different signal processing techniques
over time, however this work does not consider how these
methods can adapt to changes over time. Indeed, we find that
there are no noticeable trends in the datasets that we collected
for this work. However, longer-term CSI data collection (i.e.,
months or years) may introduce variations that current research
works are unable to adapt to. Detrending streaming data
signals is a common tactic to handle variations over long
periods of time that may reduce the accuracy of a given
method. So far in the research literature, we find only three
works which consider detrending. These works are: [110]
which focuses on sleep stage monitoring, [111] which tracks
human walking speeds, and [105] which captures respiratory
information over time. In one other work [160], it is suggested
that WiFi sensing models can be continuously trained on-
device using online stream sampling which allows the system
to adapt to changes over time. We suggest that more research
work must be done to further identify and understand methods
for adapting to changes in CSI signals over time as well
as for adapting to physical changes in the signal multipath
environment.

C. Real-Time Segmentation

As CSI samples stream into a WiFi sensing system, segmen-
tation can be used to determine whether or not an important
action is being performed at any moment. This is useful to
reduce how often machine learning inference needs to be

TABLE XIV: Results of various link-prediction selection
methods showing that successfully determining the most qual-
ified link will allow for a higher prediction accuracy.

Link Selected Accuracy
Link 1 58.52%
Link 2 71.24%
Link 3 49.89%
Best Case 89.14%
Worst Case 29.65%

performed and thus can also reduce the energy usage of the
overall system. In this work, we use a fixed window approach
where predictions are made for a rolling window of CSI.
We discussed additional methods for performing segmentation
in Section III-B3, however these methods are specialized to
specific use-cases [93], [119] and may not be generalizable to
other applications of WiFi sensing. Most works [92], [161],
[162]; including this work, assume that we can evaluate
our model only on CSI samples with an associated action.
However, more often than not, a WiFi sensing system deployed
in an environment will not see any actions being performed
(i.e., in the middle of the night). As such, segmentation is
another important challenge that we must continue to consider
into the future.

D. Integration with Physical Systems

WiFi sensing can be used to recognize an outstanding
number of unique physical actions or properties of a given
environment. However, while we have seen a great number
of laboratory experiments demonstrating novel methods for
sensing, to the best of our knowledge, none of these works
integrate WiFi sensing predictions into real physical systems.
To push WiFi sensing forward as a technology, we need to
not only think about interesting use cases and interesting
sensing modalities, but we need to deploy these systems
and allow them to be leveraged in the real-world such as
through intelligent HVAC systems [163], [164], integration
with health alert systems [98], [165], and home or office
security monitoring and alerting systems [109], [166]. When
integrating WiFi sensing into physical systems, additional
issues will arise related to device-to-device communication,
clock synchronization across devices [167], and knowledge
sharing between edge devices [168].
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VIII. CONCLUSION

In this work, we consider techniques and challenges when
designing real-world WiFi sensing systems that make predic-
tions at the edge. We discussed the theory for topics such as
OFDM and CSI which have given rise to a number of novel
WiFi-based sensing applications. Through an extensive survey
of hundreds of WiFi sensing research works, we identified
many signal processing techniques that are commonly applied
to incoming CSI data to achieve signal denoising, dimensional-
ity reduction and others. We discussed the mathematics behind
these techniques to understand the feasibility of performing
each technique on-board low-cost edge devices. It is not only
important to understand whether the techniques are possible
at the edge, but to also understand if the method is useful in
providing improvements in prediction accuracy.

To this end, we performed an extensive set of CSI data
collection experiments at small-scale (hand gesture recogni-
tion), medium-scale (human activity recognition), and at large-
scale (activity and location sensing). Using different experi-
mental scales allows us to identify techniques which result in
consistent prediction improvements for many different WiFi
sensing applications. For these three experiments, we collected
CSI using the ESP32 WiFi-enabled edge microcontroller. The
ESP32 is a perfect candidate for edge-based WiFi sensing be-
cause it can collect CSI on-board without requiring additional
hardware and also because it is low-powered and low-cost.
After evaluating the accuracy achieved by each method, we
then evaluated the time to compute each signal processing
technique on-board the ESP32 microcontroller and recognized
which techniques are possible to run in real-time on the
incoming stream of CSI data. Additionally, we evaluated the
use of TFLite for performing machine learning inference on-
board the ESP32. We identified that PSRAM and quantization
are required to accommodate larger model architectures on
low-resourced edge devices like the ESP32.

REFERENCES

[1] H. Jiang, C. Cai, X. Ma, Y. Yang, and J. Liu, “Smart Home Based on
WiFi Sensing: A Survey,” Access, vol. 6, pp. 13 317–13 325, 2018.

[2] Y. Ma, G. Zhou, and S. Wang, “WiFi Sensing with Channel State
Information: A Survey,” Computing Surveys, vol. 52, no. 3, p. 46,
2019.

[3] J. Liu, H. Liu, Y. Chen, Y. Wang, and C. Wang, “Wireless Sensing
for Human Activity: A Survey,” Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 1629–1645, 2019.

[4] Y. He, Y. Chen, Y. Hu, and B. Zeng, “WiFi Vision: Sensing, Recog-
nition, and Detection With Commodity MIMO-OFDM WiFi,” Internet
of Things Journal, vol. 7, no. 9, pp. 8296–8317, 2020.

[5] J. Liu, G. Teng, and F. Hong, “Human Activity Sensing with Wireless
Signals: A Survey,” Sensors, vol. 20, no. 4, p. 1210, 2020.

[6] C. Li, Z. Cao, and Y. Liu, “Deep AI Enabled Ubiquitous Wireless
Sensing: A Survey,” Computing Surveys, vol. 54, no. 2, pp. 1–35, 2021.

[7] I. Nirmal, A. Khamis, M. Hassan, W. Hu, and X. Zhu, “Deep Learning
for Radio-based Human Sensing: Recent Advances and Future Direc-
tions,” Communications Surveys & Tutorials, 2021.

[8] S. Yousefi, H. Narui, S. Dayal, S. Ermon, and S. Valaee, “A Survey
on Behavior Recognition Using WiFi Channel State Information,”
Communications Magazine, vol. 55, no. 10, pp. 98–104, Oct 2017.

[9] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool Release:
Gathering 802.11n Traces with Channel State Information,” ACM
SIGCOMM CCR, vol. 41, no. 1, p. 53, Jan. 2011.

[10] Y. Xie, Z. Li, and M. Li, “Precise Power Delay Profiling with
Commodity WiFi,” in Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking, ser. MobiCom ’15.
New York, NY, USA: ACM, 2015, p. 53–64.

[11] H. Kang, Q. Zhang, and Q. Huang, “Context-Aware Wireless Based
Cross Domain Gesture Recognition,” Internet of Things Journal, 2021.

[12] L. Guo, Z. Lu, S. Zhou, X. Wen, and Z. He, “Emergency Semantic
Feature Vector Extraction From WiFi Signals for In-Home Monitoring
of Elderly,” Journal of Selected Topics in Signal Processing, vol. 15,
no. 6, pp. 1423–1438, 2021.

[13] M. Schulz, J. Link, F. Gringoli, and M. Hollick, “Shadow Wi-Fi:
Teaching Smartphones to Transmit Raw Signals and to Extract Channel
State Information to Implement Practical Covert Channels over Wi-Fi,”
in Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’18. New York,
NY, USA: ACM, 2018, pp. 256–268.

[14] F. Adib and D. Katabi, “See Through Walls with Wi-Fi!” in Proceed-
ings of the SIGCOMM conference on SIGCOMM, 2013, pp. 75–86.

[15] N. Smith, L. Smith, S. Kodipaka, A. Dahal, B. Tang, J. E. Ball, and
M. Young, “Real-Time Location Fingerprinting for Mobile Devices
in an Indoor Prison Setting,” in Signal Processing, Sensor/Information
Fusion, and Target Recognition XXX, vol. 11756. International Society
for Optics and Photonics, 2021, p. 1175612.

[16] C. Uysal and T. Filik, “RF-Wri: An Efficient Framework for RF-Based
Device-Free Air-Writing Recognition,” Sensors Journal, 2021.

[17] S. M. Hernandez and E. Bulut, “Lightweight and Standalone IoT Based
WiFi Sensing for Active Repositioning and Mobility,” in Proceedings
of the 21st International Symposium on" A World of Wireless, Mobile
and Multimedia Networks"(WoWMoM). IEEE, 2020, pp. 277–286.

[18] F. Zhang, C. Chen, B. Wang, and K. R. Liu, “WiSpeed: A Statistical
Electromagnetic Approach for Device-Free Indoor Speed Estimation,”
Internet of Things Journal, vol. 5, no. 3, pp. 2163–2177, 2018.

[19] R. Prasad, OFDM for Wireless Communications Systems. Artech
House, 2004.

[20] Y. Shen and E. Martinez, “Channel Estimation in OFDM Systems,”
Freescale semiconductor application note, pp. 1–15, 2006.

[21] K. Ali, M. Alloulah, F. Kawsar, and A. X. Liu, “On Goodness of
WiFi based Monitoring of Vital Signs in the Wild,” arXiv preprint
arXiv:2003.09386, 2020.

[22] S. Tan and J. Yang, “WiFinger: Leveraging Commodity WiFi for Fine-
grained Finger Gesture Recognition,” in Proceedings of the 17th ACM
international symposium on mobile ad hoc networking and computing,
2016, pp. 201–210.

[23] P. Li, H. Cui, A. Khan, U. Raza, R. Piechocki, A. Doufexi, and
T. Farnham, “Deep Transfer Learning for WiFi Localization,” in
Proceedings of the Radar Conference, 2021, pp. 1–5.

[24] N. Jadhav, W. Wang, D. Zhang, O. Khatib, S. Kumar, and S. Gil,
“WSR: A WiFi Sensor for Collaborative Robotics,” arXiv preprint
arXiv:2012.04174, 2020.

[25] B. Xiang, F. Yan, Y. Zhu, T. Wu, W. Xia, J. Pang, W. Liu, G. Heng,
and L. Shen, “UAV Assisted Localization Scheme of WSNs Using
RSSI and CSI Information,” in Proceedings of the 6th International
Conference on Computer and Communications. IEEE, 2020, pp. 718–
722.

[26] J.-g. Jiang, S. Jiang, B.-b. Zhao, S.-y. Wang, M.-n. Cai, and Y.-f. Zhang,
“CS-Dict: Accurate Indoor Localization with CSI Selective Amplitude
and Phase Based Regularized Dictionary Learning,” in International
Conference on Algorithms and Architectures for Parallel Processing.
Springer, 2020, pp. 677–689.

[27] R. Zhou, M. Hao, X. Lu, M. Tang, and Y. Fu, “Device-free Localization
Based on CSI Fingerprints and Deep Neural Networks,” in Proceed-
ings of the 15th Annual IEEE International Conference on Sensing,
Communication, and Networking. IEEE, 2018, pp. 1–9.

[28] R. Zhou, H. Hou, Z. Gong, Z. Chen, K. Tang, and B. Zhou, “Adaptive
Device-Free Localization in Dynamic Environments Through Adaptive
Neural Networks,” Sensors Journal, vol. 21, no. 1, pp. 548–559, 2020.

[29] L. Yang, T. Kamada, and C. Ohta, “Indoor localization based on CSI
in dynamic environments through domain adaptation,” Communications
Express, 2021.

[30] Z. Yong, W. C. Bin, and Y. Chen, “A Low-overhead Indoor Positioning
System Using CSI Fingerprint Based on Transfer Learning,” Sensors
Journal, 2021.

[31] S. Tan and J. Yang, “Multi-User Activity Recognition and Tracking
Using Commodity WiFi,” arXiv preprint arXiv:2106.00865, 2021.

[32] C. Shi, J. Liu, H. Liu, and Y. Chen, “WiFi-Enabled User Authentication
through Deep Learning in Daily Activities,” Transactions on Internet
of Things, vol. 2, no. 2, pp. 1–25, 2021.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3209144

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 24,2022 at 23:45:35 UTC from IEEE Xplore.  Restrictions apply. 



HERNANDEZ AND BULUT: WIFI SENSING ON THE EDGE: SIGNAL PROCESSING TECHNIQUES AND CHALLENGES FOR REAL-WORLD SYSTEMS 29

[33] Y. Zhao, R. Gao, S. Liu, L. Xie, J. Wu, H. Tu, and B. Chen, “Device-
Free Secure Interaction with Hand Gestures in WiFi-enabled IoT
Environment,” Internet of Things Journal, 2020.

[34] Q. Bu, X. Ming, J. Hu, T. Zhang, J. Feng, and J. Zhang, “TransferSense:
towards environment independent and one-shot wifi sensing,” Personal
and Ubiquitous Computing, pp. 1–19, 2021.

[35] Y. Zeng, D. Wu, J. Xiong, E. Yi, R. Gao, and D. Zhang, “FarSense:
Pushing the Range Limit of WiFi-based Respiration Sensing with CSI
Ratio of Two Antennas,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 3, no. 3, pp. 1–26,
2019.

[36] I. Shirakami and T. Sato, “Heart Rate Variability Extraction using
Commodity Wi-Fi Devices via Time Domain Signal Processing,” in
EMBS International Conference on Biomedical and Health Informatics.
IEEE, 2021, pp. 1–4.

[37] W. Liu, S. Chang, Y. Liu, and H. Zhang, “Wi-PSG: Detecting Rhythmic
Movement Disorder Using COTS WiFi,” Internet of Things Journal,
vol. 8, no. 6, pp. 4681–4696, 2020.

[38] X. Chen, Z. Tian, M. Zhou, J. Yu, and B. Luo, “PHCount: Passive
Human Number Counting Using WiFi,” in International Conference
in Communications, Signal Processing, and Systems. Springer, 2020,
pp. 1214–1223.

[39] R. Sandaruwan, I. Alagiyawanna, S. Sandeepa, S. Dias, and D. Dias,
“Device-free Pedestrian Count Estimation Using Wi-Fi Channel State
Information,” in 2021 IEEE International Intelligent Transportation
Systems Conference (ITSC). IEEE, sep 2021. [Online]. Available:
https://doi.org/10.1109/itsc48978.2021.9564725

[40] F. Zhang, C. Wu, B. Wang, H.-Q. Lai, Y. Han, and K. R. Liu,
“WiDetect: Robust Motion Detection with a Statistical Electromagnetic
Model,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 3, no. 3, pp. 1–24, 2019.

[41] F. Xiao, X. Xie, H. Zhu, L. Sun, and R. Wang, “Invisible Cloak
Fails: CSI-based Passive Human Detection,” in Proceedings of the 1st
Workshop on Context Sensing and Activity Recognition. ACM, nov
2015. [Online]. Available: https://doi.org/10.1145/2820716.2820719

[42] N. Damodaran, E. Haruni, M. Kokhkharova, and J. Schäfer, “Device
free human activity and fall recognition using WiFi channel state
information (CSI),” CCF Transactions on Pervasive Computing and
Interaction, vol. 2, no. 1, pp. 1–17, 2020.

[43] J. Huang, B. Liu, P. Liu, C. Chen, N. Xiao, Y. Wu, C. Zhang, and N. Yu,
“Towards Anti-interference WiFi-based Activity Recognition System
Using Interference-Independent Phase Component,” in Conference on
Computer Communications. IEEE, 2020, pp. 576–585.

[44] J. Yang, H. Zou, H. Jiang, and L. Xie, “Device-Free Occupant Activity
Sensing Using WiFi-Enabled IoT Devices for Smart Homes,” Internet
of Things Journal, vol. 5, no. 5, pp. 3991–4002, 2018.

[45] M. T. Islam and S. Nirjon, “Wi-Fringe: Leveraging Text Seman-
tics in WiFi CSI-Based Device-Free Named Gesture Recognition,”
in Proceedings of the 16th International Conference on Distributed
Computing in Sensor Systems. IEEE, 2020, pp. 35–42.

[46] D. Zhang, H. Wang, Y. Wang, and J. Ma, “Anti-Fall: A Non-intrusive
and Real-Time Fall Detector Leveraging CSI from Commodity WiFi
Devices,” in International Conference on Smart Homes and Health
Telematics. Springer, 2015, pp. 181–193.

[47] Y. Zhou, M. Gao, Y. Luo, and X. Fan, “Human fall recognition based
on WiFi CSI with dynamic subcarrier extraction of interference index,”
in Journal of Physics: Conference Series, vol. 1861. IOP Publishing,
2021, p. 012072.

[48] S. M. Hernandez, M. Touhiduzzaman, P. E. Pidcoe, and E. Bulut,
“Wi-PT: Wireless Sensing based Low-cost Physical Rehabilitation
Tracking,” in IEEE International Conference on E-health Networking,
Application & Services (HealthCom), Genoa, Italy, Oct. 2022.

[49] H. Cai, B. Korany, C. R. Karanam, and Y. Mostofi, “Teaching RF to
Sense without RF Training Measurements,” Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 4,
no. 4, pp. 1–22, 2020.

[50] J. Huang, B. Liu, H. Jin, and N. Yu, “WiLay: A Two-Layer Human
Localization and Activity Recognition System Using WiFi,” in Pro-
ceedings of the 93rd Vehicular Technology Conference. IEEE, 2021,
pp. 1–6.

[51] M. Raja, V. Ghaderi, and S. Sigg, “WiBot! In-Vehicle Behaviour and
Gesture Recognition Using Wireless Network Edge,” in Proceedings of
the 38th International Conference on Distributed Computing Systems.
IEEE, 2018, pp. 376–387.

[52] H. Li, W. Yang, J. Wang, Y. Xu, and L. Huang, “WiFinger: Talk
to Your Smart Devices with Finger-grained Gesture,” in Proceedings

of the International Joint Conference on Pervasive and Ubiquitous
Computing. ACM, 2016, pp. 250–261.

[53] Y. Zhang, K. Xu, and Y. Wang, “WiNum: A WIFI Finger Gesture
Recognition System Based on CSI,” in Proceedings of the 7th Inter-
national Conference on Information Technology: IoT and Smart City,
2019, pp. 181–186.

[54] Z. Hao, Y. Duan, X. Dang, Y. Liu, and D. Zhang, “Wi-SL: Contactless
Fine-Grained Gesture Recognition Uses Channel State Information,”
Sensors, vol. 20, no. 14, p. 4025, 2020.

[55] C. Lin, T. Xu, J. Xiong, F. Ma, L. Wang, and G. Wu, “WiWrite: An
Accurate Device-Free Handwriting Recognition System with COTS
WiFi,” in Proceedings of the 40th International Conference on Dis-
tributed Computing Systems. IEEE, 2020, pp. 700–709.

[56] R. Gao, M. Zhang, J. Zhang, Y. Li, E. Yi, D. Wu, L. Wang, and
D. Zhang, “Towards Position-Independent Sensing for Gesture Recog-
nition with Wi-Fi,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 5, no. 2, pp. 1–28, 2021.

[57] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Keystroke Recognition
Using WiFi Signals,” in Proceedings of the 21st annual international
conference on mobile computing and networking, 2015, pp. 90–102.

[58] X. Shen, Z. Ni, L. Liu, J. Yang, and K. Ahmed, “WiPass: 1D-CNN-
based smartphone keystroke recognition Using WiFi signals,” Pervasive
and Mobile Computing, vol. 73, p. 101393, 2021.

[59] J. Liu, K. Liu, F. Jin, D. Wang, G. Yan, and K. Xiao, “An Efficient
CSI-Based Pedestrian Monitoring Approach via Single Pair of WiFi
Transceivers,” in International Conference on Neural Computing for
Advanced Applications. Springer, 2021, pp. 685–700.

[60] X. Wang, Y. Wang, and D. Wang, “A Real-time CSI-based Passive
Intrusion Detection Method,” in Intl Conf on Parallel & Distributed
Processing with Applications, Big Data & Cloud Computing, Sustain-
able Computing & Communications, Social Computing & Networking.
IEEE, 2020, pp. 1091–1098.

[61] J. Guo and H. Li, “RSWI: a rescue system with WiFi sensing and image
recognition,” in Proceedings of the Turing Celebration Conference-
China. ACM, 2019, pp. 1–4.

[62] B. Korany and Y. Mostofi, “Counting a Stationary Crowd Using Off-
the-Shelf WiFi,” in Proceedings of the 19th Annual International
Conference on Mobile Systems, Applications, and Services, 2021, pp.
202–214.

[63] D. Konings and F. Alam, “LifeCount: A Device-free CSI-based Human
Counting Solution for Emergency Building Evacuations,” in Sensors
Applications Symposium. IEEE, 2020, pp. 1–5.

[64] S. M. Hernandez and E. Bulut, “Adversarial Occupancy Monitoring
using One-Sided Through-Wall WiFi Sensing,” in International Con-
ference on Communications. IEEE, 2021, pp. 1–6.

[65] Y. Zeng, D. Wu, R. Gao, T. Gu, and D. Zhang, “FullBreathe: Full
Human Respiration Detection Exploiting Complementarity of CSI
Phase and Amplitude of WiFi Signals,” Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2,
no. 3, pp. 1–19, 2018.

[66] Y. Zeng, D. Wu, J. Xiong, J. Liu, Z. Liu, and D. Zhang, “MultiSense:
Enabling Multi-person Respiration Sensing with Commodity WiFi,”
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiq-
uitous Technologies, vol. 4, no. 3, pp. 1–29, 2020.

[67] J. Liu, Y. Zeng, T. Gu, L. Wang, and D. Zhang, “WiPhone: Smartphone-
based Respiration Monitoring Using Ambient Reflected WiFi Signals,”
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiq-
uitous Technologies, vol. 5, no. 1, pp. 1–19, 2021.

[68] B. Korany and Y. Mostofi, “Nocturnal Seizure Detection Using Off-
the-Shelf WiFi,” arXiv preprint arXiv:2103.13556, 2021.

[69] X. Wang, C. Yang, and S. Mao, “PhaseBeat: Exploiting CSI phase data
for vital sign monitoring with commodity WiFi devices,” in Proceed-
ings of the 37th International Conference on Distributed Computing
Systems. IEEE, 2017, pp. 1230–1239.

[70] Y. Gu, T. Liu, J. Li, F. Ren, Z. Liu, X. Wang, and P. Li, “EmoSense:
Data-Driven Emotion Sensing via Off-the-Shelf WiFi Devices,” in
International Conference on Communications (ICC). IEEE, 2018,
pp. 1–6.

[71] Z. Lin, Y. Xie, X. Guo, Y. Ren, Y. Chen, and C. Wang, “WiEat: Fine-
grained Device-free Eating Monitoring Leveraging Wi-Fi Signals,”
in Proceedings of the 29th International Conference on Computer
Communications and Networks. IEEE, 2020, pp. 1–9.

[72] S. Tan and J. Yang, “Object Sensing for Fruit Ripeness Detection Using
WiFi Signals,” arXiv preprint arXiv:2106.00860, 2021.

[73] W. Yang, X. Wang, A. Song, and S. Mao, “Wi-Wheat: Contact-Free
Wheat Moisture Detection with Commodity WiFi,” in International
Conference on Communications. IEEE, 2018, pp. 1–6.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3209144

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 24,2022 at 23:45:35 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.1109/itsc48978.2021.9564725
https://doi.org/10.1145/2820716.2820719


30 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXXX

[74] S. M. Hernandez, D. Erdag, and E. Bulut, “Towards Dense and
Scalable Soil Sensing Through Low-Cost WiFi Sensing Networks,”
in Proceedings of the 46th Conference on Local Computer Networks
(LCN). IEEE, 2021, pp. 549–556.

[75] Y. Ren, S. Tan, L. Zhang, Z. Wang, Z. Wang, and J. Yang, “Liquid
Level Sensing Using Commodity WiFi in a Smart Home Environment,”
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiq-
uitous Technologies, vol. 4, no. 1, pp. 1–30, 2020.

[76] H. Song, B. Wei, Q. Yu, X. Xiao, and T. Kikkawa, “WiEps: Mea-
surement of Dielectric Property With Commodity WiFi Device—An
Application to Ethanol/Water Mixture,” Internet of Things Journal,
vol. 7, no. 12, pp. 11 667–11 677, 2020.

[77] S. Jian, S. Ishida, and Y. Arakawa, “Initial Attempt on Wi-Fi CSI Based
Vibration Sensing for Factory Equipment Fault Detection,” in Adjunct
Proceedings of the 2021 International Conference on Distributed
Computing and Networking, 2021, pp. 163–168.

[78] Z. Zhou, Z. Yang, C. Wu, W. Sun, and Y. Liu, “LiFi: Line-Of-Sight
Identification with WiFi,” in Conference on Computer Communica-
tions. IEEE, 2014, pp. 2688–2696.

[79] R. Ramezani, Y. Xiao, and A. Naeim, “Sensing-Fi: Wi-Fi CSI and Ac-
celerometer Fusion System for Fall Detection,” in EMBS International
Conference on Biomedical & Health Informatics. IEEE, 2018, pp.
402–405.

[80] X. Wang, C. Yang, and S. Mao, “On CSI-Based Vital Sign Monitor-
ing Using Commodity WiFi,” ACM Transactions on Computing for
Healthcare, vol. 1, no. 3, pp. 1–27, 2020.

[81] E. Ding, X. Li, T. Zhao, L. Zhang, and Y. Hu, “A Robust Passive
Intrusion Detection System with Commodity WiFi Devices,” Journal
of Sensors, vol. 2018, 2018.

[82] L. Zhang and H. Wang, “3D-WiFi: 3D Localization With Commodity
WiFi,” IEEE Sensors Journal, vol. 19, no. 13, pp. 5141–5152, jul
2019. [Online]. Available: https://doi.org/10.1109/jsen.2019.2900511

[83] X. Ding, T. Jiang, W. Xue, Z. Li, and Y. Zhong, “A New Method of
Human Gesture Recognition Using Wi-Fi Signals Based on XGBoost,”
in International Conference on Communications in China. IEEE,
2020, pp. 237–241.

[84] Y. T. Xu, X. Chen, X. Liu, D. Meger, and G. Dudek, “PresSense:
Passive Respiration Sensing via Ambient WiFi Signals in Noisy
Environments,” in International Conference on Intelligent Robots and
Systems. IEEE, 2020, pp. 4032–4039.

[85] J. Zuo, X. Zhu, Y. Peng, Z. Zhao, X. Wei, and X. Wang, “A New
Method of Posture Recognition Based on WiFi Signal,” Communica-
tions Letters, 2021.

[86] Q. Zhou, J. Xing, and Q. Yang, “Device-free occupant activity recog-
nition in smart offices using intrinsic Wi-Fi components,” Building and
Environment, vol. 172, p. 106737, 2020.

[87] L. Guo, Z. Lu, S. Zhou, X. Wen, and Z. He, “When Healthcare Meets
Off-the-Shelf WiFi: A Non-Wearable and Low-Costs Approach for In-
Home Monitoring,” arXiv preprint arXiv:2009.09715, 2020.

[88] Y. Hao, Z. Shi, and Y. Liu, “A Wireless-Vision Dataset for Pri-
vacy Preserving Human Activity Recognition,” in Fourth International
Conference on Multimedia Computing, Networking and Applications.
IEEE, 2020, pp. 97–105.

[89] Z. Shi, J. A. Zhang, R. Xu, Q. Cheng, and A. Pearce, “Towards
Environment-independent Human Activity Recognition using Deep
Learning and Enhanced CSI,” in Global Communications Conference.
IEEE, 2020, pp. 1–6.

[90] D. Wu, D. Zhang, C. Xu, Y. Wang, and H. Wang, “WiDir: Walking
Direction Estimation Using Wireless Signals,” in Proceedings of the In-
ternational Joint Conference on Pervasive and Ubiquitous Computing,
ser. UbiComp ’16. New York, NY, USA: ACM, 2016, pp. 351–362.

[91] M. Li, Y. Meng, J. Liu, H. Zhu, X. Liang, Y. Liu, and N. Ruan, “When
CSI Meets Public WiFi: Inferring Your Mobile Phone Password via
WiFi Signals,” in Proceedings of the SIGSAC Conference on Computer
and Communications Security, 2016, pp. 1068–1079.

[92] L. Sharma, C. Chao, S.-L. Wu, and M.-C. Li, “High Accuracy WiFi-
Based Human Activity Classification System with Time-Frequency
Diagram CNN Method for Different Places,” Sensors, vol. 21, no. 11,
p. 3797, 2021.

[93] H. Abdelnasser, M. Youssef, and K. A. Harras, “WiGest: A Ubiquitous
WiFi-based Gesture Recognition System,” in Conference on Computer
Communications. IEEE, 2015, pp. 1472–1480.

[94] W. Xi, D. Huang, K. Zhao, Y. Yan, Y. Cai, R. Ma, and D. Chen,
“Device-free Human Activity Recognition using CSI,” in Proceedings
of the 1st Workshop on Context Sensing and Activity Recognition, 2015,
pp. 31–36.

[95] X. Liu, J. Cao, S. Tang, and J. Wen, “Wi-Sleep: Contactless Sleep
Monitoring via WiFi Signals,” in Real-Time Systems Symposium.
IEEE, 2014, pp. 346–355.

[96] D. Jiang, M. Li, and C. Xu, “WiGAN: A WiFi Based Gesture
Recognition System with GANs,” Sensors, vol. 20, no. 17, p. 4757,
2020.

[97] J. Huang, B. Liu, H. Jin, and Z. Liu, “WiAnti: an Anti-Interference
Activity Recognition System Based on WiFi CSI,” in International
Conference on Internet of Things and IEEE Green Computing and
Communications and IEEE Cyber, Physical and Social Computing and
IEEE Smart Data. IEEE, 2018, pp. 58–65.

[98] M. Muaaz, A. Chelli, M. W. Gerdes, and M. Pätzold, “Wi-Sense: A
passive human activity recognition system using Wi-Fi and convolu-
tional neural network and its integration in health information systems,”
Annals of Telecommunications, pp. 1–13, 2021.

[99] W. Nie, Z.-C. Han, M. Zhou, L.-B. Xie, and Q. Jiang, “UAV Detection
and Identification Based on WiFi Signal and RF Fingerprint,” Sensors
Journal, 2021.

[100] Y. Bai and X. Wang, “CARIN: Wireless CSI-based Driver Activity
Recognition under the Interference of Passengers,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 4, no. 1, pp. 1–28, 2020.

[101] X. Xu, J. Yu, Y. Chen, Y. Zhu, L. Kong, and M. Li, “BreathListener:
Fine-grained Breathing Monitoring in Driving Environments Utilizing
Acoustic Signals,” in Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services, 2019, pp.
54–66.

[102] S. Mallat, A Wavelet Tour of Signal Processing, 3rd ed. Elsevier,
2009.

[103] M. Vishwanath, “The Recursive Pyramid Algorithm for the Discrete
Wavelet Transform,” Transactions on Signal Processing, vol. 42, no. 3,
pp. 673–676, 1994.

[104] A. Savitzky and M. J. Golay, “Smoothing and Differentiation of Data
by Simplified Least Squares Procedures.” Analytical chemistry, vol. 36,
no. 8, pp. 1627–1639, 1964.

[105] A. Khamis, B. Kusy, C. T. Chou, and W. Hu, “WiRelax: Towards real-
time respiratory biofeedback during meditation using WiFi,” Ad Hoc
Networks, vol. 107, p. 102226, 2020.

[106] J. O. Smith, Introduction to Digital Filters: With Audio Applications.
Julius Smith, 2007, vol. 2.

[107] S. Tan, J. Yang, and Y. Chen, “Enabling Fine-grained Finger Gesture
Recognition on Commodity WiFi Devices,” Transactions on Mobile
Computing, 2020.

[108] Y. Gu, X. Zhang, H. Yan, Z. Liu, and F. Ren, “Wital: WiFi-based
Real-time Vital Signs Monitoring During Sleep,” 2021.

[109] W. Zhuang, Y. Shen, L. Li, C. Gao, and D. Dai, “Develop an Adaptive
Real-Time Indoor Intrusion Detection System Based on Empirical
Analysis of OFDM Subcarriers,” Sensors, vol. 21, no. 7, p. 2287, 2021.

[110] B. Yu, Y. Wang, K. Niu, Y. Zeng, T. Gu, L. Wang, C. Guan, and
D. Zhang, “WiFi-Sleep: Sleep Stage Monitoring Using Commodity
Wi-Fi Devices,” Internet of Things Journal, 2021.

[111] C. Wu, F. Zhang, Y. Hu, and K. R. Liu, “GaitWay: Monitoring and
Recognizing Gait Speed Through the Walls,” Transactions on Mobile
Computing, vol. 20, no. 6, pp. 2186–2199, 2020.

[112] Y. Li, T. Jiang, X. Ding, and Y. Wang, “Location-Free CSI Based
Activity Recognition With Angle Difference of Arrival,” in Wireless
Communications and Networking Conference. IEEE, 2020, pp. 1–6.

[113] D. Wu, R. Gao, Y. Zeng, J. Liu, L. Wang, T. Gu, and D. Zhang, “Fin-
gerDraw: Sub-wavelength Level Finger Motion Tracking with WiFi
Signals,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 4, no. 1, pp. 1–27, 2020.

[114] T. Wang, D. Yang, S. Zhang, Y. Wu, and S. Xu, “Wi-Alarm: Low-Cost
Passive Intrusion Detection Using WiFi,” Sensors, vol. 19, no. 10, p.
2335, 2019.

[115] W. Jiang, H. Xue, C. Miao, S. Wang, S. Lin, C. Tian, S. Murali, H. Hu,
Z. Sun, and L. Su, “Towards 3D Human Pose Construction Using
WiFi,” in Proceedings of the 26th Annual International Conference on
Mobile Computing and Networking, 2020, pp. 1–14.

[116] R. Xiao, J. Liu, J. Han, and K. Ren, “OneFi: One-Shot Recognition
for Unseen Gesture via COTS WiFi,” in Proceedings of the 19th ACM
Conference on Embedded Networked Sensor Systems, 2021, pp. 206–
219.

[117] Y. Lu, S. Lv, and X. Wang, “Towards Location Independent Gesture
Recognition with Commodity WiFi Devices,” Electronics, vol. 8,
no. 10, p. 1069, 2019.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3209144

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 24,2022 at 23:45:35 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.1109/jsen.2019.2900511


HERNANDEZ AND BULUT: WIFI SENSING ON THE EDGE: SIGNAL PROCESSING TECHNIQUES AND CHALLENGES FOR REAL-WORLD SYSTEMS 31

[118] M. A. A. Al-qaness and F. Li, “WiGeR: WiFi-Based Gesture Recogni-
tion System,” ISPRS International Journal of Geo-Information, vol. 5,
no. 6, p. 92, 2016.

[119] T. Li, C. Shi, P. Li, and P. Chen, “A Novel Gesture Recognition System
Based on CSI Extracted from a Smartphone with Nexmon Firmware,”
Sensors, vol. 21, no. 1, p. 222, 2021.

[120] F.-Y. Chu, C.-J. Chiu, A.-H. Hsiao, K.-T. Feng, and P.-H. Tseng,
“WiFi CSI-Based Device-free Multi-room Presence Detection using
Conditional Recurrent Network,” in Proceedings of the 93rd Vehicular
Technology Conference. IEEE, 2021, pp. 1–5.

[121] Y. Ma, S. Arshad, S. Muniraju, E. Torkildson, E. Rantala, K. Doppler,
and G. Zhou, “Location-and Person-Independent Activity Recognition
with WiFi, Deep Neural Networks, and Reinforcement Learning,”
Transactions on Internet of Things, vol. 2, no. 1, pp. 1–25, 2021.

[122] X. Shen, L. Guo, Z. Lu, X. Wen, and S. Zhou, “WiAgent: Link
Selection for CSI-Based Activity Recognition in Densely Deployed
Wi-Fi Environments,” in Wireless Communications and Networking
Conference. IEEE, 2021, pp. 1–6.

[123] Y. Sun, F. Li, G. Li, X. Ma, Q. Gao, M. Pan, and J. Wang, “Enabling
Lightweight Device-Free Wireless Sensing with Network Pruning and
Quantization,” Sensors Journal, 2021.

[124] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Understanding
and Modeling of WiFi Signal Based Human Activity Recognition,”
in Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking, ser. MobiCom ’15. New York, NY, USA:
ACM, 2015, pp. 65–76.

[125] J. Zhang, Z. Tang, M. Li, D. Fang, P. Nurmi, and Z. Wang,
“CrossSense: Towards Cross-Site and Large-Scale WiFi Sensing,”
in Proceedings of the 24th Annual International Conf. on Mobile
Computing and Networking, ser. MobiCom ’18. New York, NY, USA:
ACM, 2018, pp. 305–320.

[126] R. Nandakumar, B. Kellogg, and S. Gollakota, “Wi-Fi Gesture Recog-
nition on Existing Devices,” arXiv preprint arXiv:1411.5394, 2014.

[127] J. Zhao, L. Liu, Z. Wei, C. Zhang, W. Wang, and Y. Fan, “R-DEHM:
CSI-Based Robust Duration Estimation of Human Motion with WiFi,”
Sensors, vol. 19, no. 6, p. 1421, 2019.

[128] Z. Shi, J. A. Zhang, R. Y. Xu, and Q. Cheng, “WiFi-Based Activity
Recognition using Activity Filter and Enhanced Correlation with Deep
Learning,” in International Conference on Communications Workshops.
IEEE, 2020, pp. 1–6.

[129] Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu, “E-
eyes: Device-free Location-oriented Activity Identification Using Fine-
grained WiFi Signatures,” in Proceedings of the 20th annual inter-
national conference on Mobile computing and networking, 2014, pp.
617–628.

[130] P.-E. Novac, G. B. Hacene, A. Pegatoquet, B. Miramond, and
V. Gripon, “Quantization and Deployment of Deep Neural Networks
on Microcontrollers,” Sensors, vol. 21, no. 9, p. 2984, 2021.

[131] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer pa-
rameters and< 0.5 MB model size,” arXiv preprint arXiv:1602.07360,
2016.

[132] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications,” arXiv
preprint arXiv:1704.04861, 2017.

[133] M. Tan and Q. Le, “EfficientNet: Rethinking Model Scaling for Con-
volutional Neural Networks,” in International Conference on Machine
Learning. PMLR, 2019, pp. 6105–6114.

[134] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized Neural Networks,” Advances in neural information processing
systems, vol. 29, 2016.

[135] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both Weights
and Connections for Efficient Neural Networks,” arXiv preprint
arXiv:1506.02626, 2015.

[136] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
Value of Network Pruning,” arXiv preprint arXiv:1810.05270, 2018.

[137] L. Heim, A. Biri, Z. Qu, and L. Thiele, “Measuring what Really
Matters: Optimizing Neural Networks for TinyML,” arXiv preprint
arXiv:2104.10645, 2021.

[138] E. Liberis, Ł. Dudziak, and N. D. Lane, “`NAS: Constrained Neural
Architecture Search for Microcontrollers,” in Proceedings of the 1st
Workshop on Machine Learning and Systems, 2021, pp. 70–79.

[139] C. Wu and K. R. Liu, “Accurate Stride Length Estimation via Fused
Radio and Inertial Sensing,” in Proceedings of the 6th World Forum
on Internet of Things. IEEE, 2020, pp. 1–6.

[140] F. Wang, F. Zhang, C. Wu, B. Wang, and K. J. R. Liu, “Respiration
Tracking for People Counting and Recognition,” IEEE Internet of
Things Journal, vol. 7, no. 6, pp. 5233–5245, jun 2020. [Online].
Available: https://doi.org/10.1109/jiot.2020.2977254

[141] O. Oshiga, H. U. Suleiman, S. Thomas, P. Nzerem, L. Farouk, and
S. Adeshina, “Human Detection For Crowd Count Estimation Using
CSI of WiFi Signals,” in 2019 15th International Conference on
Electronics, Computer and Computation (ICECCO). IEEE, dec 2019.
[Online]. Available: https://doi.org/10.1109/icecco48375.2019.9043195

[142] A. Polo, M. Salucci, S. Verzura, Z. Zhou, and A. Massa, “Real-
Time CSI-Based Wireless Gesture Recognition for Human-Machine
Interaction,” in 2021 10th International Conference on Modern Circuits
and Systems Technologies (MOCAST). IEEE, jul 2021. [Online].
Available: https://doi.org/10.1109/mocast52088.2021.9493383

[143] S. Li, Y. Ma, X. Gu, Y. Fan, P. Wang, Y. Lu, and B. Liu,
“WiFi-based Device-free Vehicle Speed Measurement Using Fast
Phase Correction MUSIC Algorithm,” in 2020 International
Conferences on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData) and IEEE Congress on Cybermatics (Cybermatics).
IEEE, nov 2020. [Online]. Available: https://doi.org/10.1109/
ithings-greencom-cpscom-smartdata-cybermatics50389.2020.00033

[144] H. Xue, J. Yu, F. Lyu, and M. Li, “Push the Limit of Multipath Profiling
Using Commodity WiFi Devices With Limited Bandwidth,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4142–4154,
apr 2020. [Online]. Available: https://doi.org/10.1109/tvt.2020.2966871

[145] S. Tewes and A. Sezgin, “WS-WiFi: Wired Synchronization for CSI
Extraction on COTS-WiFi-Transceivers,” IEEE Internet of Things
Journal, vol. 8, no. 11, pp. 9099–9108, jun 2021. [Online]. Available:
https://doi.org/10.1109/jiot.2021.3058179

[146] F. Tirado-Andrés and A. Araujo, “Performance of clock sources and
their influence on time synchronization in wireless sensor networks,”
International Journal of Distributed Sensor Networks, vol. 15, no. 9,
p. 1550147719879372, 2019.

[147] W. Li, M. J. Bocus, C. Tang, R. J. Piechocki, K. Woodbridge,
and K. Chetty, “On CSI and Passive Wi-Fi Radar for Opportunistic
Physical Activity Recognition,” IEEE Transactions on Wireless
Communications, vol. 21, no. 1, pp. 607–620, jan 2022. [Online].
Available: https://doi.org/10.1109/twc.2021.3098526

[148] E. Soltanaghaei, R. A. Sharma, Z. Wang, A. Chittilappilly, A. Luong,
E. Giler, K. Hall, S. Elias, and A. Rowe, “Robust and practical
WiFi human sensing using on-device learning with a domain adaptive
model,” in Proceedings of the 7th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation,
2020, pp. 150–159.

[149] S. Kato, T. Fukushima, T. Murakami, H. Abeysekera, Y. Iwasaki,
T. Fujihashi, T. Watanabe, and S. Saruwatari, “CSI2Image: Image
Reconstruction From Channel State Information Using Generative
Adversarial Networks,” IEEE Access, vol. 9, pp. 47 154–47 168, 2021.

[150] B. Wu, T. Jiang, J. Yu, X. Ding, S. Wu, and Y. Zhong,
“Device-Free Human Activity Recognition With Identity-Based
Transfer Mechanism,” in 2021 IEEE Wireless Communications
and Networking Conference (WCNC). IEEE, mar 2021. [Online].
Available: https://doi.org/10.1109/wcnc49053.2021.9417373

[151] Y. Ma, S. Arshad, S. Muniraju, E. Torkildson, E. Rantala, K. Doppler,
and G. Zhou, “Location- and Person-Independent Activity Recognition
with WiFi, Deep Neural Networks, and Reinforcement Learning,”
ACM Transactions on Internet of Things, vol. 2, no. 1, pp. 1–25, feb
2021. [Online]. Available: https://doi.org/10.1145/3424739

[152] D. Zhang, X. Li, and Y. Chen, “Pushing the Limit of Phase Offset
for Contactless Sensing Using Commodity Wifi,” in ICASSP 2021
- 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, jun 2021. [Online]. Available:
https://doi.org/10.1109/icassp39728.2021.9414926

[153] H. Choi, M. Fujimoto, T. Matsui, S. Misaki, and K. Yasumoto, “Wi-
CaL: WiFi Sensing and Machine Learning Based Device-Free Crowd
Counting and Localization,” IEEE Access, vol. 10, pp. 24 395–24 410,
2022. [Online]. Available: https://doi.org/10.1109/access.2022.3155812

[154] M. Cominelli, F. Gringoli, and R. L. Cigno, “Passive Device-Free
Multi-Point CSI Localization and Its Obfuscation with Randomized
Filtering,” in 2021 19th Mediterranean Communication and Computer
Networking Conference (MedComNet). IEEE, jun 2021. [Online].
Available: https://doi.org/10.1109/medcomnet52149.2021.9501240

[155] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna:
A Next-generation Hyperparameter Optimization Framework,” in Pro-

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3209144

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 24,2022 at 23:45:35 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.1109/jiot.2020.2977254
https://doi.org/10.1109/icecco48375.2019.9043195
https://doi.org/10.1109/mocast52088.2021.9493383
https://doi.org/10.1109/ithings-greencom-cpscom-smartdata-cybermatics50389.2020.00033
https://doi.org/10.1109/ithings-greencom-cpscom-smartdata-cybermatics50389.2020.00033
https://doi.org/10.1109/tvt.2020.2966871
https://doi.org/10.1109/jiot.2021.3058179
https://doi.org/10.1109/twc.2021.3098526
https://doi.org/10.1109/wcnc49053.2021.9417373
https://doi.org/10.1145/3424739
https://doi.org/10.1109/icassp39728.2021.9414926
https://doi.org/10.1109/access.2022.3155812
https://doi.org/10.1109/medcomnet52149.2021.9501240


32 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XXXX

ceedings of the 25th SIGKDD international conference on knowledge
discovery & data mining. ACM, 2019, pp. 2623–2631.

[156] C. E. Shannon, “Communication in the Presence of Noise,” Proceed-
ings of the IRE, vol. 37, no. 1, pp. 10–21, 1949.

[157] J. Xiao, H. Li, and H. Jin, “Transtrack: Online meta-transfer learning
and Otsu segmentation enabled wireless gesture tracking,” Pattern
Recognition, vol. 121, p. 108157, 2022.

[158] G. Zhang, Z. Tian, M. Zhou, and X. Chen, “Gait Cycle Detection Using
Commercial WiFi Device,” in International Conference in Communica-
tions, Signal Processing, and Systems. Springer, 2020, pp. 1224–1231.

[159] Y. Wang, L. Guo, Z. Lu, X. Wen, S. Zhou, and W. Meng, “From
Point to Space: 3D Moving Human Pose Estimation Using Commodity
WiFi,” Communications Letters, 2021.

[160] S. M. Hernandez and E. Bulut, “Online Stream Sampling for Low-
Memory On-Device Edge Training for WiFi Sensing,” in Proceedings
of the ACM Workshop on Wireless Security and Machine Learning,
2022, pp. 9–14.

[161] M. Sulaiman, S. A. Hassan, and H. Jung, “True Detect: Deep Learning-
based Device-Free Activity Recognition using WiFi,” in Wireless
Communications and Networking Conference Workshops. IEEE, 2020,
pp. 1–5.

[162] M. J. Bocus, W. Li, J. Paulavicius, R. McConville, R. Santos-
Rodriguez, K. Chetty, and R. Piechocki, “Translation Resilient Op-
portunistic WiFi Sensing,” in Proceedings of the 25th International
Conference on Pattern Recognition. IEEE, 2021, pp. 5627–5633.

[163] C. Tang, W. Li, S. Vishwakarma, K. Chetty, S. Julier, and K. Wood-
bridge, “Occupancy Detection and People Counting Using WiFi Passive
Radar,” in Radar Conference. IEEE, 2020, pp. 1–6.

[164] N. Alishahi, M. Nik-Bakht, and M. M. Ouf, “A framework to identify
key occupancy indicators for optimizing building operation using WiFi
connection count data,” Building and Environment, vol. 200, p. 107936,
2021.

[165] R. Hu, B. Michel, D. Russo, N. Mora, G. Matrella, P. Ciampolini,
F. Cocchi, E. Montanari, S. Nunziata, and T. Brunschwiler, “An
Unsupervised Behavioral Modeling and Alerting System Based on
Passive Sensing for Elderly Care,” Future Internet, vol. 13, no. 1, p. 6,
2021.

[166] M. Allegue, N. Ghouechian, and N. Rozon, “WiFi Motion Intelligence:

The Fundamentals,” WiFi Motion Intelligence: The Fundamentals,
2020.

[167] S. K. Mani, R. Durairajan, P. Barford, and J. Sommers, “An Archi-
tecture for IoT Clock Synchronization,” in Proceedings of the 8th
International Conference on the Internet of Things, 2018, pp. 1–8.

[168] S. M. Hernandez and E. Bulut, “WiFederated: Scalable WiFi Sensing
Using Edge-Based Federated Learning,” IEEE Internet Things Journal,
vol. 9, no. 14, pp. 12 628–12 640, 2022.

Steven M. Hernandez (Member, IEEE) received
the B.S. degree in computer science from Virginia
Commonwealth University, Richmond, VA, USA, in
2018. He is currently pursuing the Ph.D. degree with
the Computer Science Department, Virginia Com-
monwealth University, Richmond, VA, USA, with
funding through the National Science Foundation
Graduate Research Fellowship under the supervision
of Dr. Bulut. His research interests include WiFi
sensing, machine learning on the edge, federated
learning, and intelligent embedded systems.

Eyuphan Bulut (Senior Member, IEEE) received
the Ph.D. degree in the Computer Science depart-
ment of Rensselaer Polytechnic Institute (RPI), Troy,
NY, USA, in 2011. He then worked as a Senior En-
gineer with the Mobile Internet Technology Group,
Cisco Systems, Richardson, TX, USA, for 4.5 years.
He is currently an Associate Professor with the
Department of Computer Science, Virginia Com-
monwealth University (VCU), Richmond, VA, USA.
His research interests include mobile and wireless
computing, network security and privacy, mobile

social networks and crowd-sensing. Dr. Bulut is an Associate Editor in
Elsevier Ad Hoc Networks and IEEE Access, and has been serving in the
organizing committee of several conferences. He is also a member of ACM.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3209144

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 24,2022 at 23:45:35 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Background
	Orthogonal Frequency-Division Multiplexing (OFDM)
	Channel State Information (CSI)
	WiFi Sensing Applications

	Survey of Common CSI Signal Techniques
	Signal Processing
	Feature Extraction
	Denoising Filters
	Dimensionality Reduction

	Data Preparation
	Detrending
	Interpolation (of Missing Frames)
	Segmentation
	Feature Scaling

	Prediction Making
	Classification and Machine Learning
	State Validation
	Voting

	Systems and Hardware
	Clock Synchronization
	Data Annotation
	Device-to-Device Communication
	Cyber Physical System Integration


	Evaluation of CSI  Processing Techniques
	Experiment Descriptions
	Hyperparameter Optimization
	Independent Evaluation of Each Method
	Dimensionality Reduction
	Interpolation
	Feature Scaling

	Evaluation of Edge-Based WiFi Sensing System
	Sampling Rate
	Inference Rate with Signal Processing Techniques
	Inference Rate with On-board Machine Learning
	Energy Consumption

	Lessons Learned
	Selecting Signal Processing Techniques
	Feature Extraction
	Denoising Filters
	Dimensionality Reduction

	Feasibility of WiFi Sensing at the Edge
	Identify ESP32 for Edge WiFi Sensing
	Evaluated ESP32 for different use cases

	New Considerations for Edge WiFi Sensing
	Need for Inference Rate Evaluations
	Need for Lightweight Model Architecture Designs
	Edge Hardware Considerations


	Future Challenges
	Multiple TX/RX Links
	Long-Term Model Adaptation
	Real-Time Segmentation
	Integration with Physical Systems

	Conclusion
	References
	Biographies
	Steven M. Hernandez
	Eyuphan Bulut


