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Preface

Physics explains everything from the beginning to the end of any complete
description of the human body. Such a comprehensive discussion should begin
with the basic structure of matter, as explained by quantum mechanics – the
physics at small dimensions, and end with the mechanics of human motion,
the energetics of metabolism, the fluid dynamics of blood flow through vessels,
the mechanisms for speaking and hearing, and the optical imaging system
we call the eye. All of required combinations of atoms to form the complex
molecules and organs of organisms that live and reproduce can be explained by
quantum mechanics; however, such explanations can get pretty complex. The
fields of chemistry and biology have been developed, in part, to explain the
gap between the extremes – the microphysics and macrophysics of organisms
such as the human body.

This book focuses mostly on the macrophysics end of the human body. We
will assume that atoms form molecules that form cells that form organs. We
want to understand the physics of human organs and of humans themselves.
We will apply and somewhat extend freshman level physics to see how the
body works. In addition to applying physical concepts to the body, we will
try to understand the body from a viewpoint that is more numerical than is
often adopted in biological and medical presentations.

One way to characterize this text is by saying what it is and what it is not.
It is certainly about the physics of the human body. It is not about human
anatomy, although we will need to use some basic anatomical concepts. It
is not about human physiology, although it can be called a book about the
physics of physiology. It is not a monograph in biomedical engineering per se,
although about half of this volume concerns biomechanics, one important area
in biomedical engineering. Medical physics is more closely related to health
physics, the use of ionizing radiation, imaging, and instrumentation than to
the macrophysics of the body. Biophysics concerns how physics can be used to
study biology and focuses much more on the molecular basis and the cellular
basis than will we (see Appendix E). One could say that the physics of the
human body is synonymous with understanding the human machine.
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Our goal is to understand physical issues concerning the human body, in
part by solving problems to further this understanding. The focus is not at
all on learning and memorizing medical terminology. Still some very basic
concepts in anatomy and physiology will be introduced and used. Several of
the many excellent general anatomy and physiology texts are cited at the end
of the chapter [11, 16, 21, 22, 23, 24, 25, 26, 27, 29].

One theme that runs throughout this text is developing and then using
simple and subsequently more refined models of the macrophysics of the hu-
man body [7, 13, 15]. Physicists tend to model concepts in as simple terms
as possible at first. For example, to zero order a physicist would model a cow
as a sphere. (This is sometimes used as part of a joke.) We will get a bit
more complex here, but not much more. Another theme is to address issues in
human biology quantitatively that are often addressed only qualitatively. The
call for more quantitative thinking in physiology by Burton in Physiology by
Numbers [5] is much appreciated by the author. In addition, we will present
real physiological data and tie them with quantitative analysis and modeling.

If there is an applied force, energy, fluid flow, a light ray, an electric current,
or an electric or magnetic field associated with the body, we will call it physics
and we will analyze it. We will tend to avoid topics that delve into more
chemistry and biology issues, but will briefly address physical chemistry issues
involving concentration gradients and such, as they relate to fluid exchange
in capillaries and conduction in nerves. Although we emphasize the physics
of the body over the instrumentation used to make physical measurements
on the body and probe body function, such instrumentation is addressed as
needed.

Our intent is to use basic physics and not to teach it, particularly from
scratch. Many chapters include a brief review of the physics principles needed
in that chapter and subsequent chapters. Some topics are developed a bit fur-
ther, and some even a bit further – and these are identified as advanced topics.
More detailed overviews are given for topics seldom covered in detail during
a two-semester physics course, such as fluids (Chap. 7), acoustics (Chap. 10),
and optics (Chap. 11) and for areas used in several contexts, such as harmonic
motion (Chap. 3). Some differential and integral calculus is used. (Partial dif-
ferentiation is used sparingly, and mostly in sections labeled as advanced top-
ics.) A brief review of the solutions to the simple differential equations used
here is presented in Appendix C to help students with a limited background
in calculus.

We will start with a comparison of medical and physics-type terminology in
Chap. 1. The first chapter also includes a discussion of the “standard” human
and introduces the concept of scaling relations. We can group the topics in
subsequent 11 chapters into four areas in human body physics. (1) In Chaps. 2–
5, the mechanics of the static body (Chap. 2) and the body in motion (Chap. 3)
are analyzed and are then linked to the mechanical properties of the materials
of the body (Chap. 4) and the body’s motors: muscles (Chap. 5); these topics
can be characterized as Locomotion on Land. (2) The second topic, Energetics
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of the Body Metabolism, is discussed in Chap. 6 and is needed to understand
the discussions of body locomotion and function that precede and follow it. (3)
Chapters 7–9 cover the Locomotion of Humans in Fluids (other than on land)
and the Motion of Fluids in Humans. Chapter 7 overviews the physics of fluids
and addresses locomotion in water (swimming) and in air – above ground (at
least, the prospect for human flying). Chapters 8 and 9 respectively cover
the fluidics of blood (cardiovascular system) and air (respiratory system) in
the body. (4) Chapter 10 explores the acoustics of sound waves in speaking
and hearing. The optics of eyes and vision are investigated in Chap. 11. Basic
electrical properties of the body are developed in Chap. 12, along with a brief
description of the magnetic properties of the body. So these three chapters
respectively address sound, electromagnetic, and electrical waves, which we
can collectively call Waves and Signals. (The electromagnetic nature of light
waves is not discussed in Chap. 11.)

Chapter 13 examines how the body automatically uses the basic engineer-
ing principle of feedback and control in regulating all aspects of function.
The physics of sensation of three of the five senses are described: hearing,
seeing, and touch – the last briefly in Chap. 2. Some connection is made be-
tween the physics of sensation, biochemistry of sensation, and perception (psy-
chophysics) in Chap. 1. The sense of taste and smell are purely chemical, with
little basis in physics (other than the chemistry of the molecular interactions
in each being clear applications of physics), and are not covered – except for
a brief discussion of the electrical properties of the taste and smell sensory
neurons in Chap. 12. The emphasis throughout is on how physics can explain
the functioning of the body under normal and unusual circumstances. We
will concern ourselves with the human body with its common body coverings:
footware to minimize stress during movement (Chap. 4), clothes to regulate
heat loss (Chap. 6), and corrective lenses to improve vision (Chap. 11).

The chapters are set more to address specific areas in physics rather than
specific parts or systems in the body. It is difficult to construct chapters with
clean divisions because different areas of physics are needed to understand
many components of the body. For example, to understand the physics of the
heart, you need to address its role in circulation (Chap. 8), the action of mus-
cles (Chap. 5, which is more focused on skeletal muscle than the fairly similar
cardiac muscle), and the electrical signals generated by the heart (Chap. 12).

This text concludes with five appendices. Appendix A overviews symbols
and units, and references tables of units presented in the chapters. Appen-
dix B lists the figures and tables that describe the main features of human
anatomical and anthropometric information, which are used throughout this
text. The types of differential equations used in the text are reviewed in Ap-
pendix C. These same differential equations are used throughout the text in
mechanical, fluid flow, and electrical models; the connections between these
models are made in Appendix D. Appendix E attempts to define the field of
biophysics, and connects the contents of this text with this field.
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This text has been developed from the author’s lecture notes developed
for the course Physics of the Human Body, which is a “professional-level” re-
stricted elective course he developed taken mostly by first and second year
undergraduates in the Columbia University Fu Foundation School of Engi-
neering and Applied Science. This course was designed so it could be taken
by all first year students in their second term (in conjunction with second-
term physics and calculus). The author usually covers Chaps. 1–10 in some
detail and Chaps. 11–13 in less detail in a full semester.

Courses at different levels, including mid-level and upper-level undergrad-
uate courses, can be taught by purposely including or excluding more detailed
and advanced topics in the text and problems. Depending of the level of de-
sired depth, material in about half to all the chapters can be covered in one
term.

This text can also be used as a companion volume in introductory physics
courses, and assist premedical undergraduates in learning and reviewing
physics. It can also serve as a text in introductory biomedical engineering
or medical materials courses. Medical students interested in a more quan-
titative approach to physiology and those doing medical research may also
appreciate the approaches adopted here.

Many problems are presented at the end of each chapter, ranging from
simple to more advanced problems (the latter are denoted as such). Several
problems have multiple parts, and only a few of these parts can be assigned.
Answers to selected problems are given after the appendices.

Usually SI (MKS, m-kg-s) units are used; when more convenient, other
metric units, including CGS (cm-g-s) units and mixed metric units are used.
English FPS (ft-lb-s) units are sometimes purposely used to make a connection
to the real world (at least in countries such as the USA and UK). For example,
it would be strange to hear a baseball announcer say, “This pitcher is really
throwing some heat. The radar gun clocked his last pitch at 43.8 m/s (or
158 km/h)”, as opposed to 98 mph. It would be stranger to hear a football
(i.e., American football) announcer say, “They have first (down) and 9.144
to go”, meaning 9.144 m instead of 10 yd. Similarly, it would be strange to
discuss the physics of the body in these sports, such as in throwing a baseball,
in any but the usual units. Angles are given in radians, except when using
degrees gives a more physical picture.

Several excellent texts cover material that overlaps topics covered here,
each with a different focus. They are magnificent resources in their own right.
Physics of the Body by Cameron, Skofronick, and Grant [6] spans most of the
topics in this book and provides excellent physical insight. It is at a level of
physics that is lower than that used here and derives and presents fewer of
the equations necessary for a more rigorous treatment, but it provides a very
good basic background in human physiology for nonexperts. In a way, the
emphasis of The Human Machine by Alexander [2] coincides with ours, but,
again, the explanations are more qualitative. The mode of physical thinking it
presents is impressive. Physics with Examples from Medicine and Biology by
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Benedek and Villars [3] is a series of three comprehensive introductory physics
texts in which excellent examples and problems have been chosen concern-
ing the physics of the body. The authors have taken several fairly complex
topics and have made them utterly understandable. Many other first-year
general physics texts commonly used nowadays have several examples and
chapter problems dealing with the body. Intermediate Physics for Medicine
and Biology by Hobbie [14] is a more advanced text that emphasizes both
physics and physical chemistry. Medical Physics and Biomedical Engineering
by Brown et al. [4] is a bit more advanced and focuses also on classic ar-
eas in medical physics, such as radioactivity and instrumentation. Many of
the illustrative problems concerning human biology and related topics have
been collected in the beautiful books: Biomedical Applications of Introduc-
tory Physics by Tuszynski and Dixon [28], Physics in Biology and Medicine
by Davidovits [9], Biophysics Problems: A Textbook with Answers by Maróti,
Berkes, and T́’olgyesi [17], Physics for the Biological Sciences: A Topical Ap-
proach to Biophysical Concepts by Hallett, Stinson, and Speight [12], and
Topics in Classical Biophysics by Metcalf [18]. Many of the issues in exercise
physiology, such as the metabolism during sporting activities, are described
in elementary terms in Fox’s Physiological Basis for Exercise and Sport by
Foss and Keteyian [10] and Physiology of Sport and Exercise by Wilmore
and Costill [30]. Basic Biomechanics of the Musculoskeletal System, edited
by Nordin and Frankel [20] is a comprehensive and clear overview of the bio-
mechanics of structures, joints, and motion. The applications of physics at a
more molecular and cellular level, more in the classical domain of biophysics,
are described in Biophysics: An Introduction, by Cotterill [8] and Biological
Physics: Energy, Information by Nelson [19]. The more general application of
physics to animals is addressed in the exciting and very comprehensive book
Zoological Physics: Quantitative Models, Body Design, Actions and Physical
Limitations in Animals by Ahlborn [1]. All of these texts are highly recom-
mended for more details. They, along with the anatomy and physiology texts
cited earlier, have contributed to the preparation of this text.

The author thanks the many people who have made valuable comments
contributing to this book, including Marlene Arbo, Gerard Ateshian, Sarba-
jit Benerjee, Alex Breskin, Bill Burdick, Yi-Ting Chiang, Kevin Costa, Ted
Ducas, Yossi Goffer, Daniel Herman, Jonathan Herman, Steven Heymsfield,
Jeffrey Holmes, Mark Langill, Barclay Morrison III, Elizabeth Olson, Thomas
Pedersen, Harry Radousky, Paul Sajda, Michael Sheetz, and Samuel Sia. He
would also like to thank the Columbia University Library system.

This author began writing this text when he was a Lady Davis Scholar on
sabbatical at Hebrew University in Jerusalem as a guest of Uri Banin, and he
gratefully acknowledges this support.

New York, NY, November 2006 Irving P. Herman
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1

Terminology, the Standard Human, and Scaling

Several concepts will appear throughout our discussion of the human body:
medical terminology, the characteristics of a “typical” human, and how body
properties and responses scale with parameters. Much of the problem we have
in comprehending specialists in any field is in understanding their jargon,
and not in understanding their ideas. This is particularly true for medicine.
Much of medical jargon of interest to us is the terminology used in anatomy,
and much of that in anatomy relates to directions and positions. To make
things clearer for people who think in more physics-type terms, we will relate
some of the anatomical coordinate systems used in medicine to coordinate
systems that would be used by physicists to describe any physical system.
We will also extend this terminology to describe the degrees of freedom of
rotational motion about the joints needed for human motion. In all of our
discussions we will examine a typical human. To be able to do this, we will
define and characterize the concept of a standard human. The final concept in
this introductory chapter will be that of scaling relationships. We will examine
how the properties of a standard human scale with body mass and how the
perception level of our senses varies with the level of external stimulus.

1.1 Anatomical Terminology

The first series of anatomical “coordinate systems” relate to direction, and
the first set of these we encounter is right vs. left. With the xyz coordinate
system of the body shown in Fig. 1.1, we see that right means y < 0 and
left means y > 0. Right and left, as well as all other anatomical terms, are
always from the “patient’s” point of view. This was made perfectly clear to the
author during a visit to his son’s ophthalmologist. When he tried to discuss
what he thought was his son’s right eye, it was pointed out to the author in
no uncertain terms that he was really referring to the patient’s left eye and
that he was doing so in an improper manner. Case closed! (Stages in theaters
have a similar convention, with stage left and stage right referring to the left
and right sides of an actor on stage facing the audience. This was evident in
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Fig. 1.1. Directions, orientations, and planes used to describe the body in anatomy,
along with common coordinate systems described in the text. We will assume
both terms in the following pairs mean the same: superior/cranial, inferior/caudal,
anterior/ventral, and posterior/dorsal, even though there may be fine distinctions
in what they mean, as is depicted here. (From [43], with additions. Used with
permission)

a funny scene in the movie Tootsie when a stagehand was told to focus on
the right side of the face of Dorothy Michaels, aka Michael Dorsey, aka Dustin
Hoffman – and Dorothy heard this and then turned her (i.e., his) head so the
camera would be focusing on the left side of her (i.e., his) face. A comical
debate then ensued concerning whose “right” was correct, that of a person on
stage or one facing the stage.)

The second direction is superior (or cranial), which means towards the
head or above, i.e., to larger z. Inferior (or caudal (kaw’-dul)) means away
from the head, i.e., to smaller z – in an algebraic sense, so more and more
inferior means smaller positive numbers and then more highly negative values
of z. (This is relative to a defined z = 0 plane. We could choose to define the
origin of the coordinate system at the center of mass of the body.) So, the
head is superior to the feet, which are inferior to the head. After supplying
the body with oxygen, blood returns to the heart through two major veins, the
superior and inferior vena cava (vee’-nuh cave’-uh), which collect blood from
above and below the heart, respectively. (As you see, words that the author
has trouble pronouncing are also presented more or less phonetically, with an
apostrophe after the accented syllable.)

Anterior (or ventral) means towards or from the front of the body, i.e., to
larger x. Posterior (or dorsal) means towards or from the back, corresponding
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to smaller algebraic x. The nose is anterior to the ears, which are posterior to
the nose.

There is another pair of terms that relate to the y coordinate, specifically
to its magnitude. Medial means nearer the midline of the body, i.e., towards
smaller |y|. Lateral means further from the midline, i.e., towards larger |y|.

Other anatomical terms require other types of coordinate systems. One
set describes the distance from the point of attachment of any of the two
arms and two legs from the trunk. Figure 1.1 depicts this with the coordinate
r, where r = 0 at the trunk. r is never negative. Proximal means near the
point of attachment, i.e., to smaller r. Distal means further from the point of
attachment, or larger r.

The last series of directional terms relates to the local surface of the body.
This can be depicted by the coordinate ρ (inset in Fig. 1.1), which is related to
x and y in an x − y plane. ρ = 0 on the local surface of the body. Superficial
means towards or on the surface of the body, or to smaller ρ. Deep means
away from the surface, or towards larger ρ.

These directional terms can refer to any locality of the body. Regional
terms designate a specific region in the body (Tables 1.1 and 1.2). This is il-
lustrated by an example we will use several times later. The region between the
shoulder and elbow joints is called the brachium (brae’-kee-um). The adjec-
tive used to describe this region in anatomical terms is brachial (brae’-kee-al).
The muscles in our arms that we usually call the biceps are really the brachial
biceps or biceps brachii, while our triceps are really our brachial triceps or
triceps brachii. The terms biceps and triceps refer to any muscles with two
or three points of origin, respectively (as we will see) – and not necessarily
to those in our arms.

The final set of terms describes two-dimensional planes, cuts or sections of
the body. They are illustrated in Fig. 1.1. A transverse or horizontal section
separates the body into superior and inferior sections. Such planes have con-
stant z. Sagittal sections separate the body into right and left sections, and
are planes with constant y. The midsagittal section is special; it occurs at the
midline and is a plane with y = 0. The frontal or coronal section separates
the body into anterior and posterior portions, as described by planes with
constant x.

Much of our outright confusion concerning medical descriptions is allevi-
ated with the knowledge of these three categories of anatomical terminology.
There is actually a fourth set of anatomical terms that relates to types of
motion. These are discussed in Sect. 1.2.

1.2 Motion in the Human Machine

Anatomical terms refer to the body locally whether it is at rest or in motion.
Since we are also concerned with how we move, we need to address human
motion [32]. We will describe how we move by examining the degrees of freedom
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Table 1.1. Anatomical terms in anterior regions

anatomical term common term

abdominal abdomen

antebrachial forearm

axilliary armpit

brachial upper arm

buccal cheek

carpal wrist

cephalic head

cervical neck

coxal hip

crural front of leg

digital finger or toe

frontal forehead

iguinal groin

lingual tongue

mammary breast

mental chin

nasal nose

oral mouth

palmar palm

pedal foot

sternal breastbone

tarsal ankle

thoracic chest

umbilical navel

of our motion and the means for providing such motion by our joints. We will
see that our arms and legs are constructed in a very clever manner. Because
joints involve motion between bones, we will need to refer to the anatomy of
the skeletal system, as in Fig. 1.2.

Table 1.2. Anatomical terms in posterior regions

anatomical term common term

acromial top of shoulder

femoral thigh

gluteal buttock

occipital back of head

plantar sole of foot

popliteal back of knee

sacral between hips

sural back of leg

vertebral spinal column
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Fig. 1.2. Anatomy of the skeletal system, anterior view, with major bones and
joints listed. (From [59])

Think of a degree of freedom (DOF) of motion as a coordinate needed to
describe that type of motion. If you want to relocate an object, you are gener-
ally interested in changing its center of mass and its angular orientation. You
may want to change its center of mass from an (x, y, z) of (0, 0, 0) to (a, b, c).
Because three coordinates are needed to describe this change, there are three



6 1 Terminology, the Standard Human, and Scaling

“translational” degrees of freedom. Similarly, you can change the angular ori-
entation of the object about the x, y, and z axes, by changing the angles this
object can be rotated about these three axes: θx, θy, and θz, respectively. So,
there are also three rotational degrees of freedom. (Sometimes, these three
independent rotations are defined differently, by the three Eulerian angles,
which will not be introduced here.)

These six (three plus three) degrees of freedom are independent of each
other. Keeping your fingers rigid as a fist, you should be able to change inde-
pendently either the x, y, z, θx, θy, and θz of your fist by moving your arms
in different ways. You should try to change the x, y, and z of your fist, while
keeping θx, θy, and θz fixed. Also, try changing the θx, θy, and θz of your fist,
while keeping its x, y, and z constant.

We would like each of our arms and legs to have these six degrees of
freedom. How does the body do it? It does it with joints, also known as articu-
lations. Two types of articulations, fibrous (bones joined by connective tissue)
and cartilaginous (bones joined by cartilage) joints, can bend only very little.
There is a joint cavity between the articulating bones in synovial joints. Only
these synovial joints have the large degree of angular motion needed for mo-
tion. As seen in Fig. 1.3, in synovial joints cartilage on the ends of opposing
bones are contained in a sac containing synovial fluid. The coefficient of fric-
tion in such joints is lower than any joints made by mankind. (More on this
later.)

There are several types of synovial joints in the body, each with either
one, two, or three degrees of angular motion. Each has an analog with
physical objects, as seen in Fig. 1.4. For example, a common door hinge
is a model of one degree of angular freedom. Universal joints, which con-
nect each axle to a wheel in a car, have two angular degrees of freedom.
A ball-and-socket joint has three independent degrees of angular motion.
The water faucet in a shower is a ball-and-socket joint. The balls and sock-
ets in these joints are spherical. Condyloid or ellipsoidal joints are ball-and-
socket joints with ellipsoidal balls and sockets. They have only two degrees
of freedom because rotation is not possible about the axis emanating from
the balls. A saddle joint, which looks like two saddles meshing into one an-
other, also has two degrees of angular motion. Other examples are shown in
Fig. 1.4.

Now back to our limbs. Consider a leg with rigid toes. The upper leg bone
(femur) is connected to the hip as a ball-and-socket joint (three DOFs) (as in
the song “Dry Bones” aka “Them Bones” in which “The hip bone is connected
to the thigh bones, . . . .” The knee is a hinge (one DOF). The ankle is a saddle
joint (two DOFs). This means that each leg has six degrees of angular motion,
as needed for complete location of the foot. Of course, several of these degrees
of freedom have only limited angular motion.

Now consider each arm, with all fingers rigid. The upper arm (humerus)
fits into the shoulder as a ball-and-socket joint (three DOFs). The elbow is a
hinge (one DOF). The wrist is an ellipsoidal joint (two DOFs). That makes
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Fig. 1.3. The right knee synovial joint, with (a) anterior view with the kneecap
(patella) removed and (b) in sagittal section (photo). Also see Fig. 3.2e. (From [59])

six DOFs. The leg has these six DOFs, but the arm has one additional DOF,
for a total of seven. This additional DOF is the screwdriver type motion of
the radius rolling on the ulna (Figs. 1.2, 2.7, and 2.8), which is a pivot with 1
DOF. With only six DOFs you would be able to move your hand to a given x,
y, z, θx, θy, θz position in only one way. With the additional DOF you can do
it in many ways, as is seen for the person sitting in a chair in Fig. 1.5. There
are many more degrees of freedom available in the hand, which enable the
complex operations we perform, such as holding a ball. Figure 1.6 shows the
bones of the hand, and the associated articulations and degrees of freedom
associated with the motion of each finger.
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Fig. 1.4. Six types of synovial joints, including a: (a) hinge joint (1D joint), as in the
elbow joint for flexion and extension, (b) pivot joint (1D joint), as in the atlantoaxial
joint in the spinal cord for rotation, (c) saddle joint (2D), which is both concave
and convex where the bones articulate, as in the joint between the first metacarpal
and the trapezium in the hand, (d) condyloid or ellipsoidal joint (2D), as in the
metacarpophalangeal (knuckle) joint between the metacarpal and proximal phalanx
for flexion and extension, abduction and adduction, and circumduction, (e) plane
joint (2D), as in the acromioclavicular joint in the shoulder for gliding or sliding,
and (f) ball-and-socket joint (3D), as in the hip joint (and the shoulder joint) for
flexion and extension, abduction and adduction, and medial and lateral rotation. See
Figs. 1.9 and 1.10 for definitions of the terms describing the types of motion about
joints and the diagrams in Fig. 1.11 for more information about synovial joints.
(From [49]. Used with permission)
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Fig. 1.5. Nonunique way of positioning the right arm. This is demonstrated by
grasping the armrest while sitting, with the six coordinates of the hand (three for
position and three for angle) being the same in both arm positions. This is possible
because the arm can use its seven degrees of freedom to determine these six coor-
dinates. (From [32]. Copyright 1992 Columbia University Press. Reprinted with the
permission of the press)

We can also see why it is clever and good engineering that the knee hinge
divides the leg into two nearly equal sections and the elbow hinge divides the
arm into two nearly equal sections. In the two-dimensional world of Fig. 1.7
this enables a greater area (volume for 3D) to be covered than with unequal
sections.

Fig. 1.6. (a) Anatomy of the hand and (b) the degrees of freedom of the hand and
fingers, with joints (spaces) having one (spaces with flat terminations) or two (curved
terminations, with a “2” below the joint) degrees of freedom. (From [32]. Copyright
1992 Columbia University Press. Reprinted with the permission of the press)
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Fig. 1.7. Range of hand motion in two dimensions for different lengths of the upper
and lower arms. (From [32]. Copyright 1992 Columbia University Press. Reprinted
with the permission of the press)

In preparation for our discussion of statics and motion of the body, we
should consider the building blocks of human motion. There are four types
of components: bones, ligaments, muscles, and tendons. Each has a very dif-
ferent function and mechanical properties. Bones are often lined with hyaline
(high’u-lun) articular cartilage at the synovial joints. Ligaments hold bones
together. Muscles, in particular skeletal muscles, are the motors that move
the bones about the joints. (There is also cardiac muscle – the heart – and
smooth muscle – of the digestive and other organs.) Tendons connect muscles
to bones. Muscles are connected at points of origin and insertion via tendons;
the points of insertion are where the “action” is. Figure 1.8 shows several of
the larger muscles in the body, along with some of the tendons.

Muscles work by contraction only, i.e., only by getting shorter. Conse-
quently, to be able to move your arms one way and then back in the opposite
direction, you need pairs of muscles on the same body part for each opposing
motion. Such opposing pairs, known as “antagonists,” are very common in
the body.

We now return to our brief review of terminology, this time to describe the
angular motion of joints. It is not surprising that these come in opposing pairs
(Figs. 1.9 and 1.10) as supplied by antagonist muscles. When the angle of a 1D
hinge, such as the elbow, increases it is called extension and when it decreases
it is flexion. When you rotate your leg away from the midline of your body, it
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Fig. 1.8. (a) Anterior and (b) posterior views of some of the larger skeletal muscles
in the body. Several muscles are labeled: S, sternocleidomastoid; T, trapezius; D,
deltoid;, P, pectoralis major; E, external oblique; L, latissimus dorsi; G, gluteus
maximus. In (b), the broad-banded tendon extending from the gastrocnemius and
soleus (deep to the gastrocnemius, not shown) muscles to the ankle (calcaneus) is
the calcaneal (or Achilles) tendon. (From [49]. Used with permission)

is abduction, and when you bring is closer to the midline, it is adduction. When
you rotate a body part about its long axis it is called rotation. The screwdriver
motion in the arm is pronation (a front facing hand rotates towards the body)
or supination (away from the body), and so supination is the motion of a right
hand screwing in a right-handed screw (clockwise looking from the shoulder
distally) and pronation is that of a right hand unscrewing a right-handed
screw (counterclockwise looking from the shoulder distally). Examples of the
rotation axes for the synovial joints used in these opposing motions are given
in Fig. 1.11.

One example of opposing motion is the motion of the arm (Fig. 1.12). The
biceps brachii have two points of origin and are inserted on the radius (as
shown in Fig. 2.10 below). When they contract, the radius undergoes flexion
about the pivot point in the elbow. The triceps brachii have three points of
origin, and a point of insertion on the ulna. They are relaxed during flexion.
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Fig. 1.9. Several antagonistic motions allowed by synovial joints. See other motions
in Fig. 1.10. (From [49]. Used with permission)

During extension they contract, while the biceps brachii are relaxed. This
is an example of a lever system about a pivot point. (This is really a pivot
axis normal to the plane of the arm, as is illustrated in Fig. 1.11a for a hinge
joint.)

A second place where there is such opposing motion is the eye. The three
types of opposite motion in each eye (monocular rotations) are shown in
Fig. 1.13. During adduction the eye turns in to the midline, while during ab-
duction it turns out. The eyeball can also undergo elevation (eye rotating
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Fig. 1.10. More antagonistic motions allowed by synovial joints. See other motions
in Fig. 1.9. (From [49]. Used with permission)

Fig. 1.11. Rotation axes for four types of synovial joints are shown for each depicted
rotation direction: (a) one axis for a hinge joint (1D joint), (b) two axes for a saddle
joint (2D), (c) two axes for an ellipsoidal joint (2D), and (d) three axes for a ball-
and-socket joint (3D). (From [54])
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Fig. 1.12. Opposing motions of the lower arm with antagonist muscles, with flexion
by contraction of the biceps brachii and extension by the contraction of the triceps
brachii. The axis of rotation is seen in Fig. 1.11a

upward, or supraduction) or depression (eyeball rotating downward, or infra-
duction). Less common is the rotation of the eyeball about an axis normal to
the iris, in opposing intorsion (incycloduction) or extorsion (excycloduction)
motions. There are three pairs of opposing muscles per eye, each attached
to the skull behind the eye, that control these motions (Fig. 1.14, Table 1.3).
However, of these three pairs, only one is cleanly associated with only one
of these pairs of opposing motions. Adduction occurs with the contraction
of the medial rectus muscle, while abduction occurs when the lateral rectus
contracts. The primary action of the superior rectus is elevation, while that
of the opposing inferior rectus is depression. The primary action of the su-
perior oblique is also depression, while that of the opposing inferior oblique
is also elevation. These last two pairs of muscles have secondary actions in
adduction/abduction and intorsion/extorsion that depend on the position of
the eye. Binocular vision requires coordinated motion of the three opposing
muscle pairs in both eyes, as described in Table 1.4.

(a) Adduction (c) Intorsion
(incycloduction)

(b) Elevation
(supraduction)

(e) Depression
(infraduction)

(d) Abduction (f) Extorsion
(excycloduction)

Fig. 1.13. Rotations of the right eye. A dashed line has been added across the iris
to help view the rotations. (Based on [60])
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Fig. 1.14. Ocular muscles, with the eyelid (palpebra) pulled up as shown. The
tendon of the superior oblique muscle (marked in two regions) passes through the
trochlea loop. (From [59])

Table 1.3. Ocular muscle functions. (Based on [60])

muscle primary action secondary action

lateral rectus abduction none

medial rectus adduction none

superior rectus elevation adduction, intorsion

inferior rectus depression abduction, extorsion

superior oblique depression intorsion, abduction

inferior oblique elevation extorsion, abduction

Table 1.4. Muscle combinations of both eyes for gaze directions. (Based on [60])

direction of gaze right eye muscle left eye muscle

eyes up, right superior rectus inferior oblique

eyes right lateral rectus medial rectus

eyes down, right inferior rectus superior oblique

eyes down, left superior oblique inferior rectus

eyes left medial rectus lateral rectus

eyes up, left inferior oblique superior rectus
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1.3 The Standard Human

We will often, but not always, model humans assuming numerical values for
mass, height, etc. of a “standard” human, a 70 kg man with parameters similar
to those in Table 1.5.

We will need details of human anatomy in some cases, and these are pro-
vided now and in subsequent chapters as needed. We will also need to use the

Table 1.5. A description of the “Standard Man”. (Using data from [37, 44])

age 30 yr

height 1.72 m (5 ft 8 in)

mass 70 kg

weight 690 N (154 lb)

surface area 1.85 m2

body core temperature 37.0◦C

body skin temperature 34.0◦C

heat capacity 0.83 kcal/kg-◦C (3.5 kJ/kg-◦C)

basal metabolic rate 70 kcal/h (1,680 kcal/day, 38 kcal/m2-h, 44 W/m2)

body fat 15%

subcutaneous fat layer 5 mm

body fluids volume 51 L

body fluids composition 53% intracellular; 40% interstitial, lymph;

7% plasma

heart rate 65 beats/min

blood volume 5.2 L

blood hematocrit 0.43

cardiac output (at rest) 5.0 L/min

cardiac output (in general) 3.0 + 8 × O2 consumption (in L/min) L/min

systolic blood pressure 120 mmHg (16.0 kPa)

diastolic blood pressure 80 mmHg (10.7 kPa)

breathing rate 15/min

O2 consumption 0.26 L/min

CO2 production 0.21 L/min

total lung capacity 6.0 L

vital capacity 4.8 L

tidal volume 0.5 L

lung dead space 0.15 L

lung mass transfer area 90 m2

mechanical work efficiency 0–25%

There are wide variations about these typical values for body parameters. Also,
these values are different for different regions; the ones in the table typify American
males in the mid-1970s. Values for women are different than for men; for exam-
ple, their typical heights and weights are lower and their percentage of body fat is
higher.
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Table 1.6. Body segment lengths. Also see Fig. 1.15. (Using data from [63])

segment segment lengtha/

body height H

head height 0.130

neck height 0.052

shoulder width 0.259

upper arm 0.186

lower arm 0.146

hand 0.108

shoulder width 0.259

chest width 0.174

hip width/leg separation 0.191

upper leg (thigh) 0.245

lower leg (calf) 0.246

ankle to bottom of foot 0.039

foot breadth 0.055

foot length 0.152

aUnless otherwise specified.

findings of anthropometry, which involves the measurement of the size, weight,
and proportions of the human body. Of particular use will be anthropometric
data, such as those in Table 1.6 and Fig. 1.15, which provide the lengths of
different anatomical segments of the “average” body as a fraction of the body
height H.

Table 1.7 gives the masses (or weights) of different anatomical parts of the
body as fractions of total body mass mb (or equivalently, total body weight

Table 1.7. Masses and mass densities of body segments. (Using data from [63])

segment segment mass/ mass density

total body mass mb (g/cm3)

hand 0.006 1.16

forearm 0.016 1.13

upper arm 0.028 1.07

forearm and hand 0.022 1.14

total arm 0.050 1.11

foot 0.0145 1.10

lower leg (calf) 0.0465 1.09

upper leg (thigh) 0.100 1.05

foot and lower leg 0.061 1.09

total leg 0.161 1.06

head and neck 0.081 1.11

trunk 0.497 1.03
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Fig. 1.15. Body segments length, relative to body height H. (From [38], as from
[53]. Reprinted with permission of Wiley)

Wb). The mass and volume of body segments are determined on cadaver body
segments, respectively by weighing them and by measuring the volume of wa-
ter displaced for segments immersed in water. (This last measurement uses
Archimedes’ Principle, described in Chap. 7.) The average density of differ-
ent body segments can then be determined, as in Table 1.7. The volumes of
body segments of live humans can be measured by water displacement (Prob-
lem 1.37) and then their masses can be estimated quite well by using these
cadaver densities. Whole body densities of live humans can be measured using
underwater weighing, as is described in Problem 1.40. A relation for average
body density is given below in (1.3). This is closely related to determining the
percentage of body fat, as is presented below in (1.4) and (1.5).

The normalized distances of the segment center of mass from both the
proximal and distal ends of a body segment are given in Table 1.8. (Prob-
lems 1.42 and 1.43 explain how to determine the center of mass of the body
and its limbs.) The normalized radius of gyration of segments about the cen-
ter of mass, the proximal end, and the distal end are presented in Table 1.9.
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Table 1.8. Distance of the center of mass from either segment end, normalized by
the segment length. (Using data from [63])

segment center of mass from

proximal distal

hand 0.506 0.494

forearm 0.430 0.570

upper arm 0.436 0.564

forearm and hand 0.682 0.318

total arm 0.530 0.470

foot 0.50 0.50

lower leg (calf) 0.433 0.567

upper leg (thigh) 0.433 0.567

foot and lower leg 0.606 0.394

total leg 0.447 0.553

head and neck 1.00 –

trunk 0.50 0.50

(The radius of gyration provides a measure of the distribution of mass about
an axis, as described in (3.28) and Fig. 3.23b). Problem 3.9 describes how the
radii of gyration in Table 1.9 are related.)

Note that all of the data in these different tables are not always consistent
with each other because of the variations of sources and the different ranges
of subjects and methods used for each table.

We have a tremendous range of mobility in our articular joints, but not
as much as in the idealized joints in Fig. 1.4. The average ranges of mobility
in people are given in Table 1.10 for the motions depicted in Fig. 1.16, along

Table 1.9. Radius of gyration of a segment, about the center of mass and either
end, normalized by the segment length. (Using data from [63])

segment radius of gyration about

C of M proximal distal

hand 0.297 0.587 0.577

forearm 0.303 0.526 0.647

upper arm 0.322 0.542 0.645

forearm and hand 0.468 0.827 0.565

total arm 0.368 0.645 0.596

foot 0.475 0.690 0.690

lower leg (calf) 0.302 0.528 0.643

upper leg (thigh) 0.323 0.540 0.653

foot and lower leg 0.416 0.735 0.572

total leg 0.326 0.560 0.650

head and neck 0.495 0.116 –
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Table 1.10. Range of joint mobility for opposing movements, with mean and stan-
dard deviation (SD) in degrees. (Using data from [39], as from [33, 61])

opposing movements mean SD

shoulder flexion/extension 188/61 12/14

shoulder abduction/adduction 134/48 17/9

shoulder medial/lateral rotation 97/34 22/13

elbow flexion 142 10

forearm supination/pronation 113/77 22/24

wrist flexion/extension 90/99 12/13

wrist abduction/adduction 27/47 9/7

hip flexion 113 13

hip abduction/adduction 53/31 12/12

hip medial/lateral rotation (prone) 39/34 10/10

hip medial/lateral rotation (sitting) 31/30 9/9

knee flexion (prone) – voluntary, arm assist 125,144 10,9

knee flexion – voluntary (standing), forced (kneeling) 113,159 13,9

knee medial/lateral rotation (sitting) 35/43 12/12

ankle flexion/extension 35/38 7/12

foot inversion/eversion 24/23 9/7

The subjects were college-age males. Also see Fig. 1.16.

Fig. 1.16. Postures used for Table 1.10, for range of opposing motions. (From [38].
Reprinted with permission of Wiley. Also see [33, 61])
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with the standard deviations about these values. (For normal or Gaussian
distributions with an average, A, and standard deviation, SD, about 68%
of all values are between A − SD and A + SD.) Three degrees of freedom
are given for the shoulder and hip, two for the wrist and the foot (listed
separately as foot and ankle), and one each for the elbow and forearm. The
knee, as idealized above, has one DOF, but two are listed here: the flexion in
a 1 D hinge and also some rotation of the upper and lower leg about the knee.

Table 1.11 gives the mass and volumes of different systems and parts of
the body. The components of a typical human cell are given in Table 1.12.
Although, most of our discussion will not concern these components of a cell,

Table 1.11. Mass and volume of the organs of the human body. (Using data from
[42])

fluid, tissue, organ, or system total mass (g) total volume (cm3)

adult male body 70,000 60,000

muscle 30,000 23,000

fat 10,500 12,000

skin 2,000 1,800

subcutaneous tissue 4,100 3,700

skeleton 10,000 6,875

gastrointestinal track 2,000 1,800

contents (chyme/feces) ∼2,000 ∼2,000

blood vessels 1,800 1,700

contents (blood) 5,600 5,400

liver 1,650 1,470

brain 1,400 1,350

lungs (2) 825 775

contents (air) ∼7.7 ∼6,000

heart 330 300

chamber volume – 450

kidneys (2) 300 270

urinary bladder 150 140

contents (urine) ∼500 ∼500

digestive fluids ∼150 ∼150

pancreas 110 100

salivary glands (6) 50 48

synovial fluid ∼50 ∼50

teeth (32) 42 14

eyes (2) 30 27

hair (average haircut) 21 16

gall bladder 7 7

contents (bile) ∼50 ∼50

fingernails and toenails (20) 1.1 0.9
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Table 1.12. Estimated gross molecular contents of a typical 20-μm human cell.
(Using data from [42])

molecule mass molecular weight number of number of

(amu, daltons) molecules molecular entities

water 65 18 1.74 × 1014 1

other inorganic 1.5 55 1.31 × 1012 20

lipid (fat) 12 700 8.4 × 1011 50

other organic 0.4 250 7.7 × 1010 ∼200

protein 20 50,000 1.9 × 1010 ∼5,000

RNA 1.0 1 × 106 5 × 107 –

DNA 0.1 1 × 1011 46 –

this listing is instructive because it provides a quantitative assessment of these
components.

So far we have considered only the physical specifications of a typical per-
son. In subsequent chapters, we will address the physical aspects of how a typ-
ical person responds to a wide range of physical conditions, for healthy and
unhealthy people, and under normal and extreme conditions. The prospect
of space exploration motivated extensive studies of how people respond to a
wide range of extreme physical conditions, such as extreme pressures, temper-
atures, linear and rotary accelerations, collisions, vibrations, weightlessness,
and sound [50].

We will also see that many processes can be described in terms of charac-
teristic times or distances, such as the time needed for a muscle activation to
decay or a molecule to diffuse in a cell. There are also more general character-
istic times within the human body. Your heart beats and you breathe roughly
once every second. Your blood flows throughout your body roughly once every
minute, and each ATP molecule (the molecule which is the ultimate form of
energy usage in your body) is used and then regenerated roughly once every
minute.

1.4 Scaling Relationships

In human and animal biology there are diverse ranges of properties that scale
with either a property, such as mass or length, or a physical or chemical input.
We summarize them here; they relate to many concepts developed and used
in subsequent chapters.

1.4.1 Allometric Rules

Some properties scale with body mass in a fairly predictable way, and are
characterized by scaling relationships called allometric rules. For a property
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Table 1.13. Allometric parameters (1.1) for mammals. (Using data from [31, 55])

parameter a α

basal metabolic rate (BMR), in W 4.1 0.75

body surface area, in m2 0.11 0.65

brain mass in man, in kg 0.085 0.66

brain mass in nonprimates, in kg 0.01 0.7

breathing rate, in Hz 0.892 −0.26

energy cost of running, in J/m-kg 7 −0.33

energy cost of swimming, in J/m-kg 0.6 −0.33

effective lung volume, in m2 5.67 × 10−5 1.03

heart beat rate, in Hz 4.02 −0.25

heart mass, in kg 5.8 × 10−3 0.97

lifetime, in y 11.89 0.20

muscle mass, in kg 0.45 1.0

skeletal mass (terrestrial), in kg 0.068 1.08

speed of flying, in m/s 15 0.167

speed of walking, in m/s 0.5 0.167

f for animals with body mass mb (in kg), an allometric relation has the form

f(in a given set of units) = amα
b . (1.1)

Technically, the relationship is allometric if α �= 1. Some examples are given
in Table 1.13. By the way, allometric means “by a different measure” from the
Greek alloios, which means “different” – so how body height scales with body
mass is an allometric relationship. Isometric means “by the same measure” –
so how leg mass scales with body mass is an example of an isometric rela-
tionship. For a delightful discussion on allometry and scaling see [46]. Other
equally intriguing discussions have been presented in [31, 35, 36, 45, 47, 55, 56].

These relationships can hold for many species of a given type, such as
land-based mammals, etc. Some are also valid within a species, such as for
man – and as such would be called anthropometric relationships. Sometimes
they apply only to adults in a species, and not across all age groups. See
Problems 1.54 and 1.55 for more on this.

The “predicted” values from a scaling relation would be the expected av-
erage values only if the parameters for all species follow the relation exactly –
and there is no reason why this must be so. Moreover, there is always a spread,
or dispersion, about these average values. Some of these allometric relation-
ships are empirical, and others can be derived, or at least rationalized, as
we will see for Kleiber’s Law of basal (6.19) (i.e., minimum) metabolic rates
(BMRs) in Chap. 6.

One obvious example of such scaling is that the legs of bigger mammals
tend to be wider in proportion to their overall linear dimension L (and mass
mb) than those for smaller mammals, and this is reflected in the larger ratio
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of the width of their long skeletal bones, wbone, to the length, Lbone, for
larger mb. Such bones need to support their body weight or mass, which
are proportional to their volume ∼L3 because the mass densities are very
nearly the same for all mammals. Such long bones in the different mammals
can withstand approximately the same force per unit cross-sectional area,
which means that they have the same ultimate compressive stress or UCS.
(The UCS is a measure of fracture conditions that will be discussed more in
Chap. 4.). If this maximum force is a fixed multiple of the weight, so it is ∝ L3,
and the cross-sectional area is ∼w2

bone, then w2 ∝ L3 or w ∝ L3/2. Because
the bone length Lbone ∝ L, we see that w/Lbone ∝ L1/2 ∝ m

1/6
b . Body

mass mb increases by 104 from rat to elephant, and so this ratio increases by
102/3 ∼ 4. This means that the body shapes and the bones themselves are
not geometrically similar.

In some cases more accurate scaling relations necessitate the use of para-
meters in addition to the body mass. One example is the scaling of the surface
area of a person A (in m2), which is empirically seen to depend on height H
(in m), as well as body mass mb (in kg):

A = 0.202m0.425
b H0.725. (1.2)

Accurate scaling relationships often involve the index Wb/Hp (or equiv-
alently mb/Hp) with p ranging from 1.0 to 3.0. (Sometimes the reciprocal
or square root or cube root of this parameter is used. Complicating matters
further, different sets of units are commonly used for these parameters.) One
such index is the specific stature or ponderal index S = H/m

1/3
b (for which

p = 3), which is used in the Harris–Benedict versions of Kleiber’s Law spe-
cialized for people (6.30–6.31). It is also used in the expression for the average
human density

ρ (in kg/L or g/cm3) = 0.69 + 0.9S (1.3)

where within S the units of H are m and those of mb are kg. Another scaling
parameter is Quételet’s index or the body mass index (BMI), Q = mb/H2

(for which p = 2.0). It is often considered the best index for epidemiological
studies. For example, with mb in kg and H in m, the average fat content of
the body increases with this index:

Men: fat (% of body weight) = 1.28Q − 10.1 (1.4)
Women: fat (% of body weight) = 1.48Q − 7.0. (1.5)

Normal or ideal body fat is 14–20% in men and 21–27% in women. Not
coincidentally, mortality increases as this index Q increases.

Some properties do not scale with mass. From mouse to elephant, a mass
range of over 10,000, the maximum jumping height (of the center of mass) of
most every mammal is within a factor of 2 of 2/3 m. Similarly, the maximum
running speed of most mammals is within a factor of 2 of 7 m/s (15 mph).



1.4 Scaling Relationships 25

Table 1.14. Size-independent dimensionless groups in mammals. (Using data
from [46])

parameter a α

breathing flow rate/blood flow ratea 2.0 0.00

mass of blood/mass of heart 8.3 0.01

time for 50% of growth/lifespan in captivity 0.03 0.05

gestation period/lifespan in captivity 0.015 0.05

breathing cycle/lifespan in captivity 3 × 10−9 0.06

cardiac cycle/lifespan in captivity 6.8 × 10−10 0.05

half-life of drugb/lifespan in captivity 0.95 × 10−5 0.01

The value of a in (1.1) is that for a 1 kg mammal. Also see Chaps. 8 and 9.
a(tidal volume/breath time)/(heart stroke volume/pulse time).
bMethotrexate.

The main reason behind these two relationships is that the force a muscle
can exert is proportional to its cross-sectional area and therefore it varies as
the square of the characteristic linear dimension, such as height H. This is
explored in Problems 3.28, 3.29, and 3.41 in Chap. 3. The dimensionless ratios
of some physical and physiological properties are noteworthy in that they are
essentially independent of size (and mass), as is seen in Table 1.14.

1.4.2 Scaling in the Senses

A very different type of scaling is exhibited by Stevens’ Law, which charac-
terizes how the perceived strength P of a sense varies with the intensity of a
stimulus S for a given sensation. This scaling is

P = K(S − S0)n (1.6)

above a threshold S0 [57, 58]. As seen in Table 1.15, sometimes the perception
of a sense, called the psychoperception, is sublinear with the strength of the

Table 1.15. Exponent n for perceived strength (P ) of a stimulus (S) above a
threshold S0, with P = K(S − S0)

n in Steven’s Law. (Using data from [57, 58])

psychoperception n stimulus

brightness 0.33, 0.5 5◦ target, point source – dark adapted eye

loudness 0.54, 0.60 monoaural, binaural

smell 0.55, 0.60 coffee odor, heptane

vibration 0.6, 0.95 250 Hz, 60 Hz – on finger

taste 0.8, 1.3, 1.3 saccharine, sucrose, salt

temperature 1.0, 1.6 cold, warm – on arm

pressure on palm 1.1 static force on skin

heaviness 1.45 lifted weights

electric shock 3.5 60 Hz through fingers
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stimulus and sometime it is superlinear. Three of the senses involve very sig-
nificant physical aspects: hearing (Chap. 10, loudness) and seeing (Chap. 11),
which we will examine in detail, and touch (Chap. 2, vibration, temperature,
pressure on palm, heaviness; Chap. 12, electric shock), which we will study
in less detail. These three also have very important chemical and biologi-
cal origins. The senses of taste and smell are essentially solely chemical and
biological in basis and will not be discussed any further, except for a brief
discussion of the electrical properties of the membranes of the taste and smell
sensory neurons in Chap. 12. For these three other senses, we will concen-
trate mostly on the physical input and the beginning of the sensation process
(detection). The nonlinearities inherent in Stevens’ Law are due in part to
the detection process. The final parts of detection process are the generation
and transmission of neural signals sent to the brain – which we will cover –
and the processing in the brain – which we will cover only briefly. There are
approximately 12 orders of magnitude sensitivity in hearing and vision.

1.5 Summary

Much about the body can be understood by learning the terminology of direc-
tions and local regions in the body. Much about the motion of the body can
be explained by examining the rotation of bones about joints. In analyzing
the physics of the body, reference can be made to anthropometric data on
body parts for a standard human. Many phenomena concerning anatomy and
physiology can be characterized and understood by using scaling relations.

Problems

Body Terminology

1.1. (a) Is the heart superior or inferior to the large intestine?
(b) Is the large intestine superior or inferior to the heart?

1.2. (a) Is the navel posterior or anterior to the spine?
(b) Is the spine posterior or anterior to the navel?

1.3. Is the nose lateral or medial to the ears?

1.4. Are the eyes lateral or medial to the nose?

1.5. Is the foot proximal or distal to the knee?

1.6. Is the elbow proximal or distal to the wrist?

1.7. Is the skeleton superficial or deep to the skin?
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1.8. The blind spot in the eye retina is said to be nasal to the fovea (center
of the retina). What does this mean?

1.9. What would you expect the term cephalid to mean? What would be an
equivalent term?

1.10. Which is the anterior part of the heart in Fig. 8.7? Is this a superior or
inferior view of the heart?

1.11. Consider the directional terms ipsilateral and contralateral. One means
on the same side of the body, while the other means on opposite sides of the
body. Which is which?

1.12. The directional term intermediate means “in between.” What is inter-
mediate between the upper and lower legs?

1.13. Encephalitis is the inflammation, i.e., “itis”, of what?

1.14. Presbyopia refers to disorders in vision due to old age, such as lack of
accommodation in the crystalline lens (see Chap. 11). Presbycusis refers to
old age-related auditory impairments (see Chap. 10.) What parts of these two
terms mean old age, vision, and hearing?

1.15. The three tiny bones in the middle ear, the malleus, incus, and stapes
are interconnected by the incudomallear articulation and the incudostapedial
joint. Describe the origin of the names of these connections.

1.16. The quadriceps muscles in the upper leg attach to the kneecap (patella)
through the quadriceps tendon. The kneecap is connected to the tibia by
connective tissue that is sometimes called the patellar tendon and sometimes
the patellar ligament. Explain why both designations have merit and why
neither designation completely describes the linkage perfectly well by itself.

1.17. Consider the drawing of the hand skeleton and the schematic of a hand
showing joints with one or (labeled 2) two degrees of freedom in Fig. 1.6.
(a) How many degrees of freedom does each hand have? (Ignore the wrist
joint.)
(b) Do we need so many degrees of freedom? Why? (There is no right or wrong
answer to this part. Just think about what a human hand should be able to
do (in clutching, etc.) and try to express your conclusions in terms of degrees
of freedom.)

1.18. Estimate the angle of each of the joints in the hand for each of the
following functions [52]. (Define the angle of each joint as shown in the left
hand in Fig. 1.6b to be 0◦. Define rotations into the paper and clockwise
motions in the plane of the paper as being positive.)
(a) lifting a pail (a hook grip)
(b) holding a cigarette (a scissors grip)
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(c) lifting a coaster (a five-jaw chuck)
(d) holding a pencil (a three-jaw chuck)
(e) threading a needle (a two-jaw pad-to-pad chuck)
(f) turning a key (a two-jaw pad-to-side chuck)
(g) holding a hammer (a squeeze grip)
(h) opening a jar (a disc grip)
(i) holding a ball (a spherical grip)

1.19. We said that the seven DOFs available for arm motion enabled nonunique
positioning of the hand, but analogous nonunique positioning of the foot is
not possible because the leg has only six DOFs. Use Table 1.10 to explain why
this is not exactly correct.

1.20. Use Table 1.3 to show that the coordinated eye motions in Table 1.4 use
the muscles listed for primary motion.

1.21. Consider a limb, of length L, composed of upper and lower limbs with
respective lengths r1 and r2, with L = r1+r2. There is a total range of motion
in the angles the upper limb makes with the torso and the lower limb makes
with the upper limb. Assume motion only in two dimensions (see Fig. 1.7.)
(a) What area is subtended by the end of the lower limb (hand or foot) when
r1 = r2?
(b) What area is subtended by the end of the lower limb when r1 > r2? What
fraction of that in (a) is this?
(c) What area is subtended by the end of the lower limb when r1 < r2? What
fraction of that in (a) is this?

1.22. Redo Problem 1.21 in three dimensions, finding the volume subtended
by the end of the lower limb in each case.

The Standard Human

1.23. Qualitatively explain the differences of density in Table 1.7 in the differ-
ent segments of the body. The average densities of blood, bone, muscle, fat,
and air (in the lungs) can be determined from Table 1.11.

1.24. (a) Use Table 1.7 to determine the average density of the body.
(b) Use this to determine the average volume of a 70 kg body.
Your answers will be a bit different from the rough volume estimate given in
Table 1.11.

1.25. (a) Calculate the range of segment masses alternatively using Tables 1.7
and 1.16, for each type of segment listed in the latter table, for people with
masses in the range 40–100 kg.
(b) Give several reasons why these ranges seem to be different.
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Table 1.16. An alternative set of relations of weights of body segments (all in lb).
(Using data from [48], which used unpublished data by [40])

segment segment weight

head 0.028Wb + 6.354

trunk 0.552Wb − 6.417

upper arms 0.059Wb + 0.862

forearms 0.026Wb + 0.85

hands 0.009Wb + 0.53

upper legs 0.239Wb − 4.844

lower legs 0.067Wb + 2.846

feet 0.016Wb + 1.826

1.26. (a) Show that (1.3) becomes

ρ(in kg/L or g/cm3) = 0.69 + 0.0297S , (1.7)

when S = H/W
1/3
b is expressed with H in inches and Wb in lb.

(b) Show that the average density for an adult of height 5 ft 10 in and weight
170 lb is 1.065 g/cm3, with S = 12.64.
(c) Show that the average density for an adult of height 1.78 m and mass
77.3 kg is 1.066 g/cm3, with S = 0.418.

1.27. What percentage of body mass is fat, skin, the skeleton, blood, liver,
the brain, the lungs, heart, kidneys, and eyes?

1.28. Use Table 1.11 to determine the mass density of blood, skin, the lungs,
the air in the lungs, fat, liver, hair, eyes, and blood vessels.

1.29. In modeling heat loss in Chap. 6, a typical man is modeled as a cylinder
that is 1.65 m high with a 0.234 m diameter. If the human density is 1.1 g/cm3,
what is the mass (in kg) and weight (in N and lb) of this man?

1.30. (a) If a man has a mass of 70 kg and an average density of 1.1 g/cm3,
find the man’s volume.
(b) If this man is modeled as a sphere, find his radius and diameter.
(c) If this man is 1.72 m high, and is modeled as a right circular cylinder, find
the radius and diameter of this cylinder.
(d) Now model a man of this height and mass as a rectangular solid with
square cross-section, and find the length of the square.
(e) Repeat this for a constant rectangular cross-section, and determine the
sizes if the long and short rectangle dimensions have a ratio of either 2:1, 3:1,
or 4:1.
(f) In each above case calculate his surface area and compare it to that pre-
dicted by (1.2) for a 1.72-m tall man. Which of the above models seems best?
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Fig. 1.17. Cylindrical model of a man used in studies of convective cooling. (From
[34], adapted from [51])

1.31. The cylindrical model of a man in Fig. 1.17 was once used in studies
of convective cooling. What are the volume, mass, and exposed surface area
(including the bottom of the lower limb) for this person? Assume each finger
is 3.5 in long and has a diameter of 0.875 in and that the mass density of all
components is 1.05 g/cm3.

1.32. How much heavier is someone with a totally full stomach, small intes-
tine, large intestine and rectum, than when each system is empty? Assume
the mass density of the contents is 1 g/cm3. Express your answer in mass (kg)
and weight (N and lb). (Use Table 7.4.)

1.33. Use the anthropometric data to determine the average cross-sectional
area and diameter of an arm and a leg of a 70 kg man. Assume the cross
section of each is circular.

1.34. Compare the surface area of the standard man given in Table 1.5, alter-
natively as predicted by (1.1) and (1.2). Use the data given in Table 1.13.
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Fig. 1.18. Immersion technique for measuring the volume of various body segments,
with the solid lines denoting the initial water level and the dashed lines the final
water level. (Based on [48].) For Problem 1.37

1.35. Compare the surface area of a 50 kg, 5 ft 5 in woman, alternatively as
predicted by (1.1) and (1.2). Use the data given in Table 1.13.

1.36. For an adult, the average fractional surface area is 9% for the head, 9%
for each upper limb, 18% both for front and back of the torso, and 18% for
each lower limb. (The remaining 1% is for genitalia.)
(a) This is used to estimate the fraction of damaged area in burn victims. It
is known as the “Rule of Nines.” Why?
(b) Use the data given in Table 1.13 to determine the average surface area for
each of these parts of the body for the standard man.

1.37. In the system depicted in Fig. 1.18, a body segment is put in the mea-
suring cylinder and the valve is opened to allow flow of water up to the
“beginning” of the body segment (giving the “1” heights). The valve is then
opened until water flows into the measuring cylinder to the “end” of the body
segment (giving the “2” heights). Explain how this can be used to measure
the volume of the body segment.

1.38. (a) Calculate Quételet’s index (also known as the BMI) and the specific
stature (also known as the ponderal index) of a person of average density ρ
modeled as a cube of length L.
(b) How do these change if the person has the same overall mass, but is
modeled as a rectangular solid of height H, width 0.20H, and depth 0.15H?

1.39. (a) A person with mass M is modeled as a rectangular solid of height
H, width 0.25H, and depth 0.25H. The person loses weight, maintaining the
same mass density, and then has a width 0.20H and depth 0.15H. Calculate
Quételet’s index and the specific stature of the person before and after the
weight loss.
(b) Would you expect the mass density of the person to change during the
weight loss? If so, how would you expect it to change?
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Fig. 1.19. Determining human body fat content and density by weighing a per-
son in water. (Photo by Clifton Boutelle, News and Information Service, Bowling
Green State University. Used with permission of Brad Phalin. Also see [41].) For
Problem 1.40

1.40. You can determine the density and percentage of fat in people by weigh-
ing them underwater, as in Fig. 1.19. Data for two men with the same height
and mass, but with different underwater masses are given in Table 1.17.
(a) Why are the volumes given as listed?
(b) What assumption has been made about the relative densities of fat and
the average of the rest of the body?
(c) Is the value assumed for the density for the rest of the body reasonable?
Why or why not?

Table 1.17. Comparison of the density and fat percentage for two men with the
same height and mass, but different underwater masses. (Using data from [62].) For
Problem 1.40

parameter man A man B

height, m (in) 1.88(74) 1.88(74)

mass, kg (lb) 93(205) 93(205)

underwater mass, kg 5.00 3.50

volume, L 88.0 89.5

volumecorrected
a, L 86.5 88.0

body densityb, g/cm3 1.075 1.057

relative fat, % 10.4 18.4

fat mass, kg (lb) 9.7(21.4) 17.1(37.7)

fat-free mass, kg (lb) 83.3(183.6) 75.9(167.3)

aThe volume is corrected for the water density, intestinal gas volume, and residual
lung volume.
bThe body density is the mass-corrected volume. Relative fat (in %) = 100(4.95/
(body density) − 4.50).
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Fig. 1.20. In vivo estimation of (a) body center of mass and (b) mass of a distal
segment, for Problems 1.42 and 1.43. (From [63]. Reprinted with permission of John
Wiley & Sons)

(d) Table 1.17 uses the Siri formula for the percentage of body fat: 100(4.95/
(body density) − 4.50). How do the results for the percentage and mass of
body fat differ using the Brozek formula: 100(4.57/(body density) − 4.142)
for the two cases in the table? (Both formulas may, in fact, give values for
body fat percentage that are too high.)

1.41. Explain why in Problem 1.40 you can either measure the weight of the
water displaced by the body or the weight of the body when it is completely
submerged [41].

1.42. You can measure the location of the anatomical center of mass of the
body using the arrangement in Fig. 1.20a. The weight (w1) and location of
the mass (x1) of the balance board are known along with the body weight w2.
The location of the body center of mass relative to the pivot point is x2. The
distance from the pivot to the scale is x3. With the body center of mass to
the left of the pivot point there is a measurable force S on the scale (under
the head). Show that

x2 =
Sx3 − w1x1

w2
. (1.8)

1.43. You can determine the weight of the lower part of a limb (w4) using
the same balance board as in Problem 1.42, using Fig. 1.20b. The center of
mass of the limb changes from x4 to x5 relative to the pivot point when the
limb is set vertically; concomitantly the scale reading changes from S to S′.
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Show that

w4 =
(S′ − S)x3

(x4 − x5)
. (1.9)

The location of the center of mass of the limb relative the joint near the
trunk is assumed to be known. To determine the weight of the entire limb the
subject should be lying on his or her back and the entire limb is flexed to a
right angle.

1.44. (a) Determine the goal mass (in kg, and find the weight in lb) to achieve
10% fat for the two men described in Table 1.17, by using the fat-free mass.
(b) How much fat mass (and weight) must be lost by each to attain this
goal?

1.45. The normalized distances of the segment center of mass from the prox-
imal and distal ends in Table 1.8 always sum to 1. Is this a coincidence, a
trivial point, or significant? Why?

Allometry and Scaling

1.46. Determine the parameters for a 70 kg person for each set of allometric
relation parameters in Table 1.13. How do they compare with similar parame-
ters listed in Tables 1.5 and 1.11?

1.47. Derive the allometric laws for the percentages of the total body mass
residing in the brain, heart, muscle, and skeletal mass for mammals (such as
humans).

1.48. Compare the prediction of the fat in a standard man using Quetelet’s
index, with those listed in Table 1.11.

1.49. Compare the % body fat in:
(a) a male and female who are both 5 ft 6 in, 140 lb.
(b) males who are 6 ft 2 in and 5 ft 8 in tall, both weighing 190 lb.

1.50. For a 70 kg person living 70 years, determine the person’s total lifetime
(a) number of heart beats
(b) number of breaths
(c) energy consumed
(d) energy consumed per unit mass.

1.51. Does it make sense that the ratio of the volumetric flow rates in the
respiratory and circulatory systems in mammals (first entry line in Table 1.14)
is essentially independent of mammal mass? Why?
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Fig. 1.21. Human development, showing the change in body shape from birth to
adulthood, for Problem 1.54. (From [54])

1.52. Use Table 1.14 to find the allometry parameters for the ratio of the
respiratory and cardiac rates (both in 1/s).

1.53. Use Table 1.14 to find the allometry parameters for the ratio of the
volumes per breath (tidal volume) and per heart beat (heart stroke volume).

1.54. Use Fig. 1.21 to comment on whether the same mass-dependent-only
allometric rules should be used within a species from birth to adulthood.

1.55. (a) Arm length scales as the body height to the 1.0 power for people
older that 9 months and to the 1.2 power for those younger. At 9 months of
age, a male is 61 cm tall and has an arm length of 23 cm. When that male
was 0.42 yr old he had a height of 30 cm and when he will be 25.75 yr old
he will have a height of 190 cm. In each what is their expected arm length,
alternatively using the age-correct and age-incorrect scaling exponents?
(b) Is this an example of allometric or isometric scaling?

1.56. Scaling arguments can also be used to understand some general
trends.
(a) If the linear dimension of an object is L, show that its surface area varies
as L2, its volume as L3, and its surface to volume ratio as 1/L, by using a
sphere (diameter L) and a cube (length L) as examples.
(b) An animal loses heat by loss at the surface, so its rate of losing heat varies
as its surface area, whereas its metabolic rate varies as its volume. In cold en-
vironments this loss of heat can be devastating. Do scaling arguments suggest
animals would be bigger or smaller in cold climates?
(c) A cell receives oxygen and nutrients across its membrane to supply the
entire volume of the cell. Do scaling arguments suggest that limitations in
supplying oxygen and nutrients place a lower limit or upper limit in the size
of cells? Why?
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1.57. The strength of bones varies as their cross-sectional area, as we will see
in Chap. 4. We have seen that this suggests how the diameter of a long bone
scales with its length.
(a) Does this scaling relation mean that smaller creatures have thinner or
thicker bones than bigger creatures assuming the same strength criterion?
(b) Does this “static” argument imply a limitation on how small or how large
an animal can be?

1.58. (a) The work an animal of dimension L needs to propel itself a distance
equal to its dimension is the needed force – which is proportional to its mass –
times its dimension. Show this work scales as L4.
(b) This force must be supplied by muscles, and the work done by the muscles
is this force times the distance the muscles can contract; this distance scales
as the length of the muscles, which in turn scales with L. In Chap. 5 we will
see that the force exerted by a muscle is proportional to its cross-sectional
area. If the lateral dimension of the muscle also scales as L, show that the
maximum work that can be done by the muscle scales as L3.
(c) For work done by muscles to scale as fast as that needed for locomotion,
how must the lateral dimensions of muscles vary?
(d) Do these “dynamic” arguments limit how small or how large an animal
can be [47]?
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Statics of the Body

The study of the force balance of an object at rest is called “statics.” Moreover,
the study of very slow motion can usually be treated as a series of static
conditions – as if there were no motion; this is called “quasistatics.” After
reviewing the conditions for static equilibrium in three dimensions, we will
examine the useful simplification to two dimensions, examples of which can
often be characterized as one of the three types of levers. We will then apply
these equilibrium conditions to the lower arm, hip, and the spine (lower back).
Statics is one important area in biomechanics [75, 82, 86, 94].

2.1 Review of Forces, Torques, and Equilibrium

Each force F can be resolved into components in the x, y, and z directions
(Fx, Fy, Fz). In a static condition the sum of the forces F in each the x, y,
and z directions is zero:

∑
Fx = 0,

∑
Fy = 0,

∑
Fz = 0. (2.1)

The speed of the center of mass of the object in each direction is then constant,
and will usually be assumed to be zero here. These forces can be in balance
either for the entire body or for any part of the body.

Similarly, each torque τ can be resolved into components in the x, y, and
z directions (τx, τy, τz). In a static condition, the torques τ about the x-, y-,
and z-axis also each sum to zero for the entire body and for any body part:

∑
τx = 0,

∑
τy = 0,

∑
τz = 0. (2.2)

The speed of angular rotation of the object about each axis is then constant,
and will usually be assumed to be zero here.

What actually is a torque? Forces describe changes in linear motion – which
means changes in velocities, while torques describe how these same forces
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Fig. 2.1. Torques and relevant axes

can change angular motion – which means changes in angular velocities. The
diagram in Fig. 2.1b shows that a force F applied in the positive y direction
(with component F ) a distance +r from the z-axis, leads to a torque about
the z-axis τy of magnitude rF . This leads to motion in the counterclockwise
direction, caused by an angular acceleration that increases the angle θ. This
is defined as a positive torque about this axis. A negative torque would occur,
for example, if the force were applied in the negative y direction. This would
lead to motion in the clockwise direction, caused by an angular acceleration
that decreases the (signed) angle θ.

In general, the torque (vector τ) about any axis is defined as the vector
cross product between the distance vector from that axis to the point where
the force is applied r and the force vector F (Fig. 2.1e)

τ = r × F. (2.3)

(You do not need to understand or use this vector cross product, just the
results that are given below.)

Because vectors can be translated anywhere, things may be clearer if we
move both r and F, as in Fig. 2.1b, d, so they originate from where the force
is applied, as in Fig. 2.1c, e, respectively. We will call the angle from the r
vector to the F vector θ. The torque τz about the upward axis is

τz = rF sin θ, (2.4)

where r is the magnitude of vector r (the distance from the axis to the point
where the force is applied) and F is the magnitude of vector F. For 0◦ < θ <
180◦ (or 0 < θ < π in radians), sin θ is positive and the torque is positive
(Fig. 2.2a), while for 180◦ < θ < 360◦ (π < θ < 2π), sin θ is negative and the
torque is negative (Fig. 2.2b). When θ = 90◦(= π/2), sin θ = 1 and the torque



2.1 Review of Forces, Torques, and Equilibrium 39

Fig. 2.2. Direction of torques, showing (a) positive and (b) negative torques

is rF , as above. When r and F are either parallel (θ = 0◦(= 0)) or antiparallel
(θ = 180◦(= π)), the torque is zero.

Clearly, only the component of the r normal to the F, which we will call
r′, contributes to the torque action. In fact, as Fig. 2.3 proves, τz = r′F .
Equivalently, only the component of F normal to r, i.e., F ′, contributes to the
torque action, and τz = rF ′. As we will see, sometimes information is provided
where these normal components of displacement or force are provided, and the
torques can be calculated without explicitly determining the angle between
the displacement and force vectors. Consequently,

τz = rF sin θ = r′F = rF ′. (2.5)

This is true for any axis. The axis can be chosen cleverly for a particular
problem to simplify analysis.

In linear motion, a force leads to an acceleration a = d2r/dt2, which is
equivalent to a change in velocity v = dr/dt (the magnitude of which is the
speed v) or momentum p = mdv/dt, by

F = ma = m
dv
dt

=
dp
dt

, (2.6)

Fig. 2.3. Determining torques from using components of the displacement and force
vectors that are normal to the force and displacement vectors, respectively
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where m is the mass of the object. Similarly, a torque leads to an analogous
change in the angle θ and angular frequency Ω = dθ/dt, and orbital angular
momentum L

τ = I
dΩ

dt
=

dL

dt
, (2.7)

where I is the moment of inertia and L = IΩ. In static situations the sum
of the forces and torques on the object is zero, so the right-hand side of (2.7)
equals zero.

By the way, what we are defining as torques are indeed commonly called
“torques” in connection to the rotational and twisting motions of objects, as
in this chapter and Chap. 3, but are instead called “moments” in connection
to the bending of objects, as in Chap. 4.

2.2 Statics: Motion in One Plane and Levers

Many problems involve motion in one plane, say the xy plane – for which z
is a constant. For example, the motion of knees and elbows is in one plane.
Some problems involving motion of the leg about the hip can be treated in
these two dimensions. The six equations in (2.1) and (2.2) then reduce to
three equations:

∑
Fx = 0,

∑
Fy = 0,

∑
τz = 0. (2.8)

(We will adopt this xyz coordinate system because it is conventionally used in
two-dimensional problems, even though it differs from the coordinate system
convention we adopted for the body in Fig. 1.1.)

These types of problems can be classified as one of the three types of levers
(Fig. 2.4). There are examples in the body of each. They can be described by
how a weight W and a force M , provided by a muscle, act on a solid object,
say a bone resting on a fulcrum; this represents an articular joint. The weight
can include that of parts of the body as well as external weights. The weight
and muscle act at distances dW and dM from the joint. For each type of lever
the total torque is zero when

MdM = WdW, (2.9)

so

M =
dW

dM
W. (2.10)

The relative directions of the forces and the relative distances of the weight
and muscle forces from the joint are different for each type of lever.

In a first class lever, the weight and muscle act on opposite sides of the
fulcrum and are in the same direction (Fig. 2.4a). This is the least common
type of lever in the body. Using the x, y coordinate system shown, there are
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Fig. 2.4. Three types of levers, (a) first, (b) second, and (c) third class levers. The
large increase in the distance the weight moves over the change in muscle length in
the third class lever is also seen in part (c)

clearly no forces in the x direction so the first equation in (2.8) is automati-
cally satisfied. Since the weight and muscle both act in the same direction –
downward – force balance in the y direction requires that the fulcrum provides
an upward force of W + M . Balancing torques in the z direction requires a
choice of a z-axis. Any axis normal to the xy plane can be chosen. The sim-
plest one is an axis at the fulcrum. The weight provides a torque of WdW,
while the muscle provides a torque of −MdM. The signs are consistent with
the above discussion. The fulcrum provides no torque about this axis because
the distance from the fulcrum to the axis is zero. So

∑
τz = WdW − MdM = 0. (2.11)

This leads to (2.9), which tells how large the muscle force must be to maintain
equilibrium. If the muscle cannot provide this large of a force, there can be no
static condition. (Example: The lead ball is too heavy to hold up.) If the muscle
provides more than this force, there is motion. (Example: The baseball is being
thrown, as we will see later.) In these two cases,

∑
τz in (2.11) is not zero.



42 2 Statics of the Body

Fig. 2.5. Displacing the axis for calculating torques to the right of the weight by a
distance x, as shown for a first class lever. For the axis chosen at the fulcrum x = dW.
The axis can be laterally displaced anywhere, to the left or right (as shown) of the
lever, above or below it, or in it

It may seem that we cheated by choosing the axis at the fulcrum. Actually,
we could have chosen the axis anyway in the xy plane. To prove this let us
choose the axis anywhere along the bone, say a distance x to the right of the
weight (Fig. 2.5). The torques provided by the weight, fulcrum, and muscle
are now Wx, (W +M)(dW −x), and −M(dW +dM−x), respectively. Balance
requires

∑
τz = Wx + (W + M)(dW − x) − M(dW + dM − x) = 0, (2.12)

which reduces to (2.11) again.
One type of the first class lever is a seesaw or teeter totter. A second type

is the head atop the spinal cord, where the weight of the head is balanced by
the downward effective force of the muscles (Fig. 2.6a). In a third example, the

Fig. 2.6. Examples of first (a,b), second (c), and third (d) class levers in the body
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triceps brachii pull on the ulna about the elbow pivot balanced by the forces
on the forearm. With the upper arm down, the triceps brachii can balance an
upward force pushing the hand up (Fig. 2.6b). (With the upper arm pointed
up, the triceps brachii can also balance the hand holding a weight.) Because
dM � dW here, the force that the triceps brachii needs to exert is much greater
than the forces exerted at the hand.

In a second class lever, the muscle and weight act on the same side of the
fulcrum, and the weight is nearer to the fulcrum, so M < W (Fig. 2.4b). This
type of lever is the second most common in the body. One example is standing
on tiptoes: the rotation of the foot about the toes (the fulcrum), which would
be caused by the weight of the foot, is balanced by the muscle force transmitted
by the Achilles tendon (Fig. 2.6c). Another example is pushing down with the
triceps brachii.

In third class levers, the muscle and weight are again on the same side
of the fulcrum, but now the muscle is nearer to the fulcrum than the weight
(Fig. 2.4c). This is the most common example in the body. Because often
dM � dW, we see that M = (dW/dM)W � W . This arrangement means that
very large forces must be exerted by the muscles because of this dW/dM ampli-
fication, which seems to be a big disadvantage (and is literally a mechanical
disadvantage). However, something else is gained in this tradeoff in design.
As seen in the Fig. 2.4c, when the bone rotates a given angle, causing a ver-
tical displacement yM at the muscle, there is an amplification of the distance
traveled at the position of the weight by dW/dM. As we will see in Chap. 5,
muscles are able to contract only a small fraction of their length – which
amounts to at most several cm in many muscles. The length of the biceps is
about 25 cm, and the maximum contraction is by ∼7–8 cm. With this ampli-
fication, the weight can now move much more than this. One example of a
third class lever is the balancing of the lower arm by the biceps brachii inserted
on the radius (Fig. 2.6d). Another is holding a weight with an outstretched
arm.

2.3 Statics in the Body

We will examine the planar forces in the static equilibrium of the lower arm,
at the hip, and in the back. In analyzing the lower arm, we will choose suc-
cessively more complex and realistic models. We will see that the forces in
the hip and back are quite large, much more than one would expect, and
explains why people often have problems in these parts of the body, prob-
lems that can lead to hip replacements and life-long lower back pain. The
approach for these problems is the same. We consider all elements in one
plane and examine the forces in the (as defined) x and y directions and
the torque in the z direction. Some of the approaches of [65] and [86] are
followed.
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2.3.1 The Lower Arm

We will examine the equilibrium of the forearm balanced by the contraction
of the biceps brachii inserted on the forearm long bone called the radius; this
is a continuation of the discussion of third class levers. The relevant bones are
shown in Figs. 2.7 and 2.8. In equilibrium, the biceps brachii force counters
the potential rotation about the elbow joint by the weight held in the hand
(Fig. 2.9a). We will examine this example for different models, using Fig. 1.15
and Tables 1.6 and 1.7 to provide anthropometric information. The forearm
is 0.146H long and the hand length is 0.108H, where H is the body height,
so the weight held in the hand is about (0.146 + 0.108/2)H = 0.2H from the
pivot. (The ball is in the middle of the hand.)

Case 1

The biceps brachii insert about 4 cm from the pivot axis. Say there is a weight
WW held in the hand, which is dW = 36 cm from the pivot. (With H =
180 cm, 0.2H = 36 cm.) Therefore M = (dW/dM)WW = (36 cm/4 cm)WW =
9WW. So for a weight of 100 N the muscle must provide a force of 900 N for
balance. Here N stands for the MKS/SI unit of newtons. Since 1 N � 0.225 lb,
equivalently, a 22 lb weight is balanced by 200 lb of force exerted by the biceps
brachii (Fig. 2.9b).

We have made several assumptions and approximations in this example
without explicitly stating them. It is always good to start with simple models.
It is equally important to understand exactly what assumptions and approx-
imations are being made. Then, the model can be made more realistic. Here,
we have assumed that the forearm and upper arm make a 90◦ angle. We have
also neglected the mass of the forearm.

Case 2

Now let us improve the model by including the weight of the forearm WF

(Fig. 2.9c). This is about 0.022Wb, (where Wb is the body weight) (Table 1.7).
For a 70 kg (700 N, 160 lb) person, this is ≈15 N (3.4 lb). We can treat the effect
of the weight of the forearm as if it were acting at its center of mass, which
is approximately in the middle of the forearm, dF = 0.146H/2 = 13 cm from
the pivot:

∑
τz = MdM − WWdW − WFdF = 0 (2.13)

MdM = WWdW + WFdF (2.14)

M =
dW

dM
WW +

dF

dM
WF. (2.15)

The ratio dF/dM (= 13 cm/4 cm), so now M = 9WW +3.25WF and the muscle
force required to maintain equilibrium has increased to 900 N + 3.25 (15 N) =
950 N (210 lb).
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Fig. 2.7. Bones of the arm, anterior view. (From [78]. Used with permission)



46 2 Statics of the Body

Fig. 2.8. Bones of the arm, posterior view. (From [78]. Used with permission)
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Fig. 2.9. (a) Weight held in the hand, showing the biceps brachii muscles. (b–d)
Forces for the equilibrium of a weight held in the hand for Cases 1–3

Case 3

What happens if we no longer assume that the forearm and upper arm make
a 90◦ angle? Let us keep the upper arm vertical and let the forearm make an
angle θ, which can range over 142◦ (Table 1.10). The force due to the muscle
is then still vertical, and those due to the weights of the forearm and ball are,
of course, downward. From Fig. 2.9d we see that the torque caused by each of
these three forces is multiplied by sin θ. Now

∑
τz = MdM sin θ − WWdW sin θ − WFdF sin θ = 0 (2.16)

and we arrive at the same result that

MdM = WWdW + WFdF. (2.17)

Actually, we made additional assumptions in this example that we will
re-examine later. The distance from the pivot where the biceps brachii in-
sert on the radius really changes with θ (Fig. 3.42). Also, while this analysis
suggests that the muscle force M required for equilibrium is the same for all
angles, there is a subtlety in this result. Equation (2.16) gives the muscle force
needed to maintain equilibrium. As we will see in Chap. 5, muscles can exert
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forces up to a maximum value. If the M from (2.17) can be achieved, then
there can be equilibrium; if it cannot, then the static condition cannot be
achieved. The maximum force that a muscle can exert depends on its length,
which, from Fig. 2.9, is clearly a function of θ. So the M in (2.17) may be
achievable at some angles (nearer 90◦, where the maximum force turns out to
be greatest) and not at others.

Case 4

The biceps brachii are not the only muscles used to flex the elbow. What hap-
pens if we also include the contributions of these other muscles? Figure 2.10
shows that the biceps brachii, the brachialis, and the brachioradialis all con-
tribute to this flexing. Assuming that θ = 90◦ (which may not be a good
assumption for each muscle), (2.13) is modified to

∑
τz = M1dM1 + M2dM2 + M3dM3 − WWdW − WFdF = 0 (2.18)

M1dM1 + M2dM2 + M3dM3 = WWdW + WFdF (2.19)

where M1, M2, and M3 represent the forces exerted by the three muscles
Mi, respectively. If the physiological cross-sectional areas of the three mus-
cles are A1, A2, and A3, respectively (which we usually call PCA), and the
muscle force for each can be assumed to be proportional to this area (which
is a pretty good assumption), then Mi = kAi, for i = 1, 2, 3. (We will see

Fig. 2.10. Sketch of the elbow joint for analyzing the statics of the lower arm for
Case 4, with the three muscles, the biceps (brachii), brachialis, and brachioradialis,
shown in (b–d). (From [76])
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Table 2.1. Data for the three elbow muscles used for flexion. (Using data from
[76, 95])

muscle moment arm physiological cross-section

di (cm) (PCA) (cm2)

biceps (muscle 1) 4.6 4.6

brachialis (muscle 2) 3.4 7.0

brachioradialis (muscle 3) 7.5 1.5

that this is a good assumption with k reaching a maximum of ∼40 N/cm2

or so.) So,

kA1dM1 + kA2dM2 + kA3dM3 = WWdW + WFdF (2.20)

k =
WWdW + WFdF

A1dM1 + A2dM2 + A3dM3

(2.21)

M1 = kA1 = A1
WWdW + WFdF

A1dM1 + A2dM2 + A3dM3

(2.22)

M2 = kA2 = A2
WWdW + WFdF

A1dM1 + A2dM2 + A3dM3

(2.23)

M3 = kA3 = A3
WWdW + WFdF

A1dM1 + A2dM2 + A3dM3

. (2.24)

Using the parameters from Table 2.1, we get M1 = 262 N (biceps), M2 =
399 N (brachialis), and M3 = 85 N (brachioradialis) when we generalize Case 2.
This compares to the M1 = 696 N that we would obtain for Case 2 with the
biceps alone, using d1 = 4.6 cm (instead of the 4 cm used before, which led to
800 N). The total muscle force is 746 N, which is greater than 696 N because
the brachialis has a relatively small moment arm.

Life is a bit more complex than this result suggests because we assumed
that k has the same value for each muscle. Really Mi = kiAi, and all the ki’s
need not be the same, as long as ki is less than the maximum that can be
exerted by the muscles. Unfortunately, if all the kis are not assumed to be
equal, we do not have enough information to solve this problem uniquely as
posed. The body may solve the indeterminate nature of this problem (with
more variables than conditions) by minimizing energy or optimizing the force
distribution (shifting the load from one muscle to another) to rest specific
muscles or to keep the weight balanced better (so it will not tip in the hand).

2.3.2 Hip Problems

The hip (pelvis) is not a single bone, but several bones that are fused together
(Figs. 2.11 and 2.12). The pelvis is composed of the pelvic girdle and two
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Fig. 2.11. Right hip bone in adult. (From [65])

parts of the spinal cord, the sacrum and coccyx. The pelvic girdle itself is
composed of the right and left coxal (or hip) bones. Each coxal (hip) bone is
composed of three bones: the ilium (at the top = superior), pubis (bottom
front = inferior, anterior), and ischium (iss-kee’-um) (bottom back = inferior,
posterior). The acetabulum (a-si-tab-yoo’-lum) is the socket area where the
femur of the leg (Fig. 2.13) is attached (“hip joint”). Actually, the head of the
femur is in this socket, and is maintained there by the muscles attached at
the greater trochanter. These muscles are collectively called the hip abductor
muscles. (The hip abductor muscles are not the only one attached at the
greater trochanter (see below), but they are the ones that contribute to the
force needed for the equilibrium condition in this problem.)

First we will determine the force on the head of the femur and in the
hip abductor muscles while the subject is standing on one leg, say the right

Fig. 2.12. Front and side views of the hip. (From [65])
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Fig. 2.13. Anterior view of right femur. (From [65])

leg. This is actually a good model for determining these forces during slow
walking. The upper and lower leg and the foot are treated as a rigid body.
This problem is solved in two steps. First, the forces in the whole body are
analyzed and then the rigid leg is treated as a free rigid body, whose only
interaction with the rest of the body will be the normal force from the hip
[65, 85]. The bones in the leg are shown in Figs. 2.14 and 2.15.

Total Body Equilibrium

There are only two forces on the body. The body weight Wb acts downward,
and as if it all originated at the center of mass of the body, which is in the
midline in the hip (Fig. 2.16). The foot feels an upward normal force from
the floor of magnitude N . There are no forces in the x direction, and these
two forces in the y direction must balance in equilibrium, so N = W . In
equilibrium the body cannot start to rotate, so the torques are zero. It is clear
from the Fig. 2.16 that this occurs when the foot is directly below the hip, in
the midline. If we choose the pivot axis at the center of mass, the torque from
the center of mass is zero because the distance term (from the axis to the
center of mass) is zero and the torque from the normal force is zero because
the normal force is antiparallel to the distance vector (θ = 180◦). (You can
prove for yourself that the total toque is zero for any other axis normal to the
xy plane.)

Equilibrium of the Individual Body Component

There are four external forces on the leg (Figs. 2.16 and 2.17):

(a) N is the normal force on the leg from the floor, and we know that N = Wb.



52 2 Statics of the Body

Fig. 2.14. Bones of the leg and hip, anterior view, with names of bones in bold.
(From [79]. Used with permission)
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Fig. 2.15. Bones of the leg and hip, posterior view, with names of bones in bold.
(From [79]. Used with permission)



Fig. 2.16. Anatomical diagram of the leg and hip for someone standing on one
leg, or during slow walking, showing the forces on them and relevant dimensions,
including the force exerted on the head of the femur by the acetabulum R and the
net force exerted by the hip abductor muscles. (From [65])

Fig. 2.17. Force diagram for a leg for someone standing on one foot, using Fig. 2.16.
(From [65])
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(b) Wleg is the weight of the leg. Table 1.7 shows that this is about 0.16Wb.
It acts as if it were applied at the center of mass of the leg, which is
approximately halfway down the leg.

(c) R is the reaction force on the leg from the hip, and it is normal to the
hip socket. We will define the x and y components Rx and Ry so they are
positive (Fig. 2.17). Equivalently, we could define the magnitude of R and
the angle it makes with the vertical, ϕ.

(d) M is the force (of magnitude M) due to the hip abductor muscles. There
are actually three muscles involved here: the tensor fascia (fash-ee’-uh)
latae (la-tuh) (see Fig. 3.2a), gluteus (gloo’-tee-us) minimus (see Fig. 3.3c),
and the gluteus medius (see Fig. 3.3a, b). (The gluteus maximus muscle is
what the author is sitting on as he is typing this.) These three muscles have
a mass ratio of about 1:2:4 and, as we will see, this is roughly the ratio of
the forces each can exert. The hip abductor muscle structure we consider
is a composite of the three muscles. It has been shown that the effective
action of this system is � 70◦ to the horizontal, acting on the greater
trochanter.

We have three equations with three unknowns: Rx, Ry, and M . The two force
equations are

∑
Fx = M cos 70◦ − Rx = 0, (2.25)

∑
Fy = M sin 70◦ − Ry − 0.16Wb + Wb = 0, (2.26)

where Wleg has been replaced by 0.16Wb.
We will choose the rotation axis to emanate from the center of the head of

the femur because the reaction force from the acetabulum passes through this
point. This makes the analysis easier, but, of course, the solution would be the
same if we chose any other parallel axis. The relevant distances of interest are
shown in the diagram (obtained from anatomical dimensions and geometry),
as needed for torque analysis.

(a) The component of the distance vector perpendicular to the normal force
(r′) is 10.8 cm, so the normal force causes a torque of (10.8 cm)Wb. This
is a positive torque because the normal force induces a counter clockwise
rotation about the chosen z-axis (see Fig. 2.2).

(b) The component of the distance vector normal to the force of the weight
of the leg is 3.2 cm and this force tends to induce a clockwise rota-
tion, so it contributes a torque of −(3.2 cm)Wleg = −(3.2 cm)(0.16Wb) =
−(0.5 cm)Wb.

(c) With the choice of the axis, the torque from the reaction force from the
hip is zero, because the distance vector and normal force are antiparallel.

(d) The component of the force from the hip abductor muscles normal to the
horizontal distance vector (of magnitude 7.0 cm) is M sin 70◦. Since this
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causes a clockwise rotation, the torque is −(7.0 cm)M sin 70◦. So we see
that
∑

τz = (10.8 cm)Wb − (3.2 cm)(0.16Wb) + 0 − (7.0 cm)M sin 70◦ = 0,

(2.27)

M =
10.8 − 0.5
7.0 sin 70◦

Wb = 1.57Wb. (2.28)

We see that torque provided by the hip abductor muscles is needed to counter
the torques from the normal force from the floor and the weight of the leg.
This normal force torque is much more important than that due to the
leg, because of the greater magnitude of the force and the larger moment
arm.

Using this value for the muscle force, the force balance in the x direction
gives Rx = M cos 70◦ = 0.54Wb. From the balance in the y direction, Ry =
M sin 70◦+0.84Wb = 2.31Wb. The magnitude of R = (R2

x+R2
y)1/2 = 2.37Wb,

and tan θ = Rx/Ry = 0.54/2.31 = 0.23, so θ = 13◦.
Because M � 1.6Wb and R � 2.4Wb, for mb = 90 kg we have Wb = 880 N

(200 lb), and so M � 1,400 N (320 lb) and R � 2,100 N (470 lb). The origin of
hip problems is clear: The force from the hip is much greater than the body
weight because of the large moment arms.

We next examine a variation of this problem. The person now uses a cane
to provide support on the left side while standing on his or her right leg
(Fig. 2.18). As shown in Fig. 2.19, the cane is 30.5 cm (1 ft) from the body
midline. It is supported by and pushed down by the left arm or shoulder.
Consequently, there is a normal force Nc from the floor. We assume Nc =
Wb/6. We will see that this has two immediate consequences. The right foot
is no longer directly in the body midline but is displaced a distance L to the
right (in the reference of the body) and the normal force felt by the right foot
Nf is no longer the body weight.

Whole body equilibrium gives

Nf + Nc − Wb = Nf + Wb/6 − Wb = 0 (2.29)

or Nf = 5Wb/6. Using the same axis as before, the torque balance is
∑

τz = (30.5 cm)Nc − L(Nf) = (30.5 cm)(Wb/6) − L(5Wb/6) = 0 (2.30)

or L = (Nc/Nf)30.5 cm = (1/5)30.5 cm =6.1 cm.
For the same leg as in Fig. 2.17, the corresponding distances are differ-

ent because the angle of the leg is now different (as obtained from anatom-
ical dimensions and the new geometry) (Fig. 2.20). We will examine the
whole leg equilibrium again. The cane is not explicitly involved, but implic-
itly through the changes in the leg position and the load borne by the leg.
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Fig. 2.18. Forces on entire person for someone walking with a cane. (From [65])

Fig. 2.19. Force diagram for a person using a cane for some support. (From [65])
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Fig. 2.20. Free-body force diagram of the leg for someone walking with a cane.
Note that the center of mass of the leg is now 0.33 cm to the left of the vertical
from the center of the head of the femur, whereas without the cane it was 3.2 cm
to the right of the vertical. Consequently, the leg center of mass is 6.65 cm from the
vertical line from the greater trochanter, whereas the center of the head of the femur
is 6.98 cm from it. (From [65])

Now
∑

Fx = M cos 70◦ − Rx = 0, (2.31)
∑

Fy = M sin 70◦ − Ry − 0.16Wb + (5/6)Wb = 0, (2.32)
∑

τz = +(4.7 cm)(5/6)Wb+(0.33 cm)(0.16Wb)+0−(6.98 cm)M sin 70◦ = 0.

(2.33)

The first equation is unchanged. (We are assuming that the effective angle
of the hip abductor muscles with the x-axis is still 70◦, even though this is no
longer rigorously true.) The only change in the second equation is the smaller
normal force on the leg. There are two changes in the torque equation. The
first term, due to the normal force from the floor, is much smaller due to the
change in the moment arm and the normal force of the leg – the former effect
being much larger than the latter. The second term, due to the weight of the
leg, is much smaller in magnitude and is now a positive torque instead of a
negative torque, because the center of mass of the leg is now to the left of the
vertical drawn down from the axis (Figs. 2.2 and 2.20).
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Table 2.2. Analytic estimates of peak hip forces. (Using data from [82])

activity magnitude/body weight, Wb

walking 4.8–5.5

walking slowly with/without a cane 2.2/3.4

stair ascending/climbing 7.2–7.4

stair descending 7.1

chair raising 3.3

Now M = 0.61Wb, Rx = 0.21Wb and Ry = 1.24Wb, with R = 1.26Wb

and ϕ = 9.5◦. With Wb still 880 N (200 lb), the muscle force M is now 540 N
(120 lb) (instead of 1,400 N (320 lb) without the cane) and the reaction force
at the hip R is now 1,100 N (250 lb) (instead of 2,100 N (470 lb)). This is a
very big effect, considering that only about 145 N (35 lb) (≈ Wb/6) is resting
on the cane. By far the major consequence of the cane is the change of the
moment arm of the normal force from the floor from 10.8 to 4.7 cm, because
the foot shifted to the right by 6.1 cm.

Another variation of this situation is presented in Problems 2.8 and 2.9.
Instead of using a cane with the left hand, you will examine the consequences
of carrying a weight on the left side. This greatly increases the moment arms,
thereby increasing M and R. Table 2.2 shows estimates for peak hip forces
for several activities from more detailed analyses.

Excessive hip forces for extended periods of time can thin cartilage and
cause other damage; this leads to pain during walking that can sometimes only
be alleviated with a hip replacement. Total hip replacements entail replacing
the ball of the femur and the acetabulum. The femoral component is a highly
polished ball of a high-strength alloy, such as cobalt–chromium or titanium,
with a step that is placed in the canal of the femur. It is often fixed with an
acrylic plastic, such as poly(methyl methacrylate), PMMA, “bone cement.”
The acetabulum component is a socket made from ultrahigh molecular weight
polyethylene, and may have a metal backing.

2.3.3 Statics of Other Synovial Joints

Other synovial joints can be examined in similar ways by using models of
the muscles and tendons. They are briefly outlined here; see [86] for more
details.

Shoulder

The anatomy and musculature of the shoulder are shown in Figs. 1.2 and
1.8. Figure 2.21 shows a model of the static equilibrium of a horizontal arm
that holds a weight by means of the deltoid muscle. This weight and muscle
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Fig. 2.21. Forces on the arm and shoulder, when the arm is abducted to the hor-
izontal position and the hand holds a weight, along with the force diagram. (From
[86])

are in equilibrium with the weight of the arm and the reaction force on the
joint. Problems 2.15–2.17 address this with and without a weight held in the
hand. For reasonable parameters, the component of the muscle force in the x
direction is about 4× that in the y direction, suggesting that holding the arm
horizontally is not stable – as we all know.

Dislocation of the shoulder (glenohumeral) joint is common because it is
shallow. The large degree of rotational motion of the head of the humerus
about the articulating surface of the glenoid fossa enables this large mo-
tion, albeit with little stability. The shoulder joint angles range by ∼249◦

during flexion/extension, ∼182◦ in abduction/adduction, and ∼131◦ for in-
ward/outward rotation (Table 1.10). Fracture of the humerus is also relatively
common.

Knee

The knee joint is really two joints (Fig. 1.3). The tibiofemoral joint is located
between the medial and lateral condyles of the femur and tibia, which are
separated by cartilaginous regions called menisci. (A condyle is the rounded
prominence at the end of a bone, often at an articulation joint.) The second
is the patellofemoral joint between the kneecap (patella) and the anterior end
of the femoral condyles. Muscle control of the knee is mostly through the
quadriceps and hamstring muscles. The quadriceps attach to the quadriceps
tendon, which attaches to the kneecap, which attaches to the patellar tendon,
which attaches to the tibia.

The forces on the static lower leg loaded with an ankle weight, as during
exercise (Fig. 2.22), are shown in Figs. 2.23 and 2.24. The forces shown are
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Fig. 2.22. Exercising muscles near and at the knee. (From [86])

due to this added weight, the weight of the lower leg, the quadriceps muscle
force transmitted by the patellar tendon M (of magnitude M), and the joint
reaction force R (of magnitude R), while the angle between the horizontal
and the leg is β. In equilibrium, the muscle force and the x and y components

Fig. 2.23. Forces on the lower leg, while exercising the muscle around the knee.
(From [86])
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Fig. 2.24. Resolution of the forces on the lower leg in Fig. 2.23. (From [86])

of the joint force are

M =
(bW1 + cW0) cos β

a sin θ
, (2.34)

Rx = M cos(θ + β), (2.35)
Ry = M sin(θ + β) − W0 − W1. (2.36)

These forces are very large [84, 86]. For a = 12 cm, b = 22 cm, c = 50 cm,
W1 = 150 N, W0 = 100 N, θ = 15◦ and β = 45◦, we see that the muscle
force M = 1, 381 N and the joint force R = 1, 171 N. This is examined fur-
ther in Problem 2.18. Problems 2.21–2.24 address a related condition, that of
the crouching position, as occurs during ascending and descending stairs or
jumping.

One function of the kneecap is to increase the moment arm (Fig. 2.25).
We can analyze the equilibrium of the kneecap at the patellofemoral joint
between the reaction force on the kneecap from the anterior end of the femoral
condyles, the patellar tendon and the quadriceps tendon. This is shown in
Fig. 2.26. The compressive force applied on the kneecap is

FP =
cos γ − cos α

cos φ
M (2.37)

at an angle

φ = arctan
(

sinα − sin γ

cos γ − cos α

)
. (2.38)

Ankle

We now examine the equilibrium of the foot. The anatomy of the ankle and
foot are depicted in Figs. 2.14 and 2.15 (also see Figs. 1.8 and 3.4). Figures 2.27
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Fig. 2.25. The presence of the kneecap (patella) increases the moment arm in the
lever. (From [86])

Fig. 2.26. Force diagram of the kneecap (patella) in equilibrium. (From [86])
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Fig. 2.27. Force diagram of the foot on tiptoe, showing that they form a concurrent
system. (From [86])

and 2.28 show the forces when someone stands on tiptoes on one foot. The
reaction force on the talus bone of the foot is in balance with the normal force
from the floor (equal to the body weight) and the muscle force transmitted
by the Achilles tendon on the calcaneus (heel). (The mass of the foot itself is
neglected here.) The muscle and reaction forces are

M = Wb
cos β

cos(θ + β)
, (2.39)

R = Wb
cos θ

cos(θ + β)
. (2.40)

Fig. 2.28. Components of the forces acting on a foot on tiptoe. (From [86])
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Fig. 2.29. The masseter and temporal muscles in the jaw, about the temporo-
mandibular joint. (From [88])

These are both much greater than the body weight Wb. For θ = 45◦ and
β = 60◦, we see that M = 1.93Wb and R = 2.73Wb.

Jaws and Teeth

Forces on teeth arise from several sources [72]. Figure 2.29 shows how the
masseter muscles provide the force in the lever system involved in chewing
and biting. Lever models can be used to examine the quasistatics of chewing
and biting. (See Problem 2.27.)

Orthodontics is the practical application of biomechanics to move teeth
using forces applied by appliances, such as wires, brackets, and elastics [81,
87, 90]. Each tooth has a center of mass, but since teeth are not free bodies –
they are restrained by the periodontium – a more useful position in the tooth
is defined, the center of resistance. This is the balance point for the tooth.
Figure 2.30 shows how forces and torques (moments) applied to the crown of a
tooth, can be designed to create a lateral force at the center of resistance, but
no torque about it. Appliances can affect several teeth, such as the intrusion

Fig. 2.30. In orthodontics forces and torques are applied to the crown (left), leading
to forces (and in this case no torques) about the center of resistance. (Reprinted from
[81]. Used with permission of Elsevier)
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Fig. 2.31. Photo of an intrusion arch used in orthodontics. (Reprinted from [81].
Used with permission of Elsevier)

arch shown in Fig. 2.31, which leads to the application of forces and torques
shown in Fig. 2.32.

2.3.4 Lower Back Problems

Most people eventually develop chronic lower back problems. The best way
to avoid such a persistent and annoying problem is to try to avoid situations
that might trigger your first back problem, such as bending over and lifting
heavy objects, or sleeping on very hard beds. We will examine a simple statics
model that will show why you should never bend and lift. (You should use
the muscles in your legs to lift and not those in your back.) We will examine
the force on the fifth lumbar vertebra when you bend and lift.

The spinal cord consists of 33 vertebra with 26 bones, and is classified into
five sections. Starting from the top (superior) in Fig. 2.33, there are seven
cervical, twelve thoracic – which rhymes with “Jurassic” – and five lumbar
vertebra, and then five fused vertebra in the sacrum (sae’krum) and four fused
vertebra in the coccyx (koak’-sis) (tail bone). Figure 2.34 shows two lum-
bar vertebra with the central regions of each, the centrum, separated by the
intervertebral disc; more detail about the vertebrae is shown in Fig. 2.35. Note

Fig. 2.32. Forces and torques applied by the intrusion arch in Fig. 2.31. (Reprinted
from [81]. Used with permission of Elsevier)



Fig. 2.33. The vertebral column (spine). (From [65].) The thoracic and sacral curves
are primary curves, while the cervical and lumbar curves are secondary curves

Fig. 2.34. Side view of two vertebrae separated by a vertebral disc. (From [65])

Fig. 2.35. Vertebra viewed from above. (From [65])
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Fig. 2.36. Cross-section of two vertebrae and a vertebral disc with nerve for (a) a
normal intervertebral disc and (b) one that has degenerated and is compressing the
nerve root. (From [65])

the spinal nerve root (in Fig. 2.36) (pain region) and the spinous processes.
The distinct vertebrae become successively larger down the spinal cord, be-
cause of the additional load they bear. This combination of vertebrae and
intervertebral discs provides flexibility in the spinal cord, but also causes po-
tential problems.

The spinal cord is not straight; each section is curved. At birth, only the
thoracic and sacral curves are developed. These primary curves are in the
same direction and lead to the “fetal position.” At three months, the cervical
curve develops, so the baby can hold his/her head up. When the baby learns
to stand and walk, the lumbar curve develops. These secondary curves have
curvature opposite to that of the primary curves (Fig. 2.33). Figure 2.37 shows
the lumbosacral angle between the fifth lumbar vertebra and the sacrum.

Fig. 2.37. The lumbosacral angle is defined as that between the horizontal and the
top surface of the sacrum. (From [65])
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Deviations in the angle from ∼30◦ can lead to lower back pain. We will model
the spinal cord as a rigid bar even though this description of the spinal cord
curves would suggest a more complex model.

There is a series of massive muscles from the posterior parts of the il-
iac crest and sacrum to the skull (occipital bone), called the erector spinae
(spy’nee) (or sacrospinalis (sae-kro-spy-na’-lis)) (Figs. 2.38 and 2.39). They
will be modeled as a single muscle inserted 2/3 from the center of mass of the
head and arms, at a 12◦ angle (Fig. 2.40).

Consider the spinal cord at an angle θ to the horizontal (Fig. 2.40); initially
we will take θ = 30◦, corresponding to a deep bend. It is hinged at the lum-
bosacral disc, just below the fifth lumbar vertebra and the sacrum (Figs. 2.37
and 2.40). We will choose the axis for torque analysis right there. There is
a reaction force R (of magnitude R) from the sacrum with components Rx

and Ry. The weight of the trunk (above the hips, excluding arms and head)
W1 acts half way down the spinal cord. The weight of the arms, head, and
any object lifted, W2, act at the top of the spinal cord. These are shown in
Fig. 2.40 along with the erector spinae force M (of magnitude M ). Using Ta-
ble 1.7, it is reasonable to approximate W1 = 0.4Wb and W2 = 0.2Wb, with
nothing being lifted.

Figure 2.40 shows that M acts at an angle that is θ − 12◦ relative to the
horizontal; for our first example θ = 30◦ and so this angle is 18◦. The force
balances are

∑
Fx = Rx − M cos 18◦ = 0, (2.41)

∑
Fy = Ry − M sin 18◦ − 0.4Wb − 0.2Wb = 0. (2.42)

With this choice of rotation axis, the torque due to the reaction force is zero.
The component of M normal to the spinal cord is F ′ = M sin 12◦, leading to
a torque (2L/3)(sin 12◦)(M). The fraction of each weight force normal to the
spinal cord is θ = cos 30◦. Torque balance requires

∑
τz =

2L

3
sin 12◦(M) − L

2
cos 30◦(0.4Wb) − L cos 30◦(0.2Wb) = 0. (2.43)

The torque equation gives M = 2.5Wb or 2,200 N (500 lb) for the 880 N
(200 lb) body weight of a 90 kg body mass. The reaction force parameters are
Rx = M cos 18◦ = 2.38Wb, Ry = 1.37Wb, φ = arctan(Ry/Rx) = 30◦ (which
is the angle the reaction force makes with the horizontal), and R = 2.74Wb,
which is 2,400 N (540 lb) here. Clearly, the muscle forces and reaction force
on the lower spinal cord are much larger than the body weight. The moment
arms of the weights are about the same as that of the muscle. However, the
direction of weight forces lead to large torques at large bending angles, while
the direction of the muscle force does not lead to a large torque to balance
the weights – at any bending angle.
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Fig. 2.38. Intermediate (left) and deep (right) layers of back muscles – showing the
erector spinae muscles. The erector spinae consists of lateral columns (the iliocostalis
lumborum, thoracis, and cervicis muscles), intermediate columns (the longissimus
thoracis, cervicis, and capitis muscles), and a medial column (spinalis thoracis).
(From [93])

Matters are even worse if you hold a weight in your arms; this simulates
bending and lifting an object of this weight. All this does is to increase W2.
Let us increase W2 by 0.2Wb (180 N (40 lb) in our example) to 0.4Wb. Now

∑
Fx = Rx − M cos 18◦ = 0, (2.44)
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Fig. 2.39. Diagram of the erector spinae muscles used to control the trunk when
bending. (From [65])

Fig. 2.40. Free-body diagram of the vertebral column while bending, with the spine
modeled as a straight bar at an angle θ to the horizontal, which we will take to be
∼30◦ – a bit steeper bend than is depicted here and shown in the inset. The angle
of R to the horizontal is φ. With nothing being lifted, we will take W1 = 0.4Wb and
W2 = 0.2Wb. (From [65])
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Table 2.3. Forces in the body during bending and lifting

θ M M R R

(no lifting) (extra 0.2Wb) (no lifting) (extra 0.2Wb)

30◦ 2.50 3.74 2.74 4.07

60◦ 1.44 2.16 1.93 2.81

80◦ 0.50 0.75 1.08 1.53

90◦ 0 0 0.60 0.80

All forces are in units of the body weight. For a body mass of 90 kg, multiply each
number by 880N (200 lb)

∑
Fy = Ry − M sin 18◦ − 0.4Wb − 0.4Wb = 0, (2.45)

∑
τz =

2L

3
sin 12◦(M) − L

2
cos 30◦(0.4Wb) − L cos 30◦(0.4Wb) = 0. (2.46)

The force the erector spinae muscles need to exert increases to 3.74Wb

or 3,300 N (740 lb). The muscle must exert an additional 1,100 N (250 lb) to
balance only an additional 180 N (40 lb). We see that Rx = 3.56Wb, Ry =
1.96Wb, and R = 4.07Wb. This is 3,600 N (810 lb), an additional 1,200 N
(270 lb) of reaction force on the fifth lumbar vertebra.

Table 2.3 shows these forces for several bending angles. We can see why
bending itself, and bending and lifting can lead to problems with the back
muscles and the lower vertebra discs.

What does this mean for the lumbosacral (intervertebral) disc? Let us con-
sider our initial example of bending by 60◦ from the upright position, to 30◦

from the horizontal, without any lifting. The reaction force on this disc is
2,400 N (540 lb). This force pushes down on the top and up on the bottom
of this cylindrical disc. We are assuming a load that is normal to the axis,
which is not exactly correct at these angles. Figure 2.41 shows how much the
height of the disc decreases (fractionally) with this type of load. The weight
corresponding to 250 kg is 2,400 N (540 lb), so by using this figure a 20% con-
traction is expected parallel to the spine. If the disc is a cylinder of radius r
and height H, then its volume is πr2H. If the material in the disc is incom-
pressible, its volume will not change with this compression and if H decreases
by 20%, r will increase by about 10%. The bulging disc can press against the
nerve, as seen in Fig. 2.36b. With lifting, the reaction force goes up more, the
compression of the disc increases, and there is more bulging and more irrita-
tion of the nerves. (We have compared a 245 kg (2,400 N, 540 lb) load on the
disc to a situation with no force on this disc. In the upright position, there
is 0.6× the body mass (and weight), 54 kg (530 N, 120 lb) already supported
by this disc due to body weight, so the load is really changing from 530 N
(120 lb) to 2,400 N (540 lb). (How does this affect our numerical results and
conclusions?) Also the loading is not uniform when you lift or bend, and there
can be tension and compression and bulging due to this, as in Fig. 2.42.)
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Fig. 2.41. Loading of wet lumbar vertebral discs of persons 40–59 years of age vs.
percent compression. For the loading in N, the ordinate scale needs to be multiplied
by 9.8. (From [65]. Based on [96])

This teaches us two things. (1) Understanding the mechanical properties
of the parts of the body is essential to understand the implications of forces
on the body. (2) You should never bend and lift. Problems 2.33–2.35 examine
the torques during lifting of objects of different sizes, with different upper
body positions (as above), and with different techniques.

These lower back forces depend not only on spine angle and load, but on
knee bending during lifting and where the load is positioned relative to the
body. During lying the lower back forces are 20–50% of those while standing
upright relaxed (Table 2.4), and reach values over double the weight and over

Fig. 2.42. Disc compression for a person who is (a) vertical, (b) bending forward,
and (c) bending backward. Bending forward leads to disc compression anteriorly
and tension posteriorly, bulging on the compressive side, and the shifting of the disc
nucleus posteriorly. (From [88])
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Table 2.4. Values of intradiscal pressure for different positions and exercise, relative
to that during relaxed standing. (Using data from [80, 83, 92])

position or activity %

still

lying supine 20

side-lying 24

lying prone 22

lying prone, extended back, supporting elbows 50

relaxed standing 100

standing, bent forward 220

sitting relaxed, no back rest 92

sitting actively straightening back 110

sitting with maximum flexion (bent forward) 166

sitting bent forward, thigh supporting the elbows 86

sitting slouched in a chair 54

motion

standing up from chair 220

walking barefoot or in tennis shoes 106–130

jogging with shoes 70–180

climbing stairs, one at a time 100–140

climbing stairs, two at a time 60–240

walking down stairs, one at a time 76–120

walking down stairs, two at a time 60–180

lifting

lifting 20 kg, no bent knees 460

lifting 20 kg, bent knees, weight near body 340

holding 20 kg near body 220

holding 20 kg, 60 cm from chest 360

3× the torso weight during fast walking (Fig. 2.43). Table 2.4 shows that the
pressure between vertebral discs for people sitting is minimized when they
slouch, so when your parents tell you to stop slouching you can respond that
you are trying to minimize intradisc pressure for long-term care of your spinal
cord.

How can you maintain your back and relieve lower back pain if you have
relatively minor lower back damage? Stretch your back muscles. Always bend
your knees and use your leg muscles (and not your back) when you lift. Make
sure that you maintain the curvature of your lower back at all times. You
should sit on chairs with lower back support (see Fig. 2.44 and [91]), but
when you must sit on flat back chairs, you may want to use a rolled-up towel
or a pillow at the bottom of your back to help maintain the curvature. When
you sleep, maintain one of two positions: on your back with your knees bent
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Fig. 2.43. Axial load on the disc between the L3 and L4 vertebra while walking at
different speeds. LHS and RHS are left and right heel strike, respectively. (Based on
[68, 83])

and feet pulled up (bent hips and knees) or the fetal position; never sleep on
your front. (One reason for this is that in the supine position with straight
legs, the vertebral portion of the psoas muscle puts a load on the lumbar
spine, whereas this muscle relaxes and this load decreases when the hips and
knees are bent and supported [83].) Only sleep on beds that allow your back

Fig. 2.44. The pressure on the third lumbar disc is decreased with backward back-
rest inclination and with lumbar support. Also, it is increased with support in the
thoracic region, which is not shown here. Chairs with some backward inclination
and lumbar support provide needed support, while those with an upright flat back
or that curve toward the body can cause painful pressure. (Based on [64, 69])
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Fig. 2.45. Hyperextension exercises recommended (at the Tientzin Hospital in
China) to strengthen the back of lumbago patients (i.e., those with mild to severe
pain or discomfort in the lower back); each is performed with the patient’s back
kept hollow. Several other exercises are also recommended for those with lower back
pain. If you have lower back pain, please consult your physician before attempting
any of these exercises. (From [70])

to maintain its natural curvature; beds should not be too firm or too soft.
Some hyperextension exercises that can strengthen muscles to help your back
are shown in Fig. 2.45. (Guess, who has a lower back problem?)

2.3.5 Three-Force Rule

Consider the foot–lower leg combination shown in Fig. 2.46a, which is a model
for a person walking upstairs. There are three forces acting on this isolated

Fig. 2.46. (a) Illustrating the three-force rule on the free lower leg, with reaction
force N, patellar tendon force M, point where these extended vector lines meet
P , and the point where the joint force acts on the tibia Q . (b) Vector diagram of
three-force rule with R being the joint reaction force at Q . (From [76])
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system. The normal force N acts vertically at the front of the foot and for
slow stair climbing has a magnitude equal to the body weight Wb. This nor-
mal force tries to rotate the lower leg clockwise about the knee. The patel-
lar tendon transmits the force of the thigh quadriceps muscle M, as shown,
and tries to counter this rotation. The direction of this force is along this
tendon and the direction of this tendon is known. There is also a reac-
tion force R exerted by the femoral condyles on the top of the tibia, act-
ing as shown at point Q. In this two-dimensional problem, there are three
equations (two for force balance and one for torque balance) and three un-
knowns: the magnitudes of M and R, and the direction of R. As such, this
problem can be solved in the straightforward way illustrated earlier. How-
ever, there is a graphical procedure called the three-force rule that offers
some additional insight and, of course, the same answers as the straightfor-
ward method. (For simplicity, we are ignoring the mass of the leg and foot
here.)

Extending the N and M vectors, we see that they intersect at point P. If we
choose the torque rotation axis perpendicular to this point, we see that these
two forces contribute nothing to the torque since their r and F vectors are,
respectively, antiparallel and parallel to each other. Since in static equilibrium
(or the quasistatic situation here) the net torque is zero, the reaction force
vector R must also pass through P when it is extended, and so R is parallel
to the QP line segment. Because the directions of M and R are now known,
we can place them at the head and tail of the N, respectively, as shown
in Fig. 2.46b (always with the head of one vector to the tail of the other,
as in adding vectors). The lengths of both vectors are now determined by
lengthening them until they hit each other. Then the sum of the force in
the x and y directions is zero (because of the closed triangle), and we have
obtained all of the needed information.

By the way, the reaction forces at the knee are ∼3–4Wb during walking
[82] and are much greater during stair climbing.

2.3.6 Multisegment Modeling

Several parts of the body are often important in modeling the body, both
in static situations and for those involving motion. As an example, Fig. 2.47
shows how an anatomical model of leg can be modeled by three segments,
describing the upper leg, lower leg, and the foot. Each segment is labeled by
its mass (m), center of mass (dot), and moment of inertia (I). In this example
there are also three joints (freely rotating hinges or pins), between the hip
and upper leg, the upper leg and lower leg (the knee), and the lower leg and
foot (the ankle), each denoted by an open circle. The forces by muscles and
normal forces at the joints and other places (such as the floor) can be added
to this link segment model, and the forces on torques on the entire object
can be analyzed or those on each segment can be analyzed by itself. (This is
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Fig. 2.47. Relationship between an anatomical model of the leg and a link segment
model of the upper leg, lower leg, and foot. (From [95]. Reprinted with permission
of Wiley)

somewhat similar to examining the whole body and then the leg by itself in
the above analysis of the hip.)

In analyzing each segment in Fig. 2.47 by itself, you arrive at a free body
diagram for each segment, as in Fig. 2.48. In this example, the reaction forces

Fig. 2.48. Relationship between the link segment of the leg with a free-body di-
agram, with individual upper leg, lower leg, and foot. (From [95]. Reprinted with
permission of Wiley)
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at every body joint are shown (R), and at each particular joint the forces are
equal in magnitude and opposite in direction due to Newton’s Third Law, such
as R2 shown for the knee. The forces due to each muscle (or effective set of
muscles) could be added, acting with equal magnitudes but opposite directions
at the origin and point of insertion (again Newton’s Third Law). (This is
examined in Problem 2.37.) In the free-body diagram shown in Fig. 2.48, the
total torque (which is called moment M in the figure) about each joint is
shown.

2.4 The Sense of Touch

The body also “feels” force. This is the sense of touch. The somatic senses,
include the sense of touch by the skin (cutaneous sensations), the sense of
position of the limbs (proprioception), and the sense of movement of the limbs
(kinesthesis). There are sensors in the skin for tactile perception, perception
of temperature, and the perception of pain [73].

There are four types of tactile receptors in glabrous (hair-free) skin
(Fig. 2.49), each sensitive to stresses and displacements at different frequen-
cies. Merkel receptors (or disks), located near the border between the epi-
dermis (outermost skin layer) and dermis (the underlying layer), are most
sensitive to pressure disturbances which vary in the 0.3–3 Hz range. The
other receptors are deeper within the dermis. Meissner corpuscles sense light

Fig. 2.49. Cross-section of (a) hair-free and (b) hairy skin, showing tactile sensors.
(From [89])
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tapping, which is characterized by 3–40 Hz variations, and sensed as flutter.
Ruffini cylinders (or endings) sense faster vibrations, 15–400 Hz, such as those
caused by stretching of the skin or joint movement, and sensed as buzzing.
Pacinian corpuscles sense a range of rapid vibrations, from 10 to 500 Hz. Mo-
tion of hair also stimulates these receptors.

The spatial density of mechanical receptors on the skin varies from 25/cm2

at the tip of the tongue to 0.02/cm2 on the back [66]. The movement of hair
on hairy skin contributes to the sense of touch, along with sensing by these
four receptors. The mechanism for converting these impulses into electrical
signals is discussed in Chap. 12.

The skin also has two types of receptors that sense temperature. Warm
fiber thermoreceptors increase their firing rate only when it is warmer and cold
fibers only when it is colder; they are not sensitive to mechanical stimulation.
Warm fibers respond from 30 to 48◦C, and best at about 44◦C, while cold
fibers respond from 20 to 45◦C, and best at 30◦C. There are on the order of
5–10 thermal receptors per cm2 over most of the skin. This sense of temper-
ature is important in the body’s drive for temperature control (Chap. 13).

Nociceptors in the skin sense excessive pressure, extreme temperature, and
corrosive chemicals, each which can damage the skin. Some pain receptors
transmit signals very rapidly to the brain, on myelinated axons in neurons
with conduction speeds up to 30 m/s (see Chap. 12). Some pain receptors
indicate persistent pain and have signals that are transmitted on very slow
unmyelinated axons with speeds of 2 m/s and slower.

As characterized by Stevens’ Law ((1.6), Table 1.15), the variation of the
perceived stimulus is slightly sublinear with stimulus strength for vibration,
somewhat superlinear for sensing pressure on the palm and the heaviness of
lifted objects, linear for coldness, and superlinear for warmth.

A problem in Chap. 7 (Problem 7.14, Fig. 7.24) addresses how to use the
sense of touch to estimate the internal pressure in an elastic vessel. This is an
example of palpation, which is the use of a physician’s hands to examine parts
of the body during a medical examination. (A physician also taps the body in
the diagnostic known as percussion. A third physical diagnostic is listening to
sounds emanating from the body, which is called auscultation; it is discussed
in Chap. 10.)

2.5 Diversion into the Units of Force and Pressure

2.5.1 Force

We should be clear on the correct units of force, as in Table 2.5. In the English
(or FPS) system it is pounds (lb). In the metric MKS-SI system it is newtons
(N) and in the CGS systems it is dynes. Most technical work is in MKS-SI;
however, much medical work is done using the English system (in the US). We
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Table 2.5. Units of force

1 N = 1kg-m/s2

1 N = 105 dyne

1 N = 0.225 lb (∼2/9 lb)

1 lb = 4.45 N

will usually use lb or N, with lb used when referring to body weights. (Also
see Appendix A.)

One kilogram (kg) is a mass (m) that at sea level (on the planet Earth) has
a weight of 9.8 N (or 2.2 lb). This is a consequence of gravitational acceleration
on earth and Newton’s Second Law of motion

F = mg, (2.47)

where g = 9.8 m/s2. “g” is the acceleration of any freely falling object due
to gravity. In CGS units, a mass of 1 g has a weight of 980.7 dynes because
g = 980.7 cm/s2. In the English system g = 32.2 ft/s2. The unit of mass in
the English system is the slug; it is rarely used in the US. One slug has a
weight of 32.2 lb. (Sometimes in the biomechanics literature the loading mass
is given, and it is possible for the unit “kg” to be mistakenly referred to as a
force. What is really meant is the weight of an object with a mass of 1 kg. To
lessen confusion, this should be expressed as 1 kg (force). Even better, when
1 kg (force) is seen it should be replaced by 9.8 N (∼10 N).)

2.5.2 Pressure

We will encounter the concept of pressure later. Pressure (P ) is simply a force
per unit area. (More generally, a force per unit area is a stress (Table 2.6).
Pressure or more precisely hydrostatic pressure is a stress that is the same in
all directions.) The units of pressure (or stress σ) are the units of force divided
by the units of area. Because work (or energy) is force × distance, the units
of pressure are the same as those of energy/volume. (Also see Appendix A.)

The standard MKS-SI unit of pressure is a pascal (Pa), with 1 Pa =
1 N/m2. We will find that often the numbers we will encounter are simpler
in units of N/mm2, which are the same as the units MPa. Common units in
English units are pounds per square inch (psi).

These units are independent of the planet we happen to be on. Some com-
mon units of pressure are specific to Earth (at sea level, at 0◦C temperature).
A column of a liquid of mass density ρ and height h exerts a pressure

P = ρgh. (2.48)

This is the same as (2.47), after both sides have been divided by the column
area A, because P = F/A and m = ρ × volume = ρAh. At sea level on
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Table 2.6. Units of pressure

1 N/m2 = 1 Pa = 9.87 × 10−6 atm. = 0.0075 mmHg = 0.102 mmH2O

1 N/mm2 = 106 N/m2 = 106 Pa = 1MPa = 145 psi = 9.87 atm. � 10 atm.

1 psi = 0.0069 N/mm2 = 6,894.8 N/m2 (or Pa) = 1/14.7 atm. = 0.068 atm.

1 bar = 105 N/m2 (or Pa) = 0.1 N/mm2 �1 atm.

1 atm. = 1.013 × 105 Pa = 1.013 bar = 0.103 N/mm2 (or MPa) = 14.7 psi

= 760mmHg = 29.9 inchHg = 1,033 cmH2O = 407 inchH2O

1 mmHg = 0.00132 atm. = 133 N/m2 = 13.6 mmH2O

1 mmH2O = 0.1 cmH2O = 9.68 × 10−5 atm. = 9.81 N/m2 = 0.0735 mmHg

1 kg (force)/cm2 = 9.8 N/cm2

We will often use MPa (= N/mm2), but occasionally use other units, such as mmHg
when discussing blood pressure

Earth (0◦C) the air pressure is 1 atmosphere (1 atm.), which is the pressure
exerted by the air column above it. The same pressure is exerted by 760 mm
of Hg (mercury) or 1,033 cm of water. The units of mmHg and cmH2O (or
inches of H2O) are very commonly used even though they really refer to h
in (2.48) and not pressure. (In a calculation, they need to be multiplied by
ρHg = 13.6 g/cm3 or ρH2O = 1.0 g/cm3 and then by g. Note that ρblood =
1.0 g/cm3.) In the US, air pressure is commonly expressed in weather reports
in units of inches of Hg, as in “the air pressure is 29.8 in and dropping.” Blood
pressure is commonly reported in mmHg, as in 120/80, which means that the
systolic and diastolic pressures are, respectively, 120 mmHg and 80 mmHg. Air
pressures in the body, such as in the lungs, are sometimes expressed in terms
of cm or inches of water, because it is a smaller and much more convenient
unit. Pressure is often referenced to atmospheric pressure, so a blood pressure
of 120 mmHg really means an absolute pressure that is 120 mmHg above at-
mospheric pressure (with 1 atm. = 760 mmHg), and as such is called a gauge
pressure.

It is an amazing coincidence that the Earth-based unit of atmospheric
pressure (1 atm.) is within 1% of the Earth-independent MKS-SI-based unit
of a “bar” (1 bar = 105 N/m2 (or Pa)), with 1 atm. = 1.013 bar.

2.6 Summary

Force and torque balance can often be analyzed in terms of levers, such as
for the lower arm. The equilibrium of a part of the body can be analyzed by
examining the forces due to gravity, muscles, and reaction forces in the whole
body and that body part separately. Muscle and internal reaction forces can
exceed the body weight, as was seen in analyzing the forces in the hip and
lower back, and this can have serious consequences.
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Problems

Statics of the Arm and Levers

2.1. A person holds a weight with her arm extended horizontally, using her
deltoid muscles to balance the weight about the shoulder joint. What type of
lever is this? Sketch and label this lever.

2.2. A person holds himself up in a pushup position. Consider one of the
person’s arms, with the pivot point being the hand on the ground. Are the
biceps brachii or triceps brachii involved? What type of lever is this? Sketch
and label this lever.

2.3. For each of the following, identify the type of lever, and show in a sketch
the locations of the applied force, the fulcrum, and the load being applied:
(a) cutting with a pair of scissors
(b) lifting a wheelbarrow
(c) picking up something with a pair of tweezers.

2.4. Analyze the force balance in the x and y directions and the torque balance
in the z-direction for the lower arm, with a vertical upper arm and a hori-
zontal lower arm (length 35 cm) (Fig. 2.9). As with Case 1 ignore the forearm
weight and other muscles. Now the effect of the reaction force N on the joint
(with components Nx and Ny) is explicitly included (because it contributes
no torque it did not have to be included in the earlier Case 1 analysis) and
assume the biceps are attached 4 cm from the pivot at an angle θ to the lower
arm. With θ = 75◦, find the muscle force M and the magnitude of the reaction
force in terms of the weight W and the angle of this reaction force relative to
the x (horizontal) axis.

Statics of the Hip and Leg

2.5. Using Fig. 1.15, what can you say about the height of the person whose
leg is depicted in Fig. 2.17?

2.6. Show how the dimensions given in Fig. 2.16 change to those in Fig. 2.20
when the person holds a cane.

2.7. In examining the hip forces during the equilibrium of a man standing on
one foot, we assumed that the effective angle of the hip abductor muscles to the
x-axis was the same, 70◦, without or with a cane. Would using more realistic
(and different) values of this angle without or with a cane, significantly affect
the conclusions concerning the effect of using a cane?
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Fig. 2.50. Forces on hip and femoral head while standing on one leg and lifting
a weight with the opposite hand. (Reprinted from [75]. Used with permission of
Elsevier.) For Problem 2.8

2.8. A 200 lb man stands on his right foot while carrying a 100 lb bag in his
left hand. The center of mass of the bag is 12 in from his center of mass (see
Fig. 2.50).
(a) Show that the placement of the foot (as shown) leads to no net torque in
the body.
(b) Find the force (its magnitude and direction) on the head of the sup-
port femur and the force in the hip abductor muscle by examining the
right leg.
(c) Compare your answers in parts (a) and (b) with what was found for the
man holding no mass – without and with a cane (for Wb = 880 N = 200 lb).
Are the forces here greater than for a (200 lb + 100 lb =) 300 lb man (with no
cane). Why? (The muscle angle and leg mass are only trivially different for
the problem given here and those analyzed above.)

2.9. Redraw Fig. 2.50, changing all distances and forces into metric units and
then do Problem 2.8.
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2.10. Calculate the force on the hip abductor muscles for a person standing
symmetrically on two feet, as a function of foot separation. For what position
is this force zero?

2.11. In the arabesque position an initially upright gymnast kicks one leg
backward and upward while keeping it straight (mass mleg), pushes her torso
and head forward (mass mtorso+head), and propels her arms backward and
upward while keeping them straight (each marm). They, respectively, make
acute angles θleg, θtorso+head, and θarms, to the horizontal. The centers of mass
of the extended leg and vertical balancing leg are xextended leg and xbalancing leg

behind the vertical from the center of mass (in the midsagittal plane), and
that of her upper body (torso/head/arms combination) is xupper body in front
of this vertical (so all of these distances are defined as positive). In achieving
this arabesque position her center of mass drops vertically from height ybefore

to yafter.
(a) Draw a diagram showing the gymnast before and during this maneuver.
(b) Find the equilibrium condition in terms of these masses and distances.
(Hint: Analyze the torques about her center of mass in the arabesque position.
You can ignore the contribution from her arms. Why? You may not need all
of the information that is presented.)
(c) Assume the gymnast is 1.49 m (4 ft 11 in) tall and has a mass of 38 kg
(weight 84 lb) and her free leg and arms make a 30◦ angle with the horizontal.
What angle does her upper body make with the horizontal? (Assume the
anthropometric relations for a standard human.)

2.12. Redo Problem 2.11c if the free leg of the gymnast is horizontal and her
arms are vertical. (This is the cheerleading position.)

2.13. (a) Calculate the torque of the diver of mass mb about the axis through
her toes (normal to a sagittal plane) when she is on a diving board and leaning
over and about to dive, so the vertical axis through her center of mass is a
distance x in front of her toes.
(b) Now say that the diver has a height H and that her body is proportioned
as per the data given in Chap. 1. Calculate the torque in terms of H, with
her body straight with arms stretched parallel to her torso. Assume that her
body can be straight (and so everything in her body can be approximated as
being in one plane) and ignore the change in position because she is on her
toes.
(c) Redo this if her arms are instead along her sides. How does this torque
differ from that in part (b)?

2.14. The split Russel traction device is used to stabilize the leg, as depicted
in Fig. 2.51, along with the relevant force diagram [86]. The leg is stabilized
by two weights, W1 and W2, attached to the leg by two cables. The leg and
cast have a combined weight of W1 = 300 N and a center of mass 2/3 of the
way from the left, as shown. The cable for W2 makes an angle β = 45◦ with
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Fig. 2.51. The split Russel traction device. (From [86].) For Problem 2.14

the horizontal. For equilibrium, find the tension in the cables T1 and T2 and
angle the cable for W1 makes with the horizontal, α.

Statics of the Shoulder, Knee, Ankle, and Jaw

2.15. You are able to hold your arm in an outstretched position because of
the deltoid muscle (Fig. 2.52). The force diagram for this is shown in Fig. 2.53.
Use the three equilibrium conditions to determine the tension T in the deltoid
muscle needed to achieve this equilibrium, and the vertical and horizontal com-
ponents of the force exerted by the scapula (shoulder blade) on the humerus.
Assume the weight of the humerus is mg = 8 lb and the deltoid muscle make
an angle of α = 17◦ to the humerus. (From [65].)

2.16. Solve the more general shoulder problem with a weight in the hand,
depicted in Fig. 2.21, by finding M , R, and β. Now evaluate the x and y
components of the muscle force, the magnitude of the joint reaction force,
and its angle for the following parameters: a = 15 cm, b = 30 cm, c = 60 cm,
θ = 15◦, W = 40 N, and W0 = 60 N.

Fig. 2.52. Deltoid muscle during lifting with an outstretched arm. (From [65].) For
Problem 2.15
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Fig. 2.53. Force diagram for the deltoid muscle and reaction forces during lifting
with an outstretched arm. (This is a simpler version of Fig. 2.21.) (From [65].) For
Problem 2.15

2.17. (a) A gymnast of mass mb suspends himself on the rings with his body
upright and straight arms that are horizontal with which he clutches the rings.
Each ring is suspended by a rope with tension T that makes an acute angle
θ with his arms, and the rings are separated by a distance d. Solve for the T
and θ. Assume symmetry.
(b) If the gymnast weighs 600 N, θ = 75◦, and d = 1.8 m, find T . (From [74].)

2.18. Derive (2.34)–(2.36) for the equilibrium of the lower leg with an ankle
weight.

2.19. Determine the angle between the leg and the reaction force at the knee
for the conditions given in the text for Fig. 2.23.

2.20. Analyze how the patellar tendon and reaction forces depend on the ankle
weight (for a fixed leg weight) and leg angle for Fig. 2.23. During exercise, what
are the advantages of varying this weight vs. this angle?

2.21. Consider the equilibrium of the foot during crouching for a 200-lb per-
son, with the force through the Achilles tendon, the reaction force of the tibia,
and the normal force from the floor in balance, as in Fig. 2.54 – neglecting the
weight of the foot for simplicity. Take the angle α = 38◦.
(a) Why is the normal force from the floor 100 lb?
(b) Find the magnitude of the Achilles tendon tension T and the magnitude
and direction of the reaction force F.

2.22. The topic of Problem 2.21 is similar to the discussion of forces on the
foot in Chap. 3, where we will assume that all forces are parallel or antiparallel
to each other and normal to a bar, as in a lever. Is this totally valid? Why or
why not?

2.23. Redo Problem 2.21, now including the mass of the foot. If the distance
from the bottom of the tibia (where the normal force emanates) is 4 in and
the center of mass of the foot is halfway between it and the ground. Use the
data for the mass of the foot in Chap. 1.
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Fig. 2.54. Forces on the foot during crouching. (From [65].) For Problem 2.21

2.24. In the crouching position, the lower leg is held in equilibrium through
the action of the patellar ligament, which is attached to the upper tibia and
runs over the kneecap. As depicted in Fig. 2.55, the forces acting on the lower
leg are N, R, and T. If the lower leg is in equilibrium, determine the magnitude
of the tension T in the patellar ligament, and the direction and magnitude of
R. Assume that the tension acts at a point directly below the point of action
of R. Take the normal force equal to 100 lb (half the body weight), the weight
of the leg Wleg as 20 lb, and the angle α = 40◦ (for the leg at a 45◦ angle).
(From [65].)

2.25. Derive (2.37) and (2.38) for the equilibrium of the kneecap.

2.26. Derive (2.39) and (2.40) for the equilibrium of the foot.

Fig. 2.55. Forces on the lower leg during crouching. (From [65].) For Problem 2.24
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2.27. Laterally from the midline in either jaw, we have eight teeth: two in-
cisors, one canine, two bicuspids (or premolars), and three molars (the last
molar being a wisdom tooth). (This tooth order can be remembered from
its acronym: ICBM – which itself is easy to remember because it is also the
acronym for Intercontinental Ballistic Missiles.) The lateral distances from
the temporomandibular joint to the insertion of the masseter muscles, the
first bicuspids, and the central incisors, are 0.4L, L, and 1.2L, respectively.
(a) What type of lever is involved in biting and chewing with the masseter
muscles?
(b) For biting in equilibrium with a masseter muscle force of 1,625 N, show
that the force on the first bicuspid of 650 N, assuming there is no force on the
central incisors [67]. Draw a force diagram for this.
(c) Under these conditions, show that the needed counter force on the central
incisors is 540 N, now assuming no force on the first bicuspid. Draw a force
diagram for this.

2.28. When you bite an apple with your incisors only, you exert a force of
650 N on it. When you bite an apple with your bicuspids only, you exert a
force of 540 N on it. Find the force per unit area (which is called the stress)
on the apple for both cases if the effective contact areas of the incisors and
bicuspids are 5 mm2 and 1 mm2, respectively.

Statics of the Back

2.29. In analyzing bending, we assumed that the weight of the trunk (above
the hips, excluding arms and head) is W1 = 0.4Wb and the weight of the arms
and head is W2 = 0.2Wb. Is this reasonable. Why?

2.30. Consider a woman of height 1.6 m and mass 50 kg.
(a) Calculate the reaction force on her lower vertebrae and the force in her
erector spinae muscle when she is either upright or bent at 60◦ (and conse-
quently 30◦ to the horizontal).
(b) Recalculate these forces when she is pregnant. Assume that during preg-
nancy the mass of her torso increases by 15 kg, but the center of mass of the
torso is the same.
(c) The forces in part (b) are equivalent to those for the same nonpregnant
woman who lifts a weight of what mass?

2.31. Describe the designs of the back of a chair that could lead to pain in
the lumbar vertebrae and those that would give good lumbar support.

2.32. We showed that when the force on the lumbosacral (intervertebral) disc
increases from 0 to 2,400 N, the disc height H decreases by 20% and the
disc radius r increases by about 10%. When it is recognized that the load
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on the disc for a vertical person is really 530 N (and not 0), how do the disc
dimensions really change when the person bends to an angle of 30◦ (and then
to a load of 550 lb)?

2.33. Why is it more difficult to lift bulky objects? A person lifts a package of
mass 20 kg in front of her so the back of the package touches her abdomen.
The horizontal distance from the person’s lumbar-sacral disc to the front of
her abdomen in 20 cm. Calculate the bending moments (in N-m) about the
center of mass of her disc caused by the lifted loads, assuming the package is
alternatively 20 or 40 cm deep [83]. Draw force diagrams for these two cases.
The other dimensions of the packages are the same and they both have uniform
density. How does this show that the size of the lifted object affects the load
on the lumbar spine?

2.34. Why is it better to standard erect when you hold an object? A person
holds a 20 kg object while either standing erect or bending over. The mass of
the person above his lumbar-sacral disc (his torso) is 45 kg. When upright, the
center of mass of the torso is (horizontally) 2 cm in front of his disc and that
of the object is 30 cm in front of his disc. When bent, the center of mass of
the torso is 25 cm in front of his disc and that of the object is 40 cm in front
of his disc. Draw force diagrams for these two cases. Calculate the bending
moments (in N-m) about the center of mass of his disc caused by holding this
load while either being upright or bent over [83]. How does this show that
bending when lifting an object affects the load on the lumbar spine?

2.35. Why is it best to lift an object with bent legs and the object very close to
you? A person lifts a 20 kg object while either bending over with legs straight,
with bent knees and the object near to her body, or with bent knees and the
object far from her body. The mass of the person above her lumbar-sacral disc
(her torso) is 45 kg. When bent over with straight legs, the center of mass of
her torso is (horizontally) 25 cm in front of her disc and that of the object is
40 cm in front of her disc. When bent over with bent knees and the object
near her body, the center of mass of her torso is (horizontally) 18 cm in front
of her disc and that of the object is 35 cm in front of her disc. When bent
over with bent knees and the object far from her body, the center of mass of
her torso is (horizontally) 25 cm in front of her disc and that of the object is
50 cm in front of her disc. Draw force diagrams for these three cases. Calculate
the bending moments (in N-m) about the center of mass of her disc for these
three lifting methods [83]. Which position is the worst? How does this show
that the position when lifting an object affects the load on the lumbar spine?

2.36. One position during shoveling snow or soil is shown in Fig. 2.56. Assume
this is an equilibrium position.
(a) If the shovel and contents have a mass of 10 kg, with a center of mass 1 m
from the lumbar vertebra, find the moment about that vertebra.
(b) If the back muscles are 5 cm behind the center of the disc, find the mag-
nitude and direction of the muscle force needed for equilibrium.
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Fig. 2.56. Shoveling. (From [71].) For Problem 2.36

(c) Find the force on the intervertebral disc.
(d) If the abdominal muscles of the person are strong and can provide some
upward force, would that help relieve stress to the back muscles and the disc?
Why?

Multisegment Modeling

2.37. (a) Sketch an (in-plane) multisegment model of the leg showing the
forces on the upper leg, lower leg, and ankle – using the resultant forces in
Fig. 2.57. Show the center of mass gravity forces on each segment, along with
the normal forces (at each body joint and with the floor).
(b) Label all distances and angles needed to analyze the in-plane forces and
torques. For each segment, label the distances starting from the proximal end.
Label each angle between muscle and bone; use the angles as shown, with the
acute angle when possible.
(c) Write the equilibrium force balance and torque equation for each of the
segments.

Fig. 2.57. Idealized resultant forces for six muscle groups in the leg. (Based on
[77].) For Problem 2.37
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(d) For each of these equilibrium conditions, sum the equations – such as the
torque equations – for the upper leg, lower leg, and foot. Show that the three
resulting balance equations are the correct equations for the entire leg.

Sense of Touch

2.38. (a) A 50 kg person stands on her fingertips. Assuming each finger makes
a 1 cm2 contact area with the ground, find the pressure on each finger tip.
(b) Which tactile sensors are sensing this pressure?



3

Motion

We now discuss human motion. We start with the absence of motion, standing,
and then progress to walking and running. Another type of motion is jumping,
and we will examine the vertical jump, high jump, long jump, and pole vault.
We will develop a model of throwing a ball and then examine collisions of
the human body with other objects and collisions caused by the body. In
each case we will ask: What does the body do? What can the body do? How
does this translate into performance? In many instances we will focus on the
body itself, but in some we will need to consider the system of the body plus
other objects such as running shoes, the floor surface, a ball, or a baseball
bat. We will delay our discussion of swimming until the discussion of fluids in
Chap. 7.

In this chapter we will follow (1) the motion itself – the kinematics of
motion, (2) the forces causing this motion and the ensuing motion – the
dynamics or kinetics, (3) the muscles that provide these forces, and (4) the
energetics of the motion. Both linear and rotational motion can be important.
The discussion of pendulums in the section on walking includes a brief review
of the harmonic oscillator and rotational kinematics and kinetics. In Chap. 5
we will address how muscles work.

Human locomotion is a very important area in biomechanics. Many of the
motions we will describe are analyzed in the wonderful books by Alexander
[99] and Hay [127].

3.1 Kinematics and Musculature

Following the motion in walking, running, cycling, and jumping means track-
ing the angles the thigh makes with the hip, the lower leg with the thigh, and
the foot with the lower leg, as shown in Fig. 3.1 [111]. (Some conventions for
defining these angles are somewhat different than in this figure.) The thigh
angle should be that with respect to the trunk, because the trunk usually
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Fig. 3.1. One set of conventions for hip (thigh), knee (lower leg), and ankle (foot)
angles. Other conventions are also used, such as with the thigh angle being rela-
tive to the vertical and the ankle angle defined as 90◦ less than here. (Based on
[150])

tilts forward during running; this differs from the angle from the vertical
(which is sometimes given instead). These three angles correspond to rotation
in the sagittal plane of Fig. 3.1 about the hip (coxofemoral), knee, and ankle
(talocrural) joints. Increasing θthigh is abduction, decreasing it is adduction
(as in Figs. 1.9 and 1.10). Increasing θknee is flexion, decreasing it is exten-
sion. Increasing θankle is dorsiflexion (flexion), decreasing it is plantarflexion
(extension).

The hip has three degrees of freedom of rotation, as does a ball-and-socket
joint (Fig. 1.4). This sagittal plane flexion/extension motion about the medio-
lateral axis of the hip in Fig. 3.1 can be larger in amplitude than the other two
rotations (adduction–abduction about an anteroposterior axis and internal–
external rotation about the longitudinal axis of the femur) (Table 1.10).
While these two rotations are not negligible, we can ignore them here. The
knee sagittal plane flexion/extension motion about the mediolateral axis is
the one angular degree of freedom of the knee described in Fig. 1.4 as a
“hinge.” The knee joint actually has three degrees of freedom, but the other
two (internal–external rotation and adduction–abduction (varus-valgus)) are
much less important because of soft tissue and bony constraints. Ankle mo-
tion of interest here is restricted to extension (plantarflexion) and flexion
(dorsiflexion). These three major sagittal plane rotations of hip, knee, and
ankle constitute a three-segment model of the leg, in contrast to the one
segment models of levers examined in Chap. 2. The head, arms, and trunk
also move relative to the rest of the body during the walking and running
cycles.

Kinematics involves tracking these angles (here only in the sagittal plane)
vs. time and vs. each other during a walking or running cycle. These three
angles are changed by forces controlled by the different sets of muscles outlined
in Tables 3.1–3.3. Several of them are depicted in Figs. 1.8 and 3.2–3.4. (See
[170] for more details.)
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Table 3.1. Muscles that move the thigh (upper leg) (θthigh, femur relative to hip).
(See [153] and [170] for more details)

location, muscle action approximate origin/insertion

pelvic girdle

psoas majora flexes thigh ilium/upper femur

iliacusa flexes thigh ilium/upper femur

anterior thigh

pectineus flexes, adducts thigh pubis/upper femur

adductor longus adducts, rotates, flexes thigh pubis/upper femur

adductor brevis adducts thigh pubis/upper femur

adductor magnus adducts, rotates thigh pubis, ischium/upper femur

gracilis adducts thigh, flexes lower leg pubis/upper tibia

lateral thigh

tensor fasciae latae aids thigh flex, abduction,
rotation

ilium/upper tibia

posterior thigh

gluteus maximus extends, rotates thigh;
stabilizes knee

hip/top femur

gluteus medius abducts, rotates thigh ilium/GT femur

gluteus minimus abducts, rotates thigh ilium/GT femur

piriformis rotates, abducts flexed thigh sacrum, ilium/GT femur

obturator internus rotates, abducts flexed thigh obdurator foramen/GT
femur

obturator externus rotates thigh obdurator foramen/upper
femur

quadratus femoris rotates thigh ischium/GT femur

GT is the greater trochanter of the femur
aThe iliopsoas consists of the psoas major, ilicacus, and psoas minor.

3.2 Standing

3.2.1 Stability

Stability is essential during standing, as well as during any type of motion.
We will examine the overall stability of the body and then local stability.

First consider the body as a rigid mass. The criterion for overall stability
during standing is for the center of mass to be over the area spanned by
the feet (Figs. 3.5 and 3.6). Otherwise there would be torques that are not
balanced, and a “rigid” human would be unstable and topple over. Let us
examine the torques about a rotation axis emanating from the center of mass.
We see in Fig. 3.5 that when the center of mass is above this area spanned
by the feet, the right foot causes a negative torque and the left foot causes a
positive torque, and they cancel. (The torque due to the weight of the center
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Table 3.2. Muscles that move the lower leg (θknee, lower leg relative to thigh)

location, muscle action approximate origin/insertion

anterior

rectus femorisa extends leg, flexes thigh hip/patellar tendon

vastus lateralisa extends leg upper femur/patellar tendon

vastus medialisa extends leg upper femur/patellar tendon

vastus intermediusa extends leg upper femur/patellar tendon

sartorius flexes leg; flexes, rotates thigh ilium/upper tibia

gracilis (Table 3.1)

posterior

biceps femorisb flexes leg, extends thigh ischium, upper femur/upper
fibula, tibia

semitendinosusb flexes leg, extends thigh ischium/upper tibia

semimembranosusb flexes leg, extends thigh ischium/upper tibia

aThe quadriceps femoris consists of the rectus femoris, vastus lateralis, vastus me-
dialis, and vastus intermedius.
bThe hamstrings consist of the biceps femoris, semitendinosus, and semimembra-
nosus. (See [153] and [170] for more details.)

of mass about this axis is zero.) When the center of mass is to the left of
the foot area both torques are negative, and when it is to the right both
torques are positive. The torques cannot balance in either case, and there
is instability. Try it! (Stand and try to lean over.) (The term center of gravity is
also often used in stability analysis; technically it refers to the center of mass in
the direction of gravity.) Figure 3.7 suggests different stability conditions for
an upright person with mass fairly well balanced in front and back to one
with unbalanced mass, such as one with a “beer belly” or a woman who is
pregnant.

Such overall stability presumes a rigid body and consequently rigid joints.
Such stable joints indicate local stability. The design of the human knee is an
example of good human design. Four ligaments provide much of the needed
lateral and cross support.

The knee is the junction of the femur in the upper leg, and the tibia and
fibula bones in the lower leg (Fig. 1.3, right knee). The tibial (or medial) collat-
eral ligament connects the femur and tibia and the fibular (or lateral) collateral
ligament connects the femur and the fibula. These collateral ligaments prevent
left/right sliding and provide overall leg tautness. They are slightly posterior,
so they are taut during extension, and can produce the straight leg needed
during standing.

These two ligaments are not sufficient for stability. There are two cruciate
ligaments that cross each other, and prevent twisting and forward/backward
sliding of the knee. They cross in between the lateral and medial menisci,
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Table 3.3. Muscles that move the foot (θankle, foot relative to lower leg) and toe.
(See [153] and [170] for more details)

location, muscle action approximate
origin/insertion

anterior

tibialis anterior dorsiflexes, inverts foot upper tibia/
first metatarsal

extensor hallucis longus extends great toe,
dorsiflexes foot

mid fibula/great toe

extensor digitorum extends toes, tibia, fibula/

longus dorsiflexes foot small toe phalanges

peroneus tertius dorsiflexes, everts foot lower fibula/metatarsal V

peroneus longus plantar flexes, everts foot fibula/metatarsal I

peroneus brevus plantar flexes, everts foot fibula/metatarsal V

posterior

gastrocnemiusa plantar flexes foot,
flexes leg

lower femur
/calcaneal tendon

soleusa plantar flexes foot fibula, tibia/
calcaneal tendon

plantaris plantar flexion of foot/
flexion of leg

femur/calcaneal tendon

popliteus rotates leg lower femur/upper tibia

tibialis posterior inverts foot,
plantar flexion of foot

tibia, fibula/foot

flexor hallucis longus flexes great toe,
plantar flexes footb

fibula/
phalanx of great toe

flexor digitorum longus flexes toes,
plantar flexes foot

tibia/
small toe distal phalanges

The calcaneal (Achilles) tendon attaches to the calcaneus (heel).
aThe triceps surae consists of the lateral and medial heads of the gastrocnemius and
the soleus.
bActive in takeoff and tip-toeing.

which are two curved half sockets of cartilage on the tibia. The posterior
cruciate ligament connects the medial side of the femur to a more lateral part
of the tibia. The anterior cruciate ligament connects a lateral part of the
femur to a more medial part of the tibia. The anterior cruciate ligament is
so-named because it attaches to the tibia at a position anterior to that of the
posterior cruciate ligament (which is attached more posteriorly).

Local stability of the knee is also provided by the oblique ligaments, as
well as others. The kneecap (patella), attached below to the tibia by the patel-
lar ligament and above to the tendon of the quadriceps femoris muscle, also
provides stability. Other functions of the kneecap are to lessen the compressive
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Fig. 3.2. (a) Anterior and medial muscles of the thigh, with (b) quadriceps femoris,
with much of the rectus femoris removed, (c) deeper muscles of the medial thigh
muscles, (d) the iliopsoas (psoas major and iliacus) and pectineus muscles, and (e)
articular muscles of the knee. (From [152]. Used with permission)
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Fig. 3.3. Posterior thigh and gluteal region muscles, showing (a) superficial muscles,
(b) deeper muscles, and (c) even deeper muscles. (From [152]. Used with permission)

stress on the femur by increasing the area of contact between the patellar
tendon and the femur and to aid knee extension by lengthening the lever
arm of the quadriceps muscle via an anterior displacement of the quadriceps
tendon (Fig. 2.25).
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Fig. 3.4. Lateral views of the right leg, showing (a) muscles of the lower leg and foot
and (b) the tendons extending into the foot. (From [152]. Used with permission)

3.2.2 Forces on the Feet

Consider a person weighing 700 N (160 lb). During standing, each foot of the
person must support 350 N. The total cross-sectional area of the two feet is
about 350 cm2, so the average force/area or pressure on the feet is about
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Fig. 3.5. Stability during standing for a model person (a) standing upright and
with (b) torque diagrams, (c) leaning to her left, and (d) leaning to her right

Fig. 3.6. A standing person is stable when her center of mass is over the cross-
hatched region spanned by her feet, as shown here with her feet (a) together, (b)
apart, (c) and apart, with stability also provided by a cane or crutch. (Based on
[110])

Fig. 3.7. Simple models of people facing to the right: (a) an upright person with
mass fairly well balanced in front and back, with the person’s center of mass shown –
which is normally 58% of the person’s height over the soles of his feet, and (b)
one with unbalanced mass, such as a person with a beer belly or a woman who is
pregnant, with separate centers of mass shown for the main body and the additional
mass (which are approximately, but not exactly, at the same height). Clearly, the
overall center of mass of the person in (b) is displaced to the right relative to that in
(a). To prevent this being in front of the balls of the feet, the person often contorts
his position, which can lead to muscle strain and a bad back. (See [110] for more
details)
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Fig. 3.8. Walking, with arrows showing the directions of the forces on the feet.
(From [99]. Copyright 1992 Columbia University Press. Reprinted with the permis-
sion of the press)

2 N/cm2. However, not all of the foot touches the ground. Most of the con-
tact is at the ball and heel of each foot. Because of this much smaller area,
the pressure on these more limited points of contact is much higher, about
10 N/cm2 during standing on both feet.

The peak-forces on the feet are much higher during walking. During walk-
ing there is usually only one foot on the ground, so the force on that foot
is twice that with both feet on the ground and consequently the pressure
is twice that during standing. Also, the normal forces involved in braking
and forward propulsion during walking can be twice those during stand-
ing, which are only those needed to balance gravity. Overall, this leads to
a peak force of about 1,400 N per foot, which translates to a pressure of
about 40 N/cm2. Because the whole foot is not flat on the ground during
most phases of walking, the contact area is less than during standing and
the peak-pressure during walking can be about 60 N/cm2. Clearly, these
forces are larger during running. Force plots are routinely measured dur-
ing motion by using pressure sensors. (One such force plot is shown later in
Fig. 3.18.)

3.3 Walking

3.3.1 Kinematics

The photographs in Fig. 3.8 show the stages of walking during a step by the
right foot. The stages of walking are diagrammed in Fig. 3.9. The hip, knee,
and ankle sagittal plane angles are usually referenced to the time the foot
touches the ground (foot strike, FS – or heel strike/contact) and when the toe
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Fig. 3.9. Walking and running gait sequences. For walking, from foot strike (or heel
strike) to toe off (or foot off) is the stance phase, with subdivisions sometimes called:
foot flat or loading, midstance, terminal stance, and then preswing. From toe off to
foot strike is the swing phase, with subdivisions called: initial swing, midswing, and
then terminal swing. (From [166]. Used with permission)

leaves the ground (toe off, TO or foot off) (Fig. 3.9). From foot strike to toe
off is the stance phase (foot flat or loading, midstance, terminal stance, and
then preswing). For walking, from toe off to foot strike is the swing (initial
swing, midswing, and then terminal swing). The stance occurs during 60–
65% of the cycle for each leg and the swing phase occurs during 35–40% of
the gait cycle. There are two feet on the ground for the first and last ∼10%
of the stance phase for walking, just after foot strike and just before toe
off. Both feet are never off the ground at the same time. The evolution of
the three motion angles during a walking cycle is shown in the top row of
Fig. 3.10.

At contact the upper leg (hip) is flexed by about 30◦ (relative to the vertical
in this analysis), then extends to about 10◦ extension, and during preswing
and then most of swing it flexes to 35◦ (Fig. 3.10). At contact the lower leg
(knee) is nearly extended (∼5◦), flexes to 20◦ during midstance, extends again,
flexes to 40◦ during preswing, peaks at 60–70◦ flexion at midswing, and then
extends again. At contact, the foot (ankle) is slightly plantarflexed (0–5◦),
extends a bit more to ∼7◦, dorsiflexes as the leg rotates forward over the
planted foot to 15◦, dorsiflexes to 15◦ for propulsion near the end of stance;
after toe off, it dorsiflexes to get toe clearance and plantarflexes to prepare
for contact again.
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Fig. 3.10. Average values for sagittal plane joint rotation (in ◦), moment (torque)
per mass (in N-m/kg body mass), and power per mass (in W/kg body mass) for the
hip, knee, and ankle during a step in walking. (Based on [121]. Also see [104])

3.3.2 Muscular Action

Each flexion/extension action described in the kinematics is caused by the
several flexor/extensor muscles for that joint. The muscular activity at each
phase of the walking cycle is shown for the three sagittal joints in Figs. 3.11
and 3.12. Tables 3.1–3.3 describe these muscle groups [153, 165].

First, we describe which muscle groups are important during the stance
phase and then the swing phase during walking. The ankle dorsiflexors help to
lower the leg to the ground at heel strike (the initial contact, and the first part
of stance) by eccentric muscle contraction (see Chap. 5). The hip extensors
act after contact in early stance to continue this deceleration by reversing
the forward swing of the leg, while the intrinsic muscles and long tendons
of the foot preserve the shape of the arch of the foot. The knee extensors
help the person accept the body weight during loading and then stabilize the
knee during midstance. The ankle plantarflexors decelerate mass and control
dorsiflexion up to mid-stance, while the hip abductors stabilize the pelvis. In
terminal stance (heel off) and then preswing (toe off), the body is accelerated
by the ankle plantarflexors by concentric muscle contraction (see Chap. 5) and
then by the long flexors of the toes, while the pelvis is still stabilized, and the
thigh is decelerated by eccentric contraction in preswing.
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Fig. 3.11. Joint reaction forces transmitted through tibial plateau during one gait
normal walking (solid line), along with the muscles forces – averaged for 12 subjects.
(Based on [154] and [160])

In initial or preswing to midswing, the hip flexors advance the thigh by
concentric contraction, the ankle dorsiflexors enable foot clearance from initial
swing to midswing, and in terminal swing the hip extensors decelerate the
thigh by eccentric contraction, the knee-flexors decelerate the lower leg by
eccentric contraction, the ankle dorsiflexors help position the foot, and the
knee extensors extend the knee to prepare for foot contact.

Alternatively, we could analyze this motion by describing when each mus-
cle group is activated. The hip extensors act after contact in early stance
and the hip flexors then advance the limb during preswing to midswing; from
stance to swing the hip adductors and hamstrings are activated. The quadri-
ceps muscles are activated before contact, then resist extensive knee flexion (by
eccentric muscle contractions) during stance to avoid buckling due to grav-
ity, and then extend the knee (by concentric muscle contractions) through
early midstance as the leg rotates over the planted foot; they also control
hip flexion prior to stance. The dorsiflexors fire during the swing phase to
achieve foot clearance and during contact to control the foot placement. The
plantar flexing soleus and gastrocnemius muscles fire during stance to control
the motion of the leg over the foot and then to propel the foot and body
forward. Figure 3.10 shows the joint moment and power generated during the
gait cycle.

3.3.3 Friction

Is friction good or bad for walking? It is both.
First, what is friction? On a microscopic scale it is a complex set of in-

teractions between two surfaces and any medium in between them and it is
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Table 3.4. Static and kinetic (when noted) coefficient of friction, μ. (Using data
from [109, 110, 159])

common objects and the body

rubber (tire) on dry (wet) concrete road, static 1.0

brake material on cast ion, dry; static 0.4

brake material on cast ion, with mineral oil; static 0.1

graphite on steel, static 0.1

steel on unlubricated steel 0.7

steel on lubricated steel or ice 0.15

teflon on teflon (or steel) 0.04

ice on ice 0.1

ice on ice, 4 m/s, 0◦C, kinetic 0.02

wood on wood 0.25–0.50

articular cartilage in the human knee, kinetic 0.005–0.02

articular cartilage in the human hip, kinetic 0.01–0.04

athletic equipment (kinetic)

skates on ice 0.003–0.007

skis on snow 0.05–0.20

tennis balls on wood 0.25

basketball shoes on clean (dusty) wooden floor 1.0–1.2 (0.3–0.6)

cleated shoes on astroturf 1.2–1.7

jogging shoes on felt carpet, clay, asphalt 0.9–1.1, 0.3–0.5, 0.6–0.8

not easily modeled. On a macroscopic scale it is modeled using a coefficient of
friction μ. An object of weight Wb = mbg feels a normal force N = mbg (see
Fig. 3.13). Initially the object is static and the friction interaction is charac-
terized by a static coefficient of friction μs (Table 3.4). Consider a lateral force
on that object F . For low forces, the frictional force is equal in magnitude and
opposite in direction to this force and the object does not move. The object
will move only if this force exceeds Ff = μsN . With the object moving, the
net lateral force on the object is F − Ff , where now Ff = μkN . μk is the
kinetic, dynamic, or translational coefficient of friction, which can be different
from μs.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 3.12. Electromyographic (EMG) activity of the muscles of the (a) hip, (b)
knee, and (c) ankle and foot during walking in a healthy person. Dotted regions
represent activation <20% of maximum voluntary contractions, while black regions
represent >20% activation. White regions in (c) for the intrinsic muscles of the
foot show at least some level of activation. The four phases of stance are, in time
sequence, loading, midstance, terminal stance, and preswing; the three phases of
swing are initial swing, midswing, and terminal swing. (Also see Fig. 3.9.) (Based
on [104] and [162])
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Fig. 3.13. (a) Static equilibrium of an object on a table and (b) lateral force
required to overcome static friction to enable motion

Internal friction is usually troublesome. Friction in the knee joints during
walking is bad. In fact, it is terrible. The knee is a synovial joint where the
cartilage on the femur and tibia, and the surrounding synovial fluid contained
in a sac, provide a very low coefficient of kinetic friction μk = 0.003–0.01.
(This is smaller than most – if not all – man-made systems. See Table 3.4.)
Such synovial joints are found in the knees and hips, which have relatively
thick ≥5mm cartilage, and in the finger joints, which have relatively thin
cartilage layers, ∼1–2 mm. Lubrication at such articulating surfaces can oc-
cur by fluid-film lubrication, in which the surfaces are relatively far apart
and are separated by synovial fluid; boundary lubrication, in which the sur-
faces are very close together (1–100 nm) and the lubrication is provided by
the lubricating glycoprotein on the surfaces (Fig. 3.14a); or by a mixed lubri-
cation, in which there is a mixture of both (Fig. 3.14b). Synovial joints with
fluid-film lubrication have an extremely low coefficient of friction of �0.02,
whereas boundary-lubricated surfaces typically have coefficients of friction two
orders of magnitude higher than those that are fluid-film lubricated. (Articular

Fig. 3.14. In synovial joints (a) boundary layer lubrication of the articular cartilage
surfaces for relatively flat and nearby surfaces and (b) mixed lubrication at articu-
lar cartilage, showing boundary lubrication when the separation is on the order of
the surface roughness and fluid-film lubrication in areas of more widely separated
surfaces. (Based on [155])
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Fig. 3.15. (a) Heel contact stage and decelerating the foot and (b) toe-off stage
and accelerating the foot

cartilage is a fairly complex and dynamic material, containing synovial fluid,
etc. (Fig. 4.51).)

Loss of the synovial fluid from traumatic injury, loss of cartilage from
long-term wear or injury, and excessive bone growth in the joint region –
as in osteoarthritis – produce major pain during attempted motion. (The
synovial fluid about the author’s knee left the containing sac during a pan-
tomime in junior high school, as a result of a collision of his knee with a
door. Until his leg was stabilized by a cast, his severe pain was lessened dur-
ing locomotion by his walking backward, with no rotation in the afflicted
joint.)

External friction can be necessary. Without friction we could not walk or
run. We would merely slip. When the heel of the foot touches the ground
during walking, friction from the ground must slow it and then stop the for-
ward motion of the foot (Fig. 3.15). The fraction of a second or so later when
the ball of the foot is about to leave the ground, friction from the ground
helps propel the body forward. This initial deceleration and subsequent ac-
celeration of the foot typically requires forces of about 0.15mg and so a static
coefficient of friction μs > 0.15 is necessary to walk. Figure 3.16 shows how
this required minimum coefficient of friction increases with walking speed; it is
about 0.17 for a typical walking speed of 3 mph (miles per hour) (a 20 minute
mile). Figure 3.17 shows how it varies during the course of a step, and how it
increases when pushing different loads [115]. Table 3.4 lists the kinetic coeffi-
cients of friction for several cases. Obviously, walking on ice is difficult. (For
other reasons, walking on thin ice is also ill-advised.)

3.3.4 Energetics

Our motion during walking is surprisingly and deceptively simple when we
analyze the kinetic and potential energy of the body during a walking cycle.
Let us choose the horizontal direction of walking as the x direction and the
vertical direction as the z direction. The kinetic energy KE of an object is



Fig. 3.16. Coefficient of friction required during walking at different speeds. (From
[114]. Reprinted with permission of Wiley)

Fig. 3.17. Dynamic coefficient of friction required to push a weighted cart with
different loads. (From [113]. Reprinted with permission of Wiley)
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mbv2/2, where mb is the body mass and v is the magnitude of the velocity,
the speed, of the center of mass. This total KE can be separated into that due
to motion in the horizontal and vertical directions, as

KE = KEH + KEV, (3.1)

KEH =
1
2
mbv2

x =
1
2
mb

(
dx

dt

)2

, (3.2)

KEV =
1
2
mbv2

z =
1
2
mb

(
dz

dt

)2

. (3.3)

The potential energy is

PE = mbgzCM, (3.4)

where zCM is the vertical position of the center of mass of the body.
When we describe a system where energy is not supplied, say by an exter-

nal driving force, or lost, such as to friction, the total energy E of this system
is constant, where

E = KE + PE. (3.5)

We would not expect KE+PE to be constant during walking, but it is almost
constant.

The photographs in Fig. 3.8 show the stages of walking during a step by
the right foot. In stage (a), the right foot has just decelerated, much of the
heel of the foot is on the ground, and the foot is in front of the body’s center
of mass. In stage (b), the right foot is squarely on the ground and under the
center of mass. In stage (c), the right foot is behind the center of mass, mostly
the ball is in contact with the ground, and forward propulsion is beginning.
In stage (d), the front of the right foot is propelling the body forward, while
the heel of the left foot has made contact with the ground and has begun to
decelerate. We will examine the horizontal and vertical forces (FH and FV)
and energies at each of these stages (Fig. 3.18).

The horizontal forces are due to friction. During stage (a) in Fig. 3.18, FH

slows the right foot, and during stages (c) and (d) it accelerates it. Because
the horizontal speed of the center of mass of the whole body decreases when
the right foot decelerates and it increases when the foot accelerates, during
stage (a) KEH decreases and during stages (c) and (d) it increases.

The center of mass (CM) of the body is changing during this step. The
right leg is becoming more vertical and straighter from stage (a) to stage (b),
so the center of mass (zCM) is rising and PE is increasing. From stages (b) to
(c) to (d), the right leg is becoming less vertical and is also bending, so the
center of mass is falling and PE is decreasing. After stage (d) the left leg gets
straighter and PE starts to increase again.

Because changes in the height of the center of mass must be the result of
vertical forces, we see that from stages (a) to (b), zCM is rising, which must



112 3 Motion

Fig. 3.18. Vertical and horizontal forces on feet during walking. (From [99]. Copy-
right 1992 Columbia University Press. Reprinted with the permission of the press)

mean that there is a net positive vertical force and FV > mbg. From stages
(b) to (c), zCM is falling, which must mean that there is a net negative vertical
force and FV < mbg.

So we see that from stage (a) to (b), the center of mass is rising and PE is
increasing, while the right foot is decelerating and KEH is decreasing. During
stage (c), the center of mass is falling and PE is decreasing, while the right
foot is accelerating and KEH is increasing. We see that PE and KEH are out
of phase, one is decreasing, while the other in increasing, and vice versa. This
also occurs in harmonic motion, such as that for a mass on a spring or a
pendulum.

Figure 3.19 shows that during a step PE + KEV and KEH are out of
phase. (KEV also changes during these stages, as a result of the motion of the
center of mass zCM; however, it changes relatively little.) More surprisingly,
their sum PE + KEV + KEH is fairly constant during the step. Again, these
two observations are reminiscent of harmonic motion, during which the PE
and KE are out of phase and their sum does not change during a cycle. This
exchange of kinetic and potential energy also occurs in a pendulum and for
a rolling egg, as in Fig. 3.20, and this observation has led some to compare
the leg during walking to a pendulum, by what is known as the ballistic or
pendulum model of walking. Before pursuing this analogy further, we will
review harmonic and pendulum motion.
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Fig. 3.19. Changes in mechanical energy during walking from force plates, with
heel strike and toe off shown, for (from top to bottom curve) forward kinetic energy,
gravitational potential energy plus vertical kinetic energy, and total energy. (Based
on [112] and [146])

3.3.5 Review of Harmonic Motion, Pendulums,
and Moments of Inertia

Simple Harmonic Oscillator

The position x from equilibrium for a body of mass m attached by a spring
with spring constant k (Fig. 3.21) is determined from Newton’s second law
F = ma, where F is the restoring force on the mass due to the spring and

Fig. 3.20. The cyclic exchange of kinetic and potential energy in a pendulum and
a rolling egg, with constant total energy, is similar to that in walking. (From [151].
Used with permission)
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Fig. 3.21. Simple harmonic oscillator, with an object with mass m attached to a
spring with spring constant k

a = d2x/dt2 is the acceleration of the mass. So

m
d2x

dt2
= −kx (3.6)

d2x

dt2
= − k

m
x = −ω2x, (3.7)

where ω = (k/m)1/2 is the resonant frequency of this harmonic oscillator. The
solution can be written as

x = A cos(ωt + φ), (3.8)

where A is an arbitrary amplitude and φ is a phase (which is not very signif-
icant here). (See Appendix C for more information about the solution.)

The kinetic energy during this motion is

KE =
1
2
mv2 =

1
2
m

(
dx

dt

)2

=
1
2
mA2ω2 sin2(ωt + φ), (3.9)

because dx/dt = −Aω sin(ωt + φ). The potential energy is

PE =
1
2
kx2 =

1
2
kA2 cos2(ωt + φ) =

1
2
mA2ω2 cos2(ωt + φ) (3.10)

using ω = (k/m)1/2. The PE and KE are clearly 90◦ out of phase during this
oscillatory motion. The total energy,

E = KE + PE =
1
2
mA2ω2 sin2(ωt + φ) +

1
2
mA2ω2 cos2(ωt + φ) =

1
2
mA2ω2,

(3.11)

is constant during this motion.
The radial frequency ω has units of radians per second. The cycle frequency

f is ω/2π, which has units of cycles per second (cps) or Hz (Hertz). This means
that a complete cycle (period) occurs in a time Tperiod = 1/f = 2π/ω, during
which time ωt changes by 2π rad.

Mass on a Pendulum

We will use the pendulum to model walking. In a simple pendulum, a ball of
mass m is at the end of a plumb (string) of length L (Fig. 3.22a). For now
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Fig. 3.22. (a) Mass on a simple pendulum and (b) complex pendulum

we will assume that the plumb is massless. Assume that the plumb is at an
angle θ from the vertical. The position of the ball along the arc of the plumb
is Lθ. The speed of the ball normal to the plumb is v = Ldθ/dt, and the
acceleration of the ball normal to the plumb is Ld2θ/dt2. (For small angles,
|θ| � 1, the lateral coordinate is x � Lθ, and so d2x/dt2 � Ld2θ/dt2.) From
the diagram, the tension T in the string is balanced by mg cos θ, and there is
a net acceleration of the ball mg sin θ that tends to decrease the magnitude
of θ. Newton’s Second Law F = ma, can be written as (with ma = F )

mL
d2θ

dt2
= −mg sin θ. (3.12)

For small angle motion (|θ| � 1), so sin θ ≈ θ and

mL
d2θ

dt2
= −mgθ (3.13)

d2θ

dt2
= − g

L
θ = −ω2θ. (3.14)

Physically and mathematically this is similar to the simple harmonic
oscillator, now with a resonant frequency ω = (g/L)1/2 and solution

θ(t) = B cos(ωt + β), (3.15)

where B is an arbitrary amplitude and β is a phase (which again is not very
significant here). (See Appendix C for more information about the solution.)

The kinetic energy during this motion is

KE =
1
2
mv2 =

1
2
m

(
L

dθ

dt

)2

=
1
2
mB2L2ω2 sin2(ωt + β), (3.16)

because v = Ldθ/dt = −BLω sin(ωt + β). The potential energy is

PE = mgL(1 − cos θ) ≈ 1
2
mgLθ2, (3.17)
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because for small θ (|θ| � 1), 1 − cos θ ≈ 1 − θ2/2, and so

PE ≈ 1
2
mgLB cos2(ωt + β) =

1
2
mB2L2ω2 cos2(ωt + β) (3.18)

using ω = (g/L)1/2. Again, the PE and KE are out of phase during this
oscillatory motion. As with the harmonic oscillator, the total energy

E = KE + PE

=
1
2
mB2L2ω2 sin2(ωt + β) +

1
2
mB2L2ω2 cos2(ωt + β) (3.19)

=
1
2
mB2L2ω2 (3.20)

is constant during the motion of the pendulum.
During walking the leg can be modeled as a pendulum because of this

interplay between the KE and PE. We will use this pendulum (ballistic) model
to determine the oscillation frequency of the leg ω = (g/L)1/2 and from this
we will obtain the walking speed. Before doing this, we need to modify this
simple pendulum model because the leg cannot be approximated by a mass
(foot) at the end of a massless string (upper and lower legs). (We will also use
this refined model in our analysis of throwing a ball.)

More Complex Pendulum

If we multiply both sides of (3.12) by L, we get

mL2 d2θ

dt2
= −mgL sin θ. (3.21)

The right side is actually the net torque τ acting on the ball of the simple
pendulum about an axis at the top of the string, where the magnitude of the
distance vector r = L, the force on the ball is mg, and the angle from this r to
F is 360◦ − θ, according to our convention (Fig. 3.22b). With sin(360◦ − θ) =
− sin θ,

τ = mgL sin(360◦ − θ) = −mgL sin θ = mL2 d2θ

dt2
. (3.22)

The mL2 term is the moment of inertia I of the ball about the pivot axis,
which is at the hip. More generally, the moment of inertia of a complex object
can be written as the sum of contributions from distinct masses mi each a
distance Ri from the axis

I =
∑

i

miR
2
i (3.23)

or as an integral of mass density ρ(r) at positions r that are a distance R from
the axis, integrated over the volume V

I =
∫

ρ(r)R2dV. (3.24)
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For these complex objects with moment of inertia I, total mass m, and
center of mass a distance d from the axis

τ = −mgd sin θ = I
d2θ

dt2
(3.25)

and with the small angle approximation sin θ ≈ θ

d2θ

dt2
= −mgd

I
sin θ ≈ −mgd

I
θ. (3.26)

The resonant frequency is now ω = (mgd/I)1/2. (See Appendix C for more
information about the solution.)

Also, the angular momentum of the pendulum L = IΩ with Ω = dθ/dt,
and τ = dL/dt.

More on Moments of Inertia

Consider an object of mass m with moment of inertia I about a given axis
through its center of mass. You can obtain its moment of inertia about any
axis laterally displaced a distance q from this axis by using the parallel axis
theorem

Iabout displaced axis = Iabout cm + mq2. (3.27)

This parallel axis theorem is illustrated in Fig. 3.23a, and can be proved from
(3.24).

Fig. 3.23. (a) The parallel axis theorem is illustrated for an object of mass m
for an axis about the center of mass normal to the page and about an arbitrary
parallel axis, and (b) the radius of gyration is schematically illustrated for moments
of inertia about the center of mass and an arbitrary axis
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One simple way of providing the moment or inertia of any object is by
giving its radius of gyration, ρ, which is defined by

I = mρ2. (3.28)

This means the moment of inertia of the object would be the same if all of
the mass were distributed a distance ρ from the axis. One example of this
is the mass m distributed on a circle of radius ρ about the axis. In another
example, two points with mass m/2 are placed on either side of the axis. Of
course, the radius of gyration of a ball on a string is the length of the string,
but in this case the center of mass is not on the rotation axis. Figure 3.23b
illustrates the radius of gyration for an axis through the center of mass and
about an arbitrary axis. The average radii of gyration for body segments are
given in Table 1.9.

3.3.6 Ballistic (or Pendulum) Model of Walking

The ballistic model says that during the swing cycle your leg is like a pendulum
with radial frequency ω. This means that a complete cycle (period) occurs in
a time Tperiod = 2π/ω. One forward swing of the leg corresponds to a half
cycle, which takes Thalf period = π/ω. For a leg of length Lleg swinging through
an arc of Δθ, the step length is ∼Lleg(Δθ) for small Δθ (Fig. 3.24a), so the
stepping or walking speed v is this step length divided by Thalf period or

v =
ω

π
Lleg(Δθ). (3.29)

For ball on a string ω = (g/Lleg)1/2, so Thalf period = π(Lleg/g)1/2. For a
body height H = 1.8 m, Fig. 1.15 and Table 1.6 show that the leg length is
Lleg = 0.53H = 0.95 m. With g = 9.8 m/s2, Thalf period = 0.98 s.

How does this compare to real walking? The speed for a slow walk is about
0.5 m/s = 1.1 mph. (Test this!) With a step length of 0.3 m, the time for a step

Fig. 3.24. (a) Ballistic (pendulum) model of walking, with simple leg of uniform
linear mass density, and with (b) complex leg with upper and lower legs with different
linear mass densities
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is Thalf period � 0.60 s. For a fast walk the speed is about 2.0 m/s = 4.5 mph
and the step length is larger, 0.7 m, and so the step time is about 0.35 s. The
model predictions are fair for the slow walk with this ball on a string model
(0.98 s model result compared to 0.6 s actual time). Fast walking cannot be
modeled as a free pendulum; it is clearly a forced pendulum. You can feel this
in your legs as you change from a slow, leisurely pace to a fast, vigorous pace.

Can we improve the model of slow walking by using a more refined model
for the mass distribution of the leg? For a leg of length L with a uniform linear
density (and the same thickness throughout, which is not exactly true) and
mass mleg, as suggested by Fig. 3.24a, we need to use the expression from the
more general, refined model (3.26) with ω = (mleggd/I)1/2 and Thalf period =
π(I/mleggd)1/2. The distance of the center of mass from the axis is d = Lleg/2.
The moment of inertia I = mlegL

2
leg/3. This is obtained by integrating over a

uniform linear mass density (mass per unit length) λ = mleg/Lleg from R = 0
to Lleg in (3.24):

I =
∫

ρ(r)R2dV =
∫ Lleg

0

λR2dR =
mleg

Lleg

L3
leg

3
=

1
3
mlegL

2
leg. (3.30)

(With a uniform cross sectional area A, ρ(r) = λ/A and dV = A dR, so
ρ(r)dV = λ dR.) Then ω = (mleggd/I)1/2 = (mlegg(Lleg/2)/(mlegL

2
leg/3))1/2

= (3g/2Lleg)1/2 and Thalf period = π(2Lleg/3g)1/2 = 0.80 s, again for Lleg =
0.95 m. This prediction is fairly close to the estimated 0.60 s step time, and
agreement is much better than for the ball on string model. We should re-
member that this is just a model; energy recovery is not perfect, and ∼70%,
for walking (Fig. 3.25).

What happens if we refine the model a bit more? The leg does not have a
uniform linear mass density; the upper leg (thigh) is heavier per unit length
than the lower leg (with the foot) (Fig. 3.24b). The entire leg has a mass
mleg = 0.161mb and length Lleg = 0.530H. Tables 1.6 and 1.7 and Fig. 1.15
show that the upper leg has a mass mu,leg = 0.10mb = 0.621mleg and has a
length Lu,leg = 0.245H = 0.462Lleg (H = body height), while the lower leg
and foot have a mass ml,leg = 0.061mb = 0.379mleg and a length Ll,leg =
0.285H = 0.538Lleg.

The center of mass distance d from the hip joint and the moment of inertia
about the hip are needed. The center of mass of two objects is in general given
by

rCM =
m1r1 + m2r2

m1 + m2
, (3.31)

which here is

d =
mu,leg(Lu,leg/2) + ml,leg(Lu,leg + Ll,leg/2)

mu,leg + ml,leg
(3.32)

=
(0.621mleg)(0.231Lleg) + (0.379mleg)(0.731Lleg)

mleg
= 0.421Lleg. (3.33)
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Fig. 3.25. Gait parameters as a function of speed for humans (thin curves) and
horses (thick curves), for different gaits: walking (W), running (R), trotting (T),
galloping (G), and human skipping (open circles). (From [151]. Used with permission.
Also see [123])

The moment of inertia is (Fig. 3.24b)

I =
∫ Lu,leg

0

λu,legR
2dR +

∫ Lleg

Lu,leg

λl,legR
2dR =

1
3
λu,legL

3
u,leg

+
1
3
λl,leg(L3

leg − L3
u,leg), (3.34)

where λu,leg = mu,leg/Lu,leg = 0.62mleg/0.46Lleg = 1.34mleg/Lleg and λl,leg =
ml,leg/Ll,leg = 0.38mleg/0.54Lleg = 0.70mleg/Lleg. With Lu,leg = 0.46Lleg,
we see that I = 0.256mlegL

2
leg. (Problem 3.17 compares these models of the

moments on inertia with measured data, using the parallel axis theorem and
the radii of gyration in Table 1.9.)

Then ω = (mleggd/I)1/2 = (mlegg(0.421Lleg)/(0.256mlegL
2
leg))

1/2 =
(1.64g/Lleg)1/2. We see that Thalf period = π(0.61Lleg/g)1/2 = 0.76 s, which
is 4.5% faster than the uniform density model, and not a great improvement
over it.

3.3.7 Inverted Pendulum Model

The leg is like a pendulum during the swing cycle for that leg. During stance
it is like an inverted pendulum. The center of mass travels on a circular arc
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Fig. 3.26. Takeoff during fast walking, in the inverted pendulum model. (From
[99]. Copyright 1992 Columbia University Press. Reprinted with the permission of
the press)

of radius R during stance (Fig. 3.26). To maintain the circular motion, a cen-
tripetal force with magnitude mbv2/R is needed, where v is approximately the
walking speed. (This is the same as an upward “centrifugal force” in a frame
that is rotating with the leg.) When this exceeds mbg, the center of mass will
not come down. This sets a maximum walking speed of vmax = (gR)1/2 ∼
3.0 m/s for R = 0.9 m; at faster speeds people have to move in a differ-
ent way: jogging, running, etc. On the moon (gMoon = 0.17gEarth) and Mars
(gMars = 0.4gEarth) this limit is smaller, 1.2 m/s and 1.9 m/s, respectively. This
low upper limit for the walking speed on the moon explains why astronauts
had to resort to hopping on the moon to move fast; this is the real “moonwalk-
ing.” Children (on earth) have smaller R and consequently have to start run-
ning at lower speeds than adults (and sometimes need to run to keep up with
adults). Adults usually start running at speeds even slower than the 3.0 m/s
estimate, about 2.0 m/s, possibly in an effort by the body to minimize the
metabolic energy cost per unit distance traveled. (See Fig. 3.25.) Speeds near
4 m/s are attainable in race walking because the racers distort their hips at
midstance in a way that flattens the trajectory of the center of mass – thereby
increasing R.

3.4 Running

Running is not just fast walking; it is qualitatively different. During walking,
each foot is on the ground for more than half the time, and sometimes both
are on the ground at the same time. Both feet are never off the ground at the
same time. During running, each foot is on the ground for less than half the
time, and – unlike walking – sometimes neither foot is on the ground. This
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Fig. 3.27. Stages of a running stride, with the arrows indicating the directions
of the forces on the feet. (From [99]. Copyright 1992 Columbia University Press.
Reprinted with the permission of the press)

distinction can have serious implications. Jane Saville, an Australian race
walker, was in first place 200 m from the finish line in the 20 km race walking
competition in the 2000 Summer Olympics. As photographs later confirmed,
both of her feet were off the ground at the same time and she was disqualified.
(Following standard practice, she had received two prior cautions before her
red card disqualification.) She later won the bronze medal in this event in the
2004 Summer Olympics.

3.4.1 Kinematics

Figure 3.27 shows snapshots of different stages of running. One difference
between walking and running is that the leg becomes almost straight during
walking at midstance, but it never becomes straight during running. Another
difference is that during walking the stance is longer than the swing, while
the reverse is true for running. As seen in Fig. 3.9, during running the stance
occurs during 40% of the cycle after foot strike, and the foot is off the ground
for 60% of the cycle from toe off to the next foot strike. The leg floats for the
first 15% of the cycle after toe off, swings forward during the next 30%, and
then floats for 15% until foot strike.

The changes of sagittal joint angles are qualitatively the same as in walking
(Fig. 3.10 top), but with differences, such as with the knee angle. Figure 3.28
shows a representative example of how the locus of these angles varies with
respect to each other during a gait cycle. For a running speed of 3.4 m/s
(∼8 minute mile), the thigh angle varies from 39◦ (flexion) to −21◦ (extension)
for a range of 60◦. At footstrike the thigh is about 25◦ from the vertical because
the hip is flexed; any initial angle change after FS is relatively small. During
the extension prior to footstrike the knee angle is 13◦ and increases to 41◦

during cushioning flexion (for a range of 27◦ during cushioning flexion), and
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Fig. 3.28. Mean locus of (a) thigh angle vs. knee angle and (b) ankle angle vs. knee
angle during running at 3.57 m/s, using joint angles as defined in Fig. 3.1 (Based on
[150] and [175])

then decreases to 15◦ during extension during the propulsive phase. At swing
phase flexion the angle is 104◦, for a total knee range of 90◦. For the ankle, the
dorsiflexion prior to footstrike is 91◦, that at the stance phase is 112◦, and that
at plantar flexion is 64◦, for a total range of ankle motion of 48◦. These values
change with running speed and with grade for uphill and downhill running.
Table 3.5 shows typical loci of the thigh and ankle angles vs. the knee angle
during a stride.

Table 3.5. Maximum thigh, knee, and ankles angles (in degrees) for running at
different speeds and grades on a treadmill. (Using data from [150])

level ramp

speed (m/s) 3.4 4.2 5.0 3.4 3.4 3.4

grade 0% 0% 0% −20% 0% 20%

thigh

flexion 39.0 41.0 46.6 25.8 39.0 54.5

extension −20.6 −23.1 −28.0 −18.4 −20.6 −18.7

knee

extension before footstrike 13.4 16.7 15.5 4.0 13.4 37.7

cushioning flexion 40.6 39.4 42.9 41.2 40.6 46.3

propulsion phase extension 15.1 16.8 14.2 32.1 15.1 13.0

swing phase flexion 103.9 108.1 117.3 99.6 103.9 113.2

ankle

dorsiflexion before footstrike 91.3 91.8 92.5 – 91.3 97.6

stance phase dorsiflexion 112.4 108.7 110.8 103.5 112.4 116.4

plantar flexion 64.2 58.7 57.1 76.4 64.2 59.4
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Fig. 3.29. Normalized mean vertical angular momenta of the arms, head-plus-
trunk, legs, and whole body during a running cycle, at 4.5 m/s. The normalized ver-
tical angular momentum is obtained by dividing the vertical angular momentum (in
kg-m2/s) by body mass (in kg) and the square of the runner’s standing height (height
in m). (Based on [128] and [129])

Your legs are not the only things that move during running and fast walk-
ing (other than your center of mass). Your arms swing back and forth and
your torso rotates, both 180◦ out of phase with your legs. Why? Consider what
would happen if this did not happen. With every stride by your right leg you
would need to gain much positive angular momentum about the vertical axis,
while with every stride with your left leg you would need to acquire negative
angular momentum, as is evident in Fig. 3.29. This is just like the rotor in a
washing machine. The motion in your arms and torso cancels ∼90% of these
changes, as seen in this figure.

3.4.2 Muscular Action

Each flexion/extension action described by kinematics is caused by the
flexor/extensor muscles of that joint. The muscular activity at each phase
of the cycle is qualitatively similar to that shown for the three sagittal joints
for walking in Figs. 3.10–3.12. Tables 3.1–3.3 describe these muscle groups.
Figure 3.30 shows muscle activity during running.
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Fig. 3.30. Muscle length and electromyographic (EMG) activity vs. time during
one running cycle of the right leg, for the gluteus maximus (GM), vastus lateralis
(VL), biceps femoris (BF), vastus medialis (VM), combined VL and VM (V), rec-
tus femoris (RF), semitendinosus (ST), combined semimembranosus (SM) and ST
(SMT), gastrocnemius (GA), soleus (SO), and tibialis anterior (TA). (From [126].
Used with permission). Also see [145]
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3.4.3 Energetics

Figure 3.27 shows that the body slows down during stage (a) when the right
foot is planted on the ground, and it accelerates during stage (c) as the right
foot propels the body forward, as in walking. This means that the horizontal
kinetic energy

KEH(t = stage b) < KEH(t = stage d), (3.35)

because stage (b) is right after (a) and stage (d) is right after (c). During stage
(d) both feet are off the ground, the body is in the air, and the body center
of mass and potential energy are relatively high. In contrast, during stage (b)
the right foot is on the ground, the right leg is bent (while it is straight during
walking) and so the center of mass and potential energy are relatively low.
Consequently,

PE(t = stage b) < PE(t = stage d) (3.36)

and so

KEH(t = stage b) + PE(t = stage b) � KEH(t = stage d) + PE(t = stage d).
(3.37)

We see that during running KEH and PE (or really PE+KEV, with KEV being
relatively small) are not out of phase and their sum changes much during each
stride (see Fig. 3.31). The pendulum model cannot be applied to running at
all [99].

Not all of the lessened KE and PE during stage (b) is lost; some is saved
within the body as stretched tendons and ligaments, as in a pogo stick. We

Fig. 3.31. Changes in mechanical energy during running at two different speeds
from force plates, for (from top to bottom curve) horizontal kinetic energy; grav-
itational potential energy plus vertical kinetic energy and gravitational potential
energy; and total energy and gravitational potential energy plus horizontal kinetic
energy. (Based on [112] and [146])



3.4 Running 127

Fig. 3.32. Vertical force exerted on the ground during a running stride (solid line,
with dashed line approximation). This was calculated from force plates and was
averaged for five-runners running at 4.5 m/s. (Based on [99])

will examine this now and revisit it again later after we have learned a bit
more about the elastic properties of parts of the body in Chap. 4.

Figure 3.32 shows a force plot of the vertical normal forces on the foot on
the ground during a run at 4.5 m/s, which corresponds to a competitive speed
during a marathon (2 h 37 min over 42.2 km or 26 miles, 385 yd). The peak
force in this example is 2.7mbg = 2.7 Wb. For a 70 kg person (700 N, 160 lb),
this is ∼1,900 N. During sprinting, this force can increase to 3.6mbg. (These
forces are estimated later in this chapter in the discussion of collisions.)

The torque balance in the quasistatic condition when this normal force
peaks at 1,900 N is depicted in Fig. 3.33, which is similar to the second
class lever discussed in Chap. 2. In equilibrium, the Achilles tendon exerts an

Fig. 3.33. Peak forces on foot during running stride. (From [99]. Copyright 1992
Columbia University Press. Reprinted with the permission of the press)
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upward force of 4,700 N and there is a 6,400 N reaction force down on the foot
from the rest of the body, because 4,700 N ∼ 1,900 N (120 mm/47 mm).

The Achilles tendon is also known as the calcaneal (kal-kane’-ee-ul) ten-
don. It attaches the triceps surae (sur-ee’), which includes the soleus and the
medial and lateral heads of the gastrocnemius (gas-trok-nee’-mee-us) muscles
(Figs. 1.8 and 3.4, Table 3.3), to the calcaneus (kal-cane’-ee-us), also known
as the heel.

During this marathon-type run, there is a loss of about 100 J of kinetic
energy each time the foot touches the ground and decelerates to a stop. Not all
of it is lost. Some of it is stored in the body, and a portion of that is recoverable,
mostly from body components that store the energy like springs. To maintain
a steady average running speed, the portion that cannot be recovered must be
supplied by the body in the acceleration phase of the stride. How much does
the body slow down during this step? For given mass and speed, just calculate
the change in speed when 100 J of kinetic energy is lost. (See Problem 3.22.)

Approximately 35 J of this 100 J is stored in stretching the Achilles tendon.
We will see in the discussion about mechanical properties in Chap. 4 how this
value is consistent with the forces exerted on the Achilles tendon. Of this 35 J,
about 93% is recoverable during the acceleration phase, so this tendon acts
almost like a friction-free spring. During the step, the foot arch flattens and
it takes about 17 J to do this. About 80% of this is recoverable. Some energy
is also lost to the quadriceps tendon over the kneecap. Much of the remainder
is lost to muscles acting as brakes, and this is not recoverable. Overall, about
50 J is recoverable from the body’s springs and about 50 J must be supplied by
the muscles during the acceleration phase. The notion that 50% of the energy
is recoverable energy is not universally accepted; Fig. 3.25 suggests that only
about 5% is recoverable. The materials properties of the body are clearly sig-
nificant – for analyzing the recoverable energy storage and the needed braking-
action of muscles. We will examine both soon. The long bones in the leg can
also store energy, but we will see that they store little energy. There are also
questions about the efficiency and timing of the energy return, and potential
confusions between the loss of kinetic energy during a step with the much
larger (∼5×) metabolic energy needed to replace this lost kinetic energy.

Good running shoes lessen the impact in each step. Can they also help by
storing energy as springs, thereby lessening the amount of energy needed in
each step? It is not clear that this occurs. Good running shoes are squeezed
up to at most 10 mm in the shoe sole under the forefoot upon impact. They
can store about 7 J, of which about 54–66% could be returned, so it would
seem that they can help a bit. However, by cushioning the forces felt by
the feet, significantly less recoverable energy is stored by the body. Even more
cushioning would produce instability during stance and take off. Furthermore,
even if much energy could be stored elastically in shoes, it is not clear if much
of it would be recoverable. Stored energy has to be released at the right
time, over the right duration (frequency), and at the right position [159]. The
resonance frequencies of unloaded shoes are ∼100–200 Hz and loaded shoes
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likely 20–30 Hz. Because any stored energy in the heel needs to be released
100–200 ms after foot contact and it is really released 50–100 ms (∼1/20 Hz)
after contact, the timing does not seem right. Also, if energy is stored in one
part of the shoe because of impact (say the heel) it does little good if the extra
“kick” is needed in the front of the foot for forward propulsion. Sprinters use
running shoes with essentially no padding during races because their body
returns more energy without the extra padding. During practice, they wear
shoes with padding to limit the wear and tear on their legs, i.e., the stress on
their tendons and so on.

A good running track can return up ∼12 J per step (Table 3.8, later).
Such a track has a stiffness (spring constant) about 3× the lower leg stiffness
(80,000 N/m), and can increase running speeds by ∼2%. Such an increase in
speed decreases 100 m sprint times by ∼0.2 s and could decrease marathon
times by ∼80 s. (Of course, marathons are not run on such a track.) These
tracks can be tuned to have resonant frequencies of ∼2 Hz, which matches the
times needed for the recovery of the stored energy. This impact of the step
is a type of collision that will be discussed later in this chapter. This is also
analyzed in a problem at the end of Chap. 4 (Problem 4.39).

Still, more of the energy lost per step is recoverable in walking than during
running, perhaps somewhat over 70% (Fig. 3.25). Kangaroos recover about
50% during each hop.

Accelerating to Sprint Speed

The average speed for world class runners at the 100 and 200 m distances
is about the same, �10.2 m/s. (See Table 6.34 later.) It is slower at longer
distances, because the stores of energy that activate muscles at the fastest
rate are depleted after 200 m (Chap. 6). It is also slower at shorter distances,
because it takes several strides to achieve peak speeds, starting from a dead
stop. We now model this acceleration process by examining the energetics
after each stride [144]. The stride is step (c) in Fig. 3.27, with one foot on the
ground propelling the body forward. The body consists of the other leg, which
has mass mleg, and the body above the legs (upper body), which has a mass
mb − 2mleg, where mb is the total body mass. (In this model we are ignoring
the other stages: free flight, the slowing down of the body during touchdown,
etc., and we are effectively incorporating all into this step (c).)

During the first stride, the foot on the ground, say the right foot, propels
the upper body and the left leg to a speed with a force F as they move a
distance L, and they attain a speed of v1 at the end of the stride. The work
done FL equals the kinetic energy in the upper body, (mb − 2mleg)v2

1/2, and
that in the left leg, mlegv

2
1/2; the right foot is still on the ground, so the kinetic

energy of the right leg is small and can be neglected. Therefore, after the first
stride

FL =
1
2
(mb − 2mleg)v2

1 +
1
2
mlegv

2
1 =

1
2
(mb − mleg)v2

1 (3.38)
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and

v2
1 =

2FL

mb − mleg
. (3.39)

In the second stride the left foot is on the ground, does work FL, and
accelerates the upper body from v1 to v2 and the right leg from 0 to v2, so

FL =
1
2
(mb − 2mleg)(v2

2 − v2
1) +

1
2
mlegv

2
2

=
1
2
(mb − mleg)v2

2 − 1
2
(mb − 2mleg)v2

1 (3.40)

and

v2
2 =

1
mb − mleg

(2FL + (mb − 2mleg)v2
1). (3.41)

Using (3.39) for v2
1

v2
2 =

2FL

mb − mleg

(
1 +

mb − 2mleg

mb − mleg

)
. (3.42)

Similarly, after the third stride, with the right foot on the ground,

v2
3 =

1
mb − mleg

(2FL + (mb − 2mleg)v2
2) (3.43)

and using (3.42)

v2
3 =

2FL

mb − mleg

(
1 +

mb − 2mleg

mb − mleg
+

(
mb − 2mleg

mb − mleg

)2
)

. (3.44)

After n strides, vn is obviously given by

v2
n =

2FL

mb − mleg

×
(

1 +
mb − 2mleg

mb − mleg
+

(
mb − 2mleg

mb − mleg

)2

+ · · · +
(

mb − 2mleg

mb − mleg

)n
)

.

(3.45)

The terms in the brackets form a geometric series 1 + x + x2 + · · · + xn =
(1 − xn)/(1 − x) for 0 < x < 1, so

v2
n =

2FL

mb − mleg

1 −
(

mb−2mleg
mb−mleg

)n

1 −
(

mb−2mleg
mb−mleg

) =
2FL

mleg

(
1 −

(
mb − 2mleg

mb − mleg

)n)
. (3.46)
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Fig. 3.34. Bouncing ball model of running, showing that the sum of the ball kinetic
energy (dotted line), gravitational potential energy (thick line), and elastic potential
energy (thin line) is constant (very thick line) during bounces. (From [151]. Used
with permission)

The final speed is (with n → ∞)

vfinal =

√
2FL

mleg
. (3.47)

Table 1.7 shows that mleg = 0.161mb, so a 70 kg sprinter, with F = 560 N
and L = 1.0 m stride, attains a final speed of 10.0 m/s.

3.4.4 Bouncing Ball/Pogo Stick Model

Much as walking can be modeled as a pendulum, running can be modeled
using mechanical analogies. Figure 3.34 shows the bouncing ball model. This
is fairly equivalent to the even simpler pogo stick model, which does not have
the complication of rotational ball motion. When the ball or stick is at its
highest point, the gravitational PE is maximized, the KE is zero, and there
is no stored elastic energy EE in the ball due to compression of the ball or
in the pogo stick due to compression of the spring (which is also a form of
potential energy). When it is about to touch the ground, the PE is almost
minimized, the KE is almost maximized and the EE is still zero. During the
elastic collision with the ground, the EE increases while the KE goes to zero,
and then all of the EE is recovered, initially mostly as KE. The total energy
TE = KE + PE + EE is always constant [151]. There is exchange between the
sum of the kinetic and gravitational potential energies with the elastic energy
in a bouncing ball.

There is an analogy between running and this model, but it is not very
strong. The PE and KE are both maximized during stage (d) in Fig. 3.25,
while EE is zero. During stage (b), PE and KE are both minimized, and
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Fig. 3.35. Three mechanical models of locomotion, the (inverted) pendulum (left,
for walking), single pogo stick (middle, for hopping and running), and double pogo
stick (right, for skipping), with tension in pogo stick spring and the modes of energy
exchange. (From [151]. Used with permission)

presumably there is EE stored in the tendons, foot arch, etc. Consequently,
the phase of KE is different from that in the model. However, the analogy is
fine for the phases of PE + KE = TE − EE and of EE. Unlike walking, there
is relatively little stored energy returned in running (Fig. 3.25); it is not very
elastic.

Figure 3.35 shows the pogo stick model for running and a double pogo
stick model for skipping. Skipping is a third, and fairly uncommon gait for
bipeds. It differs from walking in that it has a significant flight phase, and
from running in that both feet can be on the ground (Table 3.6). Skipping is
energetically very efficient: about 50% of the energy is recoverable (Fig. 3.25).
These models for biped locomotion can also be used to model quadruped
locomotion (Fig. 3.35). Whereas there are two main types of locomotion in
bipeds (walking, running), there are three for quadrupeds (walking, trotting,
galloping). The types of quadruped motion are described in Table 3.6.
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Table 3.6. Comparison of motion in bipeds and quadrupeds

biped type foot sequencea features

walk R, L, R, L, etc. no flight phase

run R, flight, L, flight, etc.

skip

right unilateral skipping L, R, flight; L, R, flight;
etc.

left unilateral is R, L,
flight, etc.

bilateral skipping L, R, flight; R, L, flight;
etc.

quadruped type foot sequenceb features

(biped analog)

walk (walk) FL, HR, FR, HL stride: up to 3 hooves on
ground

trot (run) two running bipeds
w/50% phase lag

rack is trot with 0% phase
lag

gallop (none)

slow gallop or canter HL, HR, FL simul.; FR
flight

right cantor; left switches
R and L

transverse gallop (fast
run)

HL, HR flight; FL, FR
flight

right transverse

rotary gallop (fast run) HL, HR flight; FR, FL
flight

clockwise or
counterclockwise

aR right foot, L left foot.
bFL: fore left, HR: hind right, FR: fore right, HL: hind left. (From [151].)

3.5 Jumping

We will examine the vertical jump and pole vault here and the high jump
and long jump in the problems at the end of this chapter (Problems 3.34–
3.37, and 3.38–3.40, respectively). In the last three athletic endeavors, kinetic
energy from running is converted into potential energy. The vertical jump is
a half-collision with the floor. (Here the half-collision being the second half
of a collision with the floor.) Other types of jumping, as on trampolines and
in others common in gymnastics, involve full collisions with surfaces; how
much energy these surfaces return to the jumper becomes important. This is
addressed in the discussion of collisions.

3.5.1 Vertical Jump

How high can you jump? It depends on how fast you can take off. The four
stick diagrams in Fig. 3.36 show the four stages of the vertical jump.

First the person stands upright. The center of mass is about 1.0 m from
the ground, 5 cm above the hip joints. Figure 3.36b shows the body after
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Fig. 3.36. Stick diagram of a vertical jump, including initial standing in (a), crouch-
ing in (b) and then extension to take-off in (c) and free flight in (d). (Based on [161])

the crouch, after which the center of mass is about 0.65 m above the ground.
The extension phase is next, which ends in takeoff shown in the third di-
agram. At takeoff (Fig. 3.36c) the center of mass is about 1.05 m above the
ground, a bit higher than in Fig. 3.36a since the person is on his or hers
toes. The center of mass rises by a distance s during extension, and at-
tains a vertical speed of vTO at takeoff. After takeoff the person is in free
flight for a distance H and then the vertical speed v is zero, as shown in
Fig. 3.36d.

How high can you jump? The kinetic energy at takeoff is all converted into
potential energy at the apex of free flight. Therefore

1
2
mbv2

TO + mbg(1.05 m) = 0 + mbg(1.05 m + H) (3.48)

1
2
mbv2

TO = mbgH, (3.49)

so H = v2
TO/2g and the faster the takeoff speed the higher the jump.

During extension both legs generate a normal force N(t) that leads to a
net vertical force FV(t) = N(t)−mbg. Figure 3.37 shows this normal force in
measurements made on several men in the early 1930s at Columbia University
[161]. This vertical force increases and then decreases, and while it is applied
the center of mass accelerates upward and travels a distance s. The work W
done on the center of mass during this phase is

W =
∫ s

0

FV(t)dz. (3.50)

(Note that to perform this integration FV(t) needs to be converted to a func-
tion of z.) This gets converted into the vertical kinetic energy so

∫ s

0

FV(t)dz =
1
2
mbv2

TO = mbgH (3.51)
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Fig. 3.37. Kinematic and dynamic data during a vertical jump, including (a) reac-
tion force from the ground (left scale) and height of the center of mass (right scale),
and (b) vertical speed of the center of mass (left scale) and applied power (right
scale, this power is the product of the force in (a) and speed in (b)). (Based on [161])

and

H =

∫ s

0
FV(t)dz

mbg
. (3.52)

For Wb = mbg = 140 lb (64 kg, 620 N), an average normal force during
extension 〈N(t)〉 of 300 lb (Fig. 3.37), and s = 1.4 ft (0.43 m), we find

H =

∫ s

0
FV(t)dz

mbg
=

(N(t) − mbg)s
mbg

(3.53)

=
(300 lb − 140 lb)1.4 ft

140 lb
= 1.6 ft (0.49 m). (3.54)

How long is takeoff? Let us assume that the vertical acceleration is con-
stant and equal to a during extension. (This would be true only if the vertical
normal force were constant – and it is not.) From FV = mba

a =
N(t) − mbg

mb
. (3.55)

If the duration of takeoff is τ

vTO = aτ (3.56)

and using

s =
1
2
aτ2 (3.57)

we see

τ2 = 2
(

mbg

N(t) − mbg

)(
s

g

)
= 2

(
140 lb
160 lb

)(
1.4 ft

32.2 ft/s2

)
(3.58)
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because 〈N(t)〉 − mbg = 300 lb − 140 lb = 160 lb (710 N). The acceleration
occurs over a time τ = 0.28 s.

How are the jump height and takeoff time related? Dividing (3.56) by (3.57)
eliminates a to give

vTO =
2s

τ
, (3.59)

so

H =
v2
TO

2g
=

(2s/τ)2

2g
=

2s2

gτ2
. (3.60)

If you can decrease the extension time, you can jump much higher! We
will see that extension times are shorter in people with larger fractions of fast-
twitch muscles in their legs. However, there can be a trade-off with shorter
extension times (Chap. 5). When muscles achieve steady-state motion, they
develop less tension the faster they contract, which is much less than the
isometric (fixed length) force that they can generate. Measurements of force
on the floor using force plates have shown that while the peak force on a
representative runner’s foot might be as high as 1,710 N, the force on each foot
during his high jump turns out to be much less, 715 N [99]. This surprising
observation is explained by the faster muscle contraction during jumping.
Average forces are also expected to be lower in the high jump because muscles
develop less tension when they are much longer or shorter than their resting
length. Also, the momentum arm about the knee joint is smaller for the bent
knee in the squatting position of a vertical jump.

Figure 3.38 shows a model of two variations of the vertical jump, which
includes muscle activation, tendon stretching, and body response [101]. The
squat jump starts in a squatting position. Initially, as the muscles contract
there is only slow movement of the knees and consequently much tendon
stretching. Due to fast contraction, muscle forces in the squat jump are smaller

Fig. 3.38. (a) A mechanical model of vertical jumping, with (b) a simulated jump
and (c) a simulated countermovement jump, with muscle force, ground reaction
force, and angle plotted vs. time in (b) and (c). (From [101], as from [100]. Used
with permission)
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than (0.2×) the isometric level. Just before liftoff these muscle forces and ten-
don recoil produce forces 0.4× the isometric level. The countermovement jump
starts with an upright person first falling freely to the starting position of the
squat and then jumping upward. The muscle forces initially generated are
larger than the isometric values because the muscles are initially braking (ec-
centric contraction, Chap. 5), and this leads to even more tendon stretching
and upward force generated, and a higher elevation jump than the squat jump.
This countermovement jump is higher also because muscles are stretched im-
mediately before they are contracted, leading to greater forces during this
contraction (as in the later phases of this jump). (This effect is not included
in the Fig. 3.38 model.)

3.5.2 Pole Vault

The pole vault is not really a jump, but a propulsion. Still, it is fairly similar
to the long jump in that horizontal kinetic energy is converted to a propul-
sion. More specifically, the pole vaulter’s horizontal kinetic energy is mostly
converted into elastic potential energy stored in the pole, which is then mostly
converted to gravitational potential energy of the pole vaulter (Fig. 3.39). A
fast running pole vaulter can propel above and beyond the bar if the two
“mostly”s in the previous sentence are really “essentially all”s. This happens
with good techniques and good poles. To propel over the bar there has to be
some remnant horizontal kinetic energy, but this necessary amount is minimal.

Figure 3.39 shows the relevant heights: the height of the center of mass at
takeoff (the takeoff height, H1), the maximum increase in the height of the

Fig. 3.39. Schematic of the heights involved in the pole vault. (Based on [127])
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pole vaulter’s center of mass while on the pole (the swing height, H2), the
further increase in height due to vertical kinetic energy after release of the
pole (the flight height, H3), and maximum height of the center of mass above
the cross bar (the clearance height, H4 – which could be negative). The takeoff
angle of world-class pole vaulters using fiberglass poles is �13–15◦ (relative
to the vertical).

The ideal case of total conversion of one type of energy to another gives a
surprisingly good prediction of actual pole vaulting performance. Initially the
pole vaulter accelerates to a speed vH,i and has a center of mass hCM above
the ground (H1 in Fig. 3.39). During running hCM is approximately 0.9 m,
corresponding to the slightly crouched position during running. The goal is
to convert the initial EH,i = mv2

H,i/2 into the potential energy. Over the bar,
the pole vaulter has a center of mass hbar + hmin, where hbar is the height of
the bar and hmin (H4 in Fig. 3.39) is the distance the center of mass of the
vaulter needs to be above the bar without touching it, which we will take as
∼0.1 m. This corresponds to an increase in the height of the center of mass
by hbar +hmin −hCM. A good pole vaulter can achieve a speed vH,i ∼9.5 m/s.
(World-class sprinters in a 100 m race can attain speeds of 10.2 m/s.)

If the initial kinetic energy is converted into potential energy over the bar:

1
2
mv2

H,i = mg(hbar + hmin − hCM) (3.61)

hbar = hCM − hmin +
v2
H,i

2g
. (3.62)

With g = 9.8 m/s2, we see that hbar = 5.4 m. In a good pole vault
hbar ∼ 5.4 m; the world record is ∼6.14 m (in 2006). (See Problem 3.33.)
Of course, the pole vaulter is still moving forward over the bar and so vH does
not actually become zero. One feature that is not included in this analysis is
the athlete extending his or her hands just before releasing the pole to improve
performance.

The pole is very elastic. It stores and returns energy to the pole vaulter
much more efficiently than do human body components during jumping and
running. There is an optimal pole stiffness that maximizes performance [171].
If the pole is too stiff, it straightens before the athlete is at the maximum
height and the pole pushes the athlete horizontally away from the bar. If the
pole is not stiff enough, it straightens too slowly and the athlete passes the
bar before attaining the highest position.

3.6 Throwing a Ball

The biomechanics of throwing a ball are quite complex. It involves the co-
ordinated motion of many muscles about several body joints, as is also true
for running, jogging, etc. We will model throwing a ball. In doing so, we will
greatly simplify the problem and subsequently reassess many of our initial
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Fig. 3.40. Models of throwing a ball with (a) motion of the shoulder and elbow
(extension), (b) motion of the shoulder only with a fixed arm, (c) extension of the
elbow and a stationary shoulder, and (d) flexion of the elbow and a stationary
shoulder

assumptions. The first assumption is that only the arm is involved in throw-
ing. This is a major assumption.

The diagrams in Fig. 3.40 shows four models of throwing a ball overhand.
One can consider throwing by:

(a) The entire motion with motion in the shoulder and elbow joints (Fig. 3.40a).
(b) Motion of a stiff arm (elbow fixed) – motion only in the shoulder joint,

using the deltoid muscles (Fig. 3.40b).
(c) Motion of only the forearm (lower arm) (shoulder fixed) – motion only in

the elbow joint using the extensor triceps brachii (Fig. 3.40c).
(d) Motion of only the forearm (shoulder fixed) – motion only in the elbow

joint using the flexor biceps brachii (Fig. 3.40d).

Similar diagrams can be drawn showing several analogous ways of throwing
a ball underhand, which involve these same (a), (b), and (d) models.

Each of these models represents a fairly unnatural motion for throwing
(try them!), but they represent good first-order models. Model (a) involves
two-body joints, and consequently is a two-segment model. Models (b)–(d) in-
volve one-body joint and are one-segment models. More sophisticated models
require a multisegment model.

We will analyze throwing with the single-segment model (d) where the
forearm moves due to the flexor biceps brachii contraction, which causes the
forearm to rotate about the elbow joint. This can be a model of either overhand
or underhand throwing. Although it is very simple, this model has several
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Fig. 3.41. Angles involved in throwing a ball, include the angles of the rotating
forearm relative to the x-axis (θ′) and the fixed upper arm (θ)

complexities and we will analyze each one. Our goal is to see how fast we
can throw a ball, specifically a baseball. We will first assume that the biceps
brachii are the only muscles used to flex the forearms; later we will examine
other muscles that can contribute to form an “effective biceps” muscle.

We have analyzed the torque in this system already, in Chap. 2. As seen
in Fig. 2.9d (Case 3)

∑
τz = MdM sin θ − WFdF sin θ − WBdB sin θ

= (MdM − WFdF − WBdB) sin θ, (3.63)

with the weight in the hand now called a ball (B). For simplicity, we first
assume that the humerus is vertical. In a static situation the torques add
up to zero. Here they do not. For our desired arm motion, the sum must be
positive.

Figure 3.41 explains a small subtlety concerning the defined angle θ, which
is the angle the moving forearm makes with the fixed humerus (upper arm).
The forearm makes an angle θ′ with the fixed x-axis. In relating the net torques
to the second derivative of the angle, as in (3.63), the dynamical variable is
actually what we have called θ′ here, so

∑
τz = I

d2θ′

dt2
. (3.64)

Because θ+θ′ = π/2 (= 90◦), a fixed quantity, we see that dθ/dt+dθ′/dt =
0 and d2θ/dt2 + d2θ′/dt2 = 0, so

d2θ′

dt2
= −d2θ

dt2
(3.65)

and from (3.25)
∑

τz = −I
d2θ

dt2
(3.66)

or

d2θ

dt2
= −

∑
τz

I
. (3.67)

Now we need to evaluate the moment of inertia I and the torques. The
moment of inertia about the elbow pivot equals the sum of the components
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due to the arm and the ball. Using (3.23) and (3.30) this is

I =
1
3
mFL2 + mBL2, (3.68)

where L is the length of the forearm (0.146H) plus half the hand (0.108H/2),
which is L ∼ 0.2H ∼ 36 cm. The weight of the forearm (with the whole hand)
∼0.022Wb, so mf ∼2 kg for a 90 kg player. (We are modeling a 6 ft tall (1.8 m),
200 lb (90 kg) major leaguer.) A regulation major league baseball must weigh
between 5 and 5 1

4 oz (Official Baseball Rules (Major League Baseball), Rule
1.09), which corresponds to a mass of 0.146 kg. This gives I = 1, 053 kg-cm2.
(These are mixed MKS/CGS units. This is often not the best practice, but is
fine if we are careful.)

Evaluating the components of torque due to the forearm and ball is
straightforward. Using W = mg,

WFdF = (2 kg)(9.8 m/s2)(18 cm) = 353 N-cm (3.69)

WBdB = (0.146 kg)(9.8 m/s2)(36 cm) = 51.5 N-cm, (3.70)

for a total of 404 N-cm.
In evaluating the torque due to the muscle, we will initially make some

assumptions. (1) We assume that the distance from the point of biceps brachii
insertion to the pivot axis, dM, is 4 cm, independent of the arm angle θ.
Figure 3.42 shows that dM = dM(θ) and so including this variation would
change our final answer a bit, but it will not change our overall conclusions.
(2) We assume a fixed value of the maximum muscle force M , to see how fast
we can throw a ball. As we will see in Chap. 5, this is an assumption because
(a) M depends on muscle length (lM), which depends on θ, and (b) M depends
on the muscle contraction speed vM = dlM/dt, which depends on dθ/dt. We
will revisit several of these assumptions in the problems in Chap. 5. For now we
use the fact that most muscles exert a maximum force per unit cross-sectional
area, which we will initially take as ∼20 N/cm2, a relatively modest value.

For biceps brachii with a 2 in diameter, the cross-sectional area is π(1 in)2 =
20.3 cm2, so M = 405 N and MdM = 1, 620 N-cm. So (3.63) becomes

∑
τz = (1,620 N-cm − 404 N-cm) sin θ = (1,216 N-cm) sin θ (3.71)

and

d2θ

dt2
= −

∑
τz

I
= − (1,216 N-cm) sin θ

1,053 kg-cm2 . (3.72)

Because 1 N = 1 kg-m/s2 = 100 kg-cm/s2,

d2θ(t)
dt2

= −116/s2 sin θ(t), (3.73)

where we have expressed θ(t) as an explicit a function of time.



142 3 Motion

Fig. 3.42. Variation of the moment arm of biceps brachii vs. elbow angle. (From
[113]. Reprinted with permission of Wiley)

We want to solve this equation to find the speed of the baseball at the end
of the throwing motion. The speed of the ball at any time t is vB = |Ldθ(t)/dt|.
Before examining the end of the motion, let us examine the conditions at the
beginning of the throw, the so-called initial conditions. From the diagram
in Fig. 3.43a, we see that at the beginning, t = 0, the arm is straight, so
θ(t = 0) = π(= 180◦). Because the ball is still, dθ(t = 0)/dt = 0. At the end
of the throwing motion the ball is released, say at tfinal. This could occur at
θ = 0, so θ(tfinal) = 0. In a normal throwing motion the release occurs before
θ = 0. In any case, if the release time is tfinal, the ball leaves the hand with a
speed vB = |Ldθ(tfinal)/dt|.

We will restrict the range of motion for θ from 3π/4 to π/4 (135◦ to
45◦) (Fig. 3.43b) because this range involves the most efficient region for the
muscles. So we see that

θ(t = 0) = 3π/4 dθ(t = 0)/dt = 0 (3.74)

and

θ(t = tfinal) = π/4 dθ(t = tfinal)/dt = ?, (3.75)

where the last quantity will give us the final answer.
We can numerically integrate (3.73) to find the final speed; however, we

will make some further approximations that will simplify the solution. We
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Fig. 3.43. Throwing models with (a) 180◦ rotation, (b) 90◦ rotation for vertical
upper arm, and (c) 90◦ rotation for horizontal upper arm. The direction of the
velocity vector of the released ball is shown in the last segment of each. Clearly, in
this simple model a different position of the upper arm is needed to release the ball
horizontally

approximate sin θ(t) by a constant. Over the restricted angle range of interest,
we replace sin θ(t) by 〈sin θ〉 = 0.707 (= sinπ/4 = sin 3π/4). This will lead to
a slight underestimate of the speed because sin θ(t) varies from this value to
1.0. Now (3.73) becomes

d2θ

dt2
= −116/s2〈sin θ〉 = −81.7/s2 = −α. (3.76)

This is easily solved. (See Appendix C for more information about the
solution.) After integrating both sides from time 0 to t

dθ

dt
= −αt + c1. (3.77)

c1 is determined from the initial condition that dθ(t = 0)/dt = 0, which gives
c1 = 0 and

dθ

dt
= −αt. (3.78)

This equation is integrated again to give

θ(t) = −1
2
αt2 + c2. (3.79)
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Because θ(t = 0) = 3π/4, we find c2 = 3π/4 and θ(t) = −αt2/2 + 3π/4. At
tfinal, θ(t = tfinal) = π/4, so

π/4 = −1
2
αt2final +

3π

4
, (3.80)

which gives tfinal = (π/α)1/2. Using (3.78), |dθ(t = tfinal)/dt| = | − αtfinal| =
(πα)1/2. The speed of the ball when it is released by the hand is

vB =
∣∣∣∣L

dθ(t = tfinal)
dt

∣∣∣∣ =
√

πα. (3.81)

For L = 36 cm this is vB = 63.8(α)1/2, in units of cm/s with α in units of
1/s2.

Now we can evaluate several specific cases:
Case a: For these 2 in diameter biceps brachii with 〈sin θ〉 = 0.707, we see

that α = 81.7/s2, tfinal = 0.2 s and vB = 577 cm/s = 5.77 m/s = 18.9 ft/s =
12.9 mph. (Remember, 60 mph = 88 ft/s = 26.8 m/s = 96.6 km/h.) Because
power major league baseball pitchers can throw a fastball at speeds approach-
ing 100 mph, our calculated speed is very slow. Maybe we should expect a more
modest speed of say ∼70 mph, but our result is still much too slow. Let us
reconsider our assumptions one by one.

Case b: Let us choose a larger value for 〈sin θ〉 say 1.0 (because of the
smaller range of θ), so now we see that α = 115.5/s2 and tfinal = 0.165 s. Now
vB = 6.86 m/s = 22.5 ft/s = 15.3 mph. This is still too slow.

Case c: Now let us make our muscles bigger, so they have a 3 in diame-
ter. Because the maximum muscle force is proportional to area, the torque
provided by the muscles is now 1,620 N-cm sin θ × 9/4 = 3, 645 N-cm sin θ.
The total torque is now (3, 645 − 404 N-cm) sin θ = (3,241 N-cm) sin θ. Still
using 〈sin θ〉 = 1.0 now, we find α = 308/s2 and tfinal = 0.10 s. Now vB =
11.2 m/s = 36.7 ft/s = 25.0 mph. This is getting better, but the speed is still
too slow.

Case d: The last thing we will do right now is to remove the effect of
gravity. This amounts to ignoring the mass of the arm and ball. We have
really been examining the situation in the diagram like Fig. 3.43b. If we were
to throw it as in Fig. 3.43c, then gravity would slow the motion in the first half
of the operation and would increase it in the second half, so to first-order let us
ignore it. This means that we ignore the −404 N-cm sin θ torque term in Case
(c). Now α = 346/s2, and we see that tfinal = 0.094 s and vB = 11.9 m/s =
38.9 ft/s = 26.5 mph. This does not help much.

Something is clearly wrong. What? Let us examine some of our remaining
assumptions:

1. Is the muscle force per unit area really ∼20 N/cm2? No. The maximum
force per unit area is closer to 30–40 N/cm2. However, since the maximum
occurs only for part of the throwing cycle, this assumption is not that bad.
Using 30 N/cm2, would increase the speed by (1.5)1/2 giving �32.5 mph
for Case (d).
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2. The biceps brachii are not the only muscles used to flex the elbow
(Fig. 2.10, Case 4). Inclusion of the other muscles increases the torque
by a factor of 2.6, which should increase the speed by (2.6)1/2 to 52 mph.
This is likely an overestimate given that a physiological 3 in diameter for
the biceps brachii (only) is an overestimate. Let us estimate that this
brings the speed up to 45 mph.

3. The underhand throwing assumption with elbow flexing does not limit us
within the confines of the model. Still, in overhand throwing the elbow is
extended, by the triceps brachii. For similar musculature and moments,
elbow extension should still give the same upper throwing speed.

4. We assumed a simple one-segment model with motion of the elbow joint.
We have ignored (a) the motion of the whole arm, with both the elbow
and shoulder joints moving (two-segment model, Fig. 3.40a) and possibly
also the wrist and (b) the use of back and leg muscles for propulsion
(like a spring) in throwing (multisegment model). This is clearly seen for
Sandy Koufax pitching in Fig. 3.44, and is why baseball pitchers do a lot
of running and have very strong legs, especially power pitchers.

This last assumption is the real reason for the slow calculated speed. The
physics is right. Our answer is the final speed for throwing a baseball in
the manner described. The model is just much too simple to describe a real
throwing motion. The effective muscle cross-section area is really much larger
because many more muscles are involved and the moment arms of these ad-
ditional torques are large.

Fig. 3.44. Sandy Koufax pitching in Game 1 of the 1963 World Series in Yankee
Stadium on October 2, 1963. He and the Los Angeles Dodgers won Games 1 and
4, by the scores of 5-2 and 2-1, in a four-game sweep of the New York Yankees. A
home run by Mickey Mantle was the sole run he gave up in his second complete-
game victory over Whitey Ford. (Photo reprinted with the permission of the Los
Angeles Dodgers)
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Sandy Koufax has said, “Everybody who performs an athletic event of
any kind is a system of levers. . . . ” He continued his description of the most
critical point of the pitcher’s windup, “The front leg is charged with stopping
the torso. When the torso stops, the arm catches. . . . So the arm now devel-
ops more speed than it had when it was simply moving with the body.” He
continued his description of the pitching motion, “It’s a two-armed catapult.
You try to get the front half out as far as you can. All power pitchers do that.
When the front leg stops, the upper body catches, the arm straightens, and
you see a straight line. Basically you try to work as much as you can with
leverage and weight and energy transfer. . . . ” [140]

A more general multisegment model is obviously needed. Motion of six
joints is possible: ankle, knee, hip, shoulder, elbow, and wrist. If each leads
to the same forward motion of the ball at the end of the pitch (they do), the
speed from each can be added to get the final speed of the ball. The ankle,
knee, and hip all lead to forward propulsion, such as the first step of a sprint.
Running 100 yd in 10 s translates to 30 fps or ≈20 mph. It takes several steps
to reach this steady-state speed. We estimate that the ankle, knee, and hip can
add 10 mph. The time required for the upper arm to rotate about the shoulder
and this rotation angle are about the same as those for the lower arm about
the elbow, so the elbow and shoulder joints both contribute about 45 mph.
The wrist may contribute a little to the speed (but much to ball rotation, as
is described in the problems). Altogether, the final speed is 100 mph, which
makes sense for a power pitcher.

The mechanics of the pitching motion are clearer when viewing the six
phases of baseball pitching in Fig. 3.45 [158, 176]. After the windup, the

Fig. 3.45. The mechanics of the pitching motion. The six phases of baseball pitching
are shown from windup (a) to stride (b), arm cocking (c), arm acceleration (d–f),
arm deceleration (g), and follow-through (h). (This photo was provided by the
American Sports Medicine Institute)
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pitcher is at the balance point, which we will call t = 0 s. The pitcher
strides and makes foot contact at ∼0.50 s. The pelvis rotates transferring
energy from the legs to the upper body (maximum rotation speed of ∼550–
700◦/ s) and this causes the upper trunk to rotate (∼1,100–1,350◦/ s). The
arm straightens as the elbow extends (∼2,200–2,800◦/ s) and the shoulder
rotates (∼6,900–9,800◦/ s), and then the ball is released at ∼0.64 s, which is
∼0.14 s after foot contact. Then the front leg straightens to help decelerate
the body. We see that the measured acceleration times are consistent with
our simple calculations, ∼0.1 s. We should not be surprised that if we in-
cluded the contribution of the even faster rotation of the shoulder to that
of our calculated elbow extension, we could have predicted a ∼100 mph fast-
ball. The torques applied to the forearm from the elbow and the upper arm
from the shoulder during a pitch are shown in Figs. 3.46 and 3.47 (along with
the range of variation). These values are consistent with those in our simple
model.

Fig. 3.46. Torques applied to the forearm at the elbow during a baseball pitch,
with the time scale relative to the duration of the pitch. (From [176]. With the kind
permission of Springer Science and Business Media)
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Fig. 3.47. Torques applied to the upper arm at the shoulder during a baseball pitch,
with the time scale relative to the duration of the pitch. (From [176]. With the kind
permission of Springer Science and Business Media)

3.6.1 Throwing a Spinning Ball

The rotation of a thrown (or batted) baseball affects its motion. The ball
thrown by a pitcher rotates due to wrist rotation and arm motion, such as the
screwdriver action of the radius rolling on the ulna (described in Chap. 1). The
pitcher tries to maximize this rotation speed (ω, in rad/s) when throwing a
curve ball and minimize it when throwing a knuckleball (as is seen in Table 3.9
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Fig. 3.48. In the rest frame of the ball (i.e., moving along in a frame with the
ball), the flow of air around a baseball. The ball is moving to the left, so the air is
moving to the right in the drawing. The air flows along the ball and detaches at the
separation point to form a wake of chaotic, swirling flow. (Based on [173])

in the problem section). A spinning ball feels the Magnus force (or the lift
force, which is described in Chap. 7) due to this rotation, which changes its
path from that of a rotation-free ball. When a nonspinning ball travels in air,
the air travels symmetrically on the top and bottom and it leaves a wake in its
path. As sketched in Fig. 3.48 in the rest frame of the ball, the air streamlines
separate from the ball symmetrically and this wake is symmetrical and there
is no force normal to the direction of the ball. For the spinning baseball in the
photograph in the rest frame of the ball in Fig. 3.49, the wake is noncentered
because the air flows farther along the “top” (where the upper surface of the
rotating ball is moving in the same direction as the airstream) than along the
bottom (where the lower surface of the rotating ball is moving in the opposite
direction as the airstream). The wake is pushing air “downward” and there is
an equal and opposite reaction that pushes the ball “upward” according to
Newton’s Third Law. Figure 3.50 shows that the direction of this Magnus

Fig. 3.49. A baseball rotating clockwise in a wind tunnel, with air moving to
the right. (Smoke has been added to make the air motion visible.) The streamline
detaches later on the top – where the upper surface of the ball moves in the same
direction as the streaming air – leading to a downward wake and a net upward force
on the ball. (From F.N.M. Brown, courtesy of the University of Notre Dame Hessert
Laboratory)
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Fig. 3.50. Direction of the Magnus force. (Based on [173])

force is normal to the rotation axis vector of the ball (whose direction is to
you if you see it rotating counterclockwise) and the ball velocity vector, in
the direction of their cross-product. (If these two vectors point in the x and
y directions, respectively, the force will be in the z direction.)

The Magnus force explains why thrown balls do not always follow the
same trajectories as expected by gravity and drag, i.e., they can curve, such
as with thrown curve balls and batted balls hit to right and left field that
slice to the respective foul line. Balls thrown with topspin drop faster than
expected by gravity alone and those with backspin drop slower. Balls thrown
by a right-handed pitcher normally spin counterclockwise, when viewed from
above, and curve away from a right-handed hitter. Balls thrown with clockwise
spin (curve ball from a left-hander or screwball from a right-hander) curve to a
right-handed hitter. Balls rotating at other angles have motion both vertically
and horizontally, aside from the drop by gravity. This is discussed more in
[97] and [173], and in Problems 3.54–3.59. Problem 3.60 addresses throwing
knuckleballs and scuffed balls.

3.6.2 Power Generated During a Throw

How much power is exerted during a throw, even the quite slow throw using
elbow motion only? In linear motion with a constant force exerted F , the work
done in moving the amount a distance Δx is

W = FΔx (3.82)

and the power needed to do this in a time Δt is

Ppower = Fv, (3.83)

where the linear speed v = Δx/Δt.
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For rotational motion the analogous expressions are

W = τΔθ (3.84)
Ppower = τΩ, (3.85)

for an angular motion of Δθ in a time Δt with rotational speed Ω = Δθ/Δt.
This is consistent with the linear results, as is seen by examining the power
needed to exert a torque in a circular motion with a radius r. Because τ = rF
and v = Ωr,

Ppower = τΩ = (rF )Ω = (Ωr)F = Fv. (3.86)

For multijoint models, the net torque and angular speed about each joint
need to be considered and so

Ppower =
∑

k

τkΩk. (3.87)

The torque generated in the case with the 3 in diameter muscles is
3,645 N-cm (Case c, 25.0 mph), and it has been assumed to be constant dur-
ing the throw. The average angular speed is Ωav = Δθ/Δt where Δθ =
3π/4 − π/4 = π/2 and Δt = tfinal = 0.10 s, so Ωav = 15.7 rad/s. The angular
speed increases linearly with time during this motion (from (3.78)) from 0 at
the beginning to the peak value at the end Ωpeak = 31.4 rad/s.

Using (3.85), the average power generated is:

Ppower, av = (3,645 N-cm)(15.7 rad/s) = 57,000 N-cm/s = 570 W = 0.76 hp.

(3.88)

We have made use of 1 W = 1 N-m/s and 1 horsepower (hp) = 746 W. The
peak power

Ppower peak = (3,645 N-cm)(31.4 rad/s) = 1,140 W =1.5 hp, (3.89)

which seems large, even for this slow throw. (For the 2 in diameter biceps, the
average and peak powers are 178 W and 356 W, respectively.)

3.7 Other Types of Motion

References [99, 127, 159] describe many other types of motion. One such mo-
tion is bicycling. Figures 3.51–3.53 show the joint angles during a cycling crank
cycle, along with changes in muscle-tendon length and positive (contracting
muscles) and negative (extending muscles) work by muscles during this cycle
[127]. We will analyze swimming and potential human flight in Chap. 7 when
we discuss drag and lift in fluids.

Angular kinematics and kinetics of the entire body are very important in
several sports, such as several gymnastics events, diving, and ice skating (see
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Fig. 3.51. Joint angles in the right leg during a crank cycle in bicycling. The hip
angle is that between the pelvis and the upper leg (thigh) (180◦ with full extension),
the knee angle is that between the lower leg (shank, calf) and upper leg (thigh) (180◦

with full extension), and the ankle angle is that between the lower leg and a line
from the ankle joint axis to the pedal spindle axis. (From [126], as from [131]. Used
with permission)

[127]). (In several activities, such as in throwing a ball, the angular motion of
a few body segments dominate.) Figure 3.54 shows the moment of inertia of
the body during diving and in high-bar events. You can clearly see that you
can decrease your moment of inertia greatly during a dive and concomitantly
increase your rotation rate, as seen in Fig. 3.55, because angular moment is
constant when no external torques are applied. This control of rotation rate is
important in ice skating, and is analyzed in Problem 3.42. During an athletic
maneuver in flight total angular momentum of the body is constant but the
angular momentum of different body segments can change, as is seen by the
transfer of the angular momentum from the upper body to the legs during a
piked front dive in Fig. 3.56. By appropriate motion of your arm, you replace
some of this somersaulting angular to twisting angular during a dive. For

Fig. 3.52. Changes in the muscle/tendon lengths in biarticulate muscles (that span
two joints) during a crank cycle in bicycling, for the rectus femoris (dashes), biceps
femoris (dots), semimembranosus (solid line), and gastrocnemius (dashes and dots).
(From [126], as from [131]. Used with permission)
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Fig. 3.53. Crank angles corresponding to positive work (contracting muscles) and
negative work (extending muscles) for ten muscles during one crank cycle in bicy-
cling. (From [126], as from [131]. Used with permission)

example, if your arms are initially extended above your head during a front
dive and you swing one arm sideways bringing it alongside your body, your
body will rotate in the opposite direction to conserve total angular momen-
tum, in a side-somersaulting rotation.

3.8 Collisions of the Human Body

So far we have examined how people begin to move or continue to move.
Now we will investigate what happens when motion is stopped very fast, in a
collision. We humans tend to break down when we collide with objects. We can
see the reasons for this by determining how fast given body parts decelerate
during such collisions. We will also use this analysis to estimate the forces on a

Fig. 3.54. Moments of inertia during diving positions (about the axis through center
of mass) and in the high bar gymnastic event (about the bar). (Based on [127])
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Fig. 3.55. Interplay between angular momentum, moment of inertia, and angular
velocity during a tucked backward one-and-one half dive. In this backward dive the
body is initially straight, curls up with arms around the tucked and bent legs by the
knees, and becomes straight again before impact. The diver gains enough vertical
momentum from the springboard to have enough time to complete this maneuver
before impact. A sketch of the motion of the diver’s center of mass is also shown.
(Based on [127])

foot upon impact during running and the return of energy during jumping. In
these examples the person is directly involved in the collision, for example in
the collision of a person’s head with the car dashboard in a car crash or with
the opponent’s fist in boxing. In some instances the person causes a collision,
such as by hitting a baseball with a bat.

3.8.1 Kinematics of a Collision

We need to learn how humans react to rapid decelerations. During a constant
acceleration a in a time t, the velocity of an object changes from the initial
value vi to the final value

vf = vi + at (3.90)

and the distance traveled by the object during that time is

∆x = vit +
1
2
at2. (3.91)
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Fig. 3.56. Interplay between angular momentum localized first in the upper body
and then in the legs during a piked front dive. In this forward dive the body is
initially straight, bends over at the waist with the hands holding on to the ankles
of the straight legs, and then becomes straight again before impact. The diver gains
sufficient vertical momentum from the springboard to have enough time to complete
this maneuver before impact. A sketch of the motion of the diver’s center of mass
is also shown. (Based on [127])

Say a mass m is traveling at a speed v, which we will assume is positive.
If it decelerates at a uniform rate to speed vf = 0 in a time t = tcoll, during
the collision the acceleration acoll = Δv/Δt = −vi/tcoll. The analysis will be
clearer if we define the positive quantity adecel = −acoll = vi/tcoll > 0. The
distance the mass travels during that collision is

Δx = vitcoll +
1
2
acollt

2
coll = vitcoll +

1
2

(
−vi

tcoll

)
t2coll (3.92)

=
1
2
vitcoll =

1
2
adecelt

2
coll =

v2
i

2adecel
, (3.93)

where vi = adeceltcoll has been used.
The magnitude of the force felt by the object is:

|F | =
∣∣∣∣m

Δv

Δt

∣∣∣∣ =
mvi

tcoll
. (3.94)

The force per unit area A on the collision region is

P =
|F |
A

=
m|Δv/Δt|

A
=

mvi

Atcoll
. (3.95)
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This is also called a pressure or a stress. Such decelerations to zero speed are
totally inelastic. In totally elastic or partially elastic collisions, the objects
bounce back and the momentum transfer and the resulting forces are greater.

Partially Elastic Collisions

So far we have implicitly assumed that the object is colliding with an infi-
nitely massive body. Also we have not described the elasticity of the collision
quantitatively.

In a collision, linear momentum and energy are conserved. However, if the
collision is not elastic, kinetic energy is not conserved and heat is produced.
Let us consider two objects with mass m1 and m2 that move with velocities
in the x direction v1 and v2 before the collision and v′

1 and v′
2 after the

collision. For motion to more positive x, v > 0, and to more negative x, v < 0.
Conservation of linear momentum gives

m1v1 + m2v2 = m1v
′
1 + m2v

′
2. (3.96)

The fraction of the speed returned to a body as a result of a collision is
characterized by the coefficient of restitution e (or COR).

e = −v′
1 − v′

2

v1 − v2
. (3.97)

For a stationary massive object 2, we see that e = v′
1/v1 and so it is 1

for a totally elastic collision, for which v′
1 = −v1, and 0 for a totally inelastic

collision, for which v′
1 = 0. Table 3.7 shows typical values for balls. The

coefficient of restitution typically decreases with speed.

Table 3.7. Coefficient of restitution (e) for balls. (Using data from [97, 127, 171,
173])

ball surface e speeds

“super ball” hardwood floor 0.89 slow

golf floor 0.83–0.89 slow

tennis racket 0.76–0.88 slow

racket floor 0.74–0.88 slow

basketball hardwood floor 0.76 slow

volleyball hardwood floor 0.74 slow

soccer floor 0.69–0.80 slow

squash plywood 0.48–0.60 slow

baseball ash boards on concrete 0.563 58mph

wood 0.588 25mph

wood 0.584 18mph

wood 0.46 89mph

typical wood bat 0.55 typical pitch

softball hardwood floor 0.31 slow
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Inserting (3.97) into (3.96) gives

v′
1 =

(m1 − em2)v1 + (m2 + em2)v2

m1 + m2
(3.98)

and

v′2 =
(m1 − em1)v1 + (m2 + em1)v2

m1 + m2
. (3.99)

3.8.2 Consequences of Collisions

Falls and Crashes

What are the results of a collision? We will examine two types of consequences:
potentially fatal collisions due to brain trauma and the breakage of body parts
[156, 169].

Let us examine the forces on a head during a collision. Consider a head of
3 kg mass moving at 1 m/s that hits a steel beam and stops in 0.01 s (= 10 ms).
From (3.93), this corresponds to a distance of 5 mm. The deceleration felt by
the head is adecel = (1 m/s)/(0.01 s) = 100 m/s2 � 10g, which is very large.
The force felt by the head is madecel = 3 kg × 100 m/s2 = 300 N (∼70 lb)
[110]. We will see the consequences of this soon. Years ago, before seat belts
were standard in cars, car dashboards were made of hard metal instead of
the softer foam-based materials used now. Imagine the head injuries from the
rapid deceleration of heads on these dashboards during car crashes!

Now let us examine the forces in our legs when we jump from a ledge
barefoot, a ledge that is only h = 1 m high. This may not seem to be a dare-
devil activity, but if we land stiff-legged and on one leg, the consequences
are startling. The deceleration during this type of landing occurs during the
compression of the padding on the bottom of our foot.

The gravitational potential energy before the jump is mgh, which equals
the kinetic energy before impact with the ground, mv2

i /2, where vi is the
initial speed in the collision. We find

vi =
√

2gh =
√

2 × 9.8 m/s2 × 1 m �
√

20 m2/s2 = 4.5 m/s. (3.100)

If the foot padding is compressed during impact by Δx = 1 cm = 10−2 m,
then tcoll ∼ 5 ms.

Using (3.92) and (3.93), the deceleration is

adecel =
v2
i

2Δx
=

1
2

20 m2/s2

10−2 m
= 103 m/s2 = 100g, (3.101)

which is very high. For a mb = 70 kg person, this corresponds to a force of
mbadecel = (70 kg)(103 m/s2) = 7 × 104 N on one foot.

This is a compressive force, and it has its greatest effect on the thinnest
bones absorbing the impact. The tibia near the ankle has a radius r ∼ 1 cm
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and a cross-sectional area A ∼ 3 cm2 = 3× 10−4 m2. During impact the force
per unit area in this region of the tibia is

F

A
=

7 × 104 N
3 × 10−4 m2

= 2.3 × 108 N/m2= 230 N/mm2
. (3.102)

Upon compression bones typical break when subjected to a force per area
above ∼1.7 × 108 N/m2 = 170 N/mm2 = 170 MPa. This damage threshold is
called the ultimate compressive stress (UCS, Chap. 4). The stresses on the
tibia exceed this limit, so jumping from 1 m and landing on one stiff leg
will break your leg. (Please do not try this!) This also shows us why we
need to learn more about the mechanical properties of parts of the body.
Problem 3.68 considers the gentler case of using leg muscles to cushion the
collision.

These two examples, along with (3.92) and (3.93), suggest how to decrease
the impact of a collision. Because the stress during the collision is mvi/Atcoll,
the effect of the impact can be lessened by increasing tcoll and/or the area of
contact A. The collision time can be increased by (a) using better padding at
the site of the collision (such as by wearing better sneakers during running),
(b) increasing the duration of the impact by adjusting your body during actual
impact (as by letting your knees bend during the impact after a jump – the
muscles will then bear part of the impact of the collision), or (c) rolling over
(as at the end of a parachute jump). Rolling over at the end of a parachute
jump also serves to increase the impact area A.

Obviously, damage can occur during falls and collisions. However, when are
such crashes survivable? It depends on what part of the body makes contact,
what type of surface it hits, and the deceleration time. In whole body impact,
your fate depends on what part of the body makes contact: the back (supine
position), front (prone), or side (lateral). There are some guidelines gleaned
from past (unfortunate) experience. You can barely survive lateral falls at
8 m/s and supine falls at 12 m/s. You can survive foot first falls at 12 m/s on
concrete, 15 m/s on soil, and 35 m/s on water. You can survive head first falls
at 9 m/s on concrete/ice [110]. (Do not try any of these!) Figure 3.57 shows
that human collisions are usually not survivable for decelerations of 175–200 g
and greater.

What is actually occurring in such collisions? Consider an injury to the
head. In direct trauma, the head hits an object and the skull can fracture or
the brain, which continues moving forward when the skull has been deceler-
ated, hits the interior of the skull, leading to bruising (a contusion) or bleeding
(a hemorrhage). In addition to this primary impact (the coup), the brain can
bounce off the skull and hit the back of the skull (the contrecoup). Some
think that this coup/contracoup injury is instead caused by negative gauge
pressure that occurs in the part of the brain opposite the impact side (in
the contracoup region), which leads to cavitation and this causes the in-
jury. Severe injury can result when the brain is subject to large accelerations
even without impact (indirect trauma): in inertial injuries due to rotational
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Fig. 3.57. Survivability of collisions. The free fall distance is that for the indicated
impact speed, with allowance made for air resistance of the human body near sea
level. The band shown for 175–200g separates the approximate survival and nonsur-
vival regions. (From [169])

accelerations and decelerations and in Shaken Baby Syndrome nerve cell ax-
ons are damaged by stretching (diffuse axonal injury) [106]. (Whiplash is a
neck injury that can be caused in such collisions.)

The gravity of such injuries is qualitatively described by the abbreviated
injury scale (AIS). This is a guide to the severity of injury to a body component
or organ by its threat to life. It ranges from minor injury (AIS = 1), moderate
injury (2), serious injury (3), severe injury (4), critical injury (5), and to
unsurvivable injury (6).

There are semiquantitative guidelines for the severity and likely fatality
of head injuries that have been determined from the records of past accidents
[119, 156]. Using data from experiments on cadavers and animals, the Wayne
State University Concussion Tolerance Curve was developed [124, 125, 143],
which Gadd converted into an index [120]. The Gadd severity index (GSI) is
defined as

GSI =
∫ (

adecel

g

)2.5

dt, (3.103)
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Fig. 3.58. Acceleration vs. time in a collision, (a) in general, (b) of the head of a
dummy hit by a heavyweight boxer. (From [105])

expressed in seconds. This is integrated over the entire collision (a frontal blow
to the cranium), as in Fig. 3.58a. adecel is expressed in units of g and t is in s.
If the deceleration is constant during the course of the collision, the integral
is the product of this constant deceleration-based term and the collision time

GSI =
(

Δv

gtcoll

)2.5

tcoll. (3.104)

This helps determine the likelihood of skull fracture or concussion for frontal
collisions. When the GSI reaches ∼1,000 (in units of seconds), there is a 50%
chance of fatality. If the GSI is much above 1,000, the collision is usually
fatal. A GSI much below 1,000 can still indicate a severe injury. For example,
when the GSI ∼ 400, there may be a mild concussion that could result in
unconsciousness.

Versace recommended a modification of the GSI to remove potential long
tails in the deceleration, which are probably unimportant. This truncated
index is the head injury criterion (HIC)

HIC = max

[{
1

t2 − t1

∫ t2

t1

(
adecel

g

)
dt

}2.5

(t2 − t1)

]
, (3.105)

expressed in seconds [172]. This is the maximum value of this expression
between any two times t1 and t2 during the collision, separated by not more
than 36 ms; in a more recent version (HIC-15) this time separation is 15 ms.
One study has shown that the threshold for serious head injury is HIC =
1,000 (in units of seconds), for which the probability of death is about 7%
(and is AIS 3). An index of HIC = 1,500 is the threshold for severe/critical
injury, with a 26% probability of death (and is AIS 4–5), and this probability
is about 100% for HIC = 3,200. Figure 3.59 plots the risk of serious brain
injury (AIS ≥ 4) for HIC-15, which is the integral over a gaussian probability
curve

R =
(

430
π

)1/2 ∫ HIC−15

0

exp
[
−{(x − 1, 434)/430}2

]
dx. (3.106)
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Fig. 3.59. Risk of AIS ≥ 4 brain injury as a function of 15-ms HIC for forehead
impacts. (From [147])

(This integral is also known as the error function. See Appendix C.) The risk
of serious brain injury is 5% for HIC-15 = 700 and 50% for HIC-15 ∼ 1,400–
1,500 for this serious injury and for skull fracture. The maximum AIS from
head injuries is plotted in Fig. 3.60. The risk of death is plotted in Fig. 3.61.
The HIC is a better predictor of the seriousness of a trauma to the brain than
is the GSI. Problems 3.70 and 3.71 explore the differences in the GSI and HIC
indices for the same accident. The use of such indices to predict the outcomes
of accidents is not universally accepted for several reasons. For example, the
GSI and HIC assess the effects of linear (rectilinear) accelerations, but not
rotational accelerations, which can also be very important. Other criteria have
also been proposed [135].

Let us examine the consequences of the elasticity of the head in a car
crash. If the head collides with a heavy hard object, the head will rebound
elastically. We will also assume the object is much heavier than the head. In
the cases we have considered so far we have assumed that vf = 0. Now we will
consider vf = −vi, so Δv = vi − vf = 2vi and adecel = Δv/Δt = 2vi/tcoll. If
this is constant during the collision,

GSI =
(

2vi

gtcoll

)2.5

tcoll (3.107)
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Fig. 3.60. Classification of case-studies of collisions leading to head injury, plotted
as the maximum head injury (using the AIS scale) vs. the collision condition as
quantified by the HIC. (From [167], as from [130])

Fig. 3.61. Classification of case studies of collisions leading to death, plotted as
the probability of death vs. the collision condition as quantified by the HIC. (From
[167], as from [130])
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for an elastic collision, compared to

GSI =
(

vi

gtcoll

)2.5

tcoll (3.108)

for an inelastic collision. Say vi = 50 mph = 73.3 ft/s = 22.3 m/s = 80.4 km/h.
Then tcoll can range from ∼2–50 ms. Let us assume a collision time of 10 ms,
which gives GSI = 44,000 for a perfectly elastic collision, compared to 7,800
for a perfectly inelastic collision. This indicates a definitely fatal collision in
either case for this example.

Padding in car dashboards and air bags can help! Padding in bicycle and
motorcycle helmets can help! The helmet padding helps in two ways. It cush-
ions the blow to the head because the kinetic energy of the head is used to
deform the padding. This decreases the deceleration rate of the head. Fur-
thermore, the blow is spread over the inside area of the helmet, which is much
larger than the typical collision regions of contact. The desired materials prop-
erties of the helmet shell and interior padding are discussed in Chap. 4. Clearly,
the padding must absorb the kinetic energy of the head without returning it,
as would happen if you used a spring-like material for the padding.

Boxing

The long-term decline of cognitive ability in boxers commonly results from
repeated blows to the head and the resulting the “punch drunk” symptoms
of dementia pugilistica. In heavyweight boxing, GSI ∼400 for a solid punch,
which suggests a mild concussion consistent with a knockout punch. This is
based on integrating the information in force plots (Fig. 3.58b). We can arrive
at similar results from first principles.

We first ask: why do boxers wear boxing gloves? These gloves protect the
one who throws the punch as well as the one who receives it. Boxing gloves
decrease the deceleration adecel of the puncher’s fist by increasing tcoll, due
to the thickness of the padding in the glove, and A, due to the large lateral
dimensions of the boxing glove. (This large load area lessens the large forces
on specific places on specific bones, thereby reducing the risk of fracture.)
The deceleration is even smaller for yet another reason. The collision of the
fist with head becomes much more inelastic (i.e., less elastic) with the glove.
Without the glove, adecel would be much larger and the boxer’s hand would
more easily break (Fig. 3.62) and the damage to the head of the opponent
would be greater. The forces involved are tremendously large even with the
boxing gloves. Let us examine what happens when a fist hits a head.

A good boxer uses his or her legs and whole body to deliver a punch, but
for our model let us consider the motion of the fist and whole arm only, and
what happens when it hits the opponent’s head. Again, the other boxer’s head
is attached to his body (at least before the punch), but let us consider the
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Fig. 3.62. X-ray of a boxer’s fracture, which results when hitting with a closed fist.
(Which bone is broken?) (From [141], as from [130])

effect of the punch on the head and neck only. The fist is initially moving at
vfist,i and if we ignore the motion of the shoulder the average speed of the
arm is ∼vfist,i/2 (which we will use here). The mass of the arm (with fist)
is marm = 0.050mb (ignoring the mass of the 5 oz gloves and where again
mb is the body mass) (Table 1.7). The head (and neck) of the other boxer is
mhead = 0.081mb.

The elasticity of the collision affects the analysis. In elastic collisions, the
colliding bodies have different speeds after the collision, and the total linear
momentum and kinetic energy are the same before and after the collision. In
totally inelastic collisions, the colliding bodies have the same velocity after
the collision, and total linear momentum is conserved. Total energy, but not
merely kinetic energy, is still conserved. Most collisions are partially elastic
and partially inelastic. (We will analyze the collision here without using the
coefficient of restitution.)

Say the boxers are wearing gloves. Before the punch collision, the fist is
moving at a speed vfist,i and the linear momentum of the arm is ∼marm(vfist,i/2).
The collision is inelastic, meaning that at the end of the punch the fist and
head will both be moving at the same final speed vf (Fig. 3.63a). The av-
erage speed of the arm is vf/2. The total momentum after the punch is
marm(vf/2) + mheadvf , so

marmvfist,i

2
=

marmvf

2
+ mheadvf (3.109)



3.8 Collisions of the Human Body 165

Fig. 3.63. Models of boxing, with (a) boxing gloves, leading to an inelastic collision
with the head, and (b) bare fist, leading to an elastic collision with the head

and

vf =
vfist,i

1 + 2mhead/marm
= 0.236vfist,i, (3.110)

using the arm and head masses. This means that during contact the fist decel-
erates from vfist,i to 0.236vfist,i, while the head accelerates from 0 to 0.236vfist,i.
If the glove compresses by Δx = 1 cm during the punch, the head acceler-
ates at a rate acoll = v2

f /2Δx = (0.236vfist,i)2/(2 × 1 cm). The collision time
tcoll = vf/acoll = 2 × 1 cm/0.236vfist,i.

Our model for throwing a ball is also a good model for throwing a punch.
Instead of the biceps brachii contracting causing θ to decrease during throwing
a ball, the triceps brachii contract causing θ to increase. Ignoring the effect
of the rest of the body, with similar assumptions we have vfist,i ∼ 30 mph
(13.4 m/s) for 3 in diameter biceps. Assuming the boxers are wearing boxing
gloves, the head of the opponent accelerates to vf = 3.2 m/s at rate acoll =
500 m/s2 = 51g in tcoll = 0.0063 s. If we assume that (3.104) can be used for
accelerations as well as decelerations, this leads to a severity index GSI = 117.
This indicates damage, but not a fatal blow. With less padding in the glove,
say leading to a deformation of Δx = 0.5 cm, the GSI increases to 332. With
Δx again 1 cm and with vfist,i = 45 mph (20.1 m/s, our faster estimate), we
find vf = 4.7 m/s and the GSI increases to 593, suggesting substantial damage.
Boxers’ heads clearly do get damaged even when they wear gloves. Because
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part of the rest of the body is involved in the punch, vf will be larger than
estimated here and the GSI will be larger in each case.

Now what happens if the boxers do not wear boxing gloves? Without gloves
the collision of the fist and head is assumed elastic, with final speeds vfist,f and
vhead,f (Fig. 3.63b), and the collision distance is much shorter, say 1 mm. Both
of these differences contribute to the more dire consequences of bare knuckle
boxing, both for the puncher (broken hand) and the punched (more damage
to the head). Using the same approximations for arm movement, along with
conservation of momentum and kinetic energy, gives

marmvfist,i

2
=

marmvfist,f

2
+ mheadvhead,f , (3.111)

marm

2

(vfist,i

2

)2

=
marm

2

(vfist,f

2

)2

+
mhead

2
v2
head,f , (3.112)

and

vhead,f =
vfist,i

1 + mhead/marm
= 0.382vfist,i, (3.113)

which is 1.6× that with gloves. With vfist,i = 30 mph and Δx = 1 mm, the
head accelerates to vhead,f = 5.1 m/s at a rate acoll = 13, 100 m/s2 = 1, 340g in
tcoll = 0.00039 s and GSI = 25,600. Even though this is a bit of an overestimate
since the collision is not perfectly elastic, it is clear that bare knuckle boxing
can lead to death (as well as broken knuckles).

3.8.3 Hitting Balls

We will now examine collisions with objects such as baseballs [173] and ten-
nis balls. The physics of hitting such objects combines motion – much as in
throwing a baseball – and using a different object – bat or tennis racket – to
hit it. The second part is a collision, much as in punching in boxing. However,
the emphasis in boxing is the effect of the collision on the people delivering
and receiving the punch. (As in many other activities in life, in boxing it is
definitely better “to give than to receive.”)

To examine what happens when a bat hits a baseball, we use (3.98) with
1 to denote the baseball and 2 to denote the bat to arrive at

v′
ball =

(mball − embat)vball + (mbat + embat)vbat

mball + mbat
. (3.114)

(In this and subsequent equations in this discussion, we will substitute all
masses by their weights (because W = mg and the g cancels out). This will
be useful in using the weights of the ball and bat in the very common units
of oz.)

To understand the plight of the batted ball we need to know the motion
of the body, arms, and wrist during the swing (Fig. 3.64), the speed of the
pitched ball, where the ball hits the bat (relative to its center of mass), and
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Fig. 3.64. Model of batting a ball. (Based on [173])

the weight of the bat. (Major league bats typically weigh approximately 32 oz;
much heavier, 44–50 oz, bats were once routinely used by sluggers.) We know
that Wball = 5.125 oz and that the coefficient of restitution for the collision
of a baseball with a wooden bat is 0.55.

To hit a home run in a major league park, the initial speed of the batted
ball needs to be ∼100 mph, so it could clear a 15 ft tall fence that is ∼330 ft
from home plate. (This includes the effect of drag. Also, note that it is best
to hit the ball at an angle of 35◦ to maximize the distance traveled for the
initial speed because of drag, which is smaller than 45◦ optimum angle for
range with no drag. (See [97].)) To hit a ball this hard requires a bat speed of
�50 mph at its center of mass or �58 mph a bit further out on the bat, at the
“sweet spot,” which is the most effect location for this collision (see [173]).
We will now examine the different important aspects of this collision.

What is the optimal bat weight? In one model [103, 136, 157, 173] it is
assumed that the optimal bat weight is one that requires the least energy
input to achieve a given batted-ball speed. Minimizing the total initial kinetic
energy of the ball and bat, and using that result in (3.114) gives

Wbat,ideal

Wball
=

v′
ball − vball

v′
ball + evball

. (3.115)

Using the typical pitch speed of vball = −80 mph and the batted ball speed to
hit a home run v′

ball = 110 mph, the “optimized” bat weight is Wbat = mbatg =
15 oz, which is smaller than the actual weight of bats that are used by adults.
(Is the assumption that the initial kinetic energy should be minimized really
reasonable?)

Another way to determine the ideal bat weight combines a model with
measured data. The fastest speed you can swing a bat has been observed to
decrease with bat weight, typically as

vbat = A − BWbat. (3.116)
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Substituting (3.116) into (3.114) (and using weights instead of masses), and
then differentiating the equation with respect to Wbat and setting the result
equal to zero, gives the bat weight leading to the fastest batted ball

Wbat,ideal

Wball
=

√
1 + (A − vball)/(BWball) − 1. (3.117)

In particular, for one slugger the bat speed relation (3.116) has been measured
to be [103, 173]

vbat(in mph) = 63 − 0.39Wbat(in oz), (3.118)

so here A = 63 mph – the maximum bat speed for a massless bat – and
B = 0.39. For vball = −80 mph, the ideal bat weight is 38.5 oz, which is quite
reasonable, and the batted ball speed is 95.1 mph. In fact, the batted ball
speed varies very little for a broad range of bat weights.

Using multisegment models with more than one joint is important in ana-
lyzing statics and motion, such as for throwing a ball. Figure 3.64 shows that
it is also very important in hitting balls. The body rotates at an angular speed
ωbody due to the combined rotation about the hip, shoulders, and ankles and
the wrists rotate at an angular speed ωwrists. With the extension of the arms
being R, the speed of the hands is Rωbody. With the center of mass of the bat
a distance H from the hands, the speed of the bat center of mass due to body
rotation is (R + H)ωbody. The speed of the center of mass of the bat due to
wrist motion is Hωwrists. Therefore, before hitting the ball, the bat center of
mass moves at the speed vbat

vbat = (R + H)ωbody + Hωwrists. (3.119)

If the ball hits the bat a distance H from its center of mass, then H is replaced
by H + B, so

vbat, not CM = (R + H + B)ωbody + (H + B)ωwrists, (3.120)

and this is related to the speed of the bat center of mass by

vbat, not CM = vbat + B(ωbody + ωwrists). (3.121)

This shows that the motion of the region where the bat hits the ball can be
viewed as the rotation of the bat center of mass plus a rotation of this region
about the bat center of mass at angular speed ωbat = ωbody + ωwrists.

How does this change our analysis of the collision of the ball and bat?
Conservation of linear momentum, (3.96), still holds for the ball and the bat
center of mass. However, you need to use the bat speed at the actual point of
impact before and after the collision in the coefficient of restitution equation,
(3.97). Furthermore, there is a torque on the bat during the collision when
the ball does not hit the center of mass of the bat. This is examined further
in Problem 3.90.
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3.8.4 Running

Your foot suffers a collision every time it touches the ground during walking,
running, and landing after a jump. During a very slow step – a gentle collision –
the forces on the foot slowly build up from 0 to mbg. During running the
forces on the foot reach a peak of ∼2.0–3.6 mbg (marathon running: ∼2.7mbg;
sprinting: ∼3.6 mbg). Does this make sense?

Equation (3.101) shows the deceleration during a collision is adecel =
v2
i /2Δx. Here, vi is the initial downward speed of the foot and Δx is the

vertical braking distance of the foot. The downward speed is ∼1.5 m/s for a
running speed of 5 m/s (5.4 min/mile). The braking distance is due to the
compression of the fatty pad of the heel of the foot, which is ∼4 mm, plus
that of the heel of the running shoe, ∼8 mm, for a total of ∼12 mm. The de-
celeration is 187.5 m/s2 and the maximum force on the decelerating mass m
is 19.1mg. The approximate energy returned to the body as a consequence of
this collision was addressed above and will be given in Table 3.8 later. Now
let us estimate the forces involved in the downward deceleration.

If the entire body were being decelerated during the collision of the heel
(the human body as a rigid body), the force on the heel would be due to the
entire mass of the body, 19.1mbg. That is excessive, so it appears that during
the collision the entire body mass is not being decelerated at once by the heel.
In the opposite extreme we can assume that only the foot is being decelerated.
Because the mass of the foot is 0.0145mb (Table 1.7), the force on the heel
would be 0.28mbg plus that from the slower rest of the body, 0.9855mbg, for
a total peak force of 1.26mbg. This seems low. Following the lessons learned
from “Goldilocks and the Three Bears” (if first too big and then too small,
try somewhere in between), we should examine several intermediate cases.
Let us say that during the collision the foot plus lower leg mass = 0.061mb

(or alternatively the foot plus lower leg plus thigh mass = 0.161mb) is being
decelerated. Then the peak forces would be 1.165mbg + 0.939mbg = 2.104mbg
(or 3.075mbg + 0.839mbg = 3.914mbg for the entire leg). Comparing this
to the cited measurements suggests that during running the initial impact

Table 3.8. Energy return from elastic sports equipment. (Using data from [171])

equipment k Δxmax KEmax Hmax

(1,000 N/m) (cm) (J) (cm)

trampoline 5 80 1,600 230

tumbling floor 50 10 250 36

gymnastic floor 120 5 150 22

running track 240 1 12 2

gymnasium floor 400 0.5 5 1

Δxmax and KEmax are the maximum deformation and stored energy (KEmax =
kΔx2

max/2) and Hmax is the maximum height of a mb = 70 kg person with this
energy, Hmax = KEmax/mbg.
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of the collision is borne by your foot and lower leg, with some significant
coupling to the thigh. Experience shows us that this is reasonable. Without
some coupling to the thigh, your knees (patellar tendons, etc.) would not have
the opportunity to hurt when you run.

Sliding in Baseball

The goal of sliding into second or third base in baseball is to touch the base and
then maintain contact with it before being tagged by the fielder. By sliding,
you are at ground level and therefore harder to tag. You also have a greater
chance of maintaining contact with the base after “colliding” with it, without
bouncing off of it. Even better, by sliding you decelerate and collide with the
bag at a slower speed, so there is less chance of breaking your foot (or hands in
the ill-advised head-first slide). However, because you are decelerating during
the slide, it takes a longer time to reach the base, Δtslide,extra, and it is more
likely you will be tagged out than if you had continued at the same initial
speed vi and then suddenly stopped at the base without overrunning it (and
damaging your ligaments, etc.). You can (1) control “when” you start your
slide – which really means the distance before the base where you start to
slide, Δxslide, (2) try to control your (final) speed at the base, vf,slide (the
speed of the collision with the base), and (3) try to control the effective kinetic
coefficient of friction in your deceleration μslide. (You slow down faster with
more body area and weight on the ground and with your spikes dug in more.
You decelerate slower on mud than on dry dirt.) Assuming a normal force
equal to your body weight, the frictional force has a constant magnitude
μslidembg and so acoll = −adecel = −μslideg.

Using (3.90), we see that Δtslide = (vi − vf,slide)/μslideg, where Δtslide is
the duration of the slide. (Clearly, Δtslide,extra = Δtslide − Δxslide/vi.) Also,
using (3.91), we see Δxslide = viΔtslide − 1/2μslidegΔtslide

2. This is examined
more in Problems 3.95 and 3.96.

3.8.5 Jumping

Several forms of jumping involve full collisions with a surface. The spring
constant (stiffness) of this surface greatly affects how much energy can be
returned to the body. This is seen in Table 3.8, which shows different surfaces,
and for each their force constant and maximum deformation, the maximum
stored energy, and the maximum height a 70 kg person could attain with
this maximum stored energy. This is obviously significant for jumping on
trampolines and gym floors.

3.9 Sustained Acceleration

In the previous section we have seen that collisions involving the head can
lead to damage from the direct impact and from accelerations induced by
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the collision. Sustained linear and rotational (or rotary) accelerations of the
entire body are also generally important, and they are particulary significant
for space flight and for fighter pilot excursions [117, 118].

We will define linear accelerations using the coordinate system in Fig. 1.1,
with +gz corresponding to the normal gravity acceleration g we feel on earth,
and consider the effect of these accelerations [116, 117]. For such positive
vertical acceleration, it is difficult to raise oneself at 2.5gz; it is impossible to
raise oneself and difficult to raise one’s arms and legs, and vision dims after 3–
4 s from 3–4gz; and vision is blacked out after 5 s, hearing and consciousness is
later lost, and convulsions are possible from 4.5–6gz. As we will see in Chap. 7,
one reason for these extreme responses is that blood pumped by heart cannot
reach the brain. At +1gz, the (systolic) arterial pressure is 120 mmHg at
the heart, 96 mmHg at the head, and 170 mmHg at the foot. At +5gz, this
pressure is still 120 mmHg at the heart, but 0 mmHg at the base of the brain
and 370 mmHg at the foot. This means your brain does not get blood (which
means you become unconscious) and you need an extra 250 mmHg pressure
to pump the blood in the veins in your legs and feet back to the heart. Even
though your body compensates for this a bit (by increasing blood pressure,
increasing the heart rate, decreasing the cardiac volumetric output, and so
on), so you may be able to withstand +5gz, the situation is still dire. Vision is
affected at lower accelerations than for general brain function because blood
flow to the retina has the barrier of the intraocular pressure, which is about
20 mmHg higher than the intracerebral pressure. (Vision may be affected in
ways similar to retinal dysfunction ischemia.)

Negative vertical accelerations also lead to physiological consequences:
there is severe facial congestion, throbbing headaches, and after 5 s blurring
of vision from −2gz to −3gz; and most subjects cannot even tolerate 5 s of
−5gz because of bloodied eyes, nosebleeds, and hemorrhage.

We can tolerate forward +gx and backward −gx acceleration a bit better.
A forward acceleration of 2gx is tolerable for at least 24 h and 4gx for at least
60 min. There is increased weight, abdominal pressure, and some difficulty
in focusing vision from 2–3gx; progressive chest tightness and pain, difficulty
in breathing, blurring of vision from 3–6gx; each symptom gets worse from
6–9gx; arms cannot be lifted at 8gx; the head cannot be lifted at 9gx; breathing
is difficult and peripheral vision is lost from 9–12gx; and there is extreme
difficulty in breathing and speaking and a recurrent complete loss of vision at
15gx. The effects of backward accelerations are similar, but there is none of
the increased pressure on the chest that accompanies forward accelerations,
so breathing is easier.

For lateral accelerations, ±gy, there is discomfort at 3gy after 10 s, and
external hemorrhage and severe headaches afterward for 5gy for 14.5 s.

Rotational acceleration about the body x-axis is called rolling, about the
y-axis pitching, and about the z-axis yawing or spinning, again using the
coordinate system in Fig. 1.1. Sometimes the term tumbling is used instead of
pitching and rolling. Tumbling (about the pitch axis) centered about the heart
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is safe for rotations rates of at least 120 rpm for about 3 s and for successively
longer times at slower rates, such as 70 rpm for 400 s [117, 174].

3.10 Physics of Sports

This chapter has shown how many types of motion can be analyzed using
simple physics. Not coincidentally we have also examined the physics of several
sports, including those in track and field, baseball, and boxing. There are
several books devoted to the physics of different sports. In most cases they
emphasize the object of the sport and not how the human body generates the
needed action. (They are nonetheless very interesting.) The excellent book by
Hay [127] is one of several exceptions, in that it examines the biomechanics
of many sports, including gymnastics, swimming, track and field, and several
major team sports. The book edited by Hung and Pallis [133] examines the
physics of golf, tennis, baseball, football and soccer, and basketball. Adair
[97, 98] and Watts and Bahill [173] have analyzed baseball, concentrating on
the motion of the ball during a pitch and after it has been hit. Gay [122]
discusses the physics of football. Football is the epitome of collision “ball”
sports. A player tries to advance the football. The goal of the defensive player
is to collide with the ball carrier to stop his progress. The goal of most of the
offensive players, other than the ball carrier, is to collide with the defensive
players to stop them from colliding with the ball carrier. Jorgensen [134]
has examined golf. A golf swing can be modeled as a double pendulum, one
pendulum being your arms and the other the golf club. Lind and Sanders [142]
have looked at the physics of skiing, including the skiing motion, snow, ski
wax, and so on. The books by Laws and co-workers [137, 138, 139] examine a
subject related to the physics of sports: the physics of dancing.

3.11 Summary

Motion of the body can be understood by analyzing the kinematics, dynamics,
and energetics of the motion. Understanding body stability and the action of
skeletal muscles is also important. Walking, running, jumping, and throwing a
ball can be analyzed by using simple models, which can be refined to be more
realistic. Similarly, collisions can be modeled to understand body motion and
action, as in sports, and how the body is affected when it is involved in a
crash.

Problems

Stability, Friction, and Human Moments of Inertia

3.1. Consider a person modeled as a one-dimensional being of height H and
mass mb in the two-dimensional world of Fig. 3.7a. The person has a constant
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mass per unit length and the body rests 25% from the back of her massless
feet, which have length 0.152H (as from Table 1.6) and negligible height.
To what angles can the person tilt in the forward and backward directions
and still maintain overall balance and stability? (Consider potential rotations
about the front and back of the feet, as in Fig. 3.7a.)

3.2. Can the pregnant woman, modeled in the two-dimensional rigid-figure
world of Fig. 3.7b, maintain overall balance and stability? Assume the centers
of mass of the woman without the womb and the womb itself are both 0.58H
above her feet. The additional mass is 0.25mb and has a center of mass 0.1H
in front of the rest of her body. (Assume the other information given about
the feet in Problem 3.1.)

3.3. Refer to the gymnast in the arabesque position described in Problem 2.11.
In attaining this position her center of mass descends but does not move
laterally. How does this affect her overall stability?

3.4. (a) Why is a tripod stable?
(b) Explain why a moving six-legged creature (an insect) can always be stable
if it lifts and moves three feet at a time, while keeping its other three feet on
the ground [163].
(c) Explain how a four-legged animal (a horse) can move, albeit slowly, always
maintaining stability, by keeping three of its feet on the ground at all times.
Is this type of motion normal for a four-legged animal? Why?
(d) The two-legged motion of humans cannot take advantage of the stability
of a tripod. Still, standing barefoot on one foot or both feet can sometimes
approximate a tripod. Explain this and why such tripods are fairly unstable.

3.5. The normal force on the head of the femur in the knee is 300 N. Find the
frictional force for a normal (μ = 0.003) and arthritic (μ = 0.03) joint.

3.6. The accelerating sprinter described in this chapter pushes off with 560 N
force. If the net downward force on the foot on the ground is 3mbg for this
70 kg sprinter, what is the minimum coefficient of friction needed to prevent
slipping? Under what conditions is this possible?

3.7. Use the data from Chap. 1 to show that the moments of inertia of a
normally standing person about his or her center of mass are roughly the
following, about these axes [127]:
(a) 1 kg-m2 about a vertical axis.
(b) 11 kg-m2 about the axis in the transverse plane that is normal to the
vertical axis.
(c) 11 kg-m2 about the axis in the mid-sagittal plane that is normal to the
vertical axis.
(d) If a person curls up into a ball the moments of inertia about all three axes
will be roughly the same. Estimate them.
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Fig. 3.65. Determination of the moment of inertia of a sprinter’s leg about the hip
axis. (Based on [127].) For Problem 3.10

3.8. Calculate the moments of inertia of a standard man about the three
normal axes though his center of mass – described in Problem 3.7, using each
of the models in Problem 1.30.

3.9. (a) For each limb and limb segment in Table 1.9, show that the sum of
the squares of the radius of gyration about the center of mass and the distance
of the proximal end from the center of mass equals the square of the radius
of gyration about the proximal end. (All distances can remain normalized by
the segment length.)
(b) Repeat this for the distal end.
(c) Why is this so?

3.10. Use the parallel axis theorem to calculate the moment of inertia of a
sprinter’s leg about the hip axis, as in (a) Fig. 3.65. The moments of inertia
of the upper leg (thigh), lower leg (calf), and foot about their respective
centers of mass are 0.1052, 0.504, and 0.0038 kg-m2, these centers of mass
are, respectively, 0.30, 0.45, and 0.53 m from the hip rotation axis, and these
segments, respectively, have masses 7.21, 3.01, and 1.05 kg.

3.11. How do the leg joint angles defined in Fig. 3.1 differ from those in our
discussion of walking and those defined in the caption to Fig. 3.51?

3.12. Relate the angles defined in Problem 2.37 for the multisegment model
of Fig. 2.57 to the joint angles.

Walking and Running

3.13. Use Fig. 3.9 to determine the fraction of time that both legs, one leg,
and neither leg is on the ground during:
(a) Walking
(b) Running.
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3.14. (a) Use the pendulum model of walking to determine how fast someone
walks. Every half period the person takes a step that corresponds to the arc
length the foot (at the end of the leg of length L) that traverses 30◦ during
the step (so the step length is (π/6)L). (This is approximately the maximum
swing angle for a fast walk.)
(b) Calculate the pendulum frequency and this walking speed for a 2 m tall
adult and a 1 m tall child. Do the ratios of their frequencies and speeds make
physical sense? Explain. (You can use the model that assumes constant leg
linear density.)

3.15. Show that it is reasonable that leg length L scales as m
1/3
b , and therefore

the walking speed scales as m
1/6
b , as in Table 1.13.

3.16. Obtain the moment of inertia of a leg of mass mleg and length Lleg with
constant linear mass density by:
(a) Changing the integration limits in (3.30)
(b) Using the results of (3.30) and the parallel axis theorem.

3.17. Compare the moments of inertia of the whole leg as determined by the
constant linear density model, (3.30) and the more refined model (result after
(3.34)), with that determined from the total leg radius of gyration given in
Table 1.9. (Use the parallel axis theorem.)

3.18. Estimate what fraction of the change in body angular momentum due
to leg motion is canceled by swaying your arms out of phase with your legs
when you walk. Assume standard parameters for your arms and legs, that
they are straight and each has a uniform mass density per unit length:
(a) First assume that dθ/dt is equal in magnitude and opposite in sign for the
legs and arms.
(b) Now assume that the forward displacements traversed by the foot and hand
Ldθ(t)/dt are equal in magnitude and opposite in sign, where L is alternately
the leg or arm length.

3.19. Estimate the vertical angular momentum gained by your body with
each stride (ignoring the motion of your arms and torso) for a 3.4 m/s running
speed.

3.20. Each step in climbing a staircase can be modeled in two parts. First,
one foot is placed on the next step and, second, that foot is used to propel the
body up. Assume that the center of mass is raised an insignificant amount in
the first part, so the whole change in the center of mass occurs in the second
part of the step. Also, assume that the durations of both parts of the step are
the same. Consider a staircase with 13 steps, each 20 cm high. It takes 3.6 s
to go up the staircase “quickly” and 6.0 s to go up “slowly.” Calculate the
average total (not net) vertical force in the second part of the step for each
case, in terms of the body weight Wb. (You can ignore horizontal motion.).
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3.21. Determine the total range of motion of thigh, knee, and ankle for each
example of running in Table 3.5.

3.22. (a) A 70 kg person runs at a speed of 4.50 m/s. If 100 J of kinetic energy
is lost each time a foot touches the ground (Fig. 3.27), what is the speed after
stage (a) (if it was 4.50 m/s just before stage (a)). (Ignore vertical motion and
potential energy changes throughout this problem.)
(b) How much energy needs to be supplied by the body in the acceleration
phase (stage (c)) to account for the loss when the foot earlier hit the ground,
if the 93% of the 35 J which is stored in the Achilles tendon and the 80%
of the 17 J which is stored in flattening the foot arch in stage (a) are both
returned in stage (c) (and nothing else is)?
(c) If the runner takes 3 steps per second and the runner’s muscles are 20%
efficient in converting energy into the mechanical work of running, how much
extra energy is used by the body per hour when it is running? Express your
answer in kcal/h, where 1 kcal = 1 × 103 cal and 1 cal = 4.184 J.

3.23. After how many strides does the accelerating sprinter reach 90% of her
final speed? What distance does this correspond to (in m)?

3.24. The final speed attained of the accelerating sprinter refers to the upper
body and one leg. If the other leg can be considered to be still, what is the
speed of the sprinter’s center of mass after acceleration?

3.25. We assumed that the pushoff leg of the accelerating sprinter does not
contribute any kinetic energy in (3.38)–(3.47). Let us say that the center of
mass of that leg is moving at half of the speed of the upper body and other
leg:
(a) Is this reasonable? Why?
(b) How would this change (3.38)–(3.47)?
(c) How would it change the numerical value of the calculated final speed?
(d) How would it change the number of strides needed to reach 90% of the
final speed?

3.26. We assumed that the pushoff leg of the accelerating sprinter does not
contribute any kinetic energy in (3.38)–(3.47). Let us say that this leg rotates
while this foot is on the ground, so the top of it moves at the same speed as
the rest of the body, but the bottom of it is still. Assume this leg is straight
and of uniform linear density. What fraction of the kinetic energy of the leg
is lost as it changes from a translating to a rotating leg?

3.27. Do parts (b)–(d) of Problem 3.25 for the case posed by Problem 3.26.

3.28. Show that the maximum (horizontal) running speed of mammals is
expected to be roughly independent of mass by using the following approach
[148, 168]. Assume that the maximum muscle force is proportional to its cross-
sectional area, which is ∝ L2 for characteristic dimension L. The body mass
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is proportional to the volume, and so mb ∝ L3. Proceed as follows:
(a) The work done by leg muscles in each stride is the muscle force × the
muscle contraction distance. Show that this scales at L3.
(b) The kinetic energy of that limb is I(dθ/dt)2/2, where I is the moment of
inertia of the leg and dθ/dt is its angular speed, which is the running speed v
divided by the leg length. Show that this energy scales as L3v2.
(c) By equating these, show that v is independent of L and therefore mb.

3.29. Show that the maximum uphill running speed of mammals should de-
crease with linear dimension L, as 1/L, and therefore with mass mb as
1/m

1/3
b [148, 168]. Do this by equating the power available from the mus-

cles to the power required to work against gravity. (Hint: The power available
from muscles is the work done by leg muscles per stride (∝ L3, from Prob-
lem 3.28) divided by the time per stride (which is the leg length divided by
the speed, and Problem 3.28 shows the speed is independent of L). The power
needed to work against gravity is the body weight times this uphill running
speed.)

Jumping

3.30. Neglect air resistance and muscle atrophy and assume the same upward
normal reaction force as on earth:
(a) If someone can increase her center of mass by 0.7 m in a vertical jump on
earth, how high could she jump on the moon?
(b) If an athlete can long jump 25 ft on earth, how far could she long jump
on the moon? (Assume her takeoff angle is 30◦.)

3.31. (a) During a vertical jump the center of mass of a 70 kg person is 0.65 m
from the ground in the crouch phase and 1.05 m at takeoff. During the ex-
tension phase the average (total) force exerted by the floor (summed on both
feet) is 1,600 N. (Remember that part of this counters the body weight and
the remainder – the net vertical force – counters the forces due to muscles.)
When necessary, assume that this force is constant during the extension phase.
Find how high the center of mass rises during free vertical flight, the speed at
takeoff, and the (temporal) duration of the extension phase.
(b) About 43% of the mass of the average person is muscle and essentially
all of it is skeletal muscle mass. This average person in (a) does weight train-
ing, which increases his body mass by 5 kg. Assume all of it goes into muscle
proportionately throughout the body and that the total vertical force is pro-
portional to the total body muscle mass. How high does his center of mass
rise now during a vertical jump?
(c) Repeat (b) (starting with the person in (a)) if the “weight training” in-
stead leads to adding only 10 kg of muscle.
(d) Repeat (b) (starting with the person in (a)) if the “weight training” in-
stead leads to adding only body fat – with no change in muscle mass.
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(e) Find how high the center of mass rises in (a) if the person takes a wonder
drug that decreases the extension phase by 0.05 s.
(f) On the moon, how high does the person in (a) rise in a vertical jump (from
a hard floor)? Assume gMoon = gEarth/6 and that the muscles function exactly
as on Earth.
(g) If the person in (a) were to jump from a rubber pad or sand instead of a
hard floor the center of mass would rise less. Why?

3.32. Redo Problem 3.31b if the person now does not gain weight, but instead
either increases his muscle mass fraction from 43% to 53% or decreases it to
33%.

3.33. The world record pole vault (6.14 m) exceeds that calculated here
(5.4 m). Compare this world record to the calculation assuming world class
speed, 10.2 m/s, and hmin = 0.02 m. Why are they different?

3.34. In a high jump the athlete takes a running start and then hurls himself
over a horizontal pole. (In the older, straddle high jump (face down when
over the bar), the athlete’s center of mass is ∼150 mm over the bar, while
in the newer Fosbury flop method (face up when over the bar), the cen-
ter of mass is slightly under the bar. Assume here that the center of mass
needs to clear the bar by 100 mm during a successful high jump (H3 in
Fig. 3.66)):
(a) If a 70 kg athlete’s initial center of mass is 0.9 m high (H1), how high
can the bar be for a successful jump (H1 + H2 − H3) if the athlete runs at
7.0 m/s and all of his initial kinetic energy (corresponding to motion in the
horizontal direction) is converted into kinetic energy corresponding to motion
in the vertical direction and then into potential energy?
(b) Since the world record high jump is 2.45 m (in 2006), how much of the
initial kinetic energy could not have gone into kinetic energy associated with
vertical motion?

Fig. 3.66. Multisegment model of a high jump using the Fosbury flop method,
showing that the center of mass (the closed circle) of the jumper is always below the
bar (in this example). Heights during a high jump are also shown, with H1 being the
initial height of the center of mass, H2 the maximum elevation of the center of mass,
and H3 the distance that the final center of mass is above the bar. The arrows are
shown assuming the highest center of mass is above the bar, so H3 would really be
negative for a successful Fosbury flop. (Based on [127].) For Problems 3.34 and 3.35
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Fig. 3.67. Simple one-segment model of a high jump using the Fosbury flop method
for a person with height H, with the body modeled as two segments of equal length,
normal to each other. In (a)–(e), the top of the modeled body is always 0.1H above
the bar (which is the dot). This is a reasonable assumption for (c), because the
center of the person’s chest is high enough for her to clear the bar. For Problems 3.36
and 3.37

(c) Measurements show that when 76 kg athletes run 6.7 m/s and high jump
over a bar that is 2.0 m high, their horizontal speed over the bar is 4.2 m/s.
How much energy is still not accounted for? What happened to it? (Note that
the total kinetic energy (in two-dimensions, x and z) is the sum of that for
horizontal and vertical motion = mv2

x/2 + mv2
z/2.)

3.35. In a high jump using the Fosbury flop method (face up when over the
bar, as in Fig. 3.66), the center of mass can be slightly below the bar. Find
H3 if the athlete height is 1.96 m, H1 = 1.40 m, H2 = 0.97 m, and the height
of the bar is 2.30 m (as for the jumper Dwight Stones, [127]).

3.36. For the high-jumper modeled with a two-segment model of the Fosbury
flop in Fig. 3.67, calculate how much lower the center of mass of the jumper
is than the bar for positions (a)–(e). How much lower is it for position (c)?

3.37. Assume the two segments of the Fosbury flop jumper in Fig. 3.67 are at
an obtuse angle, rather than the right angle shown in the figure. (This is more
realistic.) Also assume that the general orientation of the jumper is otherwise
the same in each part of the figure. Find the maximum angle for which the
center of mass of the jumper will always remain below the bar.

3.38. (a) The length of the long jump has three parts, the takeoff distance
(L1, the center of mass precedes the foot at takeoff, take as 0.24 m here), the
flight distance (L2, the distance the center of mass travels during flight), and
the landing distance (L3, the distance the heel lands in the sand in front of
the center of mass, take as 0.53 m), as in Fig. 3.68. Calculate the length of a
jump for a world-class male and female long jumps with speeds at takeoff of
9.8 and 8.6 m/s, respectively, and a takeoff angle of 20.0◦.
(b) We have ignored drag here, as well as the difference in height of the center
of mass at takeoff and landing. How are the results in (a) affected if the center
of mass at takeoff is 60 cm above that during landing?
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Fig. 3.68. Lengths during a hang-style long jump. (Based on [127].) For Prob-
lem 3.38

3.39. A 70 kg world-class long jumper accelerates to a speed of 10.5 m/s and
then jumps the longest distance possible:
(a) If drag due to air resistance is neglected, show that this occurs at a 45◦

takeoff angle, and find the length of this longest possible long jump. (Assume
that the long jump distance is the same as the horizontal distance traveled by
the center of mass. (They can be slightly different because of the different take-
off and landing arrangements of the body, as is addressed in Problem 3.38.))
(b) Compare this distance to the world record of 9.0 m, and qualitatively ac-
count for any differences between this record jump and your calculated value.
(Consider that many long jumpers take off at an angle closer to 20◦.)

3.40. If drag due to air resistance is neglected, a projectile, initially at ground
level, travels farthest with a 45◦ takeoff angle. Including air resistance the
takeoff angle is closer to ∼35◦. Given this, does it makes sense that many
long jumpers take off at an angle closer to 20◦?

3.41. Show that the maximum jumping height of the center of mass of mam-
mals is expected to be roughly independent of mass. Do this by first showing
the acceleration a due to muscles varies as 1/L, for characteristic mammal
linear dimension L. Then show that the launch speed, v =

√
2as – where s

is the vertical distance traveled during acceleration – is independent of L and
so the height of the jump v2/2g is expected to be independent of mass. Use
the same scaling rules for the maximum muscle force and body mass as in
Problem 3.28. (How does s scale with L?)

Other Motions

3.42. (a) A figure skater, rotating at an angular frequency of f (in revolutions
per s, which can be ∼0.6 revolutions/s) with outstretched arms, rotates even
faster after pulling in her arms. Why?
(b) The moment of inertia of this person changes by a factor α by this pulling
action. What is the skater’s new rotation speed?
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(c) Estimate this factor. (You can use Tables 1.6–1.9 and Problems 1.30 and
1.31 for guidance.)

Throwing Balls and Other Objects

3.43. (a) Use the one-segment model in this chapter that predicts you can
throw a baseball at 45 mph to determine how fast can you throw a football.
A National Football League (NFL) football must weigh between 14 and 15 oz
(and have a mass between 0.40 and 0.43 kg). Is this consistent with an NFL
quarterback throwing a ball at 68 mph? Does this make sense?
(b) Would it make sense if you modified the one-segment ball throwing model
so the baseball is released at 100 mph and then used it for throwing a football?

3.44. In the one-segment model for throwing a ball in this chapter, what
should the angle of the upper arm be to the vertical so that the velocity
vector of the released ball is horizontal (with a release at θ = π/4)?

3.45. (a) Modify the one-segment model of throwing a baseball so that the
whole arm is always straight and is rotated about the shoulder by the deltoid
muscles.
(b) How fast is the ball released, assuming 3 in diameter deltoid muscles and
the other assumptions in the final model in this chapter?

3.46. How do the torques we calculated in our pitching model compare to
those in Figs. 3.46 and 3.47? Should they be comparable?

3.47. Estimate the relative final angular rotation speeds of the elbow and
wrist in throwing a ball by using Fig. 3.45, and then estimate the relative
contributions to the speed of the pitched ball from the motion of the lower
arm and the wrist. Assume the ball is a distance of half of the length of the
hand from the wrist joint.

3.48. (a) Show that a ball travels farthest when released at a 45◦ takeoff
angle, and when it is released at speed v, it travels a distance of v2/g. (This is
an overestimate because air drag is omitted. When drag is included, the best
angle is really 35◦. Also, we are ignoring any difference in the heights of the
release point and the ground. This is examined later.)
(b) How far does the baseball travel when thrown at 90 mph?
(c) If the ball is wet and weighs 7 oz instead of 5 oz, how far will it travel?
Assume the ball leaves the hand with the same linear momentum as the dry
ball does in part (b).

3.49. If the initial velocity vector component of a ball is vx,0 in the forward
direction and vz,0 in the vertical direction, show that it travels a distance
2vx,0vz,0/g (which is called its range).
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3.50. The farthest distance an object can be thrown is with a takeoff angle
of 45◦, ignoring drag, only if it is thrown from ground height. Otherwise this
is just an approximation, as we will now see:
(a) If an object is thrown with an initial speed v and angle α, from a height
z = h show that at a later time: x(t) = vt cos α and z(t) = h+vt sinα−gt2/2.
(b) Show that it reaches the ground, z(t) = 0, after it has traveled a distance
xfinal = (v2 cos α/g)(sin α +

√
q2 + sin2 α), where q =

√
2gh/v. (Note that

q2 = mgh/(mv2/2), which is the initial potential energy divided by the initial
kinetic energy.)
(c) By setting dx/dα = 0, show that the ball will travel farthest for an initial
angle given by tanαmax = 1/

√
1 + q2 and it travels a distance xfinal,max =

(v/g)
√

v2 + 2gh.

3.51. A baseball is thrown from a height of 6.5 ft from the ground with an
initial speed of 90 mph. Ignoring drag, find how far it travels if:
(a) it is released at 45◦, and you ignore the difference in the release height
and the ground.
(b) it is released at 45◦, and you take into account the difference in the release
height and the ground (see Problem 3.50).
(c) it is released at the optimal angle for distance (which you also must find),
and you take into account the difference in the release height and the ground
(see Problem 3.50).

3.52. A baseball pitcher throws a ball at 90 mph releasing it 6 ft in front of
the pitcher’s rubber (the stripe on the pitcher’s mound), at a height of 5 ft.
The ball arrives at the plate, which is 60 ft 6 in from the pitcher’s rubber at a
height of 3 ft. (Ignore ball deceleration due to drag):
(a) How long does is take the ball to arrive?
(b) What angle does the initial velocity vector of the ball make with the
horizontal?
(c) When the ball arrives at the plate, how much does it appear to have fallen
relative to the path it would have taken with its initial velocity vector? (Ignore
any effects due to ball rotation.)

3.53. A baseball pitcher throws a ball with initial velocity vector component
vx,0 in the forward direction and vz,0 in the vertical direction. (Ignore ball
deceleration due to drag):
(a) Show that after a time t, its coordinates are: x = vx,0t and z = vz,0t −
gt2/2.
(b) After it travels a distance d in the x direction, show that the ball seems
to have fallen a distance gd2/2v2

x,0 from its initial trajectory.
(c) Show that the ball always stays in the y = 0 plane.

3.54. A baseball is rotated by a half revolution by the pitcher during the last
0.04 s before release, due to a constant rotational acceleration due to wrist
action and the rotation of the radius on the ulna. Show that the released ball
spins at a rate of 1,500 revolutions/min.
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Table 3.9. Speed and spinning of pitches by professional-level pitchers. (Using data
from [173])

pitch speed (mph) typical spin rate (rpm)

fastball 85–95 1,600

slider 75–85 1,700

curve ball 70–80 1,900

change-up 60–70 1,500

knuckleball 60–70 25–50

The term rpm stands for revolutions per minute.

3.55. The pitcher tries to maximize the rotation speed of the ball (ω, in
rad/s) when throwing a curve ball, as seen in Table 3.9. A spinning ball feels
the Magnus force (or lift) due to this rotation, which changes its path from
that of a rotation-free ball. This lift force has magnitude = πρr3ωv/2 for air
mass density ρ, ball radius r, spinning rate ω (in rad/s), and ball speed v.
(From [173]):
(a) The Magnus force on a baseball has been determined from measurements
to have magnitude (in lb) = 6.4 × 10−7fv, where f is in revolution/min and
the speed v is in ft/s. Is this consistent with the magnitude of the lift force
just given?
(b) How many revolutions do a fast fastball, a slow curve ball, and a medium-
speed, medium-rotation-rate knuckleball undergo if each is traveling at a con-
stant forward speed and travels 55 ft before it reaches home plate?
(c) Sketch a diagram showing the initial velocity vector of the ball, how the ball
rotates, and the direction of the Magnus forces when a right-handed pitcher
rotates the ball in the direction of the screwdriver motion and releases it so
that the rotation axis is vertical.
(d) If the Magnus force is constant, how much has the ball moved laterally –
relative to the expected trajectory with no spinning – when it reaches the
plate. (Ignore changes to speed and direction due to drag and gravity, so as-
sume the ball is moving forward and horizontally at 80 mph. Also assume that
changes in the trajectory due to the Magnus force are so small that you can
assume this trajectory in your calculation.) (To learn more about drag forces
see Chap. 7.)

3.56. As in Problem 3.53, a baseball pitcher throws a ball with initial velocity
vector component vx,0 in the forward direction and vz,0 in the vertical direc-
tion, but now it has additional constant forces in the vertical z direction αzg
and lateral y direction αyg due to its rotation and the Magnus force:
(a) Show that after a time t, its coordinates are: x = vx,0t, y = αygt2/2, and
z = vz,0t − (1 − αz)gt2/2.
(b) After it travels a distance d in the x direction, show that the ball seems
to have fallen a distance (1 − αz)gd2/2v2

x,0 and moved laterally a distance
αygd2/2v2

x,0 from its initial trajectory.
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(c) Show that the ball always stays in the tilted plane z = (vz,0/vx,0)t −
((1 − αz)/αy)y.
(d) Explain why the ball seems to move laterally when αy �= 0, it falls even
faster than expected when αz < 0, and it falls slower than expected – “the
rising fastball” – when αz > 0.
(Note that this additional force vector has been assumed to be constant in
this simple model. More specifically, the Magnus force has been assumed to
be that for a ball thrown with a constant velocity in the x direction. Changes
in the force direction and magnitude due to changes in ball velocity due to
gravity and the Magnus force itself – and the addition of drag, make the ball
motion even more complex.)

3.57. (a) Show that a 80 mph baseball curve ball subjected to a horizontal
force of 2.6 oz (αy = 0.5) curves laterally by 2.1 ft from its expected path
(assuming it travels a distance of 60 ft).
(b) In what direction is the spin (given by the right-hand rule) if the ball
veers to the right, as seen at the plate. (This is a curve ball as thrown by a
right-handed pitcher and a screwball as thrown by a left-handed pitcher.)
(c) How fast is the ball rotating?

3.58. Can the Magnus force described in Problem 3.57 explain the “rising
fastball” – for which the batter seems to think that the pitched fastball
is rising? This could be possible if the ball spun fast enough in the cor-
rect direction to give the ball a lift force exceeding g. (This corresponds to
αz > 1 in Problem 3.56.) Calculate it for a translational speed of 100 mph
and a rotation speed of 2,300 rpm (typical of some excellent pitchers), and
show that under the best of circumstances, the Magnus force can account
for at most about ∼2g/3 (or αz ∼ 2/3 in Problem 3.56), and so a “ris-
ing fastball” is really a consequence of a hitter’s perception and expectation
[102, 173].

3.59. A right-handed pitcher has similar wrist action when throwing overhand
and side arm. When throwing overhand (arm motion in a vertical plane) his
ball drops very fast. When throwing side arm (arm motion in a horizontal
plane), it moves to the left. When throwing at three-quarter overhand (arm
motion in a plane that bisects these two planes), it moves a bit down and to
the left. Why?

3.60. In throwing a knuckleball, the pitcher is not concerned with the ef-
fects of the Magnus force, but with the sideways force on a ball that is not a
perfect sphere because of the stitches on the ball (Fig. 3.69). The pitcher pur-
posely tries to minimize the baseball rotation rate when throwing a knuckleball
(Table 3.9), because this force will average to zero for a ball with a moderate
rotation rate – and one that is too small for a significant Magnus force. With
a slow rotation rate the lateral motion will seem irregular. (This irregular mo-
tion also occurs for a ball that has been scuffed – accidentally or on purpose.)
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Fig. 3.69. The flow past a spinless ball can be asymmetric. In this example, the
top is smooth and the stitches (or scuff mark) are on the bottom. The seams cause
boundary layer turbulence, which delays airstream separation on the bottom surface.
The wake moves upward and there is a downward force on the ball. (Based on [173])

The magnitude of this lift force is CLAρv2/2, where CL is the lift coefficient
and A is the cross-sectional area, which is similar to (7.50) [173]:
(a) For a knuckle ball, this force is 2.16 × 10−5v2 (in lb) with v in ft/s. Show
that this means that CL = 0.42.
(b) For a scuffed ball, this force is 1 × 10−5v2 (with the same units). Show
that this means that CL = 0.194.
(c) Estimate how much a knuckleball can move laterally if it does not rotate
at all? (If it does not rotate at all, its motion is predictable, and this is not
desirable.)

3.61. Most basketball players shoot free throws from the free throw line in an
overhand motion, but some professional players, notably Wilt Chamberlain
and Rick Barry, have shot them underhanded. In both cases the basketball
must go through an 18 in diameter horizontal hoop, with the hoop center 15 in.
in front of the backboard. The hoop is 10 ft high on a backboard that is 15 ft
from the free throw line. A basketball weighs 21 oz, has a circumference of
30 in, and therefore a diameter of 9.7 in.

One study has shown that for a release height of 7 ft, an error in release
angle has the minimum affect on accuracy for release angles between 49◦ and
55◦, and this corresponds to entry angles between 38◦ and 45◦, both relative
to the horizontal [127, 132]. More recent analysis suggest that the optimal
release angle is between 51◦ and 56◦ with release speeds between 20.5 and
24.0 ft/s. Spin due to bending elbows and knees and snapping the wrist at the
moment of release adds lifts due to the Magnus force [127].

Assume the ball goes through the middle of the hoop at a 41◦ angle to
the horizontal (which is the entry angle). Assume that the 6 ft tall basketball
player releases the ball with arms extended vertically for the overhand motion
and with outstretched straight arms at shoulder level for the underhand mo-
tion. Sketch the motion and determine the initial speed and angle of release
for both cases. (Hint: Use the anthropometric data in Chap. 1.)
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3.62. A shot putter releases a 7.25 kg shot at a height 2.2 m from the ground.
If the shot is released at the angle that maximizes the travel distance (see
Problem 3.50), it travels 23.06 m. Find this angle and the initial shot speed
[144]. (Ignore drag.)

3.63. (a) Find the initial kinetic energy and the maximum increase in the
potential energy of the shot in Problem 3.62.
(b) If the putt is 20% efficient, how much energy is used in putting the shot
(in J and kcal).
(c) If the putt is pushed from its resting point on the shoulder as the arm is
extended, it is accelerated along a distance corresponding to the length of the
whole arm, or about 0.7 m. During this acceleration phase (at this extension
and release angle), what is the increase in potential energy and how does it
compare to the energies in part (a)?
(d) What is the force exerted to accelerate the shot, if this force exerted during
this extension phase is constant?
(e) If the muscles used to accelerate the shot can exert 20 N of force for each
cm2 of effective cross-sectional area, what is the net cross-sectional area of
these muscles? If this were a muscle with a circular cross-section, what would
its diameter be?

3.64. A hammer thrower releases a 7.25 kg hammer at a height 3.5 m from
the ground. If the hammer is released at the angle needed so it can travel a
maximum distance (see Problem 3.50), it travels 102 m. Find this angle and
the initial hammer speed [144]. (Ignore drag.)

3.65. (a) Find the initial kinetic energy and the maximum increase in the
potential energy of the hammer in Problem 3.64.
(b) If the throw is 20% efficient, how much energy is used in throwing the
hammer (in J and kcal).

3.66. The forces exerted by muscles are proportional to their physiological
cross-sectional area PCA. For each of the following cases, the result is roughly
proportional to (PCA)x (ignoring the force needed to counter the effects
of gravity on the body, etc.). Find x in each case. (It should be either 0.5
or 1):
(a) The weight lifted by a weightlifter.
(b) The speed of a ball thrown by a pitcher.
(c) The farthest a ball can be thrown.
(d) How fast a bat can be swung. (Is this similar to case (b))?
(e) The speed of a ball after being hit by a bat. (Assume the pitcher and hitter
have muscles proportional to PCA.)
(f) How far a ball can be hit.
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Collisions of Humans

3.67. Show that the lines denoting specific deceleration times and decelera-
tions in Fig. 3.57 are expected from simple kinematics, for constant decelera-
tion rates.

3.68. Let us say as we land at the end of a jump we use the muscles in our
knees to help cushion the collision. (Earlier in this chapter we considered a
case where we ignored this potential cushioning.) The center of mass of a
person of mass mb falls a distance h before the person’s feet make contact
with the ground, and then the person’s center of mass is lowered by a distance
s and the reaction force from the ground F is used to cushion the collision:
(a) By using conservation of energy, show that the required force is F =
mbg(1 + h/s).
(b) If we land on both feet and want to keep stresses to no more than 10% of
the UCS, show that the maximum force felt by the feet during the collision
should be no more than 104 N. (Use the analysis in the text for landing with
stiff legs.)
(c) If we slow the fall by bending our knees by 0.5 m, what is the maximum
height from which a 70 kg person can safely land? (Do not try this!!!)

3.69. A skater falls on ice [105]. Assume that his head hits the ice with a
speed corresponding to free fall from a height of 6 ft.
(a) Assuming a constant force during impact, show the GSI for this collision is
GSI = (tf/Δt)2.5Δt, where tf is the time of the free fall and Δt is the collision
time.
(b) Calculate the value of the GSI for collision times Δt = 1, 2, 5, and 10 ms.
(c) Let H = 6 ft be the height of the free fall and Δs be the total com-
pressional distance of the collision, which is the flattening experienced by
the skin and/or protective padding. Show that the GSI can be expressed as
GSI = (H/Δs)1.5

√
2H/g.

(d) Calculate the GSI for Δs = 0.1, 0.2, 0.5, and 1.0 cm.
(e) Identify the range of values of Δt in case (b) and Δs in case (d), for which
serious injury can be expected.

3.70. Explore how the GSI and HIC-15 indices differ for constant deceleration,
when:
(a) The magnitude of the deceleration is αg and it lasts for a time τ .
(b) α = 70 and τ = 15 ms.
(c) α = 40 and τ = 60 ms.
(d) What can you say about the weighting of parameters for each index and
how each depends on the duration of the collision?

3.71. Let us explore how the GSI and HIC indices change when the rate of
deceleration is not constant during the collision. Consider an initial speed v
and a total collision time τ (<15 ms). It will be simpler if we express v as βgτ ,
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where β is a constant. The deceleration a(t) is expressed as α(t)g. For each
of these cases, first confirm that the speed decreases to 0 in a time τ and plot
α(t) on the same graph. Then calculate general expressions for the GSI and
HIC for each:
(a) α(t) = β is constant during the time τ .
(b) α(t) = 1.5β from time 0 to τ/2 and 0.5β from time τ/2 to τ .
(c) α(t) = 2(1− τ/t)β, so the deceleration decreases linearly from time 0 to τ .
(d) How do the GSI and HIC differ? Which is more sensitive to changes in
deceleration?

3.72. In the text the GSI was calculated for an elastic and inelastic collisions
of a head with vi = 50 mph and a collision time of 10 ms. For what collision
times would the elastic collision be expected to be fatal and the inelastic
collision expected to be survivable?

3.73. Modify (3.104), for a partially elastic collision, with a coefficient of
restitution e, again with a very massive object.

3.74. (a) Calculate the GSI for the partially elastic collision of a head moving
with vi = 25 mph and a collision time of 20 ms with a very massive object, for
a general coefficient of restitution e, and then specifically for e = 0 (totally
inelastic collision), 0.5, and 1.0 (totally elastic collision).
(b) Over what ranges of e will the collision definitely be fatal, likely be fatal,
likely to not be fatal but likely result in a significant injury, and likely to lead
to a relatively minor injury only?

3.75. (a) A pitcher throws a baseball at the head of an 80 kg batter (who has
an average-sized head and who is not wearing a batting helmet). It hits his
head at a speed of 90 mph at normal incidence and the collision is elastic.
Consider the collision of the ball with the head only (ignore the rest of the
body) and calculate the GSI assuming that during the collision the baseball
decelerates at a constant rate, the baseball deforms its linear dimension (di-
ameter) by 6%, and the head does not deform at all.
(b) What is the fate of the batter?

3.76. Some professional soccer players have the same type of loss of cognitive
ability as do boxers, likely due to the repeated heading of soccer balls. What
is the GSI when a 82 kg (180 lb) soccer player hits or redirects the ball with
his/her head (a header)? Assume that the 430 g ball is moving at 50 mph and
hits the head at a normal angle, so it bounces back on the original path. Say
that the collision with the head is elastic and the ball is squeezed by 3 cm
in the collision. Treat the collision as with the head (and not the rest of the
body).

3.77. Figure 4.74 shows the deceleration and the square wave function ap-
proximation to this measured deceleration for a head impacting a helmet
with initial speed 5.63 m/s:
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(a) Does this square wave approximation stop the head in the time shown?
(b) Calculate the GSI and HIC-15 for the square wave function approximation.

3.78. In professional football, a linebacker and fullback, both weighing 245 lb,
are racing toward each other running at 30 ft/s. (Actually, the linebacker is
running to the fullback and the fullback is trying to run away from him.) They
collide and then both decelerate at a constant rate and become stationary in
0.2 s:
(a) What is the deceleration of each? (Also express your answer in g.)
(b) What is the force on each during the collision?

3.79. (a) A big defensive lineman in professional football weighing 310 lb runs
at a speed of 24 ft/s into a small quarterback weighing 189 lb, who is initially
still. Using conservation of linear momentum, what are their speeds after this
collision and in what directions are they moving? Assume all frictional forces
during the collision can be neglected, so kinetic energy is also conserved during
the collision.
(b) Alternatively, assume that the lineman holds on to the quarterback during
and after the collision, i.e., “tackles” or “sacks” him. In this case, what fraction
of the initial kinetic energy is lost? If the forces with the ground can be
neglected, where did this lost kinetic energy go?

Hitting and Kicking Balls

3.80. A “super ball,” basketball, volleyball, and softball are dropped from a
height of 1.83 m (6 ft) onto a hardwood floor. How high do they bounce?

3.81. A baseball is found to bounce to a height of 0.46, 0.51, and 0.55 m from
a height of 1.83 m (6 ft), when it has been previously cooled for 1 h in a freezer,
left at room temperature, and heated for 15 min at 225◦C, respectively. What
are the coefficients of restitution for the balls in the three cases? [127]

3.82. How far can a batted baseball travel? Assume the ball speed and bat
speed are both 90 mph, e = 0.46, and the bat is much heavier than the ball.
(Go into the rest frame of the bat, analyze the collision, and then return back.)
(Your answer will be an overestimate because drag is omitted.)

3.83. If the same torque is generated by a pitcher in throwing a ball and a
batter in hitting a ball, would the ability to throw a 90 mph fastball mean you
could swing a bat with a 60 mph speed of the center of mass of the bat? Assume
the moment of inertia for throwing the ball is that of a straight arm about the
shoulder and that for hitting a ball is the body with two outstretched arms
and a fully extended bat (as in Fig. 3.64).

3.84. Derive (3.115) by using the method described preceding it in the text.
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3.85. Use our simple torque model for throwing a ball to show how you would
expect the final bat speed to depend on bat weight. Is the dependence used
in the text, (3.116), reasonable in terms of its linearity and the magnitude of
coefficients?

3.86. Derive (3.117) by using the method described preceding it in the text.

3.87. Use (3.114)–(3.118) to find the range of bat weights for which the batted
ball speed for this example is within 2 mph of the maximum speed (obtained
with the optimized bat weight).

3.88. For the example of optimizing the bat weight for a ball with speed
−80 mph and a bat speed that decreases with bat weight, find the bat speed
before and after the collision with the baseball.

3.89. Use (3.117) to determine the optimal bat weight and batted ball speed
for a major leaguer whose bat speed varies as vbat (in mph) = 48− 0.34Wbat

(with Wbat in oz). Over what range of bat weights is the batted ball speed
within 5% of this maximum speed?

3.90. Equation (3.114) gives the speed of the baseball after it collides with
a bat at its center of mass. In this problem we show that the analysis is a
bit different if it hits the bat elsewhere, as in Fig. 3.64. We will use notation
similar to that in the chapter, so v′

ball is the speed of the ball after the collision
and v′

bat is the speed of the bat center of mass after the collision. (Before the
collision these variables are unprimed):
(a) Conservation of linear momentum, (3.96), still holds. Show this is now

mballvball + mbatvbat = mballv
′
ball + mbatv

′
bat . (3.122)

(b) The total angular momentum of the bat and ball is conserved in the col-
lision. The rotational kinetic energy of the ball is �5–10% of its translational
kinetic energy (show this), so we can neglect the rotation of the ball. Show
that conservation of angular momentum gives

Ibat(ω′
bat − ωbat) + Bmball(v′ball − vball) = 0 , (3.123)

where Ibat is the moment of inertia of the bat about its center of mass, and
ωbat and ω′

bat are the angular velocity of the bat before and after the collision,
respectively.
(c) The coefficient of restitution equation, (3.97), now involves the speed of
the bat at the point of impact. Show that it now becomes

e = −v′
ball − vbat − Bω′

bat

vball − vbat − Bωbat
. (3.124)



3.11 Summary 191

(d) Solve these three equations to show that the speed of the ball after the
collision is

v′
ball =

(mball − embat + mballmbatB
2/Ibat)vball + mbat(1 + e)(vbat + Bωbat)

mball + mbat + mballmbatB2/Ibat

(3.125)

(e) Show that this reduces to (3.114) when the ball hits the bat center of mass
(B = 0).
For more details see [107, 108, 173].

3.91. Kicking a football, such as a “place kick,” is a form of a collision – of
the foot with the football:
(a) If the average force on the ball is 450 lb during the kick and the kick lasts
for 8 ms, how fast does the ball move after the kick? Assume the football
weighs 0.91 lb.
(b) How far does the ball travel (in yards) if its takeoff angle is 45◦ and drag
is neglected?

3.92. A football player kicks a football at a takeoff angle of 45◦; it lands 50 yd
away (ignoring air resistance). Assume the person has a mass of 80 kg and
height of 1.9 m (use Tables 1.6 and 1.7, and Fig. 1.15), and the mass of the
football can be ignored during the kick. Also, assume that at the end of the
kick, the kicker’s foot is moving at the same speed as the football. Examine
the kicking leg by itself, assuming that it has a constant mass per unit length,
and find the average power generated by the leg during the kick in W and in
hp, if the duration of the kick is 0.2 s. If the body can produce this mechanical
motion with 15% efficiency, what average power does it need, in W and in hp,
to achieve this motion?

3.93. Assume that after a soccer ball is hit, the ball moves with the same
speed as the player’s foot. For a soccer player with the dimensions of the
average human in Chap. 1, how fast does the soccer ball move with thigh and
shank (lower leg) motion as in Fig. 3.70.

3.94. Does Problem 3.93 assume that the collision is inelastic, partially elastic,
or elastic? Is this a good assumption? If not, how would you correct the
approach in that problem?

Sliding

3.95. A base runner has an initial speed of 9 m/s and slides to a stop over
4 m. What is the coefficient of friction during the slide?

3.96. (a) When you slide into a base at speed vslide,final your foot stops af-
ter crushing into the base a distance d. Find this constant deceleration and,
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Fig. 3.70. The angular speed of the hip joint (thigh) and knee (shank) during
kicking of a soccer ball. (The unusual units of 1/66 s are from the 66/s frame rate
of the photographs taken by [164].) (Based on [164] and [149].) For Problem 3.93

assuming the decelerating force is transmitted to the whole body, this collision
force Fcoll.
(b) Assume this force causes a fracture when this force Fcoll is distributed
over a bone area A and this force per unit area Fcoll/A exceeds the UCS of
the bone. Find the threshold sliding speed vslide,fracture for fracture.
(c) For reasonable values of A and the ultimate compressive stress (UCS) (see
Chap. 4), find vslide,fracture.
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Mechanical Properties of the Body

We now examine the mechanical properties of organs and components of the
body. In subsequent chapters we will consider their other materials proper-
ties, specifically their thermal, electrical, and optical properties. We need to
understand these mechanical properties to evaluate how body components
function and to assess the impact of injuries. They are also essential in assess-
ing the suitability of biomedical devices, such as hip replacements. Research
and development teams are rightly concerned with how human bodies react
to such prosthetic devices in a biochemical sense and whether they will “re-
ject” the implants. They are equally concerned with how such implants match
the other body components in a mechanical sense [184] (Problems 4.13 and
4.14, Fig. 4.76). For example, if they are softer than what they replace, they
will wear out; if they are harder, there could be excessive wear on other body
parts. In Chap. 3 we also saw how human motion is affected by the mechani-
cal properties of objects outside the body, such as running shoes, floors, and
vaulting poles.

Our goal in this chapter is to characterize the mechanical behavior of body
components by using basic models that are routinely used in materials science
and engineering. Once we have modeled the body component, we will use that
model to understand the consequences of that modeled property, such as: For
a given impact, will the bone break or just bend?

These mechanical properties all have a biological basis that is very com-
plex and this will not be discussed here. Much of these details are still not
understood well at all. We will assume that these properties have known av-
erages among humans. There are distributions about these averages due to
variations in our genes, gender, age, health, past injuries, and so on.

From a mechanical perspective, the different parts of the body can be
classified in a variety of ways. For example, components can be either passive
or active. Passive components, such as bones and tendons, respond to outside
forces. Active elements, muscles, generate forces. This division is not perfect.
Muscles are indeed active elements, but they also have some properties of
passive components, and when they are modeled, the model must include both
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their active and passive properties. These passive elements and properties are
discussed in this chapter. Active elements are discussed in Chap. 5.

The response of passive elements to applied stresses (forces/area) is by
no means simple. Passive components can respond to forces in ways that are
either independent or dependent of time. By this we mean that the component
can respond to only currently applied forces or to both current forces and
forces applied earlier.

The simplest type of passive response is harmonic or Hookean behavior, in
which the properties of the material behave exactly like that of an ideal har-
monic oscillator spring. Deformations are linear with the applied forces and
stresses. The response is independent of time. All the potential energy stored
in such media can be extracted. Bones and tendons are fairly well (but not
perfectly) modeled as such elastic media. The elastic nature of tendons makes
them very important in energy storage and retrieval during motion. Some ma-
terials systems, such as metal springs and bones, behave similarly under ten-
sion and compression. Others, such as cartilage and tendons, do not. (Why?)

No material is perfectly harmonic. Most materials deviate from perfectly
harmonic behavior for large applied forces and large deformations. A mater-
ial can deviate from a harmonic oscillator dependence with the deformation
depending nonlinearly on force or stress, and yet this deformation can still be
reversible. This means that the material returns to its initial state when the
stress is removed both in the linear and nonlinear parts of this elastic regime
or region (see Fig. 4.1). For even larger stresses, the material is no longer elas-
tic because it undergoes plastic deformation, which is irreversible. This means
that the material never returns to the same size or shape when the stress is
removed. For even larger stresses, there is fracture. One glaring example is the
fracture of bones.

Whereas elastic behavior is independent of history and enables total re-
covery of stored energy, this is not so in the opposite extreme of viscous

Fig. 4.1. General stress–strain relationship. For more detail, see Fig. 4.15
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behavior, for which the response depends on the history of applied stresses
and no energy is recoverable. Viscous materials dissipate energy; friction is
one manifestation of viscous behavior. Most materials have properties that
are in part elastic and in part viscous, and as such are viscoelastic. We will
examine models describing such viscoelasticity.

We will need to distinguish between the intensive and extensive properties
of the body component (or any other object). Let us say we were to examine a
100 cm3 ball of solid iron that has a 787 g mass. Obviously, the iron ball has a
mass density of 787 g/100 cm3 = 7.87 g/cm3. This property per unit volume is
an intensive property. It does not depend on the size or shape of the ball and
applies to any object composed of this type of iron. An extensive property of
this ball is that it has a mass of 787 g; another is its 100 cm3 volume. Such
extensive properties depend on the intensive property of the object and the
size and shape of the object.

Why do some people’s bones break more readily than others? There are sev-
eral reasons: (a) They could have different intensive properties. For example,
they could be more porous and concomitantly have lower damage thresholds –
such as for those with osteoporosis, which is common in older people who have
lost much calcium. (b) They could have different extensive properties, such
as thinner bones. (c) They could have bad luck. Reason (a) is yet another
illustration of why body materials are complex. They are composite materi-
als, composed of different types of materials on a microscopic basis. Bone is a
composite composed of calcium-based inorganic matter and organic matter.

We have actually seen the implications of several of these mechanical prop-
erties earlier. In analyzing running we saw that about a third of the kinetic
energy lost each time the foot hits the ground goes into stretching the Achilles
tendon, and that most of this energy is recoverable (which is nearly elastic
behavior). In modeling throwing a ball, we neglected any friction about the
elbow joint during the throwing motion. This followed our discussion of the
very low coefficient of friction in synovial joints. In our discussion of collisions,
we saw that the tibia can break if we jump stiff-legged from a height of only 1
m (which is fracture). Our model of throwing a ball used the force generated
by the biceps brachii (which is an active element).

Interesting references for these materials properties include [182, 184, 185,
195, 199, 201, 210, 212, 220, 221, 223, 225]. Reference [228] examines quite ex-
tensively the materials of the body and materials used in medicine. Mechanical
properties are given in [177, 190, 236].

4.1 Material Components of the Body

We will briefly characterize some of the major structural components of the
body: bones, and several soft materials, such as ligaments, tendons, and
cartilage, and then analyze their mechanical properties. More generally, there
are four categories of tissues:
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(1) Epithelial tissue covers the body and lines organs or secretes hormones.
It has closely packed cells, little intercellular material, nerves, and no blood
vessels (and so it is avascular).

(2) Connective tissue includes bone, cartilage, dense connective tissue
(such as ligaments and tendons), loose connective tissue – such as “fat” –
and blood and lymph vascular tissue. Most connective tissue has nerves and
scattered cells in a background called a matrix. There are many blood ves-
sels in bone and at the periphery of the menisci – and so they are highly
vascularized, but tendons, ligaments, and (the bulk of) cartilage are not. The
matrix consists of fibers and ground substances. The fibers include collagen
fibers (made of the protein collagen) that are tough and flexible; elastic fibers
(made of the protein elastin) that are strong and stretchable; and reticular,
web-like fibers. The ground substance includes cell adhesion proteins to hold
the tissue together and proteoglycans to provide firmness.

Epithelial membranes consist of epithelial and connective tissue. These line
the body (skin (cutaneous membrane)), internal organs (serous membranes
of the heart (pericardium), lungs (pleura), and abdominal structures (peri-
toneum)), cavities that open to the outside world (mucous membranes of the
nasal cavity, and the respiratory, gastrointestinal, and urogenital tracts), and
cavities at bone joints (synovial membranes).

(3) Nervous tissue, for body control, consists of neurons to transmit elec-
trical signals and neuroglia (or glial cells) to support the neurons, by insulating
them or anchoring them to blood vessels.

(4) Muscle tissue controls movement, and includes passive components
(such as in the connective tissue) and active, motor-like components. Its struc-
ture and properties are detailed in Chap. 5.

The different fractions of the common building blocks in these components
are shown in Fig. 4.2.

Fig. 4.2. Typical composition of several human musculoskeletal structural compo-
nents by fractional total and dry weight. (Based on [180])
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4.1.1 Bone

Bones provide a structural framework to attach muscles and organs, enable
movement through the attachment of muscles, provide physical protection of
organs (such as the skull for the brain and the rib cage for the lungs), store
minerals (calcium and phosphorus) and some fats (in the yellow marrow), and
produce red blood cells (in the red marrow). The stiff nature of bone clearly
enables it to form a semirigid framework, enable motion (because how could
muscles do their job with flexible bones?), and provide organ protection. We
will see it also means that large bones can serve these functions and still
be hollow and filled with the soft marrow. There are long bones, as in the
arms and legs; short cube-like bones; flat bones, as in the skull and ribs; and
irregularly shaped bones, as in the pelvis and vertebrae.

Bone is a complex composite material, with living and nonliving matter.
The living matter includes the cells osteoblasts and osteoclasts, which, respec-
tively, make new bone and resorb (erode) existing bone, and osteocytes, which
are former osteoblasts buried in bone they have made. Excluding water, the
nonliving matter of bone is 40% by weight (60% by volume) collagen and 60%
by weight (40% by volume) calcium hydroxyappatite (Ca10(PO4)6(OH)2).
The ∼5 nm × 5 nm × 40 nm rod or plate crystals with hexagonal symme-
try of the ceramic-like calcium hydroxyappatite are bound by the elastomer-
like collagen. The inorganic ceramic component gives compact bone its large
strength (a large elastic constant Y ) and a large ultimate compressive stress
(UCS). The collagen component makes bone much more flexible than a ce-
ramic and much more stable under tension and bending. If you let a turkey
leg sit for 24 h in 1 M HCl it becomes very flexible because the ceramic crys-
tals have been dissolved and all that remains is a collagen structure [186].
About 1% of the organic component is proteoglycans (mucopolysaccharides).
About 25% of the volume of bone is water, ∼60% of which is bound to the
collagen. Spongy (or trabecular) bone has voids with lateral dimensions of
50–500 μm.

Figure 4.3a shows the structure of a typical long bone, such as the fe-
mur. It has a long tubular shaft, the diaphysis (die-a’-phi-sus), which is a
relatively thin shell of compact, cortical, or dense bone for strength. We will
see later in this chapter that this type of hollow design maintains much of
the strength of the corresponding solid structure, but with much less weight.
At either end, the shaft broadens to form the epiphyses (e-pi-fi-sees’), where
there is an overlayer of articular cartilage for lubrication and inside the bone,
beneath the compact bone, is trabecular, cancellous, or spongy bone, which
is a porous mesh of trabeculae (tra-bic’-you-lee) that can absorb shock. This
porous bone is also found in the bones in the spinal column, where it provides
some structural support and absorbs shock. Figure 4.3b shows that the layer
of cortical bone in the shaft is thick and it becomes relatively very thin at the
proximal end, where it surrounds the trabecular bone. There is bone marrow
in the hollow shaft, the diaphysis. In short and irregular bones, spongy bone is
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Fig. 4.3. Structure of a long bone, as exemplified by the femur, with a (a) schematic
of the frontal section, (b) photo of the proximal epiphysis, and (c) schematic of the
cross-section of the diaphysis. (b) is a photograph of a coronal section of the upper
end of the femur of a 31-year-old male. The cut passes through the head, neck,
greater trochanter, and part of the shaft, and is off-center between the middle and
posterior thirds. The uniform sections are compact bone, while the meshed regions
are trabecular bone. (From [233] (for (a), (c)) and [234] (for (b)))

encircled by a thin layer of compact bone, while in flat bones it is sandwiched
by it.

4.1.2 Ligaments and Tendons

Ligaments and tendons are dense connective tissue with a dense network
of fibers, with few cells and little ground substance. Ligaments are tough
bands of fibrous connective tissue. They are 55–65% water and 35–45% dry
matter, which consists of 70–80% collagen (mostly type I), 10–15% elastin,
and a small amount, 1–3%, of proteoglycans. The collagen (Fig. 4.4) gives
ligaments their high tensile strength. The collagen helices assemble into
microfibrils (4 nm in diameter), which assemble into subfrils (20 nm in diame-
ter), which assemble into fibrils (50–500 nm in diameter), and then into colla-
gen fibers (100–300 μm in diameter) with fibroblast cells that synthesize the
collagen.
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Fig. 4.4. Structure of collagen in fibers and bundles in tendons and ligaments, with
ordered arrangement of collagen molecules in the microstructure. See Fig. 4.5 for
more details about structure. (From [231])

The dry weight of tendons is 75–85% collagen (95% type I and 5% type
III or V), < 3% elastin, and 1–2% proteoglycans. The structural hierarchy
(Fig. 4.5) is like that of ligaments except they are arranged into packets called
fascicles. Also, the bundles of collagen fibers are more parallel in tendons than
in ligaments, as seen in Fig. 4.6.

In contrast, the dry matter of skin is 56–70% collagen (mostly type I),
5–10% elastin, and 2–4% proteoglycans.

In each of these soft materials, the collagen gives it tensile strength, while
the elastin gives it elasticity, which is more important in ligaments than in
tendons.

4.1.3 Cartilage

There are three types of cartilage: Hyaline (high’-uh-lun) cartilage, the most
common in adults, is found in the ventral ends of ribs and covering the joint
surfaces of bones. Elastic cartilage is more flexible, and is found in the external
ear and eustachian tubes. Fibrocartilage occurs in the intervertebral disks.

Fig. 4.5. Hierarchical structure of tendons. (Based on [180, 205])
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Fig. 4.6. Collagen fibers are (a) parallel in a tendon and (b) nearly parallel in a
ligament. (Based on [222])

Cartilage that lines the bones in synovial joints (1–6 mm thick) is also called
articular cartilage; it serves as a self-renewing, well-lubricated load bearing
surface with wear prevention. It is most often hyaline cartilage, except in
joints, such as the knee (the menisci), which contain fibrocartilaginous disks.

Articular cartilage is not meant to serve as a shock absorber to cushion
forces or slow joint rotation [210], because it is so thin that it can absorb
very little energy even though it is less stiff than cortical bone. It absorbs
much less energy than muscles resisting joint rotation (eccentric contractions,
Chap. 5) or the bones on either side of the joint (see Problem 4.12). About
30% of cartilage by mass is a solid matrix of collagen (40–70% of the dry
mass, ∼80% type II collagen and several other types: V, VI, IX, X, and XI)
and proteoglycan (15–40% of the dry mass) and 70% is water and inorganic
salts (see the structure in Fig. 4.7). Chondrocyte cells that manufacture the
cartilage organic material comprise less than 5–10% of the volume. Cartilage
is viscoelastic because it is a very flexible, porous material (50 Å voids) with
voids that are filled with water. The water dissipates energy as it flows through
the voids under compression.

In tension the collagen of the solid phase carries most of the load, while
in compression both the solid and liquid phases carry the load. The viscoelas-
ticity of cartilage is controlled by the exudation of fluid through the pores in
this biphasic material.

Fig. 4.7. Structure of articular cartilage, showing its inhomogeneity and solid–fluid
constitution. The inset shows the local molecular organization of cartilage. (From
[203])
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4.2 Elastic Properties

4.2.1 Basic Stress–Strain Relationships

In the harmonic regime, elastic materials are modeled as perfect springs obey-
ing Hooke’s Law. This is usually expressed as

F = −kx, (4.1)

where F is the force felt by an object attached to a spring, with spring constant
k, when the spring is extended a distance x. When the spring is extended a
distance x, say to the right, the attached body feels a restoring force kx to
the left (Fig. 4.8).

In examining such Hookean materials we will need to alter this viewpoint a
bit. There is a length of spring or material for which there is no restoring force.
We will call this equilibrium length x0. In (4.1), x is implicitly the deviation
from this equilibrium length, the deformation. For reasons that will become
clear soon, we prefer to refer x to this equilibrium length and so

F = −k(x − x0). (4.2)

Also, in studying problems with springs, we usually examine the effect of
the spring forces on other masses. Here we are concerned with the effect of
other forces on materials modeled as springs. Therefore we consider the force
applied to the spring-like object, Fapplied, which is the negative of the above

Fig. 4.8. Spring model of elastic materials, (a) relaxed, (b) under tension, (c) under
compression. The text calls the material length L instead of x
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Fig. 4.9. Cylinder of relaxed length L0 (a) under tension and (b) under compression

force F felt by the object attached to the spring, and is

Fapplied = k(x − x0) = k(L − L0). (4.3)

We have also changed notation so that length of the material is L and its
relaxed length is L0.

When L = L0 the material is relaxed. When there is a positive Fapplied

(Figs. 4.8b and 4.9a), the material is under tension and L > L0. When there
is a negative Fapplied (Figs. 4.8c and 4.9b), the material is under compression
and L < L0.

Equation (4.3) represents the extensive properties of the material. While
this is very important, we first want to examine the intensive properties of
the material. If the object has a cross-sectional area A and length L, we can
rewrite (4.3) as

Fapplied

A
=

kL0

A

L − L0

L0
. (4.4)

Each fraction represents an intensive parameter. The applied force/area,
Fapplied/A, is called the stress σ. The fractional increase in length, (L−L0)/L0,
is called the strain (or the engineering strain) ε. (L − L0 is the elongation.)
The normalized spring constant, kL0/A, is called either Young’s modulus or
the elastic modulus and is represented by Y (or E). This modulus is a funda-
mental intensive property of the material. Consequently,

σ = Y ε. (4.5)

This linear constitutive relationship describing this material is valid only for
small strains. It is usually valid for |ε| � 1, but the range of validity really
depends on the type of material. We have ignored any change in cross-sectional
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Fig. 4.10. Schematic of various loading modes. (Based on [222])

area. There is usually a change in A with a change in L (see below), which
we will usually ignore here.

As seen in Fig. 4.8, tensile stress means σ > 0 and leads to a tensile strain
ε > 0. A compressive stress means σ < 0 and leads to a compressive strain
ε < 0. For such elastic materials in the proportional (or harmonic or Hookean)
regime the stress–strain relation is linear, as is seen in Fig. 4.1. The units of
stress σ and modulus Y are both those of force/area, such as N/m2 (=1 Pa)
or the more convenient unit of N/mm2 (=1 MPa); we will usually use these
last two equivalent units. Strain, ε, is unitless. Remember from Table 2.6 that
1 N/mm2 = 106 N/m2 = 1 MPa = 145 psi.

4.2.2 Other Stress–Strain Relations

In addition to these linear relations between stress and strain, there are other
types of deformations (Fig. 4.10). Figure 4.11a shows the geometry of shear
deformations with force F and shear stress τ = F/A. (τ is not torque here.)
The response is the shear strain γ = tan θ, and for small deviations γ ≈ θ.
The shear stress and strain are related by

τ = Gγ, (4.6)

Fig. 4.11. Shear and torsion forces
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where G is the shear modulus. This shear deformation is related to the torsion
of the top of a cylinder, with the bottom fixed, as seen in Fig. 4.11b, where
the torsion T is related to the deformation angle φ.

Let us consider the deformation of a cylinder with the long axis along the
z-axis. We have already called the axial strain response in the z direction
ε, but because stresses lead to strain deformations in different directions, we
could be more specific (for the moment) and call it εz. We assumed earlier
that the cross-sectional area of such a cylinder does not change under tension
or compression, but it does to a certain extent. We will call the fractional
strains in these lateral x and y directions – the lateral or transverse strains –
εx and εy, respectively. (In more advanced discussions, these three x, y, and
z components of strain are really referred to as εxx, εyy, and εzz.) For the
linear deformation described above, symmetry implies that εx = εy. For a
given material there is a relationship between these longitudinal and lateral
strains provided by Poisson’s ratio

υ = −εx

εz
. (4.7)

For isotropic materials, the range of possible υ is −1 < υ < 0.5, although
materials with negative υ are not found in nature. For anisotropic materials,
such as many materials in the body, υ can exceed 0.5. For metals and many
engineering materials υ = 0.25–0.35, but it tends to be higher for biological
materials. For bone, υ ranges from 0.21 to 0.62 [212]. For tissues like those in
the brain, υ ∼ 0.5.

After this deformation the new volume is the old one × (1+εx)(1+εy)(1+
εz) ≈ 1+ εx + εy + εz, when each strain � 1 (Fig. 4.12). Using Poisson’s ratio,
the new volume is 1 + (1 − 2υ)εz × the old volume and the fractional change
in the volume is (1−2υ)εz. For example, with υ = 0.25 this fractional volume
change is 0.5εz. If υ = 0.5, there is no volume change even with the change in

Fig. 4.12. Changes in lateral dimensions during (b) tension and (c) compression,
as determined by Poisson’s ratio, compared to those with no forces applied in (a)
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shape. Similarly, after deformation the new cross-sectional area is the old one
× (1 + εx)(1 + εy) ≈ 1 + εx + εy = 1− 2υεz, and the fractional change in area
is −2υεz.

Like Y and G, υ is an intensive property of the material. For isotropic
materials they are interrelated by

Y = 2G(1 + υ). (4.8)

For example, if υ = 0.25, the shear and elastic moduli are related by G = 0.4Y .

4.2.3 Bone Shortening

How much do our bones shorten under compression? We will assume that
the relation σ = Y ε is valid until the stress reaches its maximum just be-
fore fracture occurs, which is called the ultimate compressive stress, UCS =
170 MPa for compact bone; this is a good approximation for this calculation.
Then σ = Y (L − L0)/L0 and the bone shortens by

ΔL = L − L0 =
σL0

Y
(4.9)

and fractionally by

ε =
ΔL

L0
=

σ

Y
. (4.10)

How much does the femur shorten when you stand on one foot? With
no stress the femur is L0 = 0.5 m = 500 mm long. The body weight of 700 N
(70 kg) is distributed over the femur cross-sectional area A = 370 mm2, so σ =
700 N/370 mm2 = 2.1 N/mm2 = 2.1 MPa. The femur shortens by only ΔL =
(σ/Y )L0 = ((2.1 N/mm2)/(179 × 102 N/mm2 )) 500 mm = 0.06 mm. This cor-
responds to a strain of ΔL/L0 = σ/Y = (2.1 N/mm2)/(179 × 102 N/mm2) =
0.01%. In units of microstrain (10−6 mm/mm), this is 100 microstrain (or
100με).

The maximum stress in compression is the UCS. What is the strain at
the UCS (assuming linear behavior)? At the breaking limit the bone short-
ens by ΔL = (UCS/Y )L0, which is a fractional shortening of ΔL/L0 =
UCS/Y. The femur shortens by ((170 N/mm2)/(179 × 102 N/mm2))
500 mm = (0.95%) 500 mm = 5 mm or 0.5 cm. This is a fractional decrease
of 0.95% ∼ 1%, and a microstrain of 10,000με.

4.2.4 Energy Storage in Elastic Media

There are several essentially equivalent ways to determine the potential en-
ergy stored in elastic materials. From (4.1), in a spring the potential energy
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(PE) is

PE = −
∫ x

0

F dx′ =
∫ x

0

kx′dx′ =
1
2
kx2. (4.11)

Changing to coordinates relative to the equilibrium position and changing the
length to L gives

PE =
1
2
k(L − L0)2. (4.12)

Because Y = kL0/A, k = Y A/L0, and ε = (L−L0)/L0, we see that L−L0 =
εL0. Therefore

PE =
1
2

Y A

L0
(εL0)2 =

1
2
(Y ε2)(AL0) =

1
2
Y ε2V, (4.13)

where the volume V = AL0. Because σ = Y ε, this can be expressed as

PE =
1
2
σεV =

1
2
Y ε2V =

1
2

σ2

Y
V. (4.14)

The potential energy per unit volume PE/V is an intensive quantity.
This is equivalent to integrating

W =
∫ L

L0

F dL′ =
1
2
Fapplied(L − L0) =

1
2
k(L − L0)2 (4.15)

using Fapplied = k(L − L0) or

W =
∫ L

L0

F dL′ =
∫ ε

0

(σA) d(ε′L0) = V

∫ ε

0

σ dε′ =
1
2
σεV, (4.16)

where the last integral equals the area under the curve in Fig. 4.13 and can
be obtained by replacing σ by Y ε and integrating to get Y (ε2/2) = σε/2.

Fig. 4.13. Potential energy from area under (a) force–length and (b) stress–strain
curves for a harmonic system
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Designing Optimal Energy Storage Media

How can we design the best elastic storage medium for the body, such as would
be desired for tendons? We would want (1) to store the maximum amount of
potential energy for a given applied force Fapplied and (2) the medium to
withstand as large a Fapplied as possible.

(1) The stored energy is

PE =
1
2

σ2

Y
V =

(
(Fapplied/A)2

2Y

)
AL0 =

F 2
applied

2Y

L0

A
, (4.17)

so we would want to maximize the length L0, minimize the cross-sectional
area A, and minimize Y .

(2) However, to withstand a large Fapplied we need to keep σ = Fapplied/A
below the threshold for damage (which for tension is called the ultimate tensile
stress, UTS), so we have a limit for how small we could make A to keep
σ � UTS. Also, there is a limit to how much the element can be lengthened
(L − L0) for a large Fapplied, given its motion requirements, such as that for
a tendon. Because L−L0 = εL0, there are limits on how large both ε and L0

can be. This sets a limit on the length L0 and, because ε = σ/Y , a limit on
how small Y can be.

There is a tradeoff in the optimal values of L0, A, and Y set by these two
criteria. We want long and thin tendons with a small Y , but there are limits.
In this design problem we also have to recognize that the medium, such as
a tendon, is not perfectly harmonic or even elastic; all materials are really
viscoelastic.

Energy Storage in Tendons and Long Bones

Let us return to the example of running in Fig. 3.33 [178]. The force on the
Achilles tendon is 4,700 N. With a cross-sectional area of 89 mm2, we see that
σ = 4,500 N/89 mm2 = 53 N/mm2 = 53 MPa. Given the maximum stress for
tendons, the UTS, is ∼100 N/mm2 = 100 MPa, during running the stress in
these tendons is not far from the damage threshold. It is not surprising that
the Achilles tendons of athletes occasionally snap, either partially or totally.

Using the stress–strain relation shown in Fig. 4.14, this stress leads to a
strain of 0.06 = 6%. The length of the Achilles tendon is L0 = 250 mm, so
this strain corresponds to the tendon lengthening by 15 mm and

PE =
1
2
σεV =

1
2
σεAL0 =

1
2
(53N/mm2)(0.06)(89mm2)(250mm) (4.18)

= 35, 000N-mm = 35N-m = 35 J. (4.19)

This is exactly the amount of energy we stated was being stored in the Achilles
tendon during every step of a run.

How much energy is stored in the bones during this step? Let us ex-
amine the largest bone, the femur. We will use L0 = 0.5 m = 500 mm and
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Fig. 4.14. Stress–strain (or force–length) for a human big toe flexor tendon, using
the instrument on the left, with a 2-s-long stretch and recoil cycle. (From [178].
Copyright 1992 Columbia University Press. Reprinted with the permission of the
Press)

A=330 mm2, and so V =165,000 mm3. Also Y =17,900 MPa = 17,900 N/mm2.
The upward normal force in Fig. 3.33 is 6,400 N, which we will assume is trans-
mitted all the way to the femur. The stress is 6,400 N/330 mm2 = 19.4 N/mm2

and

PE =
1
2

σ2

Y
V =

1
2

(19.4N/mm2)2

17,900N/mm2 165,000mm3 (4.20)

= 1,730N-mm = 1.73N-m ∼ 2 J. (4.21)

If the same is stored in the tibia and fibula, then at most ∼3–4 J is stored
in these long bones, which is a very small fraction of the 100 J kinetic energy
lost per step.

4.3 Time-Independent Deviations in Hookean Materials

The Hookean (harmonic, linear) stress–strain relation is valid in tension and
compression up to a limiting stress, corresponding to a strain � 1 that varies
for different materials. Figure 4.15 shows a more realistic stress–strain relation.
There is elastic Hookean behavior up to the point P, the proportional limit.
The slope up to this stress is constant, the Young’s modulus Y . The higher the
Y , the stiffer or the less compliant the material (Fig. 4.16). At higher stresses,
the stress–strain relation is nonlinear. Up to the elastic limit, denoted by EL,
the object returns to its initial length when the stress is removed and there
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Fig. 4.15. General stress–strain relationship. The engineering stress is plotted here,
which is the force divided by the initial area; it decreases after the UTS. The true
stress, which is the force divided by the actual area increases after the UTS, due
to the necking of the material. The inset shows the offset method to determine the
yield point

Fig. 4.16. Stress–strain curves of different types of materials with different levels
of strength, ductility, and toughness. The engineering stress is plotted here. Strong
materials fracture at very large ultimate tensile (or compressive) stress (UTS or
UCS) (in Pa). Brittle materials have a small ultimate percent elongation (UPE)
(unitless) and ductile materials have a large UPE. Tough materials can absorb much
energy (when work is done on them) before they fracture, and so have a large work of
fracture WF (in J/m2). Stiffer or less elastic materials have a larger Young’s modulus
Y (in Pa)
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is no permanent deformation. In the linear and nonlinear elastic regimes, the
stretched bonds relax totally and there is no rearrangement of atoms after the
load is released.

For stresses beyond the elastic limit, there is permanent or plastic defor-
mation and the length and shape of the object are different after the stress
is removed. The yield point or limit, denoted by YP, is at a stress somewhat
higher than the elastic limit; above it much elongation can occur without much
increase in the load. (Some do not distinguish between the elastic limit and
the yield point.) Because it is often difficult to determine, the yield point is
usually estimated by the intersection of the stress–strain curve with a line
parallel to the linear part of the stress–strain curve, but with an intercept set
at a strain of 0.2% (or 0.002). This offset method is illustrated in the inset in
Fig. 4.15. The yield point occurs at the yield stress (or strength), YS.

For tension, the material remains intact for larger stresses until the ulti-
mate tensile stress (UTS), which is also called the tensile strength (TS) or,
less commonly, the tensile breaking strength (TBS). The larger the breaking
strength, the stronger is the material. Application of this stress leads to frac-
ture at point F, which occurs at a strain called the ultimate strain or the
ultimate percent elongation (UPE).

In Figs. 4.15 and 4.16, the actual type of stress being plotted is called the
engineering stress. It is the force divided by the initial area, which is the area
before any force is applied. Past the UTS, the engineering stress decreases
as the material becomes narrower as it is pulled apart and the actual area
becomes progressively smaller than this initial area, which is called “necking.”
(This narrowing is much, much more than that expected from the lateral
strain, from Poisson’s ratio.) The true stress, which is the force divided by the
actual area, increases after the UTS, due to this necking.

Figure 4.17 shows that these stress–strain relations look qualitatively dif-
ferent for ceramics, metals, and elastomers because of the very different
microscopic structures of these types of materials. Ceramics have a linear
stress–strain relation with large slope Y . The fracture point appears only a
little into the nonlinear elastic regime, and for smaller values of strain <0.1. To

Fig. 4.17. Stress–strain curves for different types of materials under tension
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Fig. 4.18. Stress–strain curves under tension for wet limb bones of persons between
20 and 39 years of age. The closed circles are the fracture points. (From [182], based
on [236])

first order, bone (Fig. 4.18) is like a ceramic. (It is actually more complicated
than that, as we will see.) Metals have a smaller Y , a larger nonelastic and
plastic regime, and a larger UPE ∼ 50 (in %). Elastomers (rubber, polymers)
distort greatly even with small stresses because in this regime long, tangled
chain molecules are straightened out at low stress in this toe region (the region
of positive curvature at low strain, as in Fig. 4.24). The stress–strain curve is
not linear. We will examine this again later. It takes much larger stresses
to increase strain further after all of the chains have been straightened, be-
cause now bonds must be stretched. These materials have a very large UPE,
typically >1. Blood vessels are elastomers.

There are striking differences in the plastic deformation regimes of the
curves in Fig. 4.17. Ductile materials, such as modeling clay, chewing gum,
plastic, and most metals, have an extensive plastic deformation phase (metals,
elastomers, Fig. 4.17). Nonductile or brittle materials, such as glass, ceramics
(stone, brick, concrete, pottery), cast iron, bone, and teeth, have a limited
or essentially no plastic phase (ceramics, Fig. 4.17). They break easily when
they are dropped; cracks easily propagate in them. The bonding in ductile
materials allows layers of atoms to slip or shear past each other, as in the
bonding of metals. When thin rods of ductile materials are pulled at either
end, they narrow in the center, forming a neck. In nonductile materials the
covalent bonding is directional and does not permit this type of distortion.
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Table 4.1. Mechanical properties of common materials. (Using data from [186,
201])

material Y UCS UTS
(×103 MPa = GPa) (MPa) (MPa)

hard steel 207 552 827
rubber 0.0010 – 2.1
nylon 66 1.2–2.9 – 59–83
gold 78 – –
tungsten 411 – –
granite 51.7 145 4.8
concrete 16.5 21 2.1
oak 10.0 59 117
fused quartz 73 – 69
diamond 965 – –
porcelain – 552 55
alumina (85% dense) 220 1,620 125
alumina (99.8% dense) 385 2,760 205
compact bone 17.9 170 120
trabecular bone 0.076 2.2 –

Typically, brittle materials have a small UPE and ductile materials have a
large UPE.

Figures 4.15, 4.17, and 4.18 show the effects of tension. Under compres-
sion ε < 0, and the stress–strain slope is the same Y for many conven-
tional materials. For biological materials, like cartilage, they can be very
different because of their complex nature. In cartilage, tension is resisted by
the solid phase, while compression is resisted by the solid and liquid com-
ponents. For ligaments and tendons, there is resistance to tension, but not
to compression. For larger stresses the dependence is different even for many
common nonbiological materials, and fracture occurs at the ultimate com-
pressive stress (UCS), also called the compressive strength (CS) or the com-
pressive breaking strength (CBS), which is different from the UTS in general
(Table 4.1).

Table 4.1 gives the Y , UCS, and UTS for several types of materials. Note
the very wide range of Y . Some ceramic-type materials, such as granite,
porcelain, and concrete, can take much larger stresses in compression than
in tension (UCS � UTS). In others, UCS < UTS. The two types of bones
listed have a different porosity and very different properties. Compact bone,
also known as cortical, or dense bone, has a large Young’s modulus that is
comparable to that of other strong materials (Fig. 4.18). It can withstand
more stress in compression than in tension, but unlike the ceramics it has a
fairly large UTS. Trabecular bone, also known as spongy or cancellous bone,
is more porous and has a very small Y , almost as small as that of rubber
(Fig. 4.19a).
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Fig. 4.19. Mechanical properties of bone as a function of apparent density. (a)
Stress–strain of different densities of bones under compression. (b) UCS of trabecular
bone vs. bone density. (Based on (a) [197, 206], and (b) [180, 206])

Typical stress–strain curves for structural materials in the body under
tension are shown in Fig. 4.20. Yamada [236] has published extensive mea-
surements of stress–strain relations for many components of the human
body. Table 4.2 lists several elastic constants determined from these data.
Figure 4.21 shows one series of these stress–strain relations, for different sec-
tions of the small intestine. Note that these curves are very nonlinear for a
given stress, as are many soft human tissues; this is discussed more below.
Furthermore, the tissue is very anisotropic. It stretches much more easily in
the transverse direction than the longitudinal direction [183, 200, 216].

To first order, bones, teeth, and nails, all hard materials, have similar
stress–strain curves that are ceramic-like. Tendons, cartilage, resting muscle,
skin, arteries, and intestines all have more elastomer-like properties because
they have much more collagen; they are really non-Hookean materials. This is

Fig. 4.20. Typical stress–strain of cortical and trabecular bone, cartilage, ligaments,
and tendons under tensile loading. For some structural materials, the stress–strain
relations are very different for different types of the material, such as for cartilage.
(Based on [180, 236])
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Table 4.2. Elastic properties of organs under tension (human, unless otherwise
specified). (Determined using [236])

organ UTS UPE Y
(MPa) (%) (MPa)

hair (head) 197 40 12,000
dentin (wet teeth) (compression) 162 4.2 6,000
femoral compact bone (compression) 162 1.8 10,600
femoral compact bone 109 1.4 10,600
tendons (calcaneal =Achilles) 54 9.0 250
nail 18 14 160
nerves 13 18 10
intervertebral disc (compression) 11 32 6.0
skin (face) 3.8 58 0.3
vertebrae 3.5 0.8 410
elastic cartilage (external ear) 3.1 26 4.5
hyaline cartilage (synovial joints) 2.9 18 24
intervertebral disc 2.8 57 2.0
cardiac valves 2.5 15 1.0
ligaments (cattle) 2.1 130 0.5
gall bladder (rabbit) 2.1 53 0.05
umbilical cord 1.5 59 0.7
vena cava (longitudinal direction) 1.5 100 0.04
wet spongy bone (vertebrae) 1.2 0.6 200
coronary arteries 1.1 64 0.1
large intestine (longitudinal direction) 0.69 117 0.02
esophagus (longitudinal direction) 0.60 73 0.03
stomach (longitudinal direction) 0.56 93 0.015
small intestine (longitudinal direction) 0.56 43 0.2
skeletal muscle (rectus abdominis) 0.11 61 0.02
cardiac muscle 0.11 64 0.08
liver (rabbit) 0.024 46 0.02

The Young’s modulus is given in the low strain limit.

also seen in Fig. 4.20. Each of these body materials has viscoelastic properties,
as we will address later.

Compact bone in different long bones in the human body has slightly dif-
ferent properties (Table 4.6). These properties can be anisotropic (Fig. 4.22,
Table 4.3), meaning that the properties are different along different direc-
tions. For example, this is true of bone and the esophagus, which are com-
posed of very different materials. Many biological materials are anisotropic,
as are many common materials, such as wood due it is grain structure. Some
materials are fairly isotropic. Several elastic properties vary with age. These
properties also change with density, which is a main reason why people with
osteoporosis often fracture bones during a fall. Figure 4.19b shows the UCS
decreases roughly as the square of bone density. (These changes with age
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Fig. 4.21. Stress–strain curves for material in different sections of the small intestine
of persons from 20 to 29 years of age, under tension in the longitudinal and transverse
directions. The closed circles are the fracture points. (Based on [236])

are, in part, linked to such changes in density.) Figure 4.23 shows that the
mechanical properties of soft tissues, in this case the anterior cruciate liga-
ment (ACL) in the knee, also depend on age, as well as direction (also see
Fig. 4.21.)

Fig. 4.22. Anisotropic properties of cortical bone specimens from a human femoral
shaft tested under tension. Each curve ends at its point of failure. (Based on [196,
197])
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Table 4.3. Mechanical properties of human cortical bone. (Using data from [210])

Young’s modulus, Y (GPa)
longitudinal 17.4
transverse 9.6
bending 14.8

shear modulus (GPa) 3.51

Poisson’s ratio 0.39

yield stress (MPa)
tensile – longitudinal 115
compressive – longitudinal 182
compressive – transverse 121
shear 54

ultimate stress (MPa)
tensile – longitudinal 133
tensile – transverse 51
compressive – longitudinal 195
compressive – transverse 133
shear 69
bending 208.6

ultimate strain
tensile – longitudinal 0.0293
tensile – transverse 0.0324
compressive – longitudinal 0.0220
compressive – transverse 0.0462
shear 0.33
bending (0.0178 bovine)

We have seen that materials in the body are sometimes composed of dif-
ferent structures (i.e., they are composite materials), are anisotropic, and are
sometimes layered. Moreover, a given material in a given organ or part of the
body can also be very nonuniform. One example is seen in our teeth. Teeth

Fig. 4.23. Age variation of the ultimate load (UTS) of human anterior cruciate
ligament (ACL) as a function of age and orientation. (Based on [180, 235])
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are composed of pulp, which is mostly surrounded by dentin, which itself is
overlayed by enamel. The enamel is very stiff and hard, and has very nonuni-
form properties [209]. Near the surface of the tooth (the occlusal surface), of
say the second molar, the Young’s modulus approaches 120 GPa, and it de-
creases to approximately 55 GPa near the enamel–dentine surface. It is also
somewhat larger on the lingual (tongue) side than the buccal (cheek) side.

What is the strongest part of the body? If we were to define strength as the
largest UTS, then of the body components in Table 4.2 it is not bone and not
dentin in the teeth, but hair. (Of course, if we were to include tooth enamel,
which is not in this table, it would beat out hair for this distinction. It is the
hardest biological material in the body.)

4.3.1 Non-Hookean Materials

Figure 4.24 shows that many body materials cannot be modeled as Hookean
springs, even for small stresses. This is typically true for many collagenous
tissues, such as tendons, skin, mesentery (which are the folds attaching the
intestines to the dorsal abdomen), the sclera, cartilage, and resting skeletal
muscle. Experimentally, it is found for these materials that for larger strains

dσ

dε
= α(σ + β), (4.22)

which is very different for materials such as bone for which σ = Y ε, and so
dσ/dε = Y and is independent of stress.

Fig. 4.24. Force–deformation curve for an ACL (ligament), showing regimes of
clinical test loading, loads during physiological activity (toe and linear regions), and
loads leading to microfailure and ultimate rupture and complete failure. (Based on
[222, 224])
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Equation (4.22) can be integrated after bringing the σ and ε terms to
opposite sides of the equation

dσ

σ + β
= α dε (4.23)

ln(σ + β) = αε + γ, (4.24)

where γ is a constant. Exponentiating both sides gives

σ + β = exp(αε) exp(γ) and σ = μ exp(αε) − β, (4.25)

where μ = exp(γ). Because σ(ε = 0) = 0, we see that β = μ and so

σ = μ(exp(αε) − 1). (4.26)

This is illustrated in the passive curves in Fig. 5.25. (See Appendix C for more
information about this method of solution.)

Sometimes the Lagrangian strain λ = L/L0 = ε + 1 is defined, where L is
the length and L0 is the length with no stress. Equation (4.26) becomes

σ = μ′ exp(αλ) − μ = μ′ exp(αL/L0) − μ, (4.27)

with μ′ = μ exp(−α).
At larger strains this exponential form may not work well. In the neo-

Hookean regime, finite strain, E = 1
2 (λ2 − 1), is defined, which for small

deformations approaches the small-strain approximation, ε = λ−1. Soft, neo-
Hookean materials tend to follow a linear relationship between stress and λ2

(or E), and not a linear or exponential relationship between stress and λ (or
ε). This neo-Hookean regime and other more general ways to define strain are
described in Problems 4.20–4.22.

Such non-Hookean stress–strain curves are typical for materials with fibers.
As mentioned earlier, there are large strains for small stresses where the tan-
gled fibers are being aligned (in this toe regime), but much larger stresses are
required to achieve much higher strains where the already-aligned fibers are
being stretched (Fig. 4.25). Try this by stretching yarn. The fibers begin to
tear at the UTS, corresponding to the load seen in Fig. 4.24.

We will now return to the deformation of Hookean materials, like bone. We
will revisit the properties of these non-Hookean materials in the discussions
of viscoelasticity and muscles.

4.4 Static Equilibrium of Deformable Bodies
(Advanced Topic)

We now examine the deformation of bones under the action of forces in more
detail. We have seen how they can be pulled (tension) and squeezed (compres-
sion); now we will see how they can bend. This analysis will help us understand
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Fig. 4.25. Scanning electron micrographs (10, 000×) of (a) unloaded and (b) loaded
collagen fibers from human knee ligaments, showing them straightening out under
the tensile load. (From [207]. Used with permission)

how bones fracture when they are bent, such as during slipping and skiing ac-
cidents. We will also learn why long bones, like the femur, are strong even
though they are hollow. As an added benefit, we will derive a scaling law that
will help us understand some aspects of metabolism.

Physics classes usually describe the motion of point objects or more ex-
tended objects that never deform. However, no object is a point and objects
do deform. Such extended objects are treated in great detail in mechanical
and civil engineering curricula for obvious reasons. We will examine how such
finite bodies bend to understand bone fracturing better, and will follow the
treatment of [182]. The derivations in this section can be treated as a more
advanced topic. They can be skipped and the final results can be used.

Let us consider the beam of length L shown in Fig. 4.26. It has a constant
cross-section throughout its length; the cross-section need not be rectangular
or circular. It is supported at both ends and a force F is applied to the center
at the top as shown. We expect the beam to bend. For beams composed of
most materials, we expect it to bend to a shape with a top surface that is
somewhat cylindrical, and have a circular arc cross-section in the plane of
the paper. If this were a rubber band, we would expect a more triangular
deformation. Because we want to learn about bones, we anticipate some small
degree of bending.

In this two-dimensional problem, in equilibrium
∑

Fx = 0,
∑

Fy = 0, and∑
τz = 0 (2.8) for the entire beam. There are no forces in the x direction. We

Fig. 4.26. Force diagram of a rectangular beam with a force applied to the middle.
(From [182])
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Fig. 4.27. External forces on a section of a beam. (From [182])

are assuming that in the equilibrium bent position, the amount of bending is
small, so nothing interesting is happening in the x direction. The downward
force F (which is the negative y direction) that is applied to the center of the
beam is countered by the forces F/2 at the two supports, as is shown. The
total torques on this beam are zero about any axis.

So far, this is how we treated the statics of rigid bodies in Chap. 2. Now
let us examine the static equilibrium for only a part of the beam. As seen
in Fig. 4.27, we consider the right side of the beam, from the right end to a
distance x to the left of this end. The three equilibrium conditions also apply
to this section, as well as to any other section. We can again ignore the x
direction because there are no forces in that direction. For this example, with
x < L/2 for now, there is apparently only one force acting on this piece of
the beam, the upward force F/2 at the right support. This force also causes
a torque and so

∑
Fy =

1
2
F and

∑
τz =

1
2
xF. (4.28)

We have chosen the torque axis normal to the page at the left end of this
portion of the beam (at a distance x from the right end). Because this portion
of the beam is static, both terms must sum to zero. Something is wrong.
What? We have excluded the force on this section from the other part of the
beam. These internal forces must be −F/2 to balance the effect of the external
force F/2 (Fig. 4.28). This “internal vertical force,” often called the “internal
shear force” or just the “shear force,” supplied at the border with the other
section is similar to the “normal” or reaction force felt by an isolated part
of the body, as that on the leg from the hip. There must also be an internal
torque applied by the other part of the beam equal to −xF/2. This “internal

Fig. 4.28. Internal (left) and external (right) forces on an isolated section of the
lined portion of the beam in Fig. 4.27. This is a free-body diagram of this portion.
(From [182])
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Fig. 4.29. Internal vertical force for a right-adjusted section in the beam. (From
[182])

torque” is also called the “internal bending moment” or just the “bending
moment.”

For longer sections, with L/2 < x < L, the section feels the upward force
at the right support F/2 and also the applied force −F at the center. Both
lead to torques. Excluding internal forces and torques

∑
Fy = −1

2
F and

∑
τz =

1
2
(L − x)F (4.29)

and so the internal force is F/2 and the internal torque is −(L − x)F/2. The
internal vertical force and torque are plotted vs. x in Figs. 4.29 and 4.30. When
we include these internal forces and torques, each portion of the beam is in
static equilibrium. For now assume that x < L/2; extension to L/2 < x < L
is straightforward.

How do the internal torques arise? With the applied force, the beam de-
forms to that in Fig. 4.31 (in which the deformation is greatly exaggerated
for a long bone). Clearly, the top portion is compressed and has a length <L,
while the bottom portion is under tension and has a length >L. (This should
become clearer if you take a spring or SlinkyTM and bend it into a circular
arc.) Somewhere in the middle (in the y direction) there is no compression
or tension, so the length in this neutral axis is L. (The neutral axis is in the
center (in the y direction) for symmetrical cross-sections.) For the top to be
compressed there must be an internal force at the top in the +x direction
pushing into the section from the other portion (Fig. 4.32). Similarly, for the

Fig. 4.30. Internal torque for a right-adjusted section in the beam. (From [182])
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Fig. 4.31. Bending of a loaded beam. (From [182])

bottom to be under tension there must be an internal force at the bottom in
the −x direction, pulling into the section from the other portion. As shown in
this figure, there is a smooth variation of this force from the top (called point
A) to the bottom (point C), with it being zero at the neutral axis (point O).
Clearly, the sum of these internal forces in the x direction must be zero.

Each of these internal forces causes a torque in the z direction, −FIyI , and
each of these leads to a clockwise, or negative, torque about point O (Fig. 4.33).
With forces to the right called positive, clearly FA > 0 and FC < 0, and with
yA > 0 (measured upward from the neutral axis) and yC < 0, we find that
the torque contributions from points A and C, −FAyA and −FCyC, are equal
in symmetrical situations. We can sum all of these internal torques to arrive
at τinternal, and then

∑
τz = τinternal +

1
2
Fx = 0 (4.30)

for static equilibrium.
What is the total internal torque? Consider a beam with arbitrary, but

constant, cross-section, as shown in Fig. 4.34. The distance up from the neutral
axis (with point O’) is y, and there is a cross-section element with area dA
at this position; dA = w(y)dy, where w(y) is the width at y. There is a force
acting on this area element at height y, which is

dF (y) = σ(y)dA(y). (4.31)

For each element there is a torque

−y dF = −yσ(y)dA(y). (4.32)

Fig. 4.32. Internal stresses in a bent beam. (From [182])



4.4 Static Equilibrium of Deformable Bodies 223

Fig. 4.33. Torques in a bent beam. (From [182])

So the total internal torque is

τinternal = −
∫ yA

yB

yσ(y)dA(y) = −1
2
Fx, (4.33)

where yA = L′ and yB = −L in Fig. 4.34. (The dA element includes the dy
term.)

What is the distribution of σ? To first order, the beam deforms to a
circular arc (Figs. 4.35 and 4.36) of radius R and angle α. At the midline
neutral axis, where y = 0, we see that L = Rα for α � 1 and so α = L/R. If
the beam has a thickness in the y direction of d and the beam is symmetrical,
then the top of the beam is (R − d/2)α long and the bottom is (R + d/2)α
long. In general,

L(y) = (R − y)α = (R − y)
L

R
=

(
1 − y

R

)
L, (4.34)

so the elongation is L(y) − L = −(y/R)L and the strain is

ε(y) = − y

R
, (4.35)

where 1/R is the curvature.

Fig. 4.34. Stress in a bent beam vs. position. An area element (for y < 0) is shown
as a shaded region, with area dA = w(y)dy for width w(y). (From [182])
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Fig. 4.35. Geometry of a bent beam. (From [182])

In the harmonic region, with σ = Y ε, the stress would be expected to be
−Y (y/R). Given the direction of the forces shown in Fig. 4.34, the stress is
defined to be positive for positive y, so

σ(y) = Y
y

R
. (4.36)

4.4.1 Bending of a Beam (or Bone)

The total internal torque is

τinternal = −
∫ yA

yB

y
(
Y

y

R

)
dA(y) = −Y

R

∫ yA

yB

y2dA(y) = −1
2
Fx, (4.37)

where yA = d/2 and yB = −d/2 for the symmetrical situation.
The area moment of inertia is defined as

IA =
∫ yA

yB

y2dA(y). (4.38)

(This parameter is very different from the moment of inertia defined in (3.24).
This one sums the squares of the distances from a plane, while the other and

Fig. 4.36. Geometry of a bent beam in more detail. (From [182])
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more usual one sums the squares of the distances from an axis.) Using this
moment and the definition of the bending moment MB due to applied forces
(MB = −Fx/2 at equilibrium]), (4.38) is

MB = −Y

R
IA (4.39)

and the magnitude of the curvature is

1
|R| =

|MB|
Y IA

. (4.40)

Equations (4.39) and (4.40) interrelate four quantities (1) the applied
forces, through MB; (2) the intensive materials properties, through Y ; (3)
the physical deformation (response) of the beam due to the applied forces,
through R; and (4) the shape of the object, through IA.

For a given MB and Y , when the area moment of inertia IA is large there
is little bending, while when IA is small there is much bending. For example,
the area moment of inertia for a rectangle of height h and width w is

IA =
∫ h/2

−h/2

y2(wdy) =
1
12

wh3, (4.41)

where dA = (w)dy. Consider a 2 cm × 6 cm rectangle arranged vertically (see
Fig. 4.37) with w = 2 cm and h = 6 cm. It has an IA = 2 cm × (6 cm)3/12 =
36 cm4. If this same rectangle were horizontal, then w = 6 cm and h = 2 cm,
and IA = 6 cm × (2 cm)3/12 = 4 cm4. For the same MB and Y , the horizontal
beam would bend 9× more. Try this with a yardstick!

The moment IA is larger when the mass is distributed far from the central
action, and there is less bending for a given bending moment when this occurs.

Fig. 4.37. Geometry for calculating the area moment of inertia for a rectangular
beam. The same calculation can be used for the very different rectangular beam,
with h < w. (From [182])
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Fig. 4.38. An I-beam. (From [182])

This illustrates why “I beams” are used in construction instead of solid beams
with the same overall rectangular cross-section (Fig. 4.38). The mass far from
the neutral axis provides the resistance to bending, which is proportional to
IA, and the lack of material near the neutral axis lowers the weight of the
beam.

Why Long Bones are Hollow

We now see why the long bones in the body can be hollow with much loss of
weight and little loss of stiffness. The mass far from the neutral axis provides
resistance to bending, while that near the neutral axis contributes little. Such
hollow bones have sufficient resistance to bending, as well as larger resistance
to bending per unit mass than do solid bones.

The area moment of inertia for a solid circular beam of radius a (Fig. 4.39a)
is given from (4.38) IA,solid =

∫ a

−a
y2dA(y). Using Fig. 4.39b, we see that y =

a sin θ, dy = a cos θ dθ, and w(y) = 2a cos θ, so dA = 2a2 cos2 θ dθ. Therefore

IA,solid =
∫ π/2

−π/2

(a sin θ)2(2a2 cos2 θ dθ) = 2a4

∫ π/2

−π/2

sin2 θ cos2 θ dθ =
1
4
πa4,

(4.42)

because sin2 θ cos2 θ = sin2 θ(1−sin2 θ) = sin2 θ−sin4 θ, and
∫ π/2

−π/2
sin2 θ dθ =

π/2 and
∫ π/2

−π/2
sin4 θ dθ = 3π/8. The mass of the solid circular beam with

length L and mass per unit volume (mass density) ρ is Msolid = ρπa2L. Using

Fig. 4.39. (a) A solid circular beam; (b) determining the area moment of inertia
for a solid circular cylinder beam; (c) a hollow circular beam
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Table 4.4. Comparison of area moments of inertia and masses of hollow and solid
circular beams

a1/a2 IA,hollow/IA,solid mhollow/msolid (IA,hollow/mhollow)/(IA,solid/msolid)

0 1.0 1.0 1.0
0.2 0.998 0.96 1.04
0.4 0.974 0.84 1.16
0.5 0.937 0.75 1.25
0.6 0.870 0.64 1.36
0.8 0.590 0.36 1.64
0.9 0.344 0.19 1.81

(4.42), it is clear that for a hollow circular beam with hollow radius a1 and
total radius a2 (Fig. 4.39c),

IA,hollow =
π(a4

2 − a4
1)

4
(4.43)

and mhollow = ρπ(a4
2 − a4

1)L. Table 4.4 shows that only 6% of the bending
stiffness is lost with a1/a2 = 0.5, even though there is a 25% decrease in mass.
For a beam of radius a and thin wall of thickness w � a (a2 = a, a1 = a−w),
we find that IA,hollow = πa3w, mhollow = 2ρπawL, and IA,hollow/mhollow =
a2/2ρL. While the resistance to bending per unit mass increases as the beam
(or bone) becomes more and more hollow, there is a limit to how much smaller
IA can become with smaller w before the beam can bend too much; it can
also buckle (see below).

Bone Bending and Scaling Relationships

Let us consider a cantilever of length L that is firmly attached at the left and
initially free at the right side (Fig. 4.40). A force F is applied downward at
this free end. How much does this end bend down? For every section of length
x (from the right), there is an applied moment MB(x) = F (L− x) (Figs. 4.41
and 4.42). Locally, at each x there is a curvature 1/R, given by (4.40). The
local curvature of any curve (in this case the beam) can be expressed by

Fig. 4.40. Bending of a cantilever beam loaded at one end. (From [182])
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Fig. 4.41. Bending moment at end point x along the axis for the loaded cantilever
beam. (From [182])

d2y/dx2 = −1/R(x) and so

d2y

dx2
= −F (L − x)

Y IA
. (4.44)

At the wall (x = 0) the position is fixed, so y = 0 and dy/dx = 0 at x = 0.
Integrating (4.44) twice and applying these conditions gives the downward

deflection at each x

y(x) = − F

6Y IA
((L − x)3 + L2(3x − L)). (4.45)

(See Appendix C for more information about the solution.) At the end

y(L) = − FL3

3Y IA
. (4.46)

We will use this relation in the discussion about scaling in metabolism in
Chap. 6.

4.5 Time-Dependent Deviations from Elastic Behavior:
Viscoelasticity

So far we have asked how large of a force is needed to create a given strain
or to break a bone. We have never asked whether it makes a difference if this
force were applied quickly or slowly. (If we were to ask this, we would need

Fig. 4.42. Moment vs. x for the loaded cantilever beam. (From [182])
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Fig. 4.43. (a) Ideal (or perfect) spring and (b) ideal (or perfect) dashpot. These are
the two basic building blocks used in modeling the mechanical response of materials

to know if it were applied fast or slow relative to a defined time scale.) The
responses of most materials inside or outside the body depend on these tem-
poral dependences and on history, to some degree. This very important type
of mechanical behavior is called viscoelasticity. Biological liquids and solids
are usually viscoelastic, and this includes tendons, ligaments, cartilage, bone,
and mucous. We will see how to model the viscoelasticity of body materials,
and how it affects us – such as in fractures and collisions [195, 199].

Perfectly harmonic elastic behavior is modeled by a spring (Fig. 4.43a),
with

F (t) = kx(t), (4.47)

where F is now the applied force and x is the response, which is the dis-
placement of the end of the spring. k is the spring constant. The force and
displacement depend on the current state at the current time t and are inde-
pendent of history.

Perfectly viscous behavior is modeled by a dashpot (Fig. 4.43b), with

F (t) = cv(t) = c
dx(t)

dt
, (4.48)

where the response depends on the speed. c is a constant that describes
damping due to viscosity. (In the biomedical engineering community this is
sometimes called η.) An idealized dashpot is a piston moving in a cylinder,
impeded by its movement in a viscous fluid. The displacement of the pis-
ton in the dashpot depends on its history! (The damping motion of a screen
door closer is a dashpot.) This viscosity damping constant c describes the
effects of viscosity for this macroscopic model and relates the force in the
dashpot model to the speed of the piston in the viscous medium. It is related
to, but is different from, the coefficient of viscosity η described in Chap. 7,
which connects shear stress and the shear rate in a viscous fluid, as in (7.22)
and (7.23).

We will combine these ideal springs and dashpots to arrive at models
of realistic viscoelastic materials, and see how they respond to stimuli that
vary with time. We can examine the extensive properties of applied forces
and deformations of the material or the corresponding intensive properties of
stress and strain.
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Fig. 4.44. General examples of (a) creep, (b) stress relaxation, and (c) hysteresis
in viscoelastic systems. In (a) and (b) the stimulus is applied at the time of the
shorter arrow. In (a) the possibility of removing the stimulus is also shown, at the
time of the longer arrow, with the dashed lines. In (c) the recovered work is the area
of the cross-hatched region, while the lost work is the area of the lined region. (More
precisely, this is work per unit volume for stress σ and strain ε and work for force
F and distortion x)

There are three interrelated manifestations of viscoelasticity (Fig. 4.44):

1. Creep. When a stress (or force) is applied and maintained, there is a strain
(or deformation) in the medium that increases with time.

2. Stress relaxation. When a strain (or deformation) is applied and main-
tained, a stress (or force) is felt by the medium immediately, and it then
relaxes in time.

3. Hysteresis. When stresses are applied and then released (forces loaded and
unloaded), the stress–strain cycles are not reversible. Some, but not all,
of the work done in the loading processes (during which the stress is in-
creased) is recoverable in unloading (during which the stress is decreased).

Each of these effects can be observed and characterized by our models for
step function, impulse, and cyclic loading (which are shown in the Fig. 4.45).
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Fig. 4.45. Different types of loading protocols: (a) step function, (b) square pulse,
and cyclic with (c) square pulses, or (d) sine waves

There are also outcomes other than those predicted by our models – such as
ordinary and stress fractures – from long-term static loading and many cycles
of loading.

One feature of viscoelasticity is that materials behave differently over dif-
ferent time scales. This is seen for one well-known viscoelastic material, Silly
PuttyTM. When you throw silly putty against a wall, it bounces back like a
ball. When you pull it, it stretches like putty. In the first example it behaves
elastically. The time scale, the collision time with the wall, is short. It behaves
in a viscous manner in the second example, because the time scale of pulling
on it is long.

Figure 4.46 shows the stress–strain curves for bone when it is strained at
different strain rates. When bone is strained slower, it develops less stress for
the same applied strain. Figure 4.47 shows when stress is applied at slower
rates, there is more strain for the same applied stress. Hysteresis in bone is
shown in Fig. 4.48. Hysteresis and stress relaxation are shown for ligaments,
tendons, and passive muscles in Figs. 4.49 and 4.50. The mechanism and the
response of stress relaxation for cartilage are depicted in Fig. 4.51. This in-
volves the exudation of fluid from the cartilage, which is tied to the lubrication
of synovial joints, as shown in Fig. 3.14. The elastic modulus of cartilage in-
creases from ∼1 MPa for very slow rates of loading to 500 MPa for fast rates.
Some mechanical properties of cartilage are plotted for different strain rates
in Figs. 4.52 and 4.53. The modulus is ∼0.70 MPa and Poisson’s ratio = 0.10
for lateral femoral condyle cartilage.

Before developing models of viscoelastic materials, let us see how the per-
fect spring and dashpot components respond to idealized applications of stress
and strain.



Fig. 4.46. Stress vs. strain for cortical bone for different strain rates, showing
increased modulus and strength with increased strain rate. (Based on [197, 210, 211])

Fig. 4.47. Load (stress) vs. deformation (strain) for dog tibiae for different loading
rates. The arrow shows the point of failure. At higher loading rates the load and
the energy to failure are almost doubled, where energy is the area under the curve.
(Based on [188, 229])

Fig. 4.48. Hysteresis in bone and shifting in the stress–strain curve with repeated
loading (to a, b, c) and unloading. The units of strain are microstrain. (Based on
[184, 191])
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Fig. 4.49. Stress–strain hysteresis loop for nonvascular tissue: (a) the ligamentum
nuchae (a ligament) (collagen denatured at 76◦C, so it is mostly elastin), (b) tendon
(mostly collagen), and (c) (passive) intestinal smooth muscle. The vertical axis units
are those of stress when multiplied by g. (From [181, 198])

4.5.1 Perfect Spring

We use (4.47) to determine the response of a perfect spring to a stimulus.
If we apply a force F0 of any level, there will be an “instantaneous” defor-
mation response of x = F0/k. This creep response is seen in Fig. 4.54a for

Fig. 4.50. Stress relaxation in nonvascular tissue: (a) the ligamentum nuchae (col-
lagen denatured at 76◦C, so it is mostly elastin), (b) tendon (mostly collagen), and
(c) (passive) intestinal smooth muscle. The vertical axis units are those of stress
when multiplied by g. (From [181, 198])
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Fig. 4.51. (a) Controlled ramp deformation of cartilage from time 0 to t0 and the
(b) (viscoelastic) stress response, initially to σ0, and later to the steady state value
σss, along with (a) and (c) physical model of the response. This response includes
interstitial fluid flow (arrows) – initially out of and within the solid matrix and
later only within the matrix – and also the deformation of the solid matrix of the
cartilage. (Based on [202, 215, 217])

a step-like application of force. If we suddenly subject the material to a de-
formation x0 (or a strain), with a step function (θ(t), as described below),
there is an instantaneous step function response in the force (or stress) it feels
(Fig. 4.54b).

Fig. 4.52. Stress–strain for cartilage at different strain rates. (From [210], as from
[232])
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Fig. 4.53. Variation of compressive elastic modulus vs. strain rate in bovine artic-
ular cartilage. (From [210], as from [227])

4.5.2 Perfect Dashpot

Equation (4.48) describes the motion of a perfect dashpot with damping con-
stant c. This characterization is often used to describe friction and other types
of energy relaxation and dissipation. If we immediately apply a constant force
F0 at time t = 0, there is immediate motion with v = dx/dt = F0/c. As seen in
Fig. 4.55a, the dashpot piston is at position (F0/c)t. This creep response stops
suddenly when the force is removed, because v = dx/dt immediately becomes
zero. If we suddenly subject the material to a deformation x0 (or a strain),
with a step-like function, there is an immediate, very large, short-enduring
force (described by a Dirac delta function response – see later) (Fig. 4.55b).

Fig. 4.54. Response by a perfect spring
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Fig. 4.55. Response by a perfect dashpot

With continued application of this deformation or strain, the force remains
zero. Clearly, the responses of the dashpot and spring to applied stresses and
applied strains are very different.

4.5.3 Simple Viscoelastic Models

Three models are commonly used to describe viscoelastic materials. Each
combines these idealized springs and dashpots in different ways (see Fig. 4.56)
[195, 199]. (a) A Maxwell body is a dashpot and spring in series. (b) A Voigt
body is a dashpot and spring in parallel. (c) A Kelvin body is a dashpot and
spring in series, which are in parallel with another spring. The Kelvin model
is also called the standard linear model. The use of the terms “in series” and
“in parallel” is similar to that in combining resistors in electrical systems, but
the consequences are somewhat different.

The Maxwell and Voigt models are special cases of the Kelvin model,
and consequently, the Kelvin model exhibits characteristic features of both
simpler models. Why do not we always use the Kelvin model? Sometimes
the use of the Kelvin model makes the analysis complex (at least at this
level). Even more complex materials models consist of combinations of Kelvin
systems.

What are the predictions for each model under the application of forces
and deformations? We combine the forces (Fi) and deformations (xi) of each
individual unit to arrive at a constitutive relation that interconnects the ap-
plied force (F ) and deformation (x) of the whole unit. We also express the
total length of each object xT

j as the sum of its equilibrium length xE
j and its

deformation from equilibrium xj , xT
j = xE

j + xj . Reference to an equilibrium
length is important in describing springs, because F = kx = k(xT − xE).
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Fig. 4.56. Maxwell, Voigt, and Kelvin (standard linear model) mechanical models
of viscoelasticity. The symbols for the springs and dashpots are the same as those
used in Fig. 4.43. (Based on [198])

Maxwell Model

The force F applied at the end of a Maxwell body (Fig. 4.56a) is felt equally
by the dashpot (unit “1” ) and spring (unit “2” ), so F = F1 = F2. Therefore,
for the dashpot

F1 = F = c
dx1

dt

(
= c

dxT
1

dt

)
(4.49)

and for the spring
F2 = F = kx2 (= k(xT

2 − xE
2 )). (4.50)
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The total length is xT = xT
1 +xT

2 , so dxT/dt = dxT
1 /dt+dxT

2 /dt. Because the
equilibrium lengths do not vary with time (dxE/dt = dxE

1 /dt = dxE
2 /dt = 0),

we find

dx

dt
=

dx1

dt
+

dx2

dt
. (4.51)

Using (4.49), we see that dx1/dt = F/c. From (4.50), we see x2 = F/k, and
taking the first time derivative of both sides gives dx2/dt = (dF/dt)/k. Using
(4.51), we find

dx

dt
=

F

c
+

dF/dt

k
. (4.52)

This is the equation that relates the deformation x(t) and force F (t) for a
Maxwell body.

To test creep, a force F0 is suddenly applied at t = 0. There is no change in
the displacement of the dashpot, so xT

1 = 0 then. The spring immediately re-
sponds to give x2 = F0/k, so overall the initial condition is x(0) = F (0)/k (for
either creep or stress relaxation), and for F (t = 0) = F0 it is x(t = 0) = F0/k.

The sudden application of a constant force F0 can be represented by F (t) =
F0θ(t), where θ(t) is the Heaviside step function (Fig. 4.57a), alluded to earlier,
which is

θ(t) = 0 for t < 0; = 0.5 at t = 0; = 1 for t > 0. (4.53)

Fig. 4.57. (a) Heaviside step function θ(t) and (b) Dirac delta function δ(t). The
area under the Dirac delta function remains 1, as the width T → 0 and the height
1/T → ∞. If these functions start at a time other than t = 0, say at t0, they are
written as θ(t − t0) and δ(t − t0)
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The time derivative dθ(t)/dt is the Dirac delta function δ(t) (Fig. 4.57b) which
is zero for all t except at t = 0, when it approaches infinity in such a way that
its integral over time remains unity, as in

δ(t) = 0 for t < −T/2; = 1/T for − T/2 < t < T/2; = 0 for t > T/2
(4.54)

in the limit that T goes to 0.
To test stress relaxation, a deformation x0 is suddenly applied at t = 0.

There is no change in the force of the dashpot, so FT
1 = 0 then. A sudden

application of a constant deformation x0 can be represented by x(t) = x0θ(t).
The response of the Maxwell body to the applied force F (t) = F0θ(t) is

x(t) = F0

(
1
k

+
t

c

)
θ(t) (4.55)

and to the deformation x(t) = x0θ(t) it is

F (t) = kx0 exp(−(k/c)tθ(t)). (4.56)

These solutions can be proved by substitution in (4.52). (Also see Appendix
C.) These results are plotted in Figs. 4.58a and 4.59a. (The plotted creep
response is really that due to a sudden application of a constant force – say
at time t = 0 – and then suddenly turning it off – say at time t = T – and so
the response to F (t) = F (θ(t) − θ(t − T )) is actually plotted for this and the
other two models.)

In the creep experiment, there is an immediate spring-like response. Then
the deformation increases (i.e., it creeps) linearly in time, as for the dashpot.
When the force is removed, the deformation immediately decreases to the
value determined by the spring component, and subsequently there is no more
creep due to the dashpot. This is a simple linear combination of the responses
seen for the individual elements in Figs. 4.54 and 4.55.

Fig. 4.58. Creep functions for the (a) Maxwell, (b) Voigt, and (c) Kelvin/linear
standard models of viscoelasticity, with force loading and subsequent unloading.
Characteristic relaxation times are shown. (From [198])
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Fig. 4.59. Stress relaxation functions for the (a) Maxwell, (b) Voigt, and (c)
Kelvin/linear standard models of viscoelasticity, with a step function deformation.
Characteristic relaxation times are shown. (From [198])

In the stress relaxation experiment, there is an immediate force response
due to the spring element, but this response decreases in an exponential man-
ner, as exp(−t/τ), due to the dashpot. The parameter τ = c/k is called a
time constant; it has the units of seconds. This response is clearly not a mere
linear combination of the responses for the individual elements.

Voigt Model

The combination of the elements is simple (Fig. 4.56b). The total force is the
sum of the individual forces on each element F = F1+F2, and the deformations
of both elements are equal and they are equal to the whole x = x1 = x2.
Because F1 = c dx1/dt = c dx/dt and F2 = kx2 = kx,

F = c
dx

dt
+ kx. (4.57)

The initial condition is x(t = 0) = 0 for any applied F , because the dashpot
prevents any immediate deformation.

The response of the Voigt body to the applied force F (t) = F0θ(t) is

x(t) =
F0

k
(1 − exp(−(k/c)t))θ(t) (4.58)

and to the deformation x(t) = x0θ(t) it is

F (t) = cx0δ(t) + kx0θ(t). (4.59)

Again, these solutions can be proved by substitution in (4.57). (Also see
Appendix C.) These results are plotted in Figs. 4.58b and 4.59b.

In the creep experiments, there is an exponential increase in creep, as
1 − exp(−t/τ), due to the dashpot – where again τ = c/k. If the force is
removed, this deformation decays to zero exponentially as exp(−t/τ). This is
qualitatively different from the predictions of the Maxwell model.
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In the stress relaxation experiments, there is an immediate and temporary
Dirac delta function increase in force, as seen for the dashpot alone, and then
the response is the constant value expected from the spring alone. Again, this
is qualitatively different from the predictions of the Maxwell model.

Kelvin Model (The “Standard” Linear Model)

In this model (Fig. 4.56c) the spring constant of the spring in series with the
dashpot is called k1; it was called k in the Maxwell model. The spring constant
in parallel with the dashpot and spring in series is called k2; the analogous
constant in the Voigt model was also called k.

The length of the dashpot is xT
1 = xE

1 + x1, while that of the top spring is
xT

2 = xE
2 + x2. The total length

xT = xT
1 + xT

2 (4.60)

is also the length of the bottom spring. As with the Maxwell body, the same
force

Fa = c
dx1

dt
= k1x2 (4.61)

is felt across the top dashpot and spring; the force

Fb = k2x (4.62)

is felt across the bottom spring. As with the Voigt model, the total force across
the parallel elements is

F = Fa + Fb. (4.63)

Our goal is to derive an equation that has only F , dF/dt, x, and dx/dt.
Using (4.61), we see dx1/dt = Fa/c and x2 = Fa/k1. The time derivative of
the second expression gives dx2/dt = (dFa/dt)/k1. Because dxE

i /dt = 0, from
the first time derivative of (4.60), we have

dx

dt
=

dx1

dt
+

dx2

dt
=

Fa

c
+

dFa/dt

k1
. (4.64)

Using (4.62) and (4.63), we find Fa = F − Fb = F − k2x. The first time
derivative of this is dFa/dt = dF/dt − k2dx/dt. Using these in (4.64) gives

dx

dt
=

F − k2x

c
+

1
k1

(
dF

dt
− k2

dx

dt

)
. (4.65)

Collecting the force and deformation terms on opposite sides of the equa-
tion gives

F +
c

k1

dF

dt
= k2x + c

(
1 +

k2

k1

)
dx

dt
. (4.66)
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The second term on the left-hand side is absent in the Voigt model, while the
first term on the right-hand side is absent in the Maxwell model. Factoring
out k2 gives

F +
c

k1

dF

dt
= k2

[
x +

c

k2

(
1 +

k2

k1

)
dx

dt

]
. (4.67)

After introducing the time constants τε = c/k1 and τσ = (c/k2)(1 + k2/k1) =
c(1/k1 + 1/k2), this equation becomes

F + τε
dF

dt
= k2

(
x + τσ

dx

dt

)
. (4.68)

This tells us that the force terms relax with a time constant τε, while the
deformation terms relax with a time constant τσ. This is clear because the
solution to Q + τ dQ/dt = 0 is Q(t) = Q(0) exp(−t/τ).

For a suddenly applied force or deformation, the initial condition is
τεF (0) = k2τσx(0). The response of the Kelvin body to the applied force
F (t) = F0θ(t) is

x(t) =
F0

k2
[1 − (1 − τε

τσ
) exp(−t/τσ)]θ(t) (4.69)

and to the deformation x(t) = x0θ(t) it is

F (t) = k2x0[1 − (1 − τσ

τε
) exp(−t/τε)]θ(t). (4.70)

Again, these solutions can be proved by substitution in (4.68). (Also see Ap-
pendix C.) These results are plotted in Figs. 4.58c and 4.59c.

In the creep experiments, there is an immediate increase due to the k1

spring and then an exponential increase in creep, as 1−exp(−t/τσ), due to the
dashpot. When the force is removed, this strain decays to zero exponentially
as exp(−t/τσ).

In the stress relaxation experiments, there is an immediate finite increase
in force, and then the response relaxes as exp(−t/τε) to a constant value.

These predictions incorporate features from both the Maxwell and Voigt
models. The Kelvin model also cures the clear deficiencies in them, such as
the unphysical Dirac delta function in the stress relaxation response in the
Voigt model

4.6 Viscoelasticity in Bone

The stress in bone does not depend only on the current value of strain, but
on how fast that strain was applied. Figure 4.46 shows that for a given strain
the developed stress is larger when the strain is applied fast. Similarly, the



4.6 Viscoelasticity in Bone 243

Fig. 4.60. The deformation (in (b)) resulting from a linearly increasing applied
force (in (a)). The deformation from (b) at the end of the ramp, t = T , is plotted
in (c) as a function of the ramp time T , which is referenced to τσ

strain in the bone depends not only on the current value of stress, but also
on how fast that stress was applied. Figure 4.47 shows that for a given force
load, the deformation is smaller when the load is applied fast.

We examine this second case quantitatively by using the Kelvin standard
linear model. Let us apply a force F0 in a linearly increasing manner over
a time T . As seen in Fig. 4.60a, this means that F = F0(t/T ) from t = 0
to t = T . We will determine the deformation x(t), so we can obtain the
deformation when the total force F0 has been applied, x(T ) and see how x(T )
depends on T .

We use F = F0(t/T ) and dF/dt = F0/T in (4.68) to get

k2

(
x + τσ

dx

dt

)
= F + τε

dF

dt
= F0

t

T
+ τε

F0

T
(4.71)

or

x + τσ
dx

dt
=

F0

k2T
t +

τεF0

k2T
, (4.72)

with x(t = 0) = 0.
This equation has the form

x + a
dx

dt
= bt + e, (4.73)
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which has a solution

x(t) = bt + (e − ab)(1 − exp(−t/a)), (4.74)

that satisfies x(t = 0) = 0. The form of this solution can be verified by
inserting it into the original equation. Such a substitution also gives a, b, and
e, which leads to the final solution

x(t) =
F0

k2T
t − cF0

k2
2T

(1 − exp(−t/τσ)). (4.75)

(See Appendix C.) Clearly, this is valid only for 0 < t < T . This solution
can be checked in Problem 4.35, and is plotted in Fig. 4.60b. For t � τσ,
x(t) ≈ F0(t/T )/(k1 + k2).

The deformation x(T ) at the end of the force ramp is

x(t = T ) =
F0

k2
− cF0

k2
2T

(1 − exp(−T/τσ)), (4.76)

which is plotted in Fig. 4.60c as a function of T . Applying the force quickly
or slowly really means that the time T is either much shorter or longer than
the time constant, τσ. In these limits:

x(T ) → F0

k1 + k2
when T � τσ and → F0

k2
when T � τσ. (4.77)

This model agrees with the experimental observations that the deformation is
less with faster loading (Fig. 4.47 for bone). More generally, the terms “fast”
and “slow” are relative to a characteristic time constant, which in this case is
τσ. The analogous stress relaxation experiment can be modeled in a similar
way with the relevant time constant τε, and is addressed in Problem 4.38.

4.7 Bone Fractures

Bones in the skeleton are designed for several properties and functions. Mus-
cles create motion by swinging bones at articulations. If the bones are rela-
tively stiff, the muscles are efficient in that when they contract they do not
cause the bones to deform. If bones are stiff, they absorb relatively little en-
ergy before they fracture (see below), so more compliant bones resist fracture
more and are lighter (and there is less mass for the body to lug around) –
but they are less ideal for muscle action. Nature compromises as needed. In
children, efficiency of motion is less important than resistance to fracture. The
femoral bone is about 2/3 as stiff in children as in adults and requires about
50% more energy to break. The bones of the inner ear need to be stiff to
transmit sound waves efficiently, but do not need to resist fracture because
they bear no loads.
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Table 4.5. Physical properties of different types of bone. (From [212]. Using data
from [189])

property femur antler bulla

Young’s modulus (Y ) (GPa) 13.5 7.4 31.3
ultimate bending stress (UBS) (GPa) 247 179 33
work of fracture (WF) (J/m2) 1,710 6,190 200
density (g/cm3) 2.06 1.86 2.47

We now consider the work of fracture WF, which is the amount of work
that has to be performed on a material to break it. It is usually defined as the
energy (J) needed for fracture per area (m2). This can be estimated from
the elastic energy stored using the stress–strain curves earlier in this chapter.
Materials that have a higher work of fracture are tougher than those with a
lower one (Fig. 4.16). Typical values are 1–10 J/m2 for glass, ∼1, 000 J/m2

for nylon, ∼10, 000 J/m2 for wood, and 103–104 J/m2 for bone. Materials
with the same strength (UTS) are tougher (i.e., they require more energy
to fracture) when they are less stiff (smaller Y ), because the elastic energy
stored per unit volume is PE/V = σ2/2Y = (UTS)2/2Y (4.17) in the linear
stress–strain limit.

Table 4.5 shows that the mechanical properties of typical femurs, deer
antlers, and tympanic bulla (which are bony capsule housings in the ear) are
quite different, even though they have comparable densities. Femurs support
weight during movement and need to be stiff (large Y ), strong (large ultimate
bending stress, UBS – see below), and tough (large WF). Deer antlers need to
be very tough with a very high work of fracture to avoid breakage in deer fights
(and they are tougher than femurs), but they do not need to be really stiff
or strong. Tympanic bulla house the middle/inner ear and keep out sounds
other than those coming through the ear canal. This helps directional hearing,
with sounds detected in each ear at different times. This acoustic separation is
improved by increasing the ratio of Y for the bulla and water (see Chap. 10);
Y for bulla is very high. The bulla do not need to be strong or tough. If forces
were applied that would be large enough to break them, the person would be
dead anyway.

4.7.1 Modes of Sudden Breaking of Bones

Let us revisit the example from earlier in this chapter, when we considered
how much the femur shortens at the UCS = 170 MPa = 170 N/mm2. With
no stress applied, the femur is L0 = 0.5 m = 500 mm long and has a cross-
sectional area A = 370 mm2. The UCS is reached when there is a force of
(170 N/mm2)(370 mm2) = 56, 000 N = 12, 600 lb ∼6 tons on the femur. For a
70 kg person (700 N, 160 lb), this is 80× body weight. Because the maximum
force on the hip bone and femur during walking is ∼2× body weight and
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during running it is ∼4× body weight, we are fortunately well designed. There
is a much larger overdesign protection in the long leg bones during running
than in the Achilles tendon!

The potential energy available during a fall to the ground from standing
is mbg(ΔhCM). A 1.8 m tall person of mass 70 kg, has a center of mass 0.9 m
above the ground. When this person falls, the center of mass decreases to 0.1 m
and the available potential energy is mbg(ΔhCM) = (70 kg)(9.8 m/s2)(0.8 m)
≈550 J.

How much energy is stored in the bones during this fall? Let us examine
the largest bone, the femur. We use (4.17) with L0 = 0.5 m = 500 mm and A =
330 mm2, and so V = 165,000 mm3, and Y = 17,900 MPa = 17,900 N/mm2.
If the stress is either the UTS = 122 MPa = 122 N/mm2 or UBS (ultimate
bending stress, as described below) = 170 MPa = 170 N/mm2 (Table 4.6),
then respectively

PE =
(UTS)2

2Y
V =

(122N/mm2)2

2 × 17,900N/mm2 165,000mm3 � 69 J (4.78)

=
(UBS)2

2Y
V =

(170N/mm2)2

2 × 17,900N/mm2 165,000mm3 � 133 J. (4.79)

The energy needed to break long bones is clearly a reasonable fraction
of that available from the kinetic energy in common collisions, such as falls.
If the available energy is distributed to several of the long bones, there is
enough for sudden fracture. Our bones do not regularly break because most
of the energy is absorbed by muscle contractions and the deformation of soft
tissues. Loads normal to skin, fat, and muscles (and clothing) absorb energy
upon compression and propagate stress waves in the body. Fascia, tendons,
ligaments, joint capsules, and contracted muscles brace bones against bending
by supporting part of the tensile forces and absorbing energy as they are
stretched. In elderly people bones fracture more easily because their bones
are weaker (because they are more porous, Fig. 4.19) and their tissues are less
suited to absorb energy, which causes even more energy to be transmitted to
the (already weaker) bones.

Bone fractures are determined by the mode of the applied loads and their
orientations. Bones are strongest in compression, less strong in tension, and
weakest in shear. Under some loading conditions there are tensile and shear
or compressive and tensile loads at a given position. Bones usually break by
shear (twisting) stresses or under tension, but not under compression because
UTS < UCS. Figure 4.61 shows crack formation in bent and twisted long
bones. Under bending there is tension on one side and compression on the
other. Because UTS < UCS, the fracture starts at the side with tension.
There are shear stresses at 45◦ to this load axis, but the tensile stress is larger
on the left side, so the crack propagates normal to the bone axis. On the
compressed side the shear stress (at 45◦) is large and the compressive stress is
<UCS, so cracking occurs at two 45◦ angles, leading to the butterfly fragment
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Fig. 4.61. Crack propagation in bent and twisted bone. T means tension and C
means compression. (From [210])

seen in the figure. In twisting, the tensile stresses produce a spiral crack that
winds around the bone and the bone breaks when the ends of the crack are
connected by a longitudinal fissure [210].

Fracture can be due to direct blows, such as by blows to the soft tissue sur-
rounding the bone or bullets, which break the bone in two (noncomminuted),
at low energy – leading to a transverse fracture, or into many pieces (com-
minuted) at high energy (Fig. 4.62) [179, 208, 218]. Indirect blows, as in skiing,
can lead to fractures that are spiral, oblique, transverse with a butterfly frag-
ment, and so on (Fig. 4.62). The nightstick fracture of the ulna, shown in
Fig. 4.63, is one type of low-energy, direct-blow injury, and it is transverse.
Figure 4.64 depicts the classification of humerus fractures. (Analogous classi-
fications exist for other bones as well.)

As with any collision, we can lessen the likelihood of bone breakage in
falls by increasing the impact area and the collision time. Because bones are
actually viscoelastic, they absorb shocks a bit, which lessens the chance of
fracture.

Breaking of Bones by Bending

Let us say we have a bone of thickness d that is symmetrical in the y direction.
Will it break when bent by a force F like the one in Fig. 4.31?

We use the analysis we developed earlier this chapter. Equation (4.36)
tells us that σ(y) = Y (y/R), so with y = d/2 on the top surface and −d/2 on
the bottom, the maximum compressive and tensile stresses have magnitudes
(Fig. 4.34)

|σmax,compression| = |σmax,tension| = Y
d

2R
. (4.80)

We would expect that the bone will break if either |σmax,compression| > UCS
or |σmax,tension| > UTS. Because UCS = 170 MPa and UTS = 120 MPa, we
would expect that the fracture will occur first in tension and consequently
on the bottom surface for hard bone (Fig. 4.35). However, this fracture really



Fig. 4.62. Types of bone fractures resulting from different types of loading. (From
[208])

Fig. 4.63. X-ray of a nightstick fracture of the ulna bone. (From [208])
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Fig. 4.64. AO-ASIF classification of humerus diaphysis fractures. A: Simple frac-
tures; A1: spiral, A2: oblique (≥30◦), A3: transverse (<30◦); B: wedge fractures;
B1: spiral wedge, B2: bending wedge, B3: fragmented wedge; C: complex fractures;
C1: spiral, C2: segmental, C3: irregular. (From [208])

occurs at a slightly higher value called the ultimate bending stress (UBS). The
UBS is higher than UTS for the long bones, as in seen in Table 4.6. This table
also shows that the mechanical properties of the long bones in the leg and
arm are very similar, but not identical.

Fracture occurs when

|σmax,bending| > Y
d

2Rmin
= UBS. (4.81)

Table 4.6. Properties of long bones. (From [182]. Using data from [236])

bone Y UTS UBS
(×104 MPa) (×102 MPa) (×102 MPa)

femur 1.72 1.21 2.08
tibia 1.80 1.40 2.13
fibula 1.85 1.46 2.16
humerus 1.71 1.22 2.11
radius 1.85 1.49 –
ulna 1.84 1.48 –
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Fig. 4.65. Illustration of the origin of the bending moment in a person with a
pinned ankle, as during falling. (From [182])

Using (4.40) for the curvature, 1/|R| = |MB|/Y IA, the bone breaks for bend-
ing moments

|MB| ≥
2(UBS)IA

d
. (4.82)

Let us consider the example of one foot pinned at the ankle, while the
other foot is slipping [182]. The pinned foot could be in a hole in frozen
snow, pinned during a football tackle, or in a rigid ski boot. This situation
is modeled in Fig. 4.65, where we see the force of the body (minus that of
the leg) Wb − Wleg, creates a torque about the leg with a moment arm D of
magnitude D(Wb −Wleg). D is the lateral distance of the midline of the body
(center of mass) from the pinned leg, and so

|MB| = D(Wb − Wleg) ≥
2(UBS)IA

d
. (4.83)

If the bone has a radius a, then IA = πa4/4 (because we can ignore the hollow
nature of the bone in this estimate) and using d ∼ 2a, the bone breaks when
the moment arm

D ≥ πa3

4
UBS

Wb − Wleg
. (4.84)

The tibia has its smallest cross-section about 1/3 of the way up from the
ankle, where a ∼ 1 cm. It is much thinner there than the humerus anywhere.
The fibula is even narrower, but bears much less of the force than the tibia.
For Wb −Wleg = 640 N (145 lb) (for a 75 kg, 750 N, 170 lb person), this shows
that fracture occurs when the midline of the body moves more than 25 cm
from the pinned leg during the slip.
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Fig. 4.66. (a) Before and (b) after Euler buckling of a bar or column. The bottom
of the bar corresponds to x = 0 and y = 0. (c) A free body diagram of a part of
the bar showing the external and internal forces and the moments acting on this
column. (From [383])

Euler Buckling (Advanced Topic)

The occurrence of fractures depends on the ultimate strength, defects, and
specifically how loads are applied. Another type of macroscopic failure is
buckling. This Euler buckling can be demonstrated by pushing down on a
drinking straw that is standing upright on a table. When long thin tubes are
compressed, the middle bows to one side and collapses. This mode of failure
is associated with the stiffness of the material, and not its strength. This is
different from the bending that occurs when a bar along the x-axis is fixed at
one end, and the free end is pushed by a force F in the y direction (normal to
the x-axis), as with bending in (4.44)–(4.46) and Fig. 4.40; the moment there
is the force along the y-axis × the moment arm along x. Here the force is
actually applied along the y-axis.

Let us consider a bar or column of length L fixed at both ends (x = 0 and
x = L) with a compressive load S applied along the x-axis (Fig. 4.66a). The
moment MB in (4.44) now becomes Sy because the y-axis is normal to the
applied force, so the curvature, from (4.40) and (4.44), becomes

d2y

dx2
= − Sy

Y IA
, (4.85)

where Y is Young’s modulus and IA is the area moment of inertia. So we see
that

d2y

dx2
+ λ2y = 0, (4.86)

where we have used λ2 = S/Y IA. This has a solution

y(x) = A sin λx + B cos λx, (4.87)

which can be proved by substituting this into the previous equation (see Ap-
pendix C). The constant B = 0 because y = 0 at x = 0 and so y(x) = A sin λx.
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Because y = 0 at x = L, either A = 0 or sin λL = 0. The former bound-
ary condition implies the bar will always be straight, while the latter al-
lows for the possibility of buckling (with indeterminate and conceivably very
large amplitude A). This latter condition is satisfied by λL = nπ, with n
= 1,2,3, . . . . This means λ2 = S/Y IA = n2π2/L2, so S = n2π2Y IA/L2.
The lowest load that this buckling can occur at is the critical load Sc

with n = 1

Sc =
π2Y IA

L2
. (4.88)

For a beam of radius a and thin wall of thickness w � a (a2 = a, a1 =
a−w), IA,hollow = πa3w, so Sc = π3Y a3w/L2. Consequently, although making
the walls of bone progressively thinner does not hurt its resistance to bending
per unit mass, it will buckle more easily.

4.7.2 Stress Fractures (Advanced Topic)

We have seen that bones can fracture when the stress on them suddenly
exceeds a given failure limit. They can also fracture more gradually from
damage from prolonged continuous stress (creep, as with sitting) or prolonged
cyclic stress (fatigue, as with walking or running) (Fig. 4.67). When the rate
of damage exceeds the rate of repair by the body (by remodeling), the bone
fails as a result of a stress fracture.

Fig. 4.67. Test strain ranges in compression and tension that lead to fatigue damage
(stress fractures) in human cortical bone when applied for given number of cycles,
referenced to the strains that simulate walking, running, and other strenuous exer-
cise. There are approximately 5,000 cycles of testing (each corresponding to a step)
in 10miles (16 km) of running (which are the ranges of strain in either compressive
or tensile loading experiments that simulate walking, running, and other strenuous
exercise). (Based on [187, 197])
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We will now assess the occurrence of such fractures by looking at the
applied stress and the resulting strains. From earlier in this chapter, the mi-
crostrain in long bones is ∼10, 000με (1%) at the UCS. This is usually not
reached. The peak functional microstrain in bones in most animals is between
2,000 and 3,000με at peak performance. Strains in thoroughbred horses are
routinely 5,000–6,000με during racing. In humans, some studies indicate that
the peak functional microstrains in the tibia, where stress fractures often oc-
cur, do not exceed 2,000με, while others suggest that microstrains over 3,000με
can occur during jumping; this explains why “shin splints” are not uncommon
among basketball players.

The study of how a flaw or crack grows under stress and leads to
catastrophic failure is called fracture mechanics. The derivation of relations
of linear elastic fracture mechanics is beyond the level of this text (see
[210, 214, 226, 230]). Nonetheless, we will present some results from this field
to help us understand stress fractures better.

Let us consider a thin plate with an elliptical hole with minor and major
radii a and b, as in Fig. 4.68. With stress s applied parallel to the minor
axis, the stress is maximum at the semimajor axis end as shown, and has
magnitude

σ = s

(
1 +

2a

b

)
. (4.89)

(The value of stress far from the crack is the applied stress s.) As a becomes
much greater than b, the ellipse becomes narrower and begins to look more
like a crack; then this relation is no longer valid. The stress pattern can then
be determined, and expressed as a function of the distance from this same
point (the end of the major axis) r and the angle from this axis θ, as shown
in Fig. 4.68. For a given r, the stress is a maximum for θ = 0◦ (which makes

Fig. 4.68. An elliptical hole in a plate structure with stress tension s has much
higher stress at the concentration point shown. (From [210])
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Table 4.7. Fracture toughness of materials. (From [210])

material Kc (MPa-m1/2)

2024 aluminum 20–40
4330V steel 86–110
Ti–6Al–4V 106–123
concrete 0.23–1.43
Al2O3 ceramic 3.0–5.3
SiC ceramic 3.4
PMMA polymer 0.8–1.75
polycarbonate polymer 2.75–3.3
cortical bone 2.2–6.3

sense from symmetry) and it varies as

σ = s

√
a

2r
. (4.90)

The stress increases nearer and nearer the crack (as r becomes small), but
it does not become infinite at the crack as this expression would suggest.
The distance dependence can be brought to the left-hand side to obtain
the stress intensity σ(2r)1/2 = sa1/2. A stress intensity factor K is com-
monly defined, which is fairly similar to this stress intensity with the same
(stress)(distance)1/2 units, but it is more general:

K = Cs
√

πa. (4.91)

C is a dimensionless constant that depends on the size and shape of the crack
and object, and how the stress is loaded. If K exceeds a critical value, the
fracture toughness Kc, the crack will propagate; the larger K is above this
value, the faster the crack will propagate. If it is smaller, it will not propagate.
Kc is an intensive property of the material (Table 4.7).

Figure 4.69 shows three ways stresses can be applied to cause crack prop-
agation, to the right in each picture. In Mode I the load is tensile (and here

Fig. 4.69. Modes of cracking: I, the opening mode; II, the forward shear or sliding
mode; III, the antiplane shear or tearing mode. (From [210])
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Fig. 4.70. Types of fracture for Mode I cracks, with (a)–(c) corresponding to (4.92)–
(4.94), respectively. (Adapted from [210])

vertical) and perpendicular to the crack propagation direction, as in splitting
a log lengthwise. In Mode II the load is shear, and parallel to the plane of the
crack and the direction of crack propagation. In Mode III the shear load is
perpendicular to the crack direction, as in tearing paper.

For Mode I cracks the constant C in (4.91) differs for different crack loca-
tions, such as those shown in Fig. 4.70. For a plate of width w under tension
and a crack of length a on one edge, this constant is

C =
0.752 + 2.02q/π + 0.37(1 − sin(q/2))3

cos(q/2)

√
2
q

tan(q/2) (4.92)

using q = πa/w.
For cracks of length a on both edges, it is

C = (1 + 0.122 cos4(q))
√

1
q

tan(q). (4.93)

For a crack of length 2a in the center, it is

C =
(

1 − 0.10
( q

π

)2

+ 0.96
( q

π

)4
) √

sec(q). (4.94)

For cortical bone, Kc = 2.2–5.7 MPa-m1/2 for a Mode I transverse frac-
ture of the tibia and a Mode I longitudinal fracture of the femur. It is 2.2–
2.7 MPa-m1/2 for a Mode II fracture of the tibia. In each case the crack propa-
gation is parallel to the long axis of the bone. Transverse propagation of cracks
in long bones, perpendicular to the lamellar structure, causes the crack to turn
along the long axis. Crack propagation in long bones is very anisotropic. The
laminate structure of bones can stop or redirect a crack.

For a small crack in a large plate q = πa/w � 1, for which (4.92)–(4.94)
each gives C ∼ 1, and the critical condition is K = Kc ∼ s(πac)1/2 or

ac ∼
K2

c

πs2
. (4.95)
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As before, if the body weight of 700 N (70 kg) were distributed over the femur
cross-sectional area 370 mm2, the stress s = 2.1 N/mm2. Because 1 MPa =
1 N/mm2, a typical Kc = 4 MPa-m1/2 = 4 N/mm2-m1/2. This gives ac ∼ 1 m.
Does it make sense that a crack in the femur would have to be 1 m long for the
bone to spontaneously fracture – especially when we know the bone is shorter
and much narrower than this? Yes, because we would expect (and hope) that
normal people would not get stress fractures by standing on one leg. If ac were
very small ∼1 mm, then our bones would fracture with the slightest of flaws
when we stood up. If the stress were 10× larger (corresponding to 10× body
weight), the critical crack length would be 100× shorter or ∼1 cm. Also, note
that our initial ac ∼ 1 m result violates the q = πa/w � 1 assumption we
made that led to C ∼ 1. We could have used the exact form(s) for C, but still
would have obtained a large value for ac.

The energy needed to break bonds in cracking comes from stored elastic
energy. Cracks grow when the decrease in strain energy (from strain relief)
dU/da (= G, the strain energy release rate) that occurs from the crack prop-
agating a distance a exceeds or equals the energy or work dW needed to
propagate the crack a distance a, which is dW/da (= crack growth resistance
R). The strain energy release rate for Mode I cracks is [210]

G =
dU

da
=

πas2

Y
. (4.96)

for a crack of length a and stress s. Using (4.91),

G =
K2

CY
. (4.97)

There is much more understood about fracture, which we will not cover
[201, 210, 230]. For example, the elastic model presented here ignores the
plastic deformation that occurs very near the crack.

4.8 Common Sports Injuries

As we have seen, damage to bones, ligaments, muscles, etc. can result from
collisions, excessive stress or strain, and from repeated use with moderately
large stresses. These often lead to injuries in sports, including injuries to the
following [204, 213]:

Head

1. Concussions are described in Chap. 3, and are common in boxing, football,
and hockey. They also occur in baseball when pitchers successfully throw
at batters’ heads.
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Shoulder

1. In a separated shoulder there is ligament damage that can occur from
collisions in several sports. Ligament stretching is a first degree separation,
a slight tear is a second degree injury, and a complete tear is a third degree
injury.

2. In a dislocated shoulder the arm is out of the joint, which can result from
collisions in several sports.

3. Rotator cuff injuries involve a strain or tear in the four muscles around the
shoulder (supraspinatus, infraspinatus, subscapularis, and teres minor)
that hold the humeral head into the scapula. They are not uncommon
in activities requiring the arm to be moved over the head many times
(leading to the overuse of the shoulder), as in baseball pitching, swimming,
weightlifting, and racket sports.

Elbow

1. Forehand tennis elbow (golfer’s elbow, baseball elbow, suitcase elbow) (me-
dial epicondylitis) is due to forceful wrist flexion and pronation that can
damage the tendons that attach to the medial epicondyle, and is common
in tennis (when serving with topspin), pitching in baseball, and throwing
a javelin.

2. Backhand tennis elbow (lateral epicondylitis) is caused when using the
grasping and supination muscles. Damage occurs to the extensor tendons
when the wrist is extended and to these muscles, such as during backhand
returns in tennis.

3. A torn ulnar collateral ligament is common for baseball pitchers due to
the overuse of the elbow. It is corrected by Tommy John surgery in which
the torn ligament is replaced by the ulnar collateral ligament from the
other elbow.

Hip

1. In a hip flexor there is damage to muscles around the hip.
2. In a hip pointer there is a bruise or fracture to the hip iliac crest (Figs. 2.14

and 2.15) and occurs in collisions in football and hockey.
3. Avascular necrosis is an injury due to collisions that results in a lack

of blood supply to joint regions and their subsequent death. It is most
common in the hips, but also is seen after collisions of the knees, shoulders,
and ankles.

Legs

1. Hamstring pulls – as in: I pulled my “hammie” – are common in sports
with much running, such as in track running and baseball, and occur in
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simultaneous (eccentric) contractions of the quadriceps and hamstrings,
when the hamstrings are <60% as strong as the quadriceps muscles.

2. Shin splints are muscle pulls, often found in running.

Knee

1. Increasingly common are sprains or tears to the anterior cruciate liga-
ment (ACL) (Fig. 1.3). Injuries to the ACL are not uncommon in skiing,
basketball, soccer, and football when the leg is contorted at the knee and
this ligament is excessively elongated.

2. Runner’s knee is pain behind and on either side of the kneecap (patella),
due to the rubbing of the kneecap against the lateral condyle of the femur
(cartilage), and can result from downhill running and walking downstairs.
Soreness in the tendons above and below the knee, patella tendinitis, can
occur from repetitive overloading due to jumping and running.

Foot

1. Turf toe is a bruise to the last joint in the toe, the metatarsal phalangeal
joint. It can occur from jamming the toe into turf, as in football collisions.

2. Metatarsal stress fractures (in the toes) are common in running due to
pushing off from the toes.

3. Plantar fasciitis is an injury to the plantar fascia under the arch of the
foot, and is seen in long distance running, squash, tennis, and basketball.
(The fascia are the surrounding soft tissues.)

4. Injuries to the Achilles tendon (Figs. 1.8 and 3.33), including tendinitis
(inflammation) or tearing is common in many sports with repetitive over-
loading, as in speed running, squash, and tennis, due to excessive tendon
elongation. We have seen that the stresses in this tendon during running
are not that far below the UTS.

Spine and Back

1. In a herniated disc a vertebral disc (Fig. 2.36) is displaced and presses
against nerves. Lower back pain can also result when muscles in the lower
back become strained or when the ligaments interconnecting the lower-
most five vertebral bones become sprained (lumbar strain). Such injuries
can result during weightlifting, moderate lifting using back muscles in-
stead of leg muscles, and sitting or lying down in positions that do not
permit your spine to assume its natural curvature.

Generally to Bones and Cartilage

1. Stress fractures of bones are slight fractures due to repeated stress, such
as to the foot or shins after excessive running.
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2. In a compound fracture the bone breaks through the skin, and this can
occur from collisions in skiing and football.

3. Fractured ribs can result from collisions. (Strains or tearing of intercostal
muscles between the ribs can result from awkward motions such as over-
reaching.)

4.9 Avoiding Fractures and Other Injuries:
Materials for Helmets

In this chapter we have discussed some of the consequences of collisions, i.e.,
bone breakage (and there are others, such as hematomas, etc.), and in Chap. 3
we briefly discussed how to lessen the effects of collisions by increasing the
collision time and contact area. Helmets mitigate the effects of collisions of
the head [219]. They consist of an outer shell and an interior liner. The shell
transmits the impact load over the larger area of the liner, which absorbs most
of the kinetic energy of the head.

To do this, the shell must be rigid (i.e., be very stiff to resist deformation),
tough (i.e., have high bulk strength to limit fracture), and hard (i.e., have high
surface strength to prevent penetrating injuries), so that a large area of impact
of the head into the liner can be maintained, and it should be light. The shell
is often made from fiber-reinforced plastics (fiberglass/resin composites) and
thermoplastics (such as polycarbonate).

Liners must be capable of being compressed and absorbing energy at a
force level low enough so the peak force and acceleration felt by the head are
minimized and the collision time is maximized. Figure 4.71 shows three types
of materials, with very different force/deformation (stress/strain) curves. Type
A is a linear spring and type C is a more realistic material. Type B is an ideal
helmet material because it deforms at a constant stress, which is low enough
to be of value in collisions. Figure 4.72 shows three materials. The shaded
area, which is the work done on the material, is the same under each curve.

Fig. 4.71. Stress–strain curves for padding materials that could potentially be used
in safety helmets. (From [219])



260 4 Mechanical Properties of the Body

Fig. 4.72. Effect of the padding strength for the same energy absorbed. The peak
force exceeds the maximum allowable force for the “strong” (or stiff) and “weak” (or
compliant) materials. The weak material is crushed to just about its initial thickness
and then becomes very stiff. (From [219])

For the stiff (large Y ) and compliant (small Y ) materials, the peak force is
very high at the end of deformation, while for the intermediate material, it is
much smaller. This makes it a better material for a liner. (Ideally, the force
should be independent of deformation, as for material B in Fig. 4.71.) The
stress should be relatively independent of the strain rate, so the liner would
work well at high and low impact speeds. As shown in Fig. 4.73, the material

Fig. 4.73. Stress–strain for real padding materials: 1-Arcell, 2-Arsan, 3-EPS (ex-
panded polystyrene), 4-Polypropylene. The energy absorbed is the area under the
loading curve minus that under the unloading curve. (From [219])



4.10 Summary 261

Fig. 4.74. Helmeted impact deceleration with initial speed of 5.63 m/s. (From [219])

should deform plastically and have a large stress–strain hysteresis loop. Then
the liner material absorbs the energy of the head impact and does not transfer
it back to the head (during the collision), as would a compliant, spring-like
material. If the helmet is to be used over and over again, the deformation
or strain remaining after a cycle should be minimal. The area of impact of
the head on the padding should be maximized. The thickness of the padding
should be increased as much as possible, subject to weight and bulkiness
constraints, because of limitations on how much it can be compressed during
the impact. Also, when the padding is fully crushed, it becomes very stiff,
resulting in high forces. (The maximum designed compression is about 80%.)
Energy absorbing liners are usually made of semirigid polyurethane foams
or expanded polystyrene bead foams. (Spongy bone at the end of long bones
should have similar properties.) The deceleration while wearing a good helmet
is shown in Fig. 4.74.

4.10 Summary

Understanding the stress, strain, and fracture of body materials and parts
is essential to explain the performance of the human machine under normal
and extraordinary conditions. Time-independent material models, describing
harmonic and non-harmonic elastic behavior, and time-dependent viscoelastic
models can be used to characterize and understand the stress–strain relations
of the body materials and components. The mechanical properties of the many
parts of the body involved in structure, motion, and organ operation, are



262 4 Mechanical Properties of the Body

all very different; these properties depend on their composition, structure,
and composite nature. The deformation of extended body parts, such as the
bending of bones, and the mechanics of fracture are needed to analyze the
body under extreme conditions that can lead to injury.

Problems

Stress and Strain

4.1. Determine the spring constant, k, in SI units for a solid cylinder of cortical
bone of length 0.5 m, diameter 2 cm, and Y = 17.4 GPa.

4.2. An cylindrical spring of length 2 cm and diameter 3mm has spring con-
stant k = 1.7 × 105 N/m.
(a) How much does it extend when a force of 100 N is applied to it?
(b) What is the strain?
(c) The spring is composed of a uniform material. Find its Young’s modulus
(in MPa).

4.3. Equation (4.8) shows how Young’s modulus, the shear modulus, and
Poisson’s ratio are interrelated for an elastic isotropic material. The bulk
modulus B is the negative of the pressure divided by the fractional change in
volume caused by that pressure, and it can be related to any two of these three
above parameters. Show that for isotropic harmonic materials Y = 3B(1−2υ).
(When a stress σ is applied to compress a cylinder, the pressure is σ/3.)

4.4. Calculate the strain and change of length of the femur during a single
step while running, using the data near (4.21).

4.5. As we will see in Chap. 11, we are able to see objects that are both
near and far from us because of accommodation in the eye. This occurs be-
cause the shape of the crystalline lens in the eye changes when the force on
it from the suspensory ligaments is changed. This is a fairly complex three-
dimensional problem [192, 193, 194], which we will simplify. (It is actually
a two-dimensional problem because of rotational symmetry, but it is still
complex.)
(a) Use the simple one-dimensional model in this chapter to estimate how
much stress is on the crystalline lens if it has a Young’s modulus of 1×103 Pa
(which is that for a 20 year old) and has a strain is 3%.
(b) If the total force on the lens is 0.002 N, determine the effective contact
area (in mm2).
(c) Determine the strain in the lens of someone who is 60 years old, if the stress
is the same as in (a), but her Young’s modulus has increased to 3 × 103 Pa.

4.6. Use the information in Table 4.2 to find the stress (in MPa) needed to
stretch femoral compact bone, nails, nerves, skin, and coronary arteries to a
strain of 0.01. (Assume harmonic behavior, with the low-strain value of Y .)
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4.7. Use the information in Table 4.2 to find the strain resulting when femoral
compact bone, nails, nerves, skin, and coronary arteries are subjected to a
stress of 0.5 MPa. (Assume harmonic behavior, with the low-strain value of
Y .)

4.8. Find the energy density for each case in Problem 4.6.

4.9. Find the energy density for each case in Problem 4.7.

4.10. Use the information for the fibula in Fig. 4.18 to:
(a) Calculate the maximum tension a bone with a cross-sectional area of 4 cm2

could withstand just prior to fracture.
(b) Determine the elongation of a bone whose initial length is 0.35 m under
the maximum tension from part (a).
(c) Calculate the stress on this bone if a tension force of 104 N were applied
to it [186]. How much would this bone elongate?

4.11. Calculate the energy stored in parts (a) and (c) of Problem 4.10 for a
bone that is 0.5 m long, always assuming that σ = Y ε (even until fracture).

4.12. Determine the relative amounts of strain energy absorption in the carti-
lage and bone of the proximal half of the tibia (Fig. 4.75) when it is loaded uni-
formly over the articular surface by a compressive force. Ignore the fibula and
assume the tibia consists of three parts: a hollow cylindrical diaphyseal seg-
ment of cortical bone, a solid metaphyseal segment of cancellous (trabecular)
bone, and a solid disk-shaped cartilage layer. The dimensions are a = 10 mm,
b = 30 mm, c = 50 mm, e = 4 mm, f = 70 mm, and g = 130 mm. Assume each
material is elastic, with a Young’s modulus of 20,000 MPa for cortical bone,

Fig. 4.75. Model for the proximal half of the human tibia. (From [210].) For Prob-
lem 4.12
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Fig. 4.76. Schematic of the components of a hip replacement. (From [203].) For
Problem 4.14

200 MPa for cancellous bone, and either 20 MPa or 200 MPa for cartilage.
Calculate the total strain energy in each segment of the model and the frac-
tion of the total energy in each segment. Do this for both measured parameters
for cartilage [210].

4.13. As a biomedical engineer you have been assigned to design a replace-
ment for a femur (which consists of compact and trabecular bone). Using the
materials (other than bone) listed in Table 4.1 (and other materials if you
like), what materials would you use? (Would you want to use materials that
match the properties of bones? Why?)

4.14. Figure 4.76 shows a diagram of parts of a hip replacement, with ac-
etabular and femoral implants and PMMA (poly(methyl methacrylate)). Use
the discussion in Chap. 2 to show that the lines of action of the loads on the
femoral head and the long axis of the femur do not line up. Also, show that
this means that there will bending and twisting moments on the implants, in
addition to axial compression.

4.15. In the medieval torture device, the rack, the head is pulled apart from
the feet.
(a) Is this compression or tension?
(b) Which body part is likely to break first?

4.16. Someone tells you that UPE × Y approximately equals the UTS for
only a few organs and materials in Table 4.2, such as for femoral compact
bone, but not for most of them. Explain why this is either true or false by
using several specific examples. Why is this so?
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4.17. Use the data in Fig. 4.19a to estimate a power-law relation between the
Young’s modulus for bone and its porosity.

4.18. Refer to Fig. 4.21.
(a) Why is it reasonable that the small intestine can stretch more and more
easily in the transverse direction than the longitudinal direction?
(b) Is it reasonable that the small intestine can stretch significantly at low
stress levels?
(c) How much should the radius of the small intestine be able to change under
reasonable stresses and is the UPE large enough for this to occur?

4.19. (advanced problem) Two very simple models of composite material are
shown in Fig. 4.77 [210]. In both cases there are two elastic materials, with
respective Young’s moduli Y1 and Y2 and volume fractions ρ1 and ρ2. In the
Voigt composite model in (a) the materials are modeled as slabs in parallel so
each material undergoes the same strain, while in the Reuss composite model
in (b) the materials are modeled as slabs in series so each material bears the
same stress. Show that the effective Young’s modulus for the Voigt composite
material is

Yc,Voigt = ρ1Y1 + ρ2Y2, (4.98)

while for the Reuss composite model it is

Yc,Reuss =
Y1Y2

(1 − ρ1)Y1 + (1 − ρ2)Y2
. (4.99)

These models give the upper and lower limits to the Young’s modulus of the
actual composite material.

Fig. 4.77. (a) Voigt and (b) Reuss models of composite materials, with components
of elastic modulus Y1 and Y2, with volume fractions ρ1 and ρ2. In the Voigt model
both materials have the same strain, while in the Reuss model both materials are
subjected to the same stress. Note that this Voigt model of composite materials
is qualitatively different from the Voigt model used to model viscoelastic materi-
als, which is simply called the Voigt model in this chapter. (Based on [210].) For
Problem 4.19
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4.20. In the text, strain, ε, was defined as the fractional deformation (L −
L0)/L0, which equals λ − 1, where λ = L/L0 is the Lagrangian strain (or
the stretch ratio). This is quite common for small fractional deformations,
so let us call it now εsmall = λ − 1. More generally, for arbitrary fractional
deformation, strain is defined as εgeneral = 1

2 (λ2−1). This is often called finite
strain (and sometimes Green’s strain) and is sometimes labeled as E.
(a) Calculate λ and compare εsmall and εgeneral for L = 2 cm and L0 = 1 cm.
(b) Express εgeneral in terms of εsmall, and vice versa.
(c) Show that for very small λ − 1, the finite strain, εgeneral, approaches the
small-strain approximation, εsmall. Specifically compare them for L = 1.01 cm
and L0 = 1.00 cm.
(d) What is the largest value of λ−1 for which εsmall is within 10% of εgeneral?
(e) Say that the stress–strain relation can be written as σ = Y εgeneral. Find
the relationship between σ and εsmall and sketch it. Compare it to the linear
and exponential relations between σ and εsmall.

4.21. Another way used to define strain in general (Almansi’s strain) is e =
1
2 (1 − 1/λ2). Repeat Problem 4.20, replacing εgeneral by e.

4.22. Yet another way used to define strain in general (“true” strain) is as
ln λ. Repeat Problem 4.20, replacing εgeneral by lnλ.

Viscoelasticity

4.23. (a) The faster you try to open or close a screen door, the more resisting
force you encounter. Does that mean you should use include a dashpot in the
mechanical model of the door closer unit? Why?
(b) When the door is open and released, it returns to its initial position. Does
that mean you should include a spring in the mechanical model of the door
closer? Why?
(c) When the door is open and released, the length of the closer decreases
linearly with time until it returns to its initial length. Do any of the three vis-
coelastic models (Maxwell, Voigt, Kelvin) model this behavior? If so, which?
If not, which one comes closest?

4.24. A dashpot of length 3 cm is characterized by the constant c = 2 ×
104 N-s/m. A constant force of 10 N is applied to it. Find its length and dx/dt
after the force has been applied for 2 s.

4.25. Say that the constant c of a dashpot varies linearly with its cross-
sectional area. Repeat Problem 4.24 for a dashpot that is smaller in all di-
mensions by a factor of 2.

4.26. Consider a function f(t) that is 0 before time −T/2, then increases
linearly in time until it becomes 1 at time T/2, and remains at 1 thereafter.



4.10 Summary 267

(a) Sketch it.
(b) What function does it become as T approaches 0?
(c) For arbitrary T , find and plot df/dt.
(d) What does this derivative become as T approaches 0?

4.27. The text says that the time derivative of the step function dθ(t)/dt
is the Dirac delta function δ(t). Show that the integral over the Dirac delta
function is the step function.

4.28. Use the step function to compose the following functions:
(a) A function that is 0 for t < −1 s, 2 from t = −1 to 3 s, and 0 thereafter,
which is a type of square pulse (Fig. 4.45b).
(b) A function that is 0 for t < 0 s, 1 from t = 0 to 3 s, −2 from t = 3 to 4 s,
and 0 thereafter.
(c) A function that is 0 for t < 0 s, 1 from t = 0 to 1 s, 0 from t = 1 to 2 s, 1
from t = 2 to 3 s, and so on, which is a type of square wave (Fig. 4.45c).

4.29. Verify the solutions of the Maxwell model for applied force (4.55) and
then for applied deformation (4.56), by inserting them into (4.52) – and ver-
ifying that you get an equality – (for t > 0 where the step function θ(t) can
be replaced by 1 (unity)) and by checking initial conditions (i.e., solutions for
t = 0).

4.30. Show that you obtain the solutions of the Maxwell model ((4.55) and
(4.56)) by integrating (4.52) from early times to time t for the sudden appli-
cation of force F0 as described in the text. Hint: This involves the integral

x(t) =
∫ t

−∞

(
F (t′)

c
+

dF (t′)/dt′

k

)
dt′. (4.100)

4.31. Verify the solutions of the Voigt model for applied force (4.58) and then
for applied deformation (4.59), by inserting them into (4.57) – and verifying
that you get an equality – (for t > 0 where the step function θ(t) can be
replaced by 1 (unity)) and by checking initial conditions (i.e., solutions for
t = 0).

4.32. Verify the solutions of the Kelvin/standard linear solid model for applied
force (4.69) and then for applied deformation (4.70), by inserting them into
(4.68) – and verifying that you get an equality – (for t > 0 where the step
function θ(t) can be replaced by 1 (unity)) and by checking initial conditions
(i.e., solutions for t = 0).

4.33. What happens to the Kelvin model when either k1 goes to 0 or k2 goes
to ∞, or when both occur? Why?

4.34. Show that the solution for a force F (t) = F0(θ(t)−θ(t−T )) applied to a
Maxwell model material is x(t) = F0(1/k + t/c)θ(t)−F0(1/k + (t−T )/c)θ(t−T ).
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4.35. (a) Verify (4.75) by substitution into the Kelvin constitutive equation
(4.68).
(b) Verify (4.77) – evaluated at the end of the force ramp. (Hint: Use the fact
that exp(−x) is approximately 1 − x when x � 1. Remember that exp(−x)
approaches 0 as x gets very large.)
(c) Now explain why this Kelvin solid model successfully describes the cited
viscoelastic properties of bone (at least qualitatively). Carefully sketch x(T )
as a function of time from T = 0 to T = many times τ .

4.36. Consider the deformation x resulting from a force that linearly increases
from 0 to F0 from t = 0 to T , as described by (4.75) and (4.77). The force is
then maintained at F0 for t > T . Use the Kelvin model to find x for t > T .

4.37. Repeat Problem 4.36 if instead at t = T the force is very suddenly
decreased to 0 and is maintained at that value.

4.38. Apply a deformation x0 in a linearly increasing manner over a time T
(x = x0(t/T ) from t = 0 to t = T ) to a material described by the Kelvin
standard linear model. Determine the stress relaxation F (t) from t = 0 to T
and obtain the deformation when the total deformation x0 has been applied,
F (T ). Examine how F (T ) depends on T , and explain why this qualitatively
agrees or disagrees with observations for bone in Fig. 4.46 with increasing
strain rates.

4.39. (advanced problem) One way to model the phase during running when
a foot is in contact with the ground is with a one dimensional model with the
force of a mass on a muscle (which is modeled as a passive material – a Voigt
material with elastic and viscous elements in parallel) acting on the track
(which is modeled as an elastic element in series with the muscle). (The mass
is that of the body minus that of the leg in contact with the ground. The force
on the mass includes the effects of gravity and the downward acceleration.)
This is mathematically equivalent to the Kelvin model of a material. Show that
there is a range of stiffnesses for which the period of this damped oscillation is
less than for a very hard track (very high stiffness, very low elasticity). (Is this
consistent with the data in Table 3.6?) Because the running speed is thought
to be inversely proportional to the time the foot is in contact with the track
and the foot would be in contact for about a half of an oscillation period, this
would mean that people could run faster on a track with the right elasticity
– and this has been demonstrated.

Breaking

4.40. The goal is to find how much a tibia of length L bends before it breaks
when a force F is applied to the center of it, as shown in Fig. 4.35.
(a) Show that the vertical deflection for a beam is L2/8R, where R is the
radius of curvature. (Define the vertical deflection as the maximum difference
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in vertical position of the neutral axis, laterally across the beam. Assume that
R � L.)
(b) Show that this maximum vertical deflection is L2(UBS)/4Y d, by using
(4.81). d is the thickness, which can be taken as the tibia diameter here.
(c) If the tibia is 440 mm long and its diameter is 20 mm, find this deflection.
(Use the data in the tables such as Table 4.6.)
(d) Is your answer reasonable to you? Why?
(e) Quantitatively, how does this deflection compare to how much the tibia
deforms laterally in length (i) at the top (compression) and bottom (tension)
of the bone at the UBS (where the magnitude of the relevant strain is d/2Rmin)
and (ii) before fracture in ordinary compression or tension?

4.41. Based on the discussions of bone breaking, below what porosity level
(the fraction of maximum bone density) will bones break fairly easily.

4.42. (a) Estimate the critical load for Euler buckling of an adult femur.
Assume the femur is solid.
(b) Do forces on the femur during exercise ever reach the levels needed for
buckling?
(c) If your answer to (b) was no, how small would Y have to be for buckling
to occur during exercise?
(d) If Y were proportional to porosity, how porous would the bone in the
femur need to be, to be concerned about buckling?

4.43. Find the critical load to buckle a hair (on your head) (Euler buckling
equation, (4.88)). Use Table 4.2 for Y , L = 3 mm, and thickness = 0.02 mm.

4.44. Replot (i.e., carefully sketch) Fig. 4.67 on linear–linear axes.

4.45. Use Fig. 4.67 to determine relationships for the number of cycles needed
to create stress fractures in cortical bone for a given strain range, for both
compressive and tensile loading. Also express these relations as the number
of miles to failure as a function of the strain range.
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Muscles

In this chapter we will discuss the motors of the body, which are the muscles.
There are three types of muscles in the body (Fig. 5.1): (1) Skeletal muscles are
involved in skeletal motion, lip motion, and in eyelid and eyeball motion. They
consist of long cylindrical cells that appear striated, have many nuclei, and
are under conscious control (voluntary muscles). Although skeletal muscles
can be consciously controlled, some move without conscious effort, as in the
diaphragm. (2) Cardiac muscle comprises most of the heart. These muscle
cells are striated, have one centrally located nucleus, and often branch; when
two cardiac cells meet they form an intercalated disc. (3) Smooth muscles line
the walls of blood vessels and the digestive and urogenital organs, to help
advance and control flow (see Figs. 7.21 and 8.14). They are elongated cells
with tapered ends and no striation, have a single, centrally located nucleus,
and are not under conscious control (involuntary muscles), as is also true for
cardiac muscle. We will concentrate on skeletal muscles; many of the properties
of cardiac and smooth muscles are similar. Some differences between cardiac
and skeletal muscles are described in Chap. 8.

We will learn how muscles work and develop macroscopic, microscopic,
and nanoscopic models of them [271, 272, 283]. We will also re-examine some
of the assumptions we made in earlier chapters involving muscle forces. In the
next chapter we will learn more about how energy is used in muscles.

5.1 Skeletal Muscles in the Body

Figure 1.8 shows many of the main skeletal muscles in the body.
Skeletal muscles account for ∼43% of the typical body mass, or ∼30 kg of

a 70 kg person. At rest, they use ∼18% of the body energy consumption rate
(which is called the basal metabolic rate or BMR); they use much more during
activities, such as motion. Of the total energy “burned” by skeletal muscle,
only ∼25% is used for work, and this is the muscular efficiency. The other
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Fig. 5.1. (a) Skeletal, (b) cardiac, and (c) smooth muscle cells. (From [280])

∼75% is released as heat. (This inefficiency of the body does have a positive
purpose – it is a consistent and very important source of body heat.)

The maximum muscle force FM or tension T that a muscle can develop
is kMPCA, where PCA is the physiological cross-sectional area of the muscle.
The range of the maximum values of kM is 20–100 N/cm2 during isometric
(constant length) conditions; the larger values are for muscles with the pinnate
fiber structure that is described below. (See Fig. 5.38 and Problem 5.2.) In the
quadriceps, the forces are up to ∼70 N/cm2 during running and jumping and
∼100 N/cm2 under isometric conditions. We will discuss this more later.

Many muscles that cross the hip, knee, and ankle joints are important
in locomotion. The relative significance of these leg muscles depends on the
locations of their points of origin and insertion, lengths, and their PCAs.
Many of these muscles are seen in Figs. 3.2–3.4. (Analogous sets of muscles
are involved in controlling our arms and hands, as seen in Figs. 5.26 and
5.27.) The relative PCAs are given in Tables 5.1–5.3. In general, longer muscles
enable larger angles of rotation about joints. The larger the muscle PCA, the
more the muscle strength. Muscles with smaller PCAs can be important in
providing stability.

As is clear from Fig. 1.8 and Tables 5.1–5.3, many of these leg muscles pass
over more than one joint. Figure 5.2 shows the three such major biarticulate
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Table 5.1. Percent PCA of muscles crossing the hip joint. (From [292], data from
[289])

muscle %PCA

iliopsoas 9
sartorius 1
pectineus 1
rectus femoris 7
gluteus maximus 16
gluteus medius 12
gluteus minimus 6
adductor magnus 11
adductor longus 3
adductor brevis 3
tensor fasciae latae 1
biceps femoris (long) 6
semitendinosus 3
semimembranosus 8
piriformis 2
lateral rotators 13

(two joint) muscles in the leg. The forces exerted by the muscles on the bones
at the points of origin and insertion are the same (Newton’s Third Law), but
the torques are different at the proximal and distal joints because the moment
arms are different. As seen in Fig. 5.2, the gastrocnemius is a knee flexor and
ankle plantarflexor (extensor), with the torque about the latter joint greater
because of its larger moment arm (5 cm vs. 3.5 cm). During stance the net
effect of this muscle is to cause the leg to rotate posteriorly and to prevent

Table 5.2. Percent PCA of muscles crossing the knee joint. (From [292], data from
[289])

muscle %PCA

gastrocnemius 19
biceps femoris (small) 3
biceps femoris (long) 7
semitendinosus 3
semimembranosus 10
vastus lateralis 20
vastus medialis 15
vastus intermedius 13
rectus femoris 8
sartorius 1
gracilis 1
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Table 5.3. Percent PCA of muscles crossing the ankle joint. (From [292], data from
[289])

muscle %PCA

soleus 41
gastrocnemius 22
flexor hallucis longus 6
flexor digitorum longus 3
tibialis posterior 10
peroneus brevis 9
tiabialis anterior 5
extensor digitorum longus 3
extensor hallucis longus 1

the knee from collapsing. The hamstrings are extensors of the hip and flexors
of the knee, with hip extension having twice the moment of knee flexion.
During stance, this causes the thigh to rotate posteriorly and prevents the
knee from collapsing. The rectus femoris of the quadriceps is a hip flexor
and knee extensor, with a slightly larger moment about the hip. However, the
major action of the quadriceps is knee extension because 84% of the quadriceps
PCA is from other muscles, the uniarticulate knee extensors (and all of these
muscles fire simultaneously). The net effect of these three major biarticulate

Fig. 5.2. Three major biarticulate muscles of the leg, from left to right the gastroc-
nemius, hamstrings, and rectus femoris, along with moment-arm lengths about the
joints at their proximal and distal ends. (From [292]. Reprinted with permission of
Wiley)
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muscles is the extension of all three leg joints, and they help prevent against
collapse due to gravity. Coordinated motion of these muscles, such as the
lengthening of one of these muscles and shortening of another, is needed to
achieve the full range of rotation of these joints because of the limited change
of muscle length of any one of them [292].

5.1.1 Types of Muscle Activity

Muscles can be activated under a wide range of conditions. When the muscle
length changes, the angle of the joint for this inserted muscle changes, and
there is motion at the end of the bone emanating from the joint. Because
there is motion, mechanical work is done. This can be called “dynamic” work.
When the muscle length does not change, i.e., isometric conditions, there is
no rotation of the joint and no mechanical work is done. This is important
because tension is still supplied by the muscle to resist outside forces, as
needed in holding objects or standing upright. Energy is still expended by the
muscle (for such “static” work) to produce the tension that resists the load.

Mechanical work is performed with joint motion for nonisometric con-
tractions. In concentric contractions, the muscle develops enough tension to
overcome the load and the muscle length shortens, causing joint movement. In
ascending stairs the quadriceps contract and the leg straightens as a result of
this concentric contraction. In eccentric contractions, the muscle does not de-
velop enough tension to overcome the load and the muscle length still length-
ens, sometimes slowing joint movement (on purpose). In descending stairs
the quadriceps fire but still extend during this essential controlled (eccentric)
braking of knee flexion in fighting gravity. Therefore, the same flexor muscles
that contract concentrically during flexion can contract eccentrically during
extension to decelerate the extension. Concentric contractions are said to do
positive (mechanical) work, while eccentric contractions do negative work.

During isokinetic contraction, the velocity of muscle shortening or length-
ening, and consequently also the angular speed of the joint, are constant.
During isoinertial contraction, the resistive load on the muscle – due to the
gravity force, applied forces, etc. – is constant. During isotonic contraction,
the tension is constant. (This is an idealized condition because the muscle
tension changes with length.)

In elbow flexion the biceps brachii and brachialis muscles contract and
they are the agonists or prime movers of the action. The brachioradialis is
a synergist muscle in the motion; such synergist muscles assist the motion
and sometimes add fine tuning. The triceps brachii are the antagonists of this
action, and oppose the prime movers.

During walking and running the quadriceps act eccentrically during early
stance to prevent the collapse of the knee angle, and then concentrically to
extend the knee as the leg rotates over the foot in midstance (and this is more
so in walking). The ankle plantarflexors fire eccentrically during stance to help
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Fig. 5.3. Types of fiber arrangements in skeletal muscles, with (a) parallel and (b)
pinnate fibers. (Based on [271])

advance the leg rotation over the foot controllably, and then concentrically to
assist push off.

5.2 The Structure of Muscles

Muscles have a fiber structure with successive levels of fiber-like substructures
called fasciculi (fuh-sik’-you-lie) (a single one is a fasciculus (fuh-sik’-you-lus)).
On a macroscopic basis, these fibers are arranged in one of several ways. This
is illustrated in Fig. 5.3.

In fusiform muscles the muscle fibers are parallel and they narrow and
blend into tendons that attach to the skeleton. In parallel muscles the fibers
are also parallel. They tend to be long, such as the sartorius – the longest
muscle in the body, which spans from the hip to the tibia (Figs. 1.8 and 5.4).
(The fibers are also parallel in the rectus abdominis (the “abs”).) We will
usually not differentiate between fusiform and parallel muscles because of
their similar arrangement of muscle fibers. These muscles consist of many
sarcomere components in series (see below), and as such they can become
much shorter to produce much movement of bones for motion about joints,
and they can do so quickly. In unipinnate muscles, parallel muscle fibers attach
to tendons at an angle, such as with the flexor policis longus (poe-lee’-cis) in
the lower hand/thumb and the extensor digitorium longus (di-gi-tor’-ee-um)
in the lower leg/foot. In bipinnate muscles, such parallel muscle fibers attach
to a tendon in two different directions, such as with the rectus femoris (fe-
more’-is) in the thigh. These pinnate (or pennate or pinnation) structures
resemble the structure of feathers and of some leaves on branches. The fibers
attach on the central tendon at several angles in the multipinnate deltoid
(shoulder) muscles. Many short muscle fibers can attach to such short tendons
in pinnate muscles, leading to larger forces than for parallel muscles and more
movement, but with less efficient use of the muscles forces (see below and
Problem 5.18). The orbicularis oculi (or-bee-queue-lar’-is ok’-you-lie) about
the eye are circular muscles, in which the muscle fibers are in a circle about the
object. The pectoralis major (pec-tor-al’-is) in the upper chest (the “pects”)
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Fig. 5.4. Examples of muscle fiber arrangements in the body. (From [275]. Used
with permission)

is a convergent muscle; such muscles are broad at their origin and narrow at
insertion, leading to large forces near the insertion point. Examples of each of
these muscle types in the body are shown in Fig. 5.4.

The way the forces from muscle fibers add to give the total force on
the attaching tendon differs for these different muscle structures. In parallel,
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Fig. 5.5. Muscle fibers in pinnate muscles (a) before and (b) after fiber contraction
with accompanying tendon movement

fusiform muscles, all the force of the fibers is transmitted to the tendon. In
pinnate muscles, the fibers are attached to the tendon at an angle θ, and
only F cos θ of the force F of each fiber is effectively transmitted. While this
is a distinct disadvantage of the pinnate design, it has other relative advan-
tages. Because the geometry allows fibers to attach along part of the length
of the tendon (Fig. 5.5), many more fibers can be attached to the tendon.
Also, this geometry allows the central tendon to move a longer distance than
in the fusiform scheme, so the bones attached to the tendon can move more.
This overcomes the limited change in length in the muscles that can limit the
range of angular motion of bones about joints. These and related issues are
addressed in Problem 5.18. The mass, fiber length, PCA, and pinnation angle
θ for several muscles are given in Table 5.4.

Table 5.4. Properties of some muscles. (From [292], data from [289])

muscle mass fiber length PCA pinnation angle
(g) (cm) (cm2) (◦)

sartorius 75 38 1.9 0
biceps femoris (long) 150 9 15.8 0
semitendinosus 75 16 4.4 0
soleus 215 3.0 58 30
gastrocnemius 158 4.8 30 15
tibialis posterior 55 2.4 21 15
tibialis anterior 70 7.3 9.1 5
rectus femoris 90 6.8 12.5 5
vastus lateralis 210 6.7 30 5
vastus medialis 200 7.2 26 5
vastus intermedius 180 6.8 25 5
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Fig. 5.6. Organization of skeletal muscles, down to the myofibril level. See Fig. 5.7
for the structure of the myofibril. (From [281])

The microscopic components of the fibers are illustrated in Figs. 5.6 and
5.7, where the muscle belly of a fusiform muscle is seen to be composed of
many parallel fasciculi. Each fasiculus is composed of many parallel muscle
fibers (or muscle cells). Each muscle fiber is composed of many parallel my-
ofibrils. Each myofibril is composed of myofilaments arranged into ∼2–3 μm
long units called sarcomeres (sar’-koe-meres). There are thick myofilaments
with a serial arrangement of many myosin (my’-oh-sin) molecules and thin
myofilaments with globules of F-actin (or actin) molecules that form twist-
ing strands, that are surrounded by two other proteins: tropomyosin – which
forms strands that twist about the actin strands – and troponin-T – which
attaches at regular intervals to the actin and tropomyosin strands. The

Fig. 5.7. (a) Structure and substructure of the myofibril shown in Fig. 5.6, with the
banded structure of sarcomeres (whose periodicity is denoted by the arrows). (b)
The scanning electron micrograph of skeletal muscle shows the structure of bands
and lines in sarcomeres. This is associated with the thick and thin filaments in (c)
from the longitudinal perspective of (a) and (b), the transverse cross-section is seen
in (d). (From [280])
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Table 5.5. Number of muscle fibers in human muscles. (Using data from [272])

muscle number of muscle fibers

first lumbrical 10,250
external rectus 27,000
platysma 27,000
first dorsal interosseous 40,500
sartorius 128,150
brachioradialis 129,200
tiabialis anterior 271,350
medial gastrocnemius 1,033,000

interaction between the myosin and actin proteins on adjacent myofilaments
is the fundamental, chemical-induced, force-producing interaction in the mus-
cle, which involves the hydrolysis of ATP and the change in conformation of
the myosin.

In the large limb of an adult the muscle fibers are ∼50 μm in diameter.
This diameter can double with weight training. Depending on the type of
muscle, there are ∼104–107 muscle fibers per muscle (Table 5.5). There are
∼1 × 104–1.7 × 105 sarcomeres per muscle fiber, depending on the type of
muscle (Table 5.6).

The electron micrograph in Fig. 5.7 shows the banded myofilament struc-
ture that is also sketched in the figure. The A band is a wide dark, anisotropic
region, while the I band is a wide light, isotropic region. There is a lighter
H zone or band in the middle of the dark A band, and a darker M line
in the middle of the H zone. The dark Z lines run through the light I
bands.

Each sarcomere is bound between the adjacent Z lines. The dark A band in
the center of each sarcomere consists of thick (myosin) myofilaments (or thick
filaments), which are connected to each other in the central M line within the
H zone. They are overlapped to some degree by the thin (actin) myofilaments
(or thin filaments). There are thick filaments but no thin filaments in the

Table 5.6. Number of sarcomeres in human muscles. (Using data from [272])

muscle number of sarcomeres per fiber (×104)

person I person II person III

tibialis posterior 1.1 1.5 0.8
soleus 1.4 – –
medial gastrocnemius 1.6 1.5 1.5
semitendinosus 5.8 6.6 –
gracilis 8.1 9.3 8.4
sartorius 15.3 17.4 13.5
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central H zone. The light I band regions next to the Z lines are the thin
myofilaments in regions where they do not overlap the thick myofilaments;
they are bound to each other at the Z line. This is shown schematically in
Fig. 5.7.

5.3 Passive Muscles

A passive or resting muscle with no electrical stimulation has mechanical
properties that need to be understood before exploring the active state of the
muscle because they affect muscle performance during activation. Experimen-
tally it is found that passive muscles are non-Hookean, as in (4.22). Equation
(4.27) showed that for larger strains, stress and strain are related by

σ = μ′ exp(αL/L0) − μ, (5.1)

with λ = L/L0 = ε + 1 being the Lagrangian strain, where L is the muscle
length and L0 is the relaxed length.

Using this, the force across a passive muscle is related to stress by

FM = σ(PCA). (5.2)

Consequently, the force needed to maintain a passive muscle at a length L is

FM = (PCA)μ′ exp(αL/L0) − (PCA)μ. (5.3)

For large strains, more general relations need to be used for this neo-
Hookean regime and for defining strains. Chapter 4 and Problems 4.20–4.22
explain this further.

5.4 Activating Muscles: Macroscopic View

Electrical stimuli lead to twitches in the muscles that temporarily increase the
force exerted by them. These twitches are delayed by about 15 ms after the
electrical stimulus. They peak ∼40 ms later, and then decay to zero ∼50 ms
later (Fig. 5.8a, Table 5.7). The shape of a twitch can be modeled as

F (t) = F0
t

T
exp(−t/T ) (5.4)

with twitch time T .
By increasing the frequency of these stimuli and consequently of the

twitches, there is an increase in the force exerted by the muscle (Fig. 5.8
b,c). At a large enough frequency the twitches overlap to produce an almost
steady level of force called unfused tetanus, and at an even higher frequency
they produce a force that is constant in time called tetanus (Fig. 5.9). Roughly
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Fig. 5.8. Two twitches stimulated at S1 and S2, with various delays. (Based on
[271])

Fig. 5.9. A twitch, and then a series of twitches leading to unfused tetanus, and at
an even higher frequency leading to tetanus. (Based on [271])

Table 5.7. Twitch time T , in ms. (Using data from [292])

muscle typical mean time range of times

triceps brachii 44.5 16–68
biceps brachii 52.0 16–85
tibialis anterior 58.0 38–80
soleus 74.0 52–100
medial gastrocnemius 79.0 40–110
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Fig. 5.10. Photomicrograph of stained muscle cells from a human vastus lateralis
muscle, showing ST Type I (dark) and FT Type II (lightly stained) cells, with fine
lines showing boundaries added. (From [250]. Used with permission)

50–60 electrical shocks per second are required to fully tetanize mammalian
muscles at room temperature. This varies from about ∼30/s for the soleus
muscle to ∼300/s for eye muscles. (Also see Fig. 5.11 below.)

There are three different types of muscle fibers, which differ in how fast
they contract and their resistance to fatigue. They appear in different types
of muscles in varying proportions (Fig. 5.10). For a given muscle type, their
relative concentrations can be different in different people. Slow-twitch (ST)
red fibers (Type I) have a long contraction time (∼110 ms) and are very resis-
tant to fatigue because they are aerobic, i.e., they use oxygen to produce ATP.
These fibers are red because they have blood to supply oxygen. Fast-twitch
(FT) fibers generally can create more force than ST fibers, and reach a peak
tension in less time (∼50 ms). FT red intermediate fibers (Type IIA) have a
relatively short contraction time, an intermediate fatiguing rate, and aerobic
generation of ATP. FT white fibers (Type IIB) have a short contraction time
and fatigue quickly because they use anaerobic (i.e., no oxygen) processes to
produce ATP. One of the reasons for the faster response of the fast twitch
muscle is the larger neuron exciting it.

The “average” muscle has roughly 50% ST fibers and 25% red and white
FT fibers. The contraction time of a muscle depends on the proportion of FT
and ST fibers. Figure 5.11 shows the twitch response for three types of muscles.

Fig. 5.11. Duration of isometric responses for different muscles with different FT
and ST muscle fibers. (Based on [254])
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Fig. 5.12. Knee extension performance vs. percentage of FT fibers in the knee.
(Based on [251] and [286])

The ocular muscles in the eye have mostly FT muscles and a response time
of ∼1/40 s. The gastrocnemius (gas-trok-nee’-mee-us) muscle has many FT
muscles and a response time of ∼1/15 s. The soleus (soh’-lee-us) muscle has
many ST muscles and a response time of ∼1/5 s.

All of this makes sense in terms of the body’s needs. The eye muscles must
be fast for our needed rapid eye reflex. The gastrocnemius and soleus mus-
cles in the upper calf are both connected to the Achilles (calcaneal) tendon
in the foot, which is connected to the calcaneus bone in the heel. The soleus
muscle is a broad calf muscle that is deep relative to the medial and lateral
heads of the gastrocnemius muscle (see Figs. 1.8b and 3.4). The soleus muscle
is used more for standing and stability, for which endurance and resistance
to fatigue are important and a fast response is not very important. The gas-
trocnemius muscle is used mostly for jumping and running, for which a fast
response is necessary, even at the expense of endurance. The relative fraction
of ST and FT muscles in the knee for trained athletes is depicted in Fig. 5.12
and Table 5.8. Clearly, athletes in sports that require endurance – such as
marathon runners – have a higher fraction of ST muscle fibers in muscles
used in running, while those in sports that require speed and strength – such
as sprint runners and weight lifters – have a higher fraction of FT muscles in
those muscles heavily used in these activities. There is a similar correlation
for the cross-sectional areas of these different muscle fibers.

5.4.1 Mechanical Model of the Active State of Muscles

We now develop a macroscopic model of muscles in the active state due to
electrical stimulation by using the type of spring–dashpot models we employed
to characterize viscoelasticity in Chapter 4. This model includes springs and
dashpots to account for the passive properties of the muscle and tension gen-
erators to characterize the active state. While it mathematically characterizes
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Table 5.8. Percentages of ST and FT muscle fibers in selected muscles in male (M)
and female (F) athletes, along with the cross-sectional areas of these muscle fibers.
(From [291])

athlete gender muscle %ST %FT ST area FT area
(μm2) (μm2)

sprint runners M gastrocnemius 24 76 5,878 6,034
F gastrocnemius 27 73 3,752 3,930

distance runners M gastrocnemius 79 21 8,342 6,485
F gastrocnemius 69 31 4,441 4,128

cyclists M vastus lateralis 57 43 6,333 6,116
F vastus lateralis 51 49 5,487 5,216

swimmers M posterior deltoid 67 33 – –
weightlifters M gastrocnemius 44 56 5,060 8,910

M deltoid 53 47 5,010 8,450
triathletes M posterior deltoid 60 40 – –

M vastus lateralis 63 37 – –
M gastrocnemius 59 41 – –

canoeists M posterior deltoid 71 29 4,920 7,040
shot-putters M gastrocnemius 38 62 6,367 6,441
nonathletes M vastus lateralis 47 53 4,722 4,709

F gastrocnemius 52 48 3,501 3,141

the mechanical features of skeletal muscles acting against loads quite well, the
individual components of the model may or may not describe muscle prop-
erties microscopically. For example, the viscosity represented by the dashpot
does not model the effect of the viscosity of the fluid in a muscle very well. The
parallel elastic element may, in fact, be due to the sarcolemma, which is the
outer membrane surrounding the muscle fiber. The highly elastic protein, titin
(see Fig. 5.22 below), forms a net-like structure about the thick and thin fila-
ments, and may also contribute to this element. The hinge regions of myosin
may contribute to a series elastic element. (In cardiac muscle, it is believed
that connective tissue is the major part of the parallel elastic element.)

Figure 5.13a shows a mechanical model with a unit composed of a tension
generator T0(x, t) in parallel with a dashpot with viscosity c and a spring
with spring constant kparallel, that is in series with another spring with spring
constant kseries. The total length of the muscle is xT = xE + x, where xE is
the equilibrium length and x is the displacement.

One can show that this model (which is also depicted in Fig. 5.14a) is
mathematically equivalent to the model shown in Fig. 5.14b in which there
is a unit with a spring in series with a tension generator in parallel with a
dashpot, and this unit is in parallel with another spring. They are mathemat-
ically equivalent in the sense that combinations of the components give the
same model predictions. The spring constants and viscosity coefficients in the
two models are not equal to each other, but are related to each other (see
Problem 5.9). This representation of the model in (a) is exactly the same as
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Fig. 5.13. Complete active state muscle model. (Based on [271])

the Kelvin/standard linear model, except that the dashpot is in parallel with
the tension generator.

We will examine the state of the muscle by solving a slightly simpler model,
with only the spring with kseries (now called k for simplicity) in Fig. 5.15.
Without the tension generator, this reduces to the Maxwell model. The tension
generator supplies a tension that could depend on muscle length x and time
t, TG = TG(x, t). We will also assume that the total length of the muscle
does not change, i.e., isometric conditions. This means that xT = xT

1 + xT
2

is constant, where xT
1 is the length of the dashpot/tension generator and xT

2

is the length of the spring. For isometric conditions, we know that x(t) = 0.
Consequently, the tension generator TG = TG(t). We will say this generator
supplies the tension T0 for specific durations of time.

Fig. 5.14. Equivalent active state muscle models. The model in part (a) is the same
as that in Fig. 5.13. (Based on [271])
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Fig. 5.15. Simpler active state muscle model. (Based on [271])

The total length of the dashpot/tension generator can be subdivided into
the equilibrium length and the displacement xT

1 = xE
1 + x1; for the spring we

see that xT
2 = xE

2 + x2. The force generated across the muscle is T = T (t).
This is equal to the tension across the spring

T = kx2 (5.5)

and is also equal to the sum of the tensions across the tension generator and
dashpot, and so

T = TG + c
dx1

dt
. (5.6)

(Refer to the discussions of the Maxwell and Voigt models of viscoelasticity
in Chap. 4 for a more detailed explanation.)

Because xT = xT
1 + xT

2 is constant, we see that dxT/dt = 0. Also, because
the equilibrium distances are constant

dx

dt
=

dx1

dt
+

dx2

dt
= 0. (5.7)

Equation (5.6) gives dx1/dt = (T − TG)/c and the first derivative of (5.5)
gives dx2/dt = (dT/dt)/k, and so (5.7) becomes

T − TG

c
+

1
k

dT

dt
= 0 (5.8)

or

dT (t)
dt

+
T (t)
τ

=
TG(t)

τ
, (5.9)

where τ = c/k is the relaxation time. T (t) is a function of t driven by TG(t).
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The general solution to this with TG(t) = α (a constant) for t > 0 and 0
for t < 0, with tension T (0) at t = 0, is

T (t) = α+(T (0)−α) exp(−t/τ) = T (0) exp(−t/τ)+α(1−exp(−t/τ)). (5.10)

This can be proved by substituting this in (5.9) and checking the solution at
t = 0. (See Appendix C.)

Before the tension generator turns on, TG = 0 and T (0) = 0. At t = 0,
TG(t) = T0(= α) for a period of time, during which time (5.10) is

T (t) = T0(1 − exp(−t/τ)), (5.11)

as shown in Fig. 5.16a.
If the tension generator turns off at time t1, so TG(t) = 0 for t > t1, then

the existing tension at t1 is

T (t1) = T0(1 − exp(−t1/τ)), (5.12)

and (5.10) (now with α = 0) shows that the tension then decays at a rate
exp(−Δt/τ), where Δt = t − t1. Therefore, for t > t1

T (t) = T0(1 − exp(−t1/τ)) exp(−(t − t1)/τ), (5.13)

as is seen in Fig. 5.16b.
This is the model of a single twitch. We can consider sequences of two

twitches separated in time one right after the other (see Fig. 5.16c). Say the
activation is off for a time t2 and is on again at t1 + t2 for a time t1 (until
2t1 + t2). Then the tension at the start of the second twitch is

T (t1 + t2) = T0(1 − exp(−t1/τ)) exp(−t2/τ). (5.14)

For t1 + t2 < t < 2t1 + t2, the tension evolves as given by (5.10) with (5.14)
used for the initial tension, α = T0, with t replaced by t − (t1 + t2) on the
right hand side of the equation (which is a new definition of the starting time).
Therefore,

T (t) = T0{1 + [exp(−t2/τ) − exp(−(t1 + t2)/τ) − 1] exp(−(t − (t1 + t2))/τ)}
(5.15)

= T0{1 − exp(−t/τ) + exp(−(t − t1)/τ) − exp(−(t − (t1 + t2))/τ)}.
(5.16)

At the end of the second twitch t = 2t1 + t2, so

T (t) = T0{1 − exp(−(2t1 + t2)/τ) + exp(−(t1 + t2)/τ) − exp(−t1/τ)} (5.17)
= T0[1 − exp(−t1/τ)][1 + exp(−(t1 + t2)/τ)], (5.18)

which is (1 + exp(−(t1 + t2)/τ))× larger than at the end of the first twitch.
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Fig. 5.16. Solutions of the active state muscle model in Fig. 5.15 for the tension
with excitation by (a) a step function, (b) a square pulse, and (c) a square wave.
The text derives the solution after two sequential square pulses at time 2t1 + t2 in
(c). (Based on [271])

At the end of N such twitches, the tension is larger than at the end of the
first twitch by a factor 1 + exp(−(t1 + t2)/τ) + exp(−2(t1 + t2)/τ) + . . . +
exp(−N(t1 + t2)/τ), which for large N approaches 1/[1− exp(−(t1 + t2)/τ)].
(The geometric sum 1+x+x2+x3+ . . . → 1/(1−x) for 0 < x < 1.) Therefore
the total developed tension in the tetanized state is

Ttetanized = T0
1 − exp(−t1/τ)

1 − exp(−(t1 + t2)/τ)
. (5.19)
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Fig. 5.17. Schematic diagram of a muscle fiber that consists of the simpler models.
This more complete muscle model is built from a distributed network of N sarcom-
eres. (Based on [246] and [278])

If the pulses come right after each other, so t2 = 0, this equation becomes
Ttetanized = T0, which makes sense.

Figure 5.17 shows a more complete mechanical model of a muscle, with
individual sarcomeres modeled.

5.5 The Effect of Exercise

The PCA of a muscle increases with exercise. This increase is mostly due to
increases in the cross-sectional area of individual muscle fibers, which is called
hypertrophy. The formation of new fibers, hyperplasia, was once thought not
to contribute to this increase at all, but now a few – but not all – studies
have found evidence of it in humans. With continued training at a given load,
hypertrophy continues until the muscle strength adjusts to the load. For a
constant load, such as that provided by free weights, the maximum load that
can be used during training (or lifting, etc.) over a large range of joint angles
is that near the lower forces achieved by muscles that are shorter and longer
than the optimal length (Fig. 5.23). This does not provide very satisfactory
training because the load is well below the loads that could be overcome near
the optimal muscle length. Some training systems vary the load with joint
angle to train the muscle optimally for the full range of joint rotation. (Can
training also be improved by exercising the muscle near its optimal length,
with less rotation about the joint?)

In such resistance training a 1 RM load is defined as the highest load that
can be moved, and it can be moved only once, a 10 RM load is one that can be
moved at most 10 times, and so on. Optimizing the development of strength
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Fig. 5.18. Rohmert curve for static muscle endurance, with ±1 SD (standard de-
vation) points shown. (From [243], adapted from [285]. Reprinted with permission
of Wiley)

occurs with few repetitions at high resistance (6 RM or less). Optimizing the
development of muscular endurance occurs with many repetitions at low re-
sistance (20 RM or more). Optimizing muscle size occurs for loads between
6 RM and 12 RM, with short <90 s intervals between the (greater than three)
repetition sets. For more details see [248, 268, 291].

5.5.1 Muscle Fatigue

The analyses of statics and motion in Chapts. 2 and 3 assumed muscle forces
do not change with time, i.e., there is never muscle fatigue. The Rohmert
curve in Fig. 5.18 characterizes the hyperbolic decrease in the endurance time
of the voluntary control of a muscle with the exertion level, which is expressed
as the % of maximum force level. Although not indicated in this figure, some
fatigue is also expected below 15% exertion level. Metabolic changes in the
muscle and impaired activation both contribute to muscle fatigue. Force can
decline due to several metabolic factors that hinder the formation and detach-
ment of crossbridges, including the formation of lactic acid, the increase in
phosphate, and the decrease in the PCr (phosphocreatine) in the fibers (see
Chap. 6); the depletion of ATP is not dominant. The increase in intramus-
cular pressure to that above the maximum blood pressure (systolic pressure,
Chap. 8) restricts blood flow, which limits oxygen flow (i.e., ischemia) to the
muscle and the removal of waste products. In some cases blood restriction
begins at 10–20% of the maximum voluntary contraction level; some muscles
are ischemic above 50% of this level. Impaired activation of muscles can be
due to several factors, such as central fatigue – one’s motivation – and pe-
ripheral fatigue – the failure of the neural control of muscles. Type I and IIA
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muscle fibers are less resistant to fatigue because they are surrounded by a rich
network of capillaries. Muscles used to maintain posture, such as the soleus
muscles in the lower leg, contain a large fraction of type I fibers. Muscles that
have a short burst of extreme activity, such as the gastrocnemius muscle, have
less need to be resistant to fatigue.

5.6 Coordination of Muscles

Many muscles are involved in most types of motion [256, 257, 258]. Sometimes
they work together and are agonists or protagonists or help each other in
other ways and are synergists (both mostly in phase) and sometimes they
are antagonists (and out of phase). The discussion of the muscles involved
in walking, running, and jumping in Chap. 3 (Figs. 3.2–3.4, 3.11, 3.12, and
3.30; Tables 3.1–3.3) and earlier in this chapter provides several examples of
both protagonists (e.g., several flexors of the same joint) and antagonists
(e.g., extensors/flexors of the same joint, etc.). Coordinated muscular activity
during each phase of the walking cycle is shown for the three sagittal joints
in Figs. 3.11 and 3.12.

Figure 5.19 shows the forces developed in the soleus and gastrocnemius
muscles in the upper calf in a walking cat as a function of time during a
step. They are both involved in this motion and need to work together. How-
ever, they serve different functions, the soleus (with more ST muscles) for
stability and the gastrocnemius (with more FT muscles) for vertical force,
and as such are not phased exactly the same. This is evident in Fig. 5.20,
which plots how the soleus force evolves as a function of the gastrocnemius
force, with time as an implicit variable. If they worked exactly in phase, the
three sets of force plots in Fig. 5.19 would have the same shape. However,
the force is developed in the gastrocnemius first during a step, and then
a bit later the force in the soleus is developed. Also, as the speed of the
walk increases, the force developed in the gastrocnemius increases relative
to that developed in the soleus. The force plot in Fig. 5.21 shows that the
tibialis anterior muscle (Fig. 3.4) and the soleus work out of phase during a
step.

5.7 Active/Tetanized Muscles: Microscopic View

Unlike passive organ parts whose lengths change because of applied stresses,
the lengths of muscles change and force is generated by the sliding of the
thick filaments on the thin filaments, as seen in Figs. 5.22 and 5.23. Because
the basic operating unit undergoing this motion is the sarcomere, which is
∼2 μm long, these figures describe a microscopic view of muscle action.

The maximum tension force that can be developed by a muscle depends
on several quantities, including the current muscle length, the current rate of
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Fig. 5.19. Force vs. time curves for three synergistic muscles in the ankle plantar
flexor group in a cat walking at 1.2 m/s, with mean (M), highest (H), and low-
est (L) forces over 43 step cycles. (From [276]. Copyright Wiley. Reproduced with
permission. Also see [258])

muscle contraction, and the physiological cross-sectional area (PCA) of the
muscle. Under optimal conditions this force is ∼30 N/cm2 for many muscles
in most mammals.

The tension generated by a muscle when the two ends of the muscle are
held fixed, called isometric conditions, is shown in Fig. 5.23. The maximum
force generated by a muscle occurs at the optimal length L0. (This occurs at
a muscle length slightly longer than the initial or resting length Li, prior to
activation.) This maximum level of force decreases to half of this value when
the muscle length is 70% (shortened muscle) or 130% (lengthened muscle) of
this optimal length. It is almost zero at 170% of this resting length. These
observations refer to both the total length of the actual muscle and the length
of each ∼2 μm long sarcomere.

The physical basis of this tension is the extent of overlap of myosin and
actin molecules on the thick and thin filaments. At the resting length the
number of myosin/actin pair overlaps is at a maximum, and this number of
overlapping pairs decreases when the sarcomere gets shorter or longer. These
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Fig. 5.20. Force vs. force curves for protagonist muscles, showing force sharing
for three synergistic muscles in the ankle plantar flexor group in a cat walking at
0.4, 0.7, and 1.2 m/s and trotting at 2.4 m/s, averaged over 10 cycles. (From [276].
Copyright Wiley. Reproduced with permission. Also see [258])

interactions of these pairs of molecules are known as crossbridges between the
thick and thin filaments.

One consequence of changing muscle length is the concomitant changing
of joint angle (Problem 5.17). Consequently, the generated force and resulting
torque also depend on the joint angle. Figure 5.24 shows the force vs. joint
angle for several joints.

5.7.1 Total Muscle Tension

Figure 5.25 shows the total tetanized tension vs. muscle length. It clearly looks
different than the response shown in Fig. 5.23. Also shown in Fig. 5.25 is the
passive tension vs. muscle length. The contribution of the passive properties
of muscle tissue cannot be ignored in modeling activated muscles. The passive
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Fig. 5.21. Force vs. force curves for the antagonist pair of soleus and tibialis anterior
muscles in a cat walking at 0.7 m/s. (From [276]. Copyright Wiley. Reproduced with
permission)

component is given by (5.3), and it and the developed tension are added in
Fig. 5.25 to give the total tension. In parallel, fusiform muscles, such as the
sartorius muscle in the thigh, there are long muscle fibers with relatively little
passive material. The maximum seen in the active part is still seen in the total
muscle response (Fig. 5.25b). In pinnate muscles, such as the gastrocnemius
muscle, there are short fibers and much connective tissue and so the passive
material contribution is large and the maximum attributable to the developed
portion alone is not seen (Fig. 5.25a).

Fig. 5.22. Schematic of the sliding filament mechanism in sarcomeres, with relative
sliding of the thick and thin filaments, for sarcomeres of increasing length: 1.6,
2.2, 2.9, and 3.6 μm (which roughly correspond to the sarcomeres highlighted in
Fig. 5.23). Note that the elastic material titin is schematically shown to connect the
thick filament to the structure; it plays an important role in the elastic properties
of muscles. (From [281])
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Fig. 5.23. Force vs. sarcomere or muscle length, with schematics of the variation of
the overlap of the thick (myosin) and thin (actin) filaments for different sarcomere
lengths. The sarcomere and total muscle lengths scale the same way. The crossbridge
between an actin and myosin molecule is also shown. (Based on [254], [271], [280],
and [284])

5.7.2 Everyday Proof of the Limited Range
of Useful Muscle Length

The decrease in the tension that muscle is able to develop when it is very
short or long can be seen in simple demonstrations [239].

For most of us, it is hard to do pull ups (chin ups) or push ups with our
arms fully extended, because in this beginning position the muscles we need
to use are much longer than their resting length. It is much easier to start
these exercises half-way through the motion, with the muscles nearer their
resting length.

Grip a ball (or pen) tightly in one fist. Have someone of comparable physi-
cal dimensions try to grasp the ball from your fist. Hopefully (and quite likely)
he or she cannot. Now use your other hand to push the top of your clenched
fist down at the wrist, to flex your wrist downward as much as possible with-
out inflicting undue pain. Now have your colleague try to grasp the ball. It
should be a relatively simple task. Why? Before you usually make a fist the
relevant muscles are initially near their resting length, but when your wrist
is flexed, the relevant muscles are much too long to generate much tension.
What is the exact origin of this?

There are 20 muscles in the hand, with a total mass of about 91 g. The total
hand itself has a mass of about 600 g. There are 20 muscles in the forearm,
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Fig. 5.24. Force vs. angle for elbow and shoulder flexion and extension, and hip
and knee flexion. Only some of these plots look like the classic force vs. length locus
(Fig. 5.23, converted to a plot vs. joint angle) for a single muscle fiber or sarcomere.
(Based on [250])

with a mass of about 766 g. Nine of these, extensor and flexor muscles with a
combined mass of 401 g, are connected to the hand via long tendons (Figs. 5.26
and 5.27). If these were physically in the hand, it would be very bulky.

Now back to holding the ball in a clenched fist. When the wrist is flexed
(Fig. 5.28a), with no ball in place, the digital extensor muscles are already
stretched, while the digital flexors are slackened (closed circles in Fig. 5.29
a,b). When the wrist is in this position and you try to clench an object, like
a ball, the extensors need to be stretched even more and the flexors need to
be slackened even more (arrows in Fig. 5.29 a,b). Both muscles enter regimes
beyond the normal range of muscle length.
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Fig. 5.25. Schematic of passive, developed (active), and total tension vs. length for
pinnate and parallel muscles. (Based on [240] and [271]. Also see [237])

This type of knowledge does have practical applications! You can make an
assassin with a knife in hand drop the knife by forcibly bending his or her
wrist.

Similarly, you cannot straighten your fingers when your wrist is first hy-
perextended (hand back the other way). When the wrist is hyperextended
(Fig. 5.28b), with no ball in place, the digital extensor muscles are slackened,
while the digital flexors are stretched (closed circles in Fig. 5.29 c,d). When
the wrist is in this position and you try to straighten your fingers, the exten-
sors need to be slackened even more and the flexors need to be stretched even
more (arrows in Fig. 5.29 c,d). Again, both muscles enter regimes beyond the
normal range of muscle length.

5.8 Hill Force–Velocity Curve

The maximum tension T a muscle can develop also depends on how fast it
contracts. An equivalent way of saying this is the speed at which a muscle can
shorten depends on how much tension it must generate to overcome a load,
such as a mass hanging at the end of it. The contraction speed is v = |dL/dt|,
and it is measured with the muscle fixed at one end and with a fixed load on
the other, i.e., isotonically. (Again, this fixed load can be a hanging mass.) The
maximum tension and contraction speed are experimentally observed to follow
the hyperbolic dependence in the Hill force–velocity curve (Fig. 5.30), with the
muscle shortening faster with a smaller load mass. Note that muscles do work
by contracting, and as such the term tension really refers to the tension felt by
objects attached to them. (By the way, Archibald Vivian Hill, who formulated
this force–velocity relation, shared the Nobel Prize in Physiology or Medicine
in 1922 for his discovery relating to the production of heat in the muscle;
much of his work concerning the force generated by muscles occurred after his
Nobel-Prize-winning research.)
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Fig. 5.26. Extensor muscles of the forearm, with (a) posterior view of superficial
muscles, (b) selected features of the hand, and (c) deeper muscles, along with
selected arteries. Tendons extending to the hand are also seen. (From [274]. Used
with permission)

The maximum tension Tmax that can be developed occurs for v = 0
(isometric conditions), which is the limit of very slow muscle contraction,
T (v = 0) = Tmax (sometimes called T0). T decreases and becomes zero at
vmax. One form of the Hill force–velocity curve is

(T (v) + a)(v + b) = (Tmax + a)b (5.20)

or

T (v) =
bTmax − av

v + b
, (5.21)
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Fig. 5.27. Flexor muscles of the forearm, with anterior views of the first (most
superficial) layer in (a), the second layer in (b), and the third and fourth layers in
(c). Tendons extending to the hand are also seen. (From [274]. Used with permission)

Fig. 5.28. It is difficult to clench your fist with a strongly flexed wrist (a) and
straighten your fingers with a strongly hyperextended wrist (b). (From [239]. Copy-
right 1992 Columbia University. Reprinted with the permission of the press)
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Fig. 5.29. Schematic of forces on extensors and flexors for clenching a flexed
wrist and straightening fingers in a hyperextended wrist as shown by the closed
circles. The arrows show the continued slackening or stretching described in the
text

Fig. 5.30. Hill force–velocity curve. Both muscle shortening and lengthening are
shown. Power = Force × velocity, is also shown, with arbitrary vertical units. (Based
on [271])
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Table 5.9. Parameters for the Hill force–velocity relationship for skinned muscles,
with forces normalized per unit area. (Using data from [270])

muscle isometric maximum a/Tmax

force, Tmax velocity, vmax

(MPa) (FL/s)a

human soleus (15◦C)b 0.145 0.52 0.037

human gastrocnemius (15◦C)b 0.136 0.64 0.034

monkey soleus (15◦C)b 0.146 0.7 0.044

monkey gastrocnemius (15◦C)b 0.160 0.69 0.040
rabbit psoas (20◦C)c 0.246 3.26 0.10
rat soleus (20◦C)c 0.234 1.94 0.05

aFL is the fiber length.
b[290].
c[288].

which is plotted in Fig. 5.30. It is valid from v = 0 to vmax. The right hand side
of (5.20) represents the point on the hyperbola with maximum tension, with
v = 0 and T (v = 0) = Tmax. We could have chosen the values at any other
point on the hyperbola, such as that with minimum tension with v = vmax and
T (v = vmax) = 0, for which the right-hand side would have been a(vmax + b).
Clearly these right-hand sides are equal, so (Tmax + a)b = a(vmax + b); this
means vmax = (b/a)Tmax, so there are only three independent parameters.

After rearranging terms, (5.21) can be expressed as

v′ =
1 − T ′

1 + T ′/k
, (5.22)

where v′ = v/vmax, T ′ = T/Tmax, and k = a/Tmax = b/vmax. Typically,
0.15 < k < 0.25. Table 5.9 gives the parameters in the force–velocity curve for
several muscles.

We saw in (3.83) that the power needed to move an object is Fv, where
F is the (constant) force on the object and v is the speed with which it is
moved. Therefore the power generated by the muscle is

P (v) = T (v)v = v
bTmax − av

v + b
. (5.23)

Problem 5.21 shows that this is a peak when v ∼ 0.3vmax, for which T ∼
0.3Tmax. At this speed the power attains a peak value of ∼0.1Tmaxvmax

(Fig. 5.30). Bicycles have gears that take advantage of this, keeping the muscle
shortening velocity near the value where this peak power is achieved. This is
analogous to shifting gears in cars traveling at different speeds so their engines
can operate at an rpm near maximum torque.

Figure 5.31 shows experimental data for the torque that can be developed
in knee extension vs. the speed of angular change [251]. (In this figure the
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Fig. 5.31. Torque (per unit body mass) vs. knee angular velocity for knee extension.
(Based on [251] and [286])

generated forces are proportional to this torque and the speed of muscle length
change is proportional to this speed of angular change. This is analogous to
interrelating muscle force vs. length with knee torque vs. angle.) Figure 5.12
shows that the maximum angular speed and torque depend on the fraction of
FT muscles.

At lower levels of muscle excitation, there is less contractile force at each
velocity, as is seen in Fig. 5.32. Also, muscles usually do not maintain a zero
speed, as in Fig. 5.23, or a constant length, as in Fig. 5.30. The response of

Fig. 5.32. Force–velocity curves at different levels of muscle activation, for a given
length muscle. All shortening curves follow the Hill force–velocity curves, but for
lengthening the curves are different for isotonic activity (solid curves) and isovelocity
activity (dashed curves). (From [292]. Reprinted with permission of Wiley)
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Fig. 5.33. Three-dimensional plot showing the tension of the active part of a muscle
vs. velocity and length. This is for maximum muscle activation and excludes the
passive muscle response. (From [292]. Reprinted with permission of Wiley)

a muscle really depends both on its length and the contraction velocity, as
is shown in Fig. 5.33. In Hill’s two-element model for a skeletal muscle, the
contractile element, described by the Hill force–velocity curve, is in series with
an elastic element [266].

The Hill force–velocity curve can be derived by considering the statistics
(more precisely the statistical mechanics) of the crossbridges in the sliding
filament model. The derivation of this Huxley model is beyond the level of
this text; it can be found in [259, 262, 263, 264, 271].

So far we have considered muscle shortening from speeds 0 to vmax. This
is important in doing positive work. However, Fig. 5.30 is seen to extend to
the left of v = 0, where there is muscle lengthening (dL/dt > 0). The tension
that is developed in this eccentric contraction regime is about 1.8Tmax. In
this regime the muscle is used for braking, not performing positive work. This
application is used for braking motion (eccentric), resisting pulling, isometric
(constant muscle length) activities, and keeping the body stable – as in stand-
ing. Remember that 100 J is lost in each step during running. Almost half of it
is absorbed in the braking action of the leg muscles. When the muscles are not
fully activated, this very large tension in braking always occurs for isotonic
motions but not always for isovelocity modes, as seen in Fig. 5.32.

In weightlifting a heavier load can be raised if it is raised quickly, i.e.,
if it is “jerked,” than if it is moved more slowly and smoothly. This is not
really contradictory to the Hill force–velocity curve because the lifter is taking
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advantage of the higher muscle forces that are possible before the filaments
can pick up speed. So, you can lift heavier weights by rapid lifting to shoulder
height and then a jerk to full vertical extension – the “clean-and-jerk” –
than by rapid lifting to shoulder height and then slow lifting to full vertical
extension – the “press.” (By the way, the press is no longer a competitive
event because it is hard to distinguish from the clean-and-jerk.) A third weight
lifting motion is the “snatch,” in which the weight is raised in one continuous
motion. The world records for the snatch and the clean-and-jerk are 138 kg
and 182 kg, respectively for women (mb ≥ 75 kg, as of 2006) and 213 kg and
263 kg for men (mb ≥ 105 kg). (For more on this, see Problem 5.6.)

5.9 The Sliding Filament Model: Nanoscopic View

The body has several motor proteins that induce directed movement. Myosin
(Figs. 5.7, 5.22, 5.23, and 5.34) does it in muscles [279]. Kinesin (kai-nee’sin)
and dynein (die-nee-in) direct transport on microtubules in the body
(Fig. 5.35) [253, 282, 287]. (Both are used in long-range transport in the body.
Within the cell, kinesin is used for transport from the center of the cell to
its edge, while dynein is used for transport from the edge of the cell to its

Fig. 5.34. Sliding of myofilaments, with (a) binding of the myosin head to an
active actin site (site x), (b) the power stroke in which the myosin head hydrolyzes
ATP and distorts, and moves the thin filament, (c) the myosin head detaches and
relaxes, and (d) the myosin head reattaches to a new actin site (x + 1) for a new
cycle. (Based on [280] and [284])
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Fig. 5.35. Comparison of motor proteins, with (a) transport of a vesicle along
a microtubule track by dynein, (b) transport of a microtubule on a microtubule
track by kinesin, and (c) motion of the actin filament by a myosin filament. (From
[281])

center.) Such direct transport is preferred to diffusion because it provides a
directed motion and a motion that is faster than diffusion. As is described in
more detail in Chap. 7, in one dimension diffusion leads to a slow gaussian-
like, undirected spreading of the species over a distance x ∼

√
2Ddifft in a

time t, where Ddiff is the diffusion coefficient.
Directed motion is necessary for muscle movement. Figure 5.34 shows the

head of a myosin molecule from a thick filament attached to an actin molecule
labeled x on a thin filament (Fig. 5.34a). This single coupling is a crossbridge.
This stage in the interaction is called the cocked position. ATP is hydrolyzed
to form ADP + inorganic phosphate + energy (see Chapter 6) and this en-
ergy is used to contort the myosin molecule, which is still bound to the same
actin molecule, to a new configuration. This motion, along with the simul-
taneous action of other crossbridges on the same filaments, causes the thin
filament to slide to the left. This is the power stroke stage. The myosin mole-
cule detaches (the detach phase), relaxes, and then binds to the adjacent actin
molecule labeled x+1 (Fig. 5.34d) on the thin filament (the bind phase). How
many crossbridges are there in a muscle? How much force is generated per
crossbridge? We need to connect this nanoscopic crossbridge view with the
macroscopic observation that muscles generate up to ∼30 N/cm2.

Each muscle has 104–106 muscle fibers. Each fiber is 10–80 μm in diameter.
Let us say 50 μm is typical so there are ∼1/(50 μm)2 = 4 × 104 fibers/cm2.
Each fiber has several hundred to several thousand myofibrils, and let us
say there are 2,000 of them. Each myofibril has about 1,500 myosin thick
filaments and 3,000 actin thin filaments, and ∼1 × 104–1.7 × 105 sarcomeres.
These filaments are arranged in an ordered manner as in Fig. 5.6a,b (lower).
Each thick filament has 200 myosin molecules.
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In a given sarcomere, all the crossbridges are in parallel, so the forces of
each add for each filament. This is analogous to many people pulling on a rope
in a tug-of-war or rowing together in a crew boat or a galley ship, where their
combined forces add. All filaments in a sarcomere (myofibril) add in parallel
and so these forces add. All myofibrils in a fiber add in parallel, so their forces
add. All muscle fibers add in parallel and so their forces add.

Therefore, within the width of a half sarcomere there are: 4 × 104

fibers/cm2 × 2,000 myofibrils/fiber × 1,500 thick filaments/myofibril × 200
myosin molecules/thick filament � 1×1013 myosin molecules/cm2. This means
that the force developed across in each crossbridge is

∼ 30N/cm2

1 × 1013 myosinmolecules/cm2 ∼ 3 × 10−12 N = 3 pN. (5.24)

This is also a conclusion of Huxley’s sliding filament model of the Hill
force–velocity curve. Direct measurement of the interaction of a single actin–
myosin crossbridge using optical tweezers (which are focused laser traps used
to confine these molecules) has shown that 3–4 pN is generated per cross-
bridge and the power stroke distance (Fig. 5.34b) – the relative motion of the
filaments per ATP hydrolysis – is 11 nm (Fig. 5.36). This is truly a nanoscopic
view of muscles. (In Problem 5.26 you can calculate the work by this mo-
tion and characterize it in terms of the fraction of the energy released in the
hydrolysis of ATP, which is described in the next chapter.)

In examining the effect of the crossbridges in sarcomeres in exerting forces,
we considered only the crossbridges in the sarcomeres in a cross-section of
the muscle. These add to give the total force/area for the muscle. However,
there are ∼1 × 104–1.7 × 105 sarcomeres along the length of each fiber in
the muscle. These tens of thousands of sarcomeres do not increase the force
exerted by the muscle, but they serve a quite important, though very different,

Fig. 5.36. Force vs. displacement curve of a single myosin molecule interacting with
an actin molecule during a powerstroke, as measured by “optical tweezers.” (From
[247]. Used with permission of the Biophysical Society)
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function. The necessary amount of rotation about joints can only occur if there
is enough of a change in the muscle length (or tendon plus muscle length).
Because the effective change in sarcomere and muscle length is only about
±30%, the change in total length is controlled by the resting muscle length,
which depends on the number of sarcomeres along the length of the fibers.
(This is related to the second advantage of the pinnated design of muscles.)

Our crossbridge thick/thin filament model of the sarcomere is fine so far,
but real life is a bit more complicated. For example, it is geometrically more
complicated. Two actin filaments are actually intertwined, producing a dou-
ble helix and a tropomyosin strand runs down the grooves of this structure.
(Tropomyosin is a regulatory protein, and this strand is different from the
thick myosin strand.) Six actin filaments surround each myosin filament, and
each actin filament is surrounded by three myosin filaments (Fig. 5.6). More-
over, this attachment/detachment cycle does not happen unless there are Ca2+

ions present to induce a topological change that causes the myosin head and
actin to be physically close. These ions are present for a limited time after a
nerve impulse arrives at the muscle. Also, for force to be exerted for useful
motion, there must be some anchoring point and mechanism, and this is pro-
vided by the anchoring of each actin filament to a transverse structure by a
titin molecule.

Furthermore, the model of concerted motion in which billions or trillions
of myosin molecules all attach to actin, cock, then detach, and reattach in
perfect unison seems highly improbable [260, 261]. It appears that instead
of this concerted and rapid sequence of pull/wait, pull/wait, . . . cycles, there
are myosin molecules in different parts of the cycle at a given time – but
all forming crossbridges pulling in the same direction. (This is like a boat
with four oarsmen and eight oars, with, say only two oars in the water and
propelling the boat at any one time.) There is a cycle time, τcycle, for a given
crossbridge, during which time the myosin is attached to the actin for a time
τon and is detached and inactive for a time τoff , with τcycle = τon +τoff . During
the on-time the crossbridge moves the attached phase via hydrolysis by the
powerstroke distance or working distance δ, which is about 5.3 nm in vitro for
skeletal muscle myosin II. (We will approximate this as 5 nm.) The duty ratio
rduty is the fraction of time that the crossbridge is attached:

rduty =
τon

τon + τoff
=

τon

τcycle
. (5.25)

For myosin τon is ∼10−3 s and rduty is ∼0.02, so a given myosin molecule is
in contact with an actin filament for a relatively small fraction of the time.

For the motion of the strands to be continuous there have to be a minimum
of Nmin heads at different phases during the cycle time τcycle, where

Nmin =
1

rduty
. (5.26)



5.9 The Sliding Filament Model: Nanoscopic View 309

With Nmin ∼ 1/0.02 = 50, only about six of the myosin heads of the roughly
300 myosin crossbridges in a half a filament are attached and exerting a force
at any given time.

During a complete crossbridge cycle, which is the time it takes to complete
one ATP-hydrolysis cycle, the motor moves a distance ∆, where

∆ =
δ

rduty
. (5.27)

This is typically ∼5 nm × 50 = 250 nm (for low loads).
The cycle time is related to the rate constant for the hydrolysis of an ATP

molecule kATPase

τcycle =
1

kATPase
. (5.28)

Using kATPase ∼ 20/s, we see that τcycle ∼ 0.05 s and this is consistent with
τcycle = τon/rduty = 10−3 s/0.02. The relative speed of the sliding actin and
myosin filaments is given by the total displacement during the cycle time v,
which is

v = kATPase∆ =
∆

τcycle
=

δ

τon
. (5.29)

So we see that v = 5 nm/10−3 s = 5 µm/s.
In addition to δ and ∆, there is a third characteristic distance, d, which

is the path distance or step size between consecutive binding sites, and is
∼36 nm for this crossbridge. This distance is related to ∆ by ∆ = nd, where n
is an integer. In the schematic of Fig. 5.37, δ � d and ∆ = 3d, and so n = 3.
In the simpler model of concerted motion of actin–myosin crossbridges, it was
implicitly assumed that these three characteristic distances were the same,
and that r was almost 1. In contrast to the real � 1 duty cycle of myosin,
in transport by conventional kinesin, the motor protein is just about always
in contact with the tubule (and r is almost 1), with δ being about 8 nm,
d = 8 nm, and ∆ = 16 nm.

Fig. 5.37. Distances associated with a more sophisticated model of the actin–
myosin crossbridge. This crossbridge moves parallel to the filament axis and skips
two potential binding sites during a hydrolysis cycle. The duty ratio is low in this
example. (Based on [261])
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What is the maximum mechanical power provided by the legs during ex-
ercises like rapid step climbing? How is this provided by these crossbridges?
Let us assume that the calf and thigh muscles both contract a distance of
3 cm during a step and calculate the energy needed to perform those needed
contractions during a step time of 0.25 s, and therefore the necessary power. If
these muscles both have an average total diameter of 10 cm and the effective
diameter of a myosin filament is 20 nm, the number of myosin filaments in a
cross-section of each muscle is about (10 cm)2/(20 nm)2 = 2.5 × 1013, and so
there are about 5.0 × 1013 filaments in cross-section for both muscles. There
are six chains of side chains per myosin filament (as seen in Fig. 5.6), so there
are 3.0 × 1014 crossbridges in cross-section.

If the attachment/detachment of each crossbridge contracts the chain by
5.3 nm, because each muscle contracts by 3 cm the total number of cross-
bridge attachments/detachments during the motion is roughly (3.0 × 1014)
(3 cm/5 nm) = 1.8×1021. If each crossbridge motion requires the hydrolysis of
one ATP molecule, which releases 14 kcal/mole = 9.7×10−20 J (as discussed in
Chap. 6), the amount of energy needed is ∼(1.8×1021)(9.7×10−20) J = 175 J.
If this energy is used in 0.25 s, the power is 175 J/0.25 s = 700 W. This is con-
sistent with the metabolic powers needed for vigorous activities such as step
climbing (Problem 5.10 and Chap. 6). Note that part of the uncertainty in the
final answer is the very rough estimation of the effective cross-sections of the
muscles used.

5.10 Summary

The function of muscles can be understood by analyzing their substructure in
terms of fibers, sarcomeres, and the filamentary structure of the sarcomeres.
The forces developed by a muscle can be modeled to be a function of overall
muscle length and contraction speed. Mechanical models, similar to those
developed in Chap. 4, can be used to examine the consequences of the electrical
stimulation of muscles. On a nanoscopic basis, forces developed by muscles can
be understood and modeled in terms of the crossbridges between the myosin
and actin filaments.

Problems

Muscles and Forces

5.1. There is an average normal vertical force of 1,710 N (2.7× body weight)
on the one foot of an athlete in contact with the ground during running, but
an average of only 715 N on each foot (and 1,430 N total vertical force with
both feet = 2.3× body weight) when this same athlete does a vertical jump.
Is this difference possible? Qualitatively why is it reasonable or unreasonable?
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Fig. 5.38. The strength of the arm flexor muscles for males and females vs. muscle
cross-sectional area. (Using data from [265].) For Problem 5.2

(Consider only how the ranges of muscle lengths in these activities contribute
to these observations. References [238] and [239] suggest that the stimulation
of the muscles during stretching that occurs immediately prior to contraction
in running, but not in jumping, contributes to this observation. This is also
consistent with the observation that down-and-up action prior to a high jump
leads to higher jumps.)

5.2. (a) Do the data presented in Fig. 5.38 suggest that the strength of muscles
varies linearly with their cross-sectional areas, as is assumed in the text?
(b) If so, what is the proportionality constant?
(c) How does it differ for males and females?

5.3. (a) Show that the physiological cross-sectional area (PCA) of a muscle
for a parallel-fibered muscle is PCA = (m/Ld) cm2, where m is the mass of
the muscle fibers, d is the density of muscles (1.056 g/cm3), and L is the length
of the muscle fibers.
(b) Repeat this for pinnate muscles, showing that PCA = (m cos θ/Ld) cm2,
where θ is the pinnation angle (the angle between the long axis of the muscle
and the fiber angle).

5.4. Check to see if the two relations in Problem 5.3 are consistent with the
muscle data given in Table 5.4.

5.5. Let us estimate how much weight a person can lift above his head, with
extended arms.
(a) Use the data for the 70 kg person in Chap. 1, and specifically the volume
of skeletal muscle. Let us assume that all of these muscles are arranged as
an upright right circular cylinder of height equal to the sum of the lengths of
the person’s legs, torso, and arms. Use the resulting cross-sectional area and
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assume that skeletal muscle can exert a force of 20 N/cm2 to find the mass
that the person can lift.
(b) Is this value reasonable? If not, describe how each of the following factors
may or may not contribute to an unreasonable result: (i) His arms are narrower
than his legs, so the cross-sectional area of muscle is not uniform and the
limiting factor would be the weakest (i.e., narrowest) link. (ii) The muscles
are not the length assumed and should be taken to be no longer than a fraction
of the length of an arm or leg segment. Consequently, there are several muscles
in series. (iii) Not all skeletal muscle in the body is designed to contribute to
this lifting. (iv) Not all of the muscles involved are parallel fibered muscles.
(v) The 20 N/cm2 value is inaccurate.
(c) Now re-evaluate the problem for female and male world-class weightlifters
for their world-record lifted masses. (Use the data given in the text.) What
fraction of their skeletal muscle cross-sectional area (assumed to be uniform
here) effectively contributes to the lift?

5.6. Here are some data for world weightlifting records (in 2006 for clean-and-
jerk) for people of different masses: for men, 168 kg lifted (by a 56 kg man),
182 kg (62 kg), 197 kg (69 kg), 210 kg (77 kg), 218 kg (85 kg), 232 kg (94 kg), and
242 kg (105 kg); and for women, 118 kg (by a 48 kg woman), 127 kg (53 kg),
139 kg (58 kg), 141 kg (63 kg), 157 kg (69 kg), and 159 (75 kg). How does the
lifted weight vary with body weight? (Do this separately for men and women.)
Does it follow a power law? Is it sublinear? How can you explain this depen-
dence?

5.7. How can a measurement of force vs. muscle length be made with the
muscle fixed at either end (isometric conditions), as in Fig. 5.23? Is there an
inconsistency here?

5.8. Let us say that a fusiform muscle of length L and PCA is attached to
bones by tendons of length 0.9L and cross-section area f(PCA) (f � 1) on
either end. This total length of 2.8L is kept fixed as the muscle contracts
by 20% and develops a force corresponding to 15 N/cm2. Use the data in
Table 4.2.
(a) Find the strain in the tendons. How does it compare to the UPE for
tendons?
(b) Relate f to Y for the tendon.
(c) Using the value of Y from the table, compare the diameters of the muscle
and tendons.
(d) Find the stress in the tendons. How does it compare to the UPE for
tendons?

5.9. (advanced problem) Show that the two models in Fig. 5.14 are mathemat-
ically equivalent, with c1/(k1 +k2) = c2/k4; k1k2/(k1 +k2) = k3; k2 = k3 +k4;
and (k2/(k1 + k2))TG1 = TG2 [271].
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Muscle Energy, Endurance, and Synergy

5.10. A 75 kg person climbs stairs to a height of 50 m in 53 s. Determine
the person’s metabolic rate during climbing, in W and kcal/h, assuming the
process in 25% efficient. How does this relate to the estimates of energy used
in such motion in the text? (See Chap. 6 for more on metabolism.)

5.11. Derive a hyperbolic expression that describes the Rohmert curve
(Fig. 5.18) relating between the endurance time and exertion level of a muscle.

5.12. Figure 5.20 shows that as a cat walks faster his gastrocnemius develop
more and more force, but his soleus muscles do not. Explain why the relative
contribution of the gastrocnemius muscle increases with speed.

5.13. You repetitively extend your arm and then flex it (say as to touch your
shoulder), with a period of 2 s. Sketch the forces in your biceps brachii and
triceps brachii each vs. time, and both vs. each other (with time as an implicit
parameter).

Muscle Tension vs. Length or Time

5.14. Why do you suppose that Fig. 3.52 plots the total length of the muscles
and tendons?

5.15. Use the data in Fig. 3.52 to determine whether the major leg muscles
used during bicycling are always near their optimal lengths (so they always
exert nearly maximum forces) or do they become much longer or shorter than
these optimal lengths during parts of the cycle (so they exert forces that are
much less than the maxima)? Justify your answer.

5.16. In a weight room, you exercise your biceps brachii with a constant
weight by trying to lift it (i.e., rotating your lower arm about your elbow).
Sketch the maximum tension vs. length for your biceps brachii if
(a) The weight is so heavy that you can barely hold it as you try to lift it.
(b) The weight is so light that you can easily lift it.
For both cases, where is the weight on your sketch? Describe how much you
are changing the length of your muscle during the “lift.”

5.17. In the example of throwing a ball studied in Chap. 3, we assumed that
the force developed by the biceps brachii did not depend on the angle between
the upper and lower arm; this angle varied from 180–0◦ in the first statement
of the problem and from 135–45◦ in the second. Use what we now know about
how the contractile force of a muscle varies with its length to determine the
validity of that second assumption. Assume that the muscle has a length of
L0 = 12 cm when resting at 90◦, and that the distance from the elbow joint
to the insertion point on the radius is 4 cm (see Fig. 5.39). (You should base
your conclusions on calculations of the muscle length for various angles – at
least for 0, 45, 90, 135, and 180◦. Ignore the length of the tendons.)
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Fig. 5.39. Model of parallel fibered muscle. For Problem 5.17

5.18. In fusiform (or parallel) muscles all of the muscle contractile force is
directed along the axis of the tendon and there is a relationship between
changes in muscle and tendon length that depends on conditions (isometric
contraction, etc.). In pinnate and bipinnate muscles these relationships are
qualitatively different. Refer to Fig. 5.40, which depicts a bipinnate muscle
in relatively more relaxed, initial (solid lines) and relatively more contracted,
final (dashed lines) configurations.
(a) In the initial configuration, the tendon length (to the point where the
muscle is inserted into the tendon, at point B) is 8.7 cm (= 2.9 cm + 5.8 cm in
the figure) and each muscle fiber is 10 cm long, and is attached to the tendon at
a 30◦ angle. Say that there are a total of N fibers attached to the tendon near
this point (with an equal number of fibers on both sides) and that each fiber
exerts a force Ffiber. Find the total force transmitted to the tendon Ftendon.
(Is there “wasted” force here?)
(b) The muscle contracts so that the tendon length (to point C) is 2.9 cm,
and the muscle/tendon angle is now 60◦. Find the length of the muscle (see
the dashed lines). During this contraction, which has gotten shorter more, the

Fig. 5.40. Model of bipinnate fibered muscle. (Based on [272].) For Problem 5.18
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muscle fibers or the tendon? Is this good or bad for muscular action? (Does
this effect, along with the ability to attach more muscle fibers to this type of
tendon counter the “wasted” force in part (a)?)
(c) Find the force transmitted to the tendon after the contraction in part (b)
Ftendon, assuming that the contractile force of each muscle fiber is still Ffiber.
How has the force transmitted to the tendon changed?
(d) Now consider the more general case, in which we acknowledge that the
force exerted by a muscle fiber changes with length. Say that Ffiber peaks at
a length L = 8 cm, with Ffiber(L) = Fmax(1− (L−8)2/8). Sketch Ftendon as L
contracts from 10 to 6 cm. Does it peak exactly at the length where Ffiber(L)
peaks? Why?

5.19. Let us model the decrease of muscle force F from its maximum value
Fmax at a length Lpeak as being parabolic: F (L) = Fmax − ΔF ((L −
Lpeak)/Ldec)2. Show that the work done by the muscle as it contracts from
L = Lpeak + Ldec to L = Lpeak − Ldec is W = W0(1 − ΔF/3Fmax), where
W0 = 2FmaxLdec is the work that the muscle would do if the force did not
change with length [273].

5.20. Sketch on one set of axes the six curves in Fig. 5.24, each as the % of
maximum strength for that muscle group vs. the angle of pull (which is the
joint angle). The ordinate axis should range from 0 to 100% (and of course
100% represents a different maximum force for each of the curves).

5.21. Determine the values of T and v that maximize the power output of a
muscle described by the Hill force–velocity equation (5.20) and find the power
output Pmax of muscle. Take a/Tmax = 0.25; remember that P = Tv. (Hint:
You should differentiate the expression for power with respect to v and set
it equal to zero. One way to do this is to first solve for T (v) from the Hill
equation and express P (v) = T (v)v. The maximum power should turn out to
be about 0.1Tmaxvmax.)

5.22. In the example of throwing a ball studied in Chap. 3, we assumed that
the force developed by the biceps brachii did not depend on how fast the
elbow angle θ varied with time (dθ/dt). In this problem we will examine
two aspects of this assumption using the Hill force–velocity equation. Say
Tmax = (20 N/cm2)PCA, where PCA is the physiological cross-sectional area
of a muscle, and that vmax = 6L0/ s for muscles predominantly comprised of
ST muscle fibers and vmax = 16L0/ s for muscles predominantly comprised
of FT muscle fibers, where L0 is the optimal fiber length of the muscle of
interest. (Because muscles are often composed of combinations of FT and ST
muscle fiber, the appropriate vmax is often in between these limiting values.)
Also assume that a/Tmax = b/vmax = 0.25 and use the results from Problem
5.21. For each part that follows, consider the case studied in Chap. 3 of 2 in
diameter biceps brachii muscles, for which the calculated throwing speed is
17.8 mph (with no gravity and 〈sin θ〉 = 1), and take L0 = 10 cm.
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(a) Find a, b, and the maximum power (in W) that the muscle can generate,
first assuming FT and then ST muscles.
(b) If the ball leaves the hand at a speed of xmph, geometry says that the
speed of muscle contraction is smaller by the proportion of the distance of mus-
cle insertion from the elbow pivot (4 cm) to the distance of the ball from the
pivot (36 cm). How does this speed of muscle contraction, based on the throw-
ing calculation, compare to the maximum muscle contraction speed (vmax)
for FT and ST muscles? Also, how does it compare to the muscle contraction
speed, for both types of muscles, at which the power generated by the muscle
is maximized? (Ignore the response of the tendons. Can these be important?)
(c) The average and peak powers needed to be generated by the muscles to
achieve these throwing speeds are 178 W and 356 W, respectively, for the 2 in
diameter biceps using the kinematics calculations performed in Chap. 3. For
both FT and ST muscles, calculate the maximum power that the muscle can
generate and compare your answers with the values calculated using kinemat-
ics. Repeat this if you (incorrectly) assume that the force generated by the
muscle is Tmax independent of muscle contraction speed, so that the maximum
muscle power would be Tmaxvmax (which is clearly incorrect).
(d) Do the results in (b) and (c) cast doubt on the calculation in Chap. 3 (and
why)? If so, does this totally invalidate the calculation or does it mean that
after a certain muscle contraction speed is achieved the decrease in the muscle
force must be included to improve the model. (Also, note that since the biceps
brachii have much ST muscle fiber, the “FT” limit is not very realistic.)

Microscopic and Nanoscopic Processes in Muscles

5.23. (a) Estimate the time it takes Ca2+ ions to diffuse throughout a typical
skeletal muscle cell if the cell has a diameter of 200 μm and the diffusion
coefficient of the ions is 10−5 cm2/s. Assume that the release of ions occurs
just outside of the cell, due to a nerve pulse arriving there, and diffusion occurs
in one transverse dimension of the cell.
(b) How does this time compare to the typical reaction times of muscles?
(c) The nerve signal actually activates the sarcoplasmic reticulum that runs
transverse to the outer membrane of the cell, in the Z-line borders of each
sarcomere, and the Ca2+ ions are released there; consequently, the maximum
distance the ions need to travel to diffuse across the whole sarcomere is 2 μm.
How long does this take and does this time seem more reasonable?

5.24. Estimate the number of sarcomeres in your biceps brachii: (a) along its
length, (b) across its cross-section, and (c) in total.

5.25. When lifting a weight, a muscle goes from being 25% shorter than its
resting length to 25% longer than it. If the resting length of the sarcomere is
2.5 μm, how many 11-nm crossbridge power strokes occur in each sarcomere
during the lift?
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5.26. Figure 5.36 is the force vs. displacement curve of a single myosin mole-
cule interacting with an actin molecule during a powerstroke, as measured
by “optical tweezers.” Since work is the integral of force over distance, es-
timate the work done by the myosin molecule during one powerstroke. (Use
the dotted line and find the area in the triangle.) If the energy available from
ATP hydrolysis in a muscle cell is 10−19 J, calculate the efficiency of a myosin
powerstroke in using the energy from ATP hydrolysis. This estimate uses the
mean force. The efficiency is ∼1.75× larger if a less conservative estimate is
made using the highest forces measured [247].

5.27. (a) If in a single actin–myosin crossbridge 4 pN is generated per cross-
bridge and the power stroke distance is 11 nm, as in Fig. 5.36, show that the
mechanical work done is 22 pN–nm. Express this in J and eV (1 eV (electron
volt) = 1.6 × 10−19 J) per crossbridge, and in kcal/mole (for a mole of cross-
bridges).
(b) If the hydrolysis of ATP releases 14 kcal/mole (as is seen in Chap. 6) and
the hydrolysis of one ATP molecule activates one crossbridge, what fraction
of the available energy is used in mechanical work?





6

Metabolism: Energy, Heat, Work, and Power
of the Body

We cannot function without energy. The processes involved in the energy in-
take, storage, and use by the body are collectively called the metabolism; the
discipline describing this area is sometimes called bioenergetics. More gen-
erally, metabolism is any energy usage by the body, and is the sum of all
chemical processes performed by the cells in order to keep the body alive. For
a complete picture we need to include input of food and oxygen to the body,
energy storage, and loss of energy by the body through the loss of heat and
work done by the body, as is shown in Fig. 6.1.

Metabolic processes can be divided into catabolic and anabolic reactions.
In catabolic reactions complex molecules are broken into simple ones, for pur-
poses such as energy usage. In anabolic reactions simple molecules are com-
bined to form complex ones, for purposes such as energy storage.

The body uses food to (1) operate organs, (2) maintain a constant tem-
perature by using some of the heat that is generated by operating the organs
(while the rest is rejected), (3) do external work, and (4) build a stored energy
supply (fat) for later needs. About 5–10% of the food energy intake is excreted
in the feces and urine.

We will first consider the basics of the conservation of energy (thermody-
namics). Then we will examine the energy content of food and the way it is
stored in the body. We will see what the body’s metabolic rate needs to be to
perform tasks. (This is technically the catabolic rate.) We will then analyze
how the body loses energy as heat. These steps are interrelated in a complex
feedback and control mode that is discussed in Chap. 13.

For excellent general discussions about metabolism see [297, 298, 300, 301,
306, 321, 334, 340].

6.1 Conservation of Energy and Heat Flow

Let us briefly review some of the basics of the thermodynamics and heat flow
physics that we will use in this discussion.
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Fig. 6.1. Energy flow into and from the body

The First Law of Thermodynamics is essentially the conservation of energy
in any process. In reference to the body, it can be stated as

ΔU = Q − W, (6.1)

where ΔU is the change in stored energy, Q is the heat flow to the body, and
W is the mechanical work done by the body. The stored energy decreases,
ΔU < 0, when there is heat flow from the body, Q < 0, and work done by
the body, W > 0. This type of work is purely mechanical in nature, such
as in moving and lifting items. Heat flow includes heat production from the
metabolism (Qmet) and heat loss (Qloss) from radiation, convection, conduc-
tion, and evaporation. We can express Q = Qmet + Qloss, where metabolic
heat production is positive and a negative Qloss indicates heat flow away from
the body, so

ΔU = Qmet + Qloss − W. (6.2)

Qmet is called the metabolic rate (MR).
Relationships in thermodynamics involve amounts of energies changing in

a process at equilibrium and not those changing per unit time, i.e., the kinetics
of that process, which involves the rates of energy changes or flows. The study
of the metabolism usually involves rates and therefore

dU

dt
=

dQmet

dt
+

dQloss

dt
− dW

dt
(6.3)

is more appropriate. (We need to be careful about signs. The body increases
its energy with terms such as dQmet/dt that are positive and loses it with
terms such as dQloss/dt that are negative. The amount of heat flowing from
the body is −dQloss/dt, which is a positive quantity.)

All types of energy have the same units, including heat (often expressed in
terms of calories) and work (often expressed in terms of joules). One important
conversion between units is

1 calorie (cal) = 4.184 joule (J). (6.4)

1 kilocalorie (1 kcal = 1,000 cal) is sometimes called 1 Cal, which is also known
as a food calorie. The energy content of food is always expressed in terms
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Table 6.1. Units of power

1 watt (W) = 1 J/s
100W = 1.43 kcal/min
1 horsepower (hp) = 746 W = 642 kcal/h
1 kcal/min = 69.7W = 0.094 hp
1 kcal/h = 1.162 W

of these Cal (kcal) units. The relations between the various units of power
(energy/time) are given in Table 6.1.

One important concept in the thermal physics of the body is the heat
capacity C, which is the energy (or more specifically, the heat) required to raise
the temperature T of an object by 1◦C. The heat capacity per unit volume
or mass is the specific heat c. The heat capacity is an extensive property of
a given object, while the specific heat is an intensive property of a material.
(This classification is analogous to that for mechanical properties described in
Chap. 4.) If the specific heat is expressed per unit gram, it can be converted
to that per unit volume by multiplying it by the mass density ρ. The heat
capacity C is the specific heat (expressed per unit mass) × the total object
mass m, so C = mc.

The temperature rise ΔT of an object with a heat flow Q to the body is

ΔT =
Q

mc
. (6.5)

For water, cwater = 1.0 cal/g-◦C = 1.0 kcal/kg-◦C. Even though the human
body contains much water, the average specific heat of the body is a bit less,
cb = 0.83 cal/g-◦C = 0.83 kcal/kg-◦C. This means that it takes 83 kcal to raise
the temperature of a 100 kg person by 1◦C. This 83 kcal (83 food calories) is
approximately the food energy content of a slice of bread. An obvious question
arises: If most of our metabolized energy becomes heat, why does not our body
temperature increase by 1.0 ◦C = 1.8 ◦F each time we eat and metabolize a
slice of bread? We are very fortunate it does not. (The reason is heat loss by
the body.)

The heat capacity of an object describes how its temperature changes with
time due to heat flow to and from the object. The thermal conductivity K
describes how the temperature varies (ΔT ) spatially due to the heat flow be-
tween different regions that are separated by a distance Δx. (Conversely, it
also describes how much heat flows due to this spatial variation in tempera-
ture.) This relation is

1
A

dQ

dt
= −K

dT

dx
∼ −K

ΔT

Δx
. (6.6)

The left-hand side is the amount of heat that flows per unit area A per unit
time, and is also called the heat flux. The minus sign indicates that heat flows
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from hotter regions to colder regions. When there is a well-defined distance
d = Δx between two regions of different but uniform temperature, say due
to the thickness of clothing or an air boundary layer, we can define a heat
transfer coefficient per unit area h = K/d and then

1
A

dQ

dt
= −hΔT. (6.7)

Heat flow due to other mechanisms, such as due to radiation, can often be
expressed in terms of (6.6) or (6.7).

One consequence of thermodynamics is that engines that convert chemical
energy to heat and use that heat for mechanical work, so-called heat engines,
have a limited efficiency to do such useful mechanical work. An ideal heat
engine has a maximum efficiency of ε = 1 − (Tc/Th) when it operates at a
temperature Th and rejects heat to a lower temperature Tc (both expressed
in K). Humans operate internally at about Th= 310 K and reject heat to a
Tc � 293 K ambient, so ε would be 5.5% if we were heat engines. This is
much less than the ∼25% efficiency of humans converting chemical energy
into mechanical work. This is not a contradiction because we use the chemical
energy directly to do mechanical work, as seen in Chap. 5, and do not produce
heat in an intermediate step.

6.2 Energy Content of Body Fuel

There is some similarity between metabolic oxidation and combustion, even
though the body does not “burn” its fuels in oxygen. It is useful to learn
about the combustion of these fuels because combustion tells you the maxi-
mum amount of energy that is available from breaking and rearranging bonds.
Metabolic oxidation is a bit less efficient, as we will see. The combustion ener-
gies (enthalpies) are obtained from “bomb” calorimetry in which the materials
are burned in heavy-walled vessels. The resulting energies are useful and ap-
proximately correct even though the conditions of this bomb – its operation
at constant volume and the actual “bomb” temperature – are different than
those in the body. For example, many processes in the body occur at constant
pressure and not constant volume.

Glucose. The metabolism of glucose is representative of that of carbohy-
drates. If we start with 1 mol of glucose (180 g, 6.02 × 1023 molecules) and
oxidize it with 6 mol of oxygen molecules (192 g = 134.4 L at standard condi-
tions, given there are 22.4 L/mol at 1 atm. and 0◦C), there are 6 mol of carbon
dioxide, 6 mol of water (108 g, 108 mL), and 686 kcal of energy produced. This
can be represented by

C6H12O6 + 6O2 → 6CO2 + 6H2O + 686 kcal. (6.8)



6.2 Energy Content of Body Fuel 323

The energy produced per mass of fuel is 686 kcal/180 g glucose = 3.80 kcal/g
glucose. We also define a calorific equivalent, the energy produced per liter of
oxygen consumed, which is 686 kcal/134.4 L O2 = 5.5 kcal/L O2 here.

We will see that in metabolic oxidation the body combines this 1 mol of
glucose with 30–32 mol of ADP and 30–32 mol of the phosphate group Pi to
form 30–32 mol of the energy storage molecule ATP.

Palmitic Acid. The oxidation of palmitic acid is representative of that of
fatty acids. Oxidation proceeds by

CH3(CH2)14COOH + 23O2 → 16CO2 + 16H2O + 2, 397 kcal, (6.9)

so 1 mol (256.4 g) of palmitic acid is burned by 23 mol (515.2 L) of oxygen to
form 16 mol (358.4 L) each of carbon dioxide and water, and 2,397 kcal. The
energy released is 2,397 kcal/256.4 g = 9.3 kcal/g and the calorific equivalent is
2,397 kcal/515.2 L O2 = 4.7 kcal/L O2. In metabolic oxidation the body uses
this 1 mol of palmitic acid to combine 106 mol of both ADP and the phosphate
group Pi to form 106 mol of ATP.

In comparing glucose C6H12O6 with palmitic acid C16H32O2, both have
the same 1:2 ratio of C and H, so after oxidation, equal numbers of moles of
CO2 and H2O are formed in both cases. However, palmitic acid and other fats
have much less oxygen per C and H than glucose and other carbohydrates,
so less mass of them is consumed per mole of CO2 and H2O formed. (The
molar mass of palmitic acid is 256 g, and this is much less than the 480 g
molar mass of the “equivalent carbohydrate” C16H32O16.) Alternatively (and
equivalently), we can say that fats are less oxidized, are more reduced, and
have greater reducing power than carbohydrates.

These energies released per unit mass are the maximum energies available,
and are really called bomb calorimetry energies because they are often mea-
sured in laboratory-controlled explosions. The amount available to the body is
somewhat less and is defined as the caloric value. Table 6.2 shows the average
caloric values and calorific equivalents of the types of basic body fuels.

The caloric value is also a bit lower than the bomb calorimetry value
because of losses during digestion, which average 2% for carbohydrates, 5%

Table 6.2. Average caloric content of food. (Using data from [306])

food net bomb calorific CO2 RER
caloric calorimetry equivalent production (L CO2/L O2)
value energy (kcal/L O2) (kcal/L CO2)

(kcal/g) (kcal/g)

carbohydrate 4.02 4.10 5.05 5.05 1.0
protein 4.20 5.65 4.46 5.57 0.80
ethanol 7.00 7.10 4.86 7.25 0.67
fat 8.98 9.45 4.74 6.67 0.71

RER is the respiratory exchange ratio.
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for fats, and 8% for proteins plus an additional loss of 17% of protein en-
ergy in the urine. The small losses for ethanol are in the urine and exhaled
air. Note that the bomb calorimetry energy of glucose is a bit under the av-
erage for carbohydrates. The caloric value for carbohydrates and proteins is
�4 kcal/g and that of fats is about �9 kcal/g. (Each kcal is a food calorie,
or Cal, which is called a calorie on food package labels.) Ethanol provides
much caloric input, which explains why it is easy to gain weight by drinking
alcohol, such as beer. If your caloric input is mainly from alcohol, you can
“starve” to death in the sense that your caloric needs are being met, but
not your micronutrient needs, such as vitamins and minerals. These caloric
values can be compared to common heating and automotive fuels: gasoline,
11.4 kcal/g; coal, 8.0 kcal/g; and pine wood, 18.5 kcal/g. The energy released
per L O2 (calorific equivalent) is fairly constant for all body fuels, ranging
from ∼4.5 to 5.5 kcal/L O2. For a “mixed diet” the calorific equivalent can
be estimated to be 4.83 kcal/L O2 and the CO2 production to be 5.89 kcal/L
CO2. The energy storage densities of different chemical fuels are compared in
Table 6.3.

The respiratory exchange ratio (RER) (or respiratory quotient (RQ)) is
another way to characterize metabolic processes. It is the number of moles
of CO2 produced/number of moles O2 used, and is a measure of how much
carbon dioxide needs to be released in respiration relative to how much oxygen

Table 6.3. Energy storage density for chemical fuels. (Using data from [308])

energy storage fuel storage density (J/m3) storage density (J/kg)

ATP 1.4 × 108 1.0 × 105

H2 gas, 103 atm. 4.9 × 109 1.2 × 108

nitroglycerine 1.0 × 1010 6.3 × 106

glycine (amino acid) 1.0 × 1010 6.5 × 106

wood 1.1 × 1010 1.9 × 107

urea 1.4 × 1010 1.1 × 107

methanol 1.8 × 1010 2.2 × 107

vegetable protein 2.3 × 1010 1.7 × 107

acetone 2.4 × 1010 3.1 × 107

glucose 2.4 × 1010 1.6 × 107

glycogen (starch) 2.5 × 1010 1.8 × 107

animal protein 2.5 × 1010 1.8 × 107

carbohydrate 2.6 × 1010 1.7 × 107

gasoline 2.8 × 1010 4.4 × 107

butane 3.0 × 1010 4.9 × 107

fat 3.3 × 1010 3.9 × 107

cholesterol (lipid) 4.2 × 1010 3.9 × 107

H2 solid (105 atm.) 7.2 × 1010 1.2 × 108

diamond 1.2 × 1011 3.3 × 107

Note that 1010 J/m3 = 2.39 kcal/cm3 and 107 J/kg = 2.39 kcal/g.
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Table 6.4. Caloric value of 1 rich frosted Entenmann’sTM donut (in 2005)

18 g fat ×9 kcal/g = 162 kcal
29 g carbohydrate ×4 kcal/g = 116 kcal
2 g protein ×4 kcal/g = 8 kcal

49 g total = 286 kcal

the body needs to bring in by respiration. We see that RER = 6 L CO2/6 L
O2 = 1.0 for glucose oxidation and 16 L/23 L = 0.7 for palmitic acid oxidation.
It is typically 0.8 for protein oxidation.

We can put the caloric value in perspective by developing a standard unit:
The Donut. We will use 1 Rich Frosted (i.e., chocolate frosted) Entenmann’sTM

Donut as the standard donut. The package labeling says that a donut con-
tains 18 g of fat, 29 g of carbohydrate, and 2 g of protein (in 2005), so we can
estimate the caloric value of each donut, as in Table 6.4. We see that 49 g of
the total 57 g mass of the donut has caloric content. Our calculation suggests
there are 286 kcal (286 food calories) per donut. The package says there are
280 kcal per donut. These values are very consistent with each other because
we have used average caloric values for the fat, carbohydrate, and protein.
Also, we have rounded off the caloric values and they have provided values
of the mass of each body fuel in grams rounded off to the nearest integer (as
required by the US FDA (Food and Drug Administration)). (For more on
rounding off see Problems 6.11 and 6.12.) Approximately 57% of the calories
(162 kcal/286 kcal) come from fat. We will soon determine how much physical
exertion is needed to remove the “fattening” consequences of eating a standard
donut. (Problems 6.13 and 6.14 address other potential standard donuts.)

6.2.1 Metabolizable Energy and Energy Storage

We should be a bit more careful about defining how much of the energy from
food is being metabolized and actually used, even though these relatively fine
distinctions in body energetics may not be very significant to us here. The rate
of apparently digested energy is the difference between the rate of intake of
dietary energy and the rate of loss of energy in the feces. The rate of obtaining
metabolizable energy (ME), d(ME)/dt, is the difference between the rate of
intake of dietary energy and the sum of the rates of loss of energy in the feces,
urine, and combustible gas. This is the actual rate at which energy is being
made available to the body [298].

Table 6.5 shows the caloric content and components of several types of
food. The caloric content per unit mass depends on the relative amounts of
carbohydrates, proteins, and fats, and ethanol for alcoholic drinks, and the
amounts of water and “ash.” For comparison, our standard donut has 280 kcal,
or 280 kcal/57 g = 4.91 kcal/g. Table 6.6 shows the enthalpy of combustion
for different types of milk; this constitutes consumed and not necessarily
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Table 6.5. Components and energy (kcal) of edible parts of common foods. (Using
data from [311])

food, serving size mass energy carb.a protein fat water
(g) (kcal) (g) (g) (g) (%)

grains and cakes
bread, white, 1 slice 25 67 12 2 1 37
oatmeal, regular, 1 cup prepared 234 145 25 6 2 85
yellow cake, chocolate frosting, 64 243 35 2 11 22

1 piece
cheesecake, 1/6 of 17 oz cake 80 257 20 4 18 46

dairy
milk, whole, 1 cup 244 150 11 8 8 88

butter, salted, 1/4 lb stick 113 813 Trb 1 32 16
cheddar cheese, 1 oz 28 114 Tr 7 9 37
cottage cheese, 4%, 1 cup 225 233 6 28 10 79
ice cream, chocolate, 1/2 cup 66 143 19 3 7 56
eggs, raw, 1 large 50 75 1 6 5 75

meat and fish
chicken, meat only, roasted 86 142 0 27 3 65

1/2 breast
beef, ground, 79% lean, broiled, 3 oz 85 231 0 21 16 56
salmon, broiled, 3 oz 85 184 0 23 9 62

fruits, vegetables, nuts, and oils
apple, raw, unpealed, 1 whole 138 81 21 Tr Tr 84
apricots, raw, without pits, 1 whole 35 17 4 Tr Tr 86
apricots, dried, sulfured, 10 halves 35 83 22 1 Tr 31
orange, peeled, 1 whole 131 62 15 1 Tr 87
carrots, raw, 7 1

2
in long 72 31 7 1 Tr 88

potato, baked, with skin 202 220 51 5 Tr 71
French fries, medium portion 134 458 53 6 25 35
peanuts, dry roasted, 1 cup 146 854 31 35 73 2
walnuts, 1 cup chopped 120 785 16 18 78 4
canola oil, 1 cup 218 1, 927 0 0 218 0

beverages
cola, 12 fl oz 370 152 38 0 0 89
beer (regular), 12 fl oz 355 146 13 1 0 92
gin, vodka, whiskey, 86 proof, 42 105 Tr 0 0 64

1.5 fl oz
wine, red, 3.5 fl oz 103 74 2 Tr 0 89

aCarbohydrate.
bTrace.

metabolizable energy. The enthalpy available from fat, protein, and carbo-
hydrates is quite different for each source. With a 42% fat/18% protein diet,
about 89.3% of the consumed food is typically metabolizable – meaning that
this is the fraction of the heat of combustion (caloric content) of food that is
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Table 6.6. Food content of milk. (Using data from [298])

species enthalpy distribution of enthalpy (%) dry matter
of combustion (%)

(kcal/g) fat protein carbohydrate

human 0.69 54 7 39 12.4
cow 0.71 48 26 26 12.4
goat 0.69 50 22 27 12.0
horse 0.51 23 22 54 10.5
seal (northern fur) 5.09 88 11 0.1 61.0

metabolizable energy. About 5.8% of the consumed energy is lost in the feces,
4.5% in the urine, and 0.4% lost as methane. The average retention time of
food in a human’s digestive track is 46 h; the first appearance of the residues
of food appears in about one third this mean time and the last in about four
times this time.

Energy can be retained or secreted (as milk) by the body as the enthalpy of
tissues R (which includes fat, protein, and CHO). (The enthalpy (or heat con-
tent) is the maximum thermal energy that is obtainable at constant pressure.)
The rate at which enthalpy is retained dR/dt is the difference between the rate
of metabolizable energy input and heat production through the metabolism

dR

dt
=

d(ME)
dt

− dQmet

dt
. (6.10)

(This ignores lactation.) We combine this with (6.3) to give

dR

dt
=

d(ME)
dt

+
dQloss

dt
− dW

dt
− dU

dt
. (6.11)

When food is not eaten (d(ME)/dt = 0), dR/dt is negative and its magni-
tude is the heat of catabolism of body tissues. As more food is eaten, dR/dt
increases, and less stored (or retained) energy is used and there is increased
heat production; this increased heat production is the specific dynamic or
thermogenic effect of food. When energy retention is zero over several days
(so no net stored energy is used or formed and dR/dt averages to zero), the
input dietary energy ME is that required for maintenance. For greater values
of ME, energy is stored in the body.

Table 6.7 shows the results of calorimetric experiments for people who
are fasting (for whom stored energy in proteins and fats is turned into heat),
eating who do no exercise (who have net storage of body fat), and eating who
do exercise (for whom a small amount of stored energy is turned into heat,
even though there is more food intake).

Figure 6.2 shows the retention of energy and the heat production (ther-
mogenic effect) vs. food intake. A fraction of the metabolizable energy from
food intake is retained in the body, K, and a fraction is lost as heat, 1 − K.
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Table 6.7. Calorimetric experiments each averaged over several runs (in kcal/day).
(Using data from [298], from [295])

energy eating, eating, fasting
without with exercise
exercise (bicycle)

intake energy 2,659 4,340 0
feces energy 107 176 0
urine energy 134 138 105
change in body protein −16 −57 −463
change in body fat 176 −484 −1,892
heat produced 2,270 4,554 2,187
discrepancy 12 −13 −63

The slope of the retention curve k is

k =
dR/dt

d(ME)/dt
(6.12)

and the slope of the heat production curve is 1 − k. K is an averaged value
of k. Because the curves in Fig. 6.2 are not linear, k and K are usually not
equal. k, also called the efficiency of the utilization of metabolizable energy,
varies with the amount of food consumed. Below maintenance, k is �0.90 –
where it represents the efficiency of using stored energy – and above it is
�0.75 – where it really represents the efficiency of forming stored energy.
This means that below maintenance only about 10% of food goes to heat
and above it about 25% goes into heat production – and so 75% goes into
making us fatter (unless we are building up our muscles). These numbers
are for average diets. For carbohydrates, k = 0.94 below maintenance and
0.78 above it. For fats, k = 0.98 below maintenance and 0.85 above it. For
proteins, k = 0.77 below maintenance and 0.64 above it. The body is more

Fig. 6.2. Energy retention and heat production in the body vs. food intake. (Based
on [298])
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efficient in using stored energy than in depositing fat and proteins. Proteins
are metabolized less efficiently than are carbohydrates and fat [298].

6.3 Energy Storage Molecules

6.3.1 How ATP is Produced and Used as an Energy Source

Catabolism. ATP, adenosine triphosphate (a-duh’-nuh-seen), is the basic unit
of energy storage in the body and it enables the rapid release of energy. Why
does the body convert food fuel to ATP and not directly oxidize carbohydrates,
fatty acids, and proteins? The use of ATP is more controllable. Also, the unit
of energy provided by ATP is small enough to be useful.

The structure of ATP is shown in Fig. 6.3. It consists of a five-carbon
sugar, ribose, that is linked to the aromatic base, adenine – forming adenosine,
and three phosphate groups. The two bonds linking the phosphate groups
are unstable, high-energy bonds; the leftmost interphosphate bond in Fig. 6.3
splits in the hydrolysis of ATP

ATP + H2O → ADP + inorganic phosphate + energy, (6.13)

where ADP is adenosine diphosphate. This is the basic catabolic process for
energy release, and was discussed as the driving force in the myosin power
stroke in generating force in muscles in Chap. 5. The energy released, or more
precisely the free energy, ranges from 7 to 14 kcal/mol of ATP, depending
on conditions (see Problem 6.30). Under typical cellular conditions it can be
�12–14 kcal/mol [320, 322, 329].

Anabolism. After hydrolysis, ADP needs to be combined with a phos-
phate group to reform ATP for later use. On the average, each ATP molecule
is recycled this way every minute (see Problem 6.36). How does the body

Fig. 6.3. The structures of (a) ATP and (b) ADP, showing that ATP has one more
inorganic phosphate group Pi than does ADP. From left to right are the (a) three or
(b) two phosphate groups, the five-carbon sugar, ribose, and adenine, which is the
double-ringed structure. The two unstable, high energy bonds linking the phosphate
groups in ATP and the one similar unstable bond in ADP are denoted by arrows
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use food sources like glucose to do this? This occurs by a series of chemical
steps that can proceed to a limited extent without oxygen (anaerobic glycoly-
sis) and to a greater extent with oxygen (aerobic metabolism or respiration)
[301, 306, 321, 329, 340]. This utilizes glucose in the blood stream and glyco-
gen, (C6H12O6)n – a branched-chain polymerized sugar consisting of glucose
molecules as monomers linked together with glycosidic (oxygen) bonds. Glyco-
gen is stored in muscle cells, where it is used directly, and in the liver, where
is it broken down into glucose by glycogenolysis, which is then delivered by
the blood to the other cells. In aerobic metabolism, the products of the anaer-
obic steps are further metabolized (in the presence of oxygen) to complete the
metabolism of stored glucose by a complex series of steps collectively called
the Krebs cycle and the electron transfer system (ETS); they are shown in
Fig. 6.4 and described in a bit more detail later. The overall result is that
in aerobic metabolism 1 mol of glucose can produce approximately 30–32 mol
of ATP (depending on the details of the membrane shuttle mechanism). (In
fact, 1 mol of carbohydrates from muscle glycogen can produce approximately
31–33 mol of ATP, but energy is used in forming glycogen from glucose; we

Fig. 6.4. Schematic of the processes involved in the resynthesis of ATP from ADP
and inorganic phosphate by anaerobic glycolysis in the cytosol (the intracellular
fluid) and aerobic metabolism (or respiration) in the mitochondrion. (Based on
[301, 324, 329])
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will consider only the metabolism of glucose.) Of these, 2 mol are produced
by anaerobic processes and 28–30 additional moles are produced when there
is sufficient oxygen. The bottom line is that the hydrolysis of these, say for
now, 30 mol of ATP provide from glucose

30mol ATP/mol glucose × 14.0 kcal/mol ATP = 420 kcal/mol glucose.
(6.14)

This should be compared to the energy from the combustion of glucose

180 g/mol glucose × 3.8 kcal/g glucose = 686 kcal/mol glucose. (6.15)

This means that the efficiency of the body’s usage of glucose to form available
energy in the form of ATP is 420 kcal/686 kcal = 61%; for 32 ATP formed by
glucose, this gives 448 kcal/686 kcal = 65%. This efficiency range of �61–65%
is for conditions in muscle cells. For other specific conditions the free energy of
ATP can be a bit lower. (This is explored in Problems 6.30 and 6.31.) In any
case, this efficiency is pretty good, although it is not perfect. (It is much better
than the efficiency of typical heat engines, ∼10–20%.) The overall efficiency of
using glucose to do mechanical work is much lower, because of other efficiency
factors that we will discuss later.

6.3.2 How ATP is Actually Used by the Body

ATP is the ultimate source of energy for muscular motion, but it is not always
the locally stored source. The body has a mechanism for using it directly, and
then several levels of mechanisms for transferring energy from other molecules
to the formation of ATP (from ADP), which is then used directly. There are
four levels of steps, each of which can be used for successively longer times,
although at successively lower levels of activity (Table 6.8) [306, 324, 329].

Step 1. Normally there is enough ATP in living skeletal muscles to supply
energy for about 8 twitches. This may be enough for about 3 s or for about
half of a 50 m dash. The energy comes from (Fig. 6.3)

ATP + H2O → ADP + Pi + H + 14 kcal/mol. (6.16)

Table 6.8. Estimated power and energy available from the body, for a 70 kg man
with 30 kg of muscle, assuming 10 kcal/mol of ATP. (Using data from [306])

system maximum power maximum capacity
(moles of ATP/min) (total moles of ATP)

phosphagen (ATP-PC) system 3.6 0.7
anaerobic glycolysis 1.6–2.5 1.2
aerobic metabolism from glycogen 1.0 90.0
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Fig. 6.5. The structures of (a) phosphocreatine (PCr) and (b) creatine (Cr), show-
ing that PCr has an inorganic phosphate group Pi. The unstable, high-energy bond
linking the phosphate group in PCr is denoted by an arrow. The enzyme that cat-
alyzes the breakdown of PCr to form ATP, which is the transfer of the phosphate
group from PCr to ADP to form ATP (6.17), is called creatine kinase

Step 2. Now more ATP is needed. It is resynthesized from the local phos-
phocreatine (or creatine phosphate) (PCr) (Fig. 6.5) reservoir by

ADP + PCr → ATP + Cr, (6.17)

where Cr is creatine. This reaction is driven strongly to the right because it
has an equilibrium constant >20. Muscle has enough PCr to provide ATP for
about ∼100 twitches, or for the first 50 m (∼8–10 s) of a sprint.

Together, steps 1 and 2 (reactions (6.16) and (6.17)) constitute the phos-
phagen system or the ATP-PC system. It is the source of the highest peak
power, with about 4 mol ATP used by a person every minute. It can be used
for short times, 8–10 s, and at most for 100 m dashes or for limited jumping.
PCr can be reformed from Cr and Pi by using ATP itself. For intense levels of
exercise, this can occur only after the activity, and usually occurs by aerobic
metabolism.

When more energy is needed than can be supplied by the phosphagen
system alone, it is produced from glycogen that is stored in the muscle and
from the metabolism of glucose and fatty acids in the blood stream. Two high-
energy molecules are produced as intermediates during this formation of ATP
(1) NADH (from NAD+, nicotinamide adenine dinucleotide, a derivative of
the vitamin niacin) and (2) FADH2 (from FAD, flavin adenine dinucleotide,
derived from riboflavin, a B vitamin). The modes of using these energy sources
to form ATP are different for light and heavy activity.

Step 3. During “heavy” activity people need ATP fast and there is not
enough oxygen for aerobic metabolism, so only anaerobic glycolysis (the
Embden–Meyerhof pathway) occurs. One mole of glucose-1-phosphate (ob-
tained from 1 mol of carbohydrates from glycogen) can convert only 3 mol
of ADP to ATP. In this process 1 mol of ATP is used to make fructose-1,
6-diphosphate from fructose-6-phosphate (which is produced from glucose-
1-phosphate), and 2 mol of ATP are formed in each of the two subsequent
steps of glycolysis, leading to a net of 3 mol of ATP. Metabolism of blood
glucose yields a net of only 2 mol of ATP because it takes 1 mol of ATP to
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convert it into glucose-6-phosphate (see Problem 6.33). This all occurs in the
intracellular fluid in the muscle cell (the cytosol).

This degradation of the glycogen or glucose is only partial, and without
sufficient oxygen the potential of producing the other 28–30 mol of ATP by
the other steps in aerobic metabolism is totally lost. At the end of anaerobic
glycolysis, energy is still stored in the 2 pyruvic acid molecules (C3H4O3)
(pyruvate ions in solution) formed from each glucose molecule, which are
converted to 2 lactic acid molecules (C3H6O3) (lactate ions in solution) if
they cannot be used in the Krebs cycle in aerobic metabolism. In addition, 2
NADH molecules are formed per glucose molecule in anaerobic glycolysis, and
the energy from these high-energy molecules is also wasted because they are
not metabolized by the ETS in aerobic metabolism (see Fig. 6.4). (However,
the NADH can remain until the oxygen debt is recovered.)

The advantage of this anaerobic glycolysis or glycogen-lactic acid system
is that it provides a medium level of power, ∼2.5 mol ATP/min, which is
∼60% of that of the phosphagen system. It provides power for about 600
twitches, for an intermediate time ∼1.3–1.6 min – enough for a 400 m run. (The
maximum anaerobic peak power is 2.1 hp for men and 1.7 hp for women. These
values decrease dramatically after 25 years of age.) Anaerobic glycolysis has
disadvantages. In addition to being inefficient, it produces lactic acid, which
causes discomfort from acidosis, and causes fatigue. Because the pyruvate-
lactate reaction is reversible, the lactic acid from anaerobic glycolysis can be
converted to form pyruvate when oxygen is available during the recovery from
heavy exercise (but primarily in the liver and not the muscle).

Step 4. During “light” exercise there is enough oxygen for aerobic metabo-
lism to complete the oxidation of the carbohydrates. Aerobic metabolism con-
sists of two complex processes in addition to anaerobic glycolysis: the Krebs
cycle (which is also known as the tricarboxylic acid (TCA) cycle or the citric
acid cycle) and the electron transfer system (ETS) (which is also known as
the cytochrome pathway or oxidative phosphorylation) (Fig. 6.4). They both
occur in the cell mitochondrion. Only the ETS directly requires oxygen, but
without oxygen even the benefits of the Krebs cycle are lost due to back re-
actions. (By the way, Hans Adolf Krebs shared the Nobel Prize in Physiology
or Medicine in 1953 for his discovery of the citric acid cycle.)

The 2 mol of NADH from anaerobic glycolysis are shuttled in through the
mitochondrion membrane. Two moles of pyruvate from anaerobic glycolysis
serve as the starting material for the Krebs cycle. Before entering this cycle,
each pyruvate produces an acetyl CoA molecule, which enters the Krebs cycle,
and 1 NADH, so 2 acetyl CoA and 2 NADH are produced per glucose molecule.
For each pyruvate, the Krebs cycle produces 1 ATP, 3 NADH, and 1 FADH2,
along with 2 CO2 molecules, which are waste products, and so for each glucose
molecule the Krebs cycle produces 2 ATP, along with 6 NADH and 2 FADH2

molecules.
This means that for each mole of glucose, a total of 10 mol of NADH

and 2 mol of FADH2 enter the ETS, where they are converted to ATP and



334 6 Metabolism: Energy, Heat, Work, and Power of the Body

H2O. (Alternatively, if the 2 mol of NADH from anaerobic glycolysis shuttled
through the mitochondrion membrane are cycled through the membrane as
2 mol of FADH2, a total of 8 mol of NADH and 4 mol of FADH2 enter the
ETS.) There are several series of alternative pathways in which these high-
energy molecules are converted to ATP, which lead to effectively 2.5 ATP per
NADH and effectively 1.5 ATP per FADH2, or 2.5 × 10 + 1.5 × 2 = 28 mol
of ATP. There are also the 2 mol of ATP directly from anaerobic glycolysis
and the 2 mol of ATP directly form the Krebs cycle, for a total of 32 mol
of ATP. Overall, a total of 30–32 mol of ATP are produced from 1 mol of
glucose (depending on the membrane shuttle mechanism). (This estimate of
30–32 mol of ATP per mole of glucose is cited in more current work [321, 329];
older estimates were of 36–38 mol of ATP produced per mole of glucose [320].)

ATP is also formed by the oxidation of fatty acids and some amino acids
and proteins. (Fats and protein can be metabolized only in the presence of
oxygen.) The role of protein metabolism is very minor during rest and does
not contribute more than 5–10% of the total energy supply during normal
exercise. Each fatty acid molecule is activated using 2 ATP molecules, and is
then metabolized in successive passes through a metabolic cycle within the
mitochondrion in which two carbon atoms are lost in each pass to produce a
molecule of acetyl-CoA, NADH, and FADH2 by β oxidation, until acetyl-CoA
is left. For the 16-carbon chain palmitic acid, there are seven complete passes
and so one mole of palmitic acid produces 8 mol of acetyl-CoA (including the
one remaining after β oxidation), 7 mol of NADH, and 7 mol of FADH2. Each
mole of acetyl-CoA is then oxidized in the Krebs cycle to give 3 mol of NADH,
1 mol of FADH2, and 1 mol of ATP. The NADH and FADH2 enter the ETS
system. For palmitic acid, this means that 31 mol of NADH and 15 mol of
FADH2 enter the ETS system. Overall, 2.5× 31 + 1.5× 15 = 100 mol of ATP
are formed in the ETS. Including the other 8 mol of ATP, 108 moles of ATP
are formed per mole of palmitic acid. Including the 2 ATP moles used for
activation, a net of 106 moles of ATP are formed [329].

A healthy man with proper training can provide ∼50 mL oxygen/kg-min.
This aerobic system delivers the lowest peak power, 1 mol ATP/min ∼25%
of the phosphagen system, but for a very long time. There is enough glyco-
gen for ∼10,000 twitches. It is useful for long-distance, endurance activities,
including marathon running. The glycogen in the muscle is depleted after
several hours (∼1.5–4.0 h) of this level of activity. (Glucose in the blood can
also be converted into pyruvic acid and then be used in the cell mitochondria
in the presence of oxygen to form more ATP. This is an efficient, long-term
process.)

Negligible oxygen is stored in the body. It must be brought in by the
lungs and transferred to the blood in the arteries continuously. The oxygen is
transferred to the cells, leaving oxygen-depleted blood in the veins. We can
track the conservation of oxygen molecules in the body. The rate of body
consumption of O2, dVO2/dt equals the product of the cardiac output (blood
flow rate, Qt, see Chap. 8) and the difference in the oxygen content (oxygen
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Table 6.9. Estimated energy available from the body (per kg and also, in parenthe-
ses, total), for a 70 kg man with 30 kg of muscle, assuming 10 kcal/mol ATP. (Using
data from [306])

system muscular amounts useful energy
(in mmol/kg (in kcal/kg

musclea) (total) muscle) (total)

phosphagen (ATP-PC) system
ATP 4–6 (120–180) 0.04–0.06 (1.2–1.8)
PC 15–17 (450–510) 0.15–0.17 (4.5–5.1)
Total: ATP + PC 19–23 (570–690) 0.19–0.23 (5.7–6.9)

anaerobic glycolysis
ATP formation 33–38 (1,000–1,200) 0.33–0.38 (10.0–12.0)

aerobic metabolism
from stored glycogen 13–15 g (400–450)
ATP formation 2,800–3,200 (87,000–98,000) 28–32 (870–980)

aUnless otherwise noted.

partial pressure) in the arteries and veins, pa − pv:

dVO2

dt
= Qt(pa − pv). (6.18)

During aerobic exercise, dVO2/dt increases linearly with Qt. For a person
with average fitness, the maximum oxygen use and blood flow rates are
(dVO2/dt)max ≈ 2.8 L/min (L of oxygen gas at an atmosphere) and (Qt)max ≈
19 L/min, and for a highly fit person they are ≈4 L/min and 25 L/min,
respectively.

Table 6.9 gives the concentrations and total amounts of energy storage
molecules and the energy available from them for a 70 kg man with 30 kg of
muscle. Women have about the same concentrations of ATP and PC per kg
muscle as do men, but have less overall muscle. The typical specific chemical
energy resources stored in the body are listed in Table 6.10.

Table 6.11 lists the energy system that is primarily used in various sports
activities. This is explored in more detail in Table 6.12, which gives the fraction
of each system used in different sport activities. These fractions are given for
shorter to longer distances in ice speed skating, swimming, and running in
Tables 6.13–6.15. In each case, short distance sprints use the ATP-PC and
anaerobic systems, while the longer distance events primarily use the aerobic
system.

The metabolic steps involved in these systems are all regulated by a feed-
back and control mechanism (Chap. 13), and are followed by a recovery step.
Table 6.16 gives the recovery time for returning resting energy reserves and
O2 and for reducing lactic acid after exercise. Anaerobic exercise is limited by
the maximal lactic acid tolerance, which is about 2.0–2.3 g/kg muscle, and so
this is 60–70 g for 30 kg of muscle. You can learn a bit about the recovery step
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Table 6.10. Body stores of fuel and energy, for a 65 kg (143 lb) person with 12%
body fat. (Using data from [340])

amount energy
(g) (kcal)

carbohydrates
liver glycogen 110 451
muscle glycogen 500 2,050
glucose in body fluids 15 62

carbohydrates total 625 2,563

fat
subcutaneous and visceral 7,800 73,320
intramuscular 161 1,513

fat total 7,961 74,833

Table 6.11. Energy systems used in sports. (Using data from [314])

mostly phosphagen system
100-m dash
jumping
weight lifting
diving
football dashes

phosphagen and glycogen–lactic acid systems
200-m dash
basketball
baseball home run (running around the bases)
ice hockey dashes

mainly glycogen–lactic acid system
400-m dash
100-m swim
tennis
soccer

glycogen–lactic acid and aerobic systems
800-m dash
200-m and 400-m swim
1,500-m skating
boxing
2,000-m rowing
1,500-m/1-mile run

aerobic systems
10,000-m skating
cross-country skiing
marathon run (26.2 miles, 42.2 km)
jogging
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Table 6.12. Percent emphasis of energy systems. (Using data from [306, 307])

sport or activity ATP-PC and anaerobic glycolysis aerobic
anaerobic glycolysis and aerobic

aerobic dance 5 15–20 75–80
baseball 80 15 5
basketball 60 20 20
diving 98 2 negligible
fencing 90 10 negligible
field hockey 50 20 30
football 90 10 negligible
golf 95 5 negligible
gymnastics 80 15 5
ice hockey

forward, defense 60 20 20
goalie 90 5 5

lacrosse
goalie, defense, 50 20 30

attacker
midfielders, man-down 60 20 20

rowing 20 30 50
soccer

goalie, wings, strikers 60 30 10
halfbacks or sweeper 60 20 20

stepping machine 5 25 70
tennis 70 20 10
field events, 95–98 2–5 negligible

in track and field
volleyball 80 5 15
walking negligible 5 95
wrestling 90 5 5

Table 6.13. Percent emphasis of energy systems for a range of distances in ice speed
skating. (Using data from [306, 307])

activity ATP-PC and anaerobic glycolysis aerobic
anaerobic glycolysis and aerobic

ice speed skating
500 m 80 10 10
1,000 m 35 55 10
1,500 m 20–30 30 40–50
5,000 m 10 25 65
10,000 m 5 15 80

in-line skating
>10 km 5 25 70
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Table 6.14. Percent emphasis of energy systems for a range of distances in swim-
ming. (Using data from [306, 307])

swimming ATP-PC and anaerobic glycolysis aerobic
anaerobic glycolysis and aerobic

50 m 90 5 5
100m 80 15 5
200m 30 65 5
400m 20 40 40
1,500 m 10 20 70

by running as fast as you can for as long as you can. You will then be huff-
ing and puffing, breathing in air as fast as possible. This is part of recovery.
(Consult with your physician before attempting this demonstration.)

6.4 Metabolic Rates

There are variations among people’s metabolic rates (MR) due to their dif-
ferent weights, genes, etc. First, we will discuss the minimum metabolic rates
for people and then address how activity increases the metabolic rate. The
metabolic rate can also depend on food intake. For example, the MR is known
to decrease under fasting conditions and this change counters some of the ex-
pected effects of dieting. Although widely called metabolic rates, these are
more precisely catabolic rates.

6.4.1 Basal Metabolic Rate

The basal metabolic rate (BMR) is that of an inactive, awake body. The BMR
for a 70 kg person is about 1,680 kcal/day ∼70 kcal/h ∼81 W. This means that

Table 6.15. Percent emphasis of energy systems for a range of distances in running.
(Using data from [306, 307])

running ATP-PC and anaerobic glycolysis aerobic
anaerobic glycolysis and aerobic

100, 200m 95–98 2–5 negligible
400 m 80 15 5
800 m 30 65 5
1,500 m (or mile) 20–30 20–30 40–60
3,000 m (or 2miles) 10 20 70
5,000 m (or 3miles) 10 20 70
10,000 m (or 6miles) 5 15 80
marathon negligible 5 95
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Table 6.16. Recovery times after exhaustive exercise. (Using data from [306])

minimum maximum

restoration of phosphagen (ATP + PC) 2min 5min
muscle glycogen replenishment 5–10 h 24–46 h
liver glycogen replenishment unknown 12–24 h
restoration of O2 in plasma and myoglobin 10–15 s 1min
duration of fast component of O2 recovery 3min 6min
duration of slow component of O2 recovery 30min 1 h
reduction of lactic acid in blood and muscle 30–60mina 1–2 ha

aFaster recovery with exercise and slower recovery with rest.

even at rest each of us gives off almost the same amount of heat as a 100 W
incandescent light bulb. As we will see later, the heavier the person the higher
the BMR. Approximately 85% of people of the same gender and weight have
a BMR within 6–10% of the mean for their classification.

The exact numbers one finds for the BMR sometimes vary with the source.
This may be due in part to the exacting conditions used to define the BMR
and the lack of specification of the person’s gender, age, weight, etc. To have
your BMR measured you must:

(1) Have eaten no food for at least 12 h
(2) Have had a night of restful sleep and no strenuous activity thereafter
(3) Be resting completely in a reclining position for at least 30 min
(4) Be experiencing no excitement from psychic or physical factors
(5) Be in a room with a temperature from 20 to 27◦C (68 to 80◦F).

The BMR is greater than the metabolic rate during sleeping (when there
is minimal digestion of food). Because of the stringent nature of BMR test-
ing, “background” or “minimal” metabolic rates are sometimes tested under
somewhat less exacting conditions and these measured rates are not cited as
BMRs, but are termed differently although not always in a uniform way. The
basal energy expenditure (BEE) is often defined to be equivalent to the BMR.
The resting metabolic rate (RMR) is similar to the BMR, but is measured
under somewhat less restrictive conditions – early in the morning after an
overnight fast and 8 h of sleep – so it is easier to achieve and thus it is often
used. The resting energy expenditure (REE) is usually measured as after 4 h
of sitting and is a bit larger than the BMR. The BMR and metabolic rates
during activities are often determined by measuring oxygen intake, because
they are proportional to each other for aerobic activities.

The functioning of several organs contributes to this BMR in a resting
person, as is seen from Table 6.17. Three-fourths of the metabolic activity
takes place in organs with a total mass of 5 kg, which is ∼8% of the total
body mass. We will estimate these metabolic rates of the heart and lungs in
Chaps. 8 and 9.
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Table 6.17. Metabolism of a resting person. (Using data from [300])

system percentage met. rate organ mass (kg)
of BMR (kcal/min) for a 65 kg man

liver and spleen 27 0.33 –
brain 19 0.23 1.40
skeletal muscle 18 0.22 28.0
kidney 10 0.13 0.30
heart 7 0.08 0.32
remainder 19 0.23 –

sum = 1.22

The BMR is a function of mass, height, and gender, as we will see later in
this chapter. It is also a function of body temperature. It changes by about
10% (some say 13%) per 1◦C in body temperature. Consequently, the BMR
increases by 30% (or 39%) when the body temperature increases from the
normal 37◦C (98.6◦F) to 40◦C (104.0◦F) and decreases by 30% (or 39%)
when the body temperature decreases from normal to 34◦C (93.2◦F).

The BMR of pregnant women is analyzed in Problem 6.50.

Scaling of the BMR

Before addressing how the BMR and MR depend on gender, weight, age, etc.
we will temporarily expand our discussion of the BMR from that for humans
to that for all mammals. The larger the animal the higher the metabolic
(catabolic) rate, which is pretty obvious. Moreover, there is a way that the
BMR scales with a physical attribute of size, specifically the body mass mb.

Table 6.18 shows that the BMR of mammals increases sublinearly with
mb. Many think the variation for mammals is as the 3/4 power:

BMR = cm
3/4
b , (6.19)

where c ≈ 90 kcal/kg3/4-day. This is known as Kleiber’s Law [317, 318, 319],
and is an example of an allometric relationship, as described in Table 1.13. It
is valid from mice to elephants and some say to whales. (Regarding whales:

Table 6.18. BMR determined for several mammals. (See, for example [324])

species mass BMR (kcal/day)

mouse 20 g 3
reference woman (25 years) 55 kg 1,260
reference man (25 years) 65 kg 1,500
elephant 5,000 kg 70,000
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Steinbeck’s novel was valid only from mice to men. Also, there is great uncer-
tainty about the BMR of whales. How do you measure it?) While this scaling
relation was actually developed for comparing different species, it works fairly
well intraspecies for humans, from children to adults. Others claim that the
BMRs of mammals increase as mass to the 2/3 power. Those believing in
Kleiber’s Law point out that this latter scaling rule is off by a factor of two
from mice to cows.

Both dependences give essentially the same prediction over the mass range
of humans, so it matters little which we use for analysis. Adherents of both
rules claim that the available BMR data support them. In any case, it is
interesting to examine the physical reasons put forth to support the m

2/3
b

and m
3/4
b scaling rules [304, 312]. There is both some sound and some highly

questionable physical reasoning in both of these arguments.

Supporting Kleiber’s m3/4 Scaling Rule

The metabolic rate, and the BMR in particular, are supposed to scale as the
maximum power output of muscles [323, 324]. Power usage is proportional to
Fv, where F is the muscle force and v is the speed of muscle contraction. The
muscle force F = σ(PCA), where σ is the muscle force per unit area and PCA
is the muscle cross-sectional area. Therefore,

BMR ∝ Fv = σ(PCA)v. (6.20)

Studies show that for muscles of all species and size, v and σ do not vary
substantially, so

BMR ∝ PCA. (6.21)

If the limbs of mammals, which of course contain many of these muscles,
have a characteristic width d and length L, this area and the mass of the
mammal scale mb as

PCA ∝ d2 (6.22)

mb ∝ d2L. (6.23)

To relate the BMR to the mass, we need to relate L to d. Four arguments
have been put forth suggesting that L scales with d2/3. First, experimental
data on primates show that L varies as d this way. Second, this scaling law
also relates the height of a tree L with the width of the tree trunk d, and so
this scaling law seems to be universal. Third, L ∝ d2/3 is also the scaling law
for the condition for which a long vertical column of height L and width d
buckles under its own weight when displaced from the vertical orientation.

A fourth argument is based on self-similarity, using the expression we
derived earlier, (4.46). The end of the beam of length L and lateral dimension
d in Fig. 4.40 deflects down by a distance y(L) = −FL3/3Y IA when a force F
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is applied at its end. Even though the area moment of inertia is different for
different cross-sections – IA = πd4/64 for cylinders (from IA = πa4/4 for a
circular cross-section of radius a = d/2 using (4.42)) and d4/12 for rectangular
solids with a square cross-section (from IA = wh3/12 for a rectangular cross-
section of width w and height h – here with d = w = h, using (4.41)) – it
makes no difference which we use because both have the same d4 dependence.
(We will formally use the circular cross-section.)

This downward angle of deflection θ is ∼|y|/L, giving

θ =
|y|
L

=
FL2

3Y IA
. (6.24)

Self-similarity suggests that θ would be same for all species, and consequently
equal to a constant. If F is due to gravity, then F = mbg = ρV g, where ρ is
the beam mass density and V is its volume = (πd2/4)L. If this force acted
entirely at the end, then

θ =
(ρ((πd2/4)L)g)L2

3Y (πd4/64)
=

16
3

ρg

Y

L3

d2
. (6.25)

If θ were independent of L and d, we again get L ∝ d2/3.
Given that mb ∝ d2L and L ∝ d2/3, we see that mb ∝ d2(d2/3) =

d8/3. Therefore d ∝ m
3/8
b . With BMR ∝ PCA and PCA ∝ d2, we find that

BMR ∝ d2. Using d ∝ m
3/8
b , we see that

BMR ∝ (m3/8
b )2 = m

3/4
b , (6.26)

which is Kleiber’s Law.
There are many gaps in this reasoning. For example, the power needed to

operate skeletal muscles is actually a small fraction of the BMR (Table 6.17),
so the scaling laws based on this power may not represent those of the whole
BMR.

Supporting the m2/3 Scaling Rule

The previous argument assumed that the BMR scaled as the metabolic power
needs. This line of reasoning says that the BMR is limited by the rate of heat
loss from the mammal. A mammal has a cross-sectional area that scales as
L2, where L is its dimension, while its volume and therefore mass mb scale
as L3. Heat loss scales as the available surface area A, which clearly varies as
m

2/3
b , and so

BMR ∝ m
2/3
b . (6.27)

BMR Scaling in Humans

The BMR in humans depends on mass as well as other factors, such as gen-
der, height, and age. The Harris–Benedict equations are commonly used to
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Table 6.19. BMR (kcal/day) for different age groups. (Using data from [298], using
[335])

age group (years) BMR (males) BMR (females)

Under 3 59.5mb − 30 58.3mb − 31
3–10 22.7mb + 504 20.3mb + 486
10–18 17.7mb + 658 13.4mb + 693
18–30 15.1mb + 692 14.8mb + 487
30–60 11.5mb + 873 8.1mb + 846
Over 60 11.7mb + 588 9.1mb + 658

mb is the body mass in kg.

characterize measured human BMRs:

For men: BMR = 66.4730 + 13.7516mb + 5.0033H − 6.75505Y, (6.28)
For women: BMR = 655.0955 + 9.5634mb + 1.8496H − 4.6756Y, (6.29)

where the BMR is in kcal/day, mb is the body mass in kg, H is the height in
cm, and Y is the age in yr. This can also be expressed as

For men: BMR = 71.2m
3/4
b [1 + 0.004(30 − Y ) + 0.010(S − 43.4)], (6.30)

For women: BMR = 65.8m
3/4
b [1 + 0.004(30 − Y ) + 0.010(S − 43.4)], (6.31)

where S is the specific stature = H(in cm)/m1/3
b (mb in kg).

Another study re-examined the BMR in term of age groups and gender,
as presented in Table 6.19. Table 6.20 gives the BMRs for adults of given

Table 6.20. BMR (kcal/day) for adult men and women of different ages, assuming
Quételet’s index (or BMI) Q is 22 for men and 21 for women and the relations in
Table 6.19. (Using data from [298], from [305])

height (m)
(also ft, in)

mass (kg)
(also lb)

age (yr)

18–30 30–60 over 60

men
1.5 (4′11′′) 49.5 (109) 1,440 1,450 1,150
1.6 (5′3′′) 56.5 (124) 1,540 1,530 1,250
1.7 (5′7′′) 63.5 (140) 1,650 1,620 1,350
1.8 (5′11′′) 71.5 (157) 1,770 1,710 1,450
1.9 (6′3′′) 79.5 (175) 1,900 1,800 1,560
2.0 (6′7′′) 88.0 (194) 2,030 1,900 1,670

women
1.4 (4′7′′) 41.0 (90) 1,100 1,190 1,030
1.5 (4′11′′) 47.0 (104) 1,190 1,240 1,090
1.6 (5′3′′) 54.0 (119) 1,290 1,300 1,160
1.7 (5′7′′) 61.0 (134) 1,390 1,360 1,230
1.8 (5′11′′) 68.0 (150) 1,500 1,420 1,310
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heights as predicted by Table 6.19. The person’s mass is chosen to make the
Quételet’s index (or BMI) Q = mb/H2 (mb is the body mass (in kg) and H
is the height (in m)) equal to 22 for men and 21 for women.

These relations show that younger people have higher BMRs than older
people, which is true because they have more lean body mass. Similarly,
tall thin people have higher BMRs and overweight people have lower BMRs.
Pregnant women have higher BMRs than predicted above, as do people with
fevers, those under stress, and those in hot and cold conditions. The BMR
is lower than is predicted here for people who are fasting, starving, and
malnourished.

The variations in the BMR and MR among humans are discussed below.

6.4.2 Metabolic Rates during Common Activities

Fortunately, we spend most of our time under conditions less restrictive than
those needed to measure the BMR. Metabolic rates during activity are com-
monly expressed in several ways. (1) The total metabolic rate (MR) (including
that due to the BMR) is expressed either as (a) a cumulative value (BMR +
the additional MR due to activities), (b) a factor times the BMR – the factor
being called the activity factor f , or (c) a factor times the RMR, with that
factor called the MET, the metabolic equivalent. The RMR is more frequently
used as the reference because it is much easier to measure than the BMR. (2)
Only the net increase in metabolic rate over the BMR (or RMR) is given,
such as MR−BMR.

Of course, each method should provide the same total MR. It is not sur-
prising that the published values of MR expressed in these different ways
are often somewhat inconsistent; this is true for several reasons. The exact
metabolic rates may not be known very well, the details of the specific activ-
ity may not be well defined, the differences in rates among people of different
genders, ages, and weights may not have been accounted for properly, or the
exact differences between the reference metabolic rates may not be clear.
For example, the differences in the BMR and RMR may not have been con-
sidered well. Also, sometimes the MET is defined relative to the RMR as
defined earlier, right after sleep, and sometimes it is referenced to the MR for
sitting. One more subtle reason is that the BMR varies as m

3/4
b , while the

increase in metabolic rate due to activity is thought to depend linearly on mb

(and this may not always be exactly true). Consequently, scaling factors, such
as the activity factor, cannot be rigorously correct. Nevertheless, examining
the total MR is intriguing and we can learn much from it, even amidst these
potential inconsistencies.

We see from Table 6.21 that the heavier the activity, the higher the
metabolic rate and the greater the need for oxygen, and of course this is
why we then need to breathe faster and harder. In fact, the air/oxygen
consumption is proportional to the power exerted and the rate of heat
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Table 6.21. Approximate total metabolic rates (MR) and oxygen consumption for
different levels of activity for an average 70 kg person. (From [296] and [300])

activity equivalent
heat production

O2 consumption
(L/min)

(kcal/h) (W)

very low level activity
sleeping 71 83 0.24
sitting at rest 103 120 0.34
standing relaxed 108 125 0.36

light activity
walking slowly, 5 km/h 228 265 0.76

moderate activity
cycling, 15 km/h 344 400 1.13
moderate swim 400 465 1.32

heavy activity
soccer 500 580 1.65

quite heavy activity
climbing stairs, 116 steps/min 589 685 1.96
cycling, 21 km/h 602 700 2.00
basketball 688 800 2.28

extreme activity
racing cyclist 1,400 1,600 4.62

being produced, if the power is low enough for only aerobic processes to be
important (Tables 6.11–6.15). We can compare the MRs in this table with our
BMRs.

The metabolic rate during exercise can be measured by using direct
calorimetry (Fig. 6.6) or indirect calorimetry (Fig. 6.7). In direct (or “bomb”)
calorimetry the heat produced by a person exercising in a thermally insulated
room is measured. The metabolic rate is determined assuming that ∼40% of
the energy liberated during metabolism is used to produce ATP, while the
remaining 60% is converted to heat – which is being measured. The subject is
in an enclosed, thermally insulated chamber. Heat produced by the subject’s
body eventually heats water flowing in tubing within the chamber walls and
this water temperature is measured. Constructing such a chamber is relatively
expensive and the time response of this method is slow, so metabolic rates
during intense activity cannot be measured well.

In indirect calorimetry the rates of O2 consumption, dVO2/dt, and CO2

production, dVCO2/dt, are determined, so it is simpler to implement, as in
Fig. 6.7. They are determined from the rates of inspiring and expiring vol-
umes of air and from the fractions of O2 and CO2 in both the inspired and
expired air (Problem 6.10). If the calorific equivalents of carbohydrates and
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Fig. 6.6. In a calorimetric chamber for direct calorimetry, heat generated by the per-
son is transferred to the air and chamber walls, and the heat produced – and therefore
the metabolic rate – are determined by the measured temperature change in the air
and the water flowing through the chamber. (From [340]. Used with permission)

fats were the same, the rate of heat energy produced would be dVO2/dt×
the calorific equivalent. Because they are not the same, the respiratory ex-
change ratio RER is measured (Table 6.2) to determine the relative amounts
of carbohydrates and fats being metabolized. The RER can be expressed as

Fig. 6.7. Gas collection for indirectly measuring metabolic rates. (From [340]. Used
with permission)
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(dVCO2/dt)/(dVO2/dt). An RER = 1.0 indicates that muscles are using only
glucose or glycogen (carbohydrates). An RER = 0.71 indicates that only fats
are being used. Values in between these limits indicate that both fats and
carbohydrates are being used (Problem 6.10). This approach assumes that no
proteins are being metabolized, which is not true for exercise lasting several
hours, during which up to 10% of the metabolic energy can come from protein
metabolism.

The aerobic capacities of normally active 18–22 year old college students
are 44–50 mL/kg-min (of oxygen) for men and 38–42 mL/kg-min for women.
For trained athletes this capacity increases to about 60 mL/kg-min and to
70–80 mL/kg-min and higher for elite male long distance runners. Poorly con-
ditioned adults can have aerobic capacities below 20 mL/kg-min. The aero-
bic capacity decreases with age, by about 10% per decade, starting in the
mid-teens for women and mid-20s for men. Among normally active men it
decreases from about 47.7 mL/kg-min at 25 years of age, to 43.1 mL/kg-min
at 35, 39.5 mL/kg-min at 45, 38.4 mL/kg-min at 52, 34.5 mL/kg-min at 63,
and 25.5 mL/kg-min at 75 years of age.

All of these changes in body metabolic rates are linked to corresponding
changes within cells, organs, and systems in the body. Table 6.22 lists the
power output of various cells and tissues at various levels of activity.

As we discuss metabolic rates, we need to keep in mind that there are
significant variations in the metabolism between people with the same body
characteristics and activity levels. The usual variation in BMR is ±6–10%;
this is presumably also true for the MR (for the same average activity levels).
Table 6.23 shows a striking example in which the metabolic rates of two young
women differ by 50%. Because most of this difference is due to metabolism
during sleep at night, potential differences in activity levels do not seem very
important.

Metabolic Rates during Locomotion

Figure 6.8 shows that the rate of heat production vs. walking speed is roughly
linear, meaning that the energy cost per distance traveled is independent of
speed. Above 3 m/s (7 mph) this curve becomes very superlinear. The energy
cost of walking above that of standing is 2.13 J/kg-m at 1.2 m/s (2.6 mph),
2.49 J/kg-m at 1.8 m/s (4.0 mph), and 3.93 J/kg-m at 2.4 m/s (5.4 mph).

At high speeds, why do we prefer to run than walk? It is very hard to keep
walking at these faster speeds because of the increased power needed relative
to jogging and running (Fig. 3.25). In fact at 2.4 m/s (5.4 mph) the metabolic
power needed to run is 14% less than that needed to walk. Phrased in terms
of the energy needed per unit mass to move horizontally per meter, this is
a decrease from 3.93 J/kg-m (0.94 cal/kg-m) to 3.40 J/kg-m (0.81 cal/kg-m).
Figure 3.25 shows that the metabolic cost of locomotion per distance traveled
is relatively independent of speed for a wide range of speeds when using the
optimal gait, both for humans and horses. (Although it costs the same energy
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Table 6.22. Estimated power output (metabolic rates) and power densities of bio-
logical cells and tissues (human, unless stated otherwise). (Using data presented in
[308])

organelle, cell, or object power volume power
output (μm3) density

(picowatts) (W/m3)

myosin muscle motor 0.000001 5 × 10−7 2 × 106

crossbridge
platelet (resting) 0.003–0.09 3 0.1–3.0 × 104

red blood cell 0.008 94 8.5 × 101

E. coli bacterium (basal) 0.05 2 2.5 × 102

mitochondrian organelle 0.1–1.1 1 0.1–1.1 × 106

platelet (activated) 0.7–7.0 3 0.2–2.3 × 106

skin cell 1–3 1,000 1.0–3.1 × 103

skeletal muscle (resting) 1–10 2,000 0.5–4.9 × 103

typical tissue cell (basal) 30 8,000 3.8 × 103

intestine/stomach cell 46–52 8,000 5.6–6.5 × 103

neuron cell (basal) 70–110 14,000 5.0–7.9 × 103

heart muscle cell (typical) 87–290 8,000 1.1–3.6 × 104

skeletal muscle cell 113 2,000 5.7 × 104

(max., voluntary)
kidney cell 155–346 8,000 1.9–4.3 × 104

neuron cell (maximum) 255–330 14,000 1.8–2.4 × 104

typical tissue cell (maximum) 480 8,000 6.0 × 104

skeletal muscle cell 2,300 2,000 1.2 × 106

(max., tetanic)
honeybee flight muscle cell 3,400 1,000 3.4 × 106

heart muscle cell (maximum) 3,500–5,000 8,000 4.4–6.3 × 105

human brain 15–25W 1.4 × 10−3 m3 1.1–1.8 × 104

human body (basal) 100W 0.1 m3 1.0 × 103

human body (maximum) 1,600 W 0.1 m3 1.6 × 104

gasoline-powered automobile 200,000 W 10m3 2.0 × 104

The Sun 3.92 × 1026 W 1.41 × 1027 m3 0.28

Note that 1 W = 0.86 kcal/h.

Table 6.23. Food intakes and heat production for two 23-year-old women of com-
parable physical size. (Using data from [298], from the result of Warwick as quoted
by [309])

“large eater” “small eater” ratio

body mass (kg) 54.2 52.7 1.03
lean body mass (kg) 45.1 43.6 1.03
average food intake (kcal/d) 2,370 1,550 1.54
heat production (kcal/d) 2,170 1,390 1.55
heat production at night (kcal/d) 1,720 1,100 1.56
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Fig. 6.8. Heat production (metabolic needs) of walking. (From [298], as summarized
by [330])

to walk a mile and to run a mile, running provides better cardiovascular
training.) The oxygen intake is about 5.8 mL/kg-min per mph running speed.
Figure 6.9 shows metabolic needs vs. speed for several types of locomotion.

Concentric muscle contractions are said to do positive work, while eccentric
contractions do negative work. (See Fig. 3.53.) The metabolic cost of positive
work is greater than an equal amount of negative work. The average extra
energy needed to move horizontally ∼2.8 J/kg-m (relative to standing) is much
less than that extra needed to move vertically ∼30 J/kg-m. Obviously, walking
uphill requires more power than on level terrain; walking downhill requires less
power than on level terrain. The work and power required going uphill is about
2.7× the increase in potential energy and the concomitant rate of change of
this energy; this means the efficiency of doing this type of work is about 1/2.7
= 36%. (As we will soon see, this says the average extra energy needed to
move vertically is 26 J/kg-m, which is consistent with the value of ∼30 J/kg-
m that was just given.) When moving downhill, less power is needed than that
needed on level terrain by ∼50% of the rate of decrease of potential energy.
All of the gained potential energy is not recovered because muscular work is
needed to prevent us from falling downhill. Problem 6.58 explores the power
needed in walking (or running) and gradients.
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Fig. 6.9. Metabolic needs vs. speed for several types of locomotion, extrapolated to
world record speeds for 5 km races (for running) or 10 km races (for the others). The
dashed line shows the power needed to overcome air resistance only. (From [294],
based on data from [332]. Used with permission)

Let us address the use of treadmills to assess the cardiovascular and car-
diorespiratory capacity of healthy people and those with heart disease. The
patient is wired with EKG (electrocardiogram) leads and EKG scans are con-
tinually taken as the patient walks/runs on a treadmill (see Chaps. 8 and
12 for more about EKGs). The treadmill speed and/or the uphill grade is
increased after set periods of time (called stages), until either the complete
cycle ends, the patient can no longer endure the workout, or an irregularity
appears. In the Bruce Protocol, Table 6.24, the speed and grade increase with
each stage. In another common protocol, the Naughton Protocol, the speed
is fixed at 3.0 mph, and the grade increases from 2.5% in Stage I to 20.0%
in Stage VIII, in steps of 2.5%, with each stage lasting 2 min. Such tiltable
treadmills are also used to determine the efficiency of skeletal muscles in hu-
man locomotion. Oxygen consumption rates – and therefore metabolic rates –
are compared for an ensemble of people moving at a given speed first on a
level treadmill and then on a tilted treadmill. The efficiency is about 30%.

Table 6.24. The Bruce protocol for an exercise test on a treadmill. (Using data
from [306])

stage speed (mph) grade (%) cumulative time (min)

I 1.7 10 1–3
II 2.5 12 4–6
III 3.4 14 7–9
IV 4.2 16 10–12
V 5.0 18 13–15
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As an example, we will determine the metabolic power and rate of oxy-
gen consumption needed during Stage V of the Bruce protocol for a 75 kg
male. The total rate is the sum of the BMR (or more precisely the MR
for standing), the power needed to move horizontally, and the additional
power needed to move uphill. The second term is ∼2.8 J/kg-m × (horizon-
tal distance moved per unit time). This is 2.8 W mbv, where mb is the body
mass in kg and v is the speed of walking in m/s (or really jogging for this
faster speed). The third term comes from how fast the potential energy mbgh
changes with time, which is mbg(dh/dt), and the “inefficiency” factor of 2.7,
and so it is 2.7 mbg(dh/dt). A person moving a distance x along a ramp
at angle θ elevates a distance x sin θ (draw a diagram to prove this), so this
third term becomes 2.7 mbg sin θ(dx/dt). With v = dx/dt, this becomes 2.7
mbgv sin θ = 26 W mbv sin θ. Combining the second and third terms gives
(2.8 + 26 sin θ)mbv in W or (2.4 + 22.8 sin θ)mbv in kcal/h (using 1 W =
0.86 kcal/h). The speed is 5.0 mph = 2.23 m/s (using 1 mph = 0.447 m/s). A
grade of 18% corresponds to an angle of (0.18)90◦ = 16.2◦, and so sin θ = 0.28.
For this 75 kg person, the second term is (2.4)(75)(2.23) = 401 kcal/h, and the
third term is (22.8)(0.28)(75)(2.23) = 1,068 kcal/h. The burden of moving up-
hill rapidly is by far the largest contribution to the metabolic rate. The sum
of these two terms is 1,469 kcal/h. Adding to this the MR for walking of about
100 kcal/min, the MR in Stage V is about 1,570 kcal/h, which is pretty high.
(Of course, the patient is at this stage for no more than 3 min.) Assuming
only aerobic metabolism, the rate of oxygen usage is this metabolic rate di-
vided by the calorific equivalent. If only carbohydrates are being burned, the
calorific equivalent is 5.05 kcal/L O2 and we see that in Stage V dVO2/dt =
(1,570 kcal/h)/(5.05 kcal/L O2) = 311 L O2/h = 5.2 L O2/min is needed.

Why is it hard to run into the wind? The answer is that it requires much
more metabolic power (heat production, or equivalent oxygen consumption).
Table 6.25 shows that for walking and running this power increases as the
square of the wind speed. A fast walk into the wind can require as much
power as a relatively slow run with no wind. Even still air affects metabolic
needs; air resistance accounts for about 8% of the metabolic needs for middle
distance runners and up to 15% for sprinters. (We examine this effect of drag
in Chap. 7.)

MR Scaling with Metabolic Equivalents and Activity Factors

The actual heat production, or metabolic rate (MR), is higher than the BMR
because of activity (Table 6.21). We can relate the MR and BMR by

MR = f(BMR), (6.32)

where f is the activity factor.
The metabolic equivalent (MET) is another very closely related measure of

activity. An average body consumes (3.5 mL/kg-min) × MET. Typical values
of MET are given in Tables 6.26–6.30. It is often said that MET ∼f/1.5,
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Table 6.25. The effect of wind on energy needs of walking and running. (Using
data from [298], calculated using [333])

activity, speed wind oxygen heat increase in
speed w consumption production energy/w2

(m/s) (or mph) (m/s) (or mph) (L/min) (W) (W-s2/m2)

walking, 1.25 (2.80) 0.0 (0.0) 0.878 294
10.0 (22.4) 1.192 399 �1.05
14.1 (31.5) 1.505 504 �1.05

walking, 2.08 (4.65) 0.0 (0.0) 1.649 552
10.0 (22.4) 2.221 744 �1.91
14.1 (31.5) 2.792 935 �1.91

running, 3.75 (8.39) 0.0 (0.0) 2.836 950
10.0 (22.4) 3.243 1,086 �1.36
14.1 (31.5) 3.710 1,243 �1.36

running, 4.47 (10.00) 0.0 (0.0) 3.010 1,008
10.0 (22.4) 3.710 1,243 �2.52
14.1 (31.5) 4.525 1,516 �2.52

Note that the last column is the increase in heat production divided by the square
of the wind speed for the particular walking or running condition.

because the activity factor f is referenced to the smaller BMR, but it is not
clear that this ratio is as large as 1.5.

Daily-Averaged Activity Factor

The activity factor could refer to a given activity, as above, or to the daily
average; we will call the daily average fav. There is no universal agreement
on the actual values of fav. They depend on the type of work, amount of ex-
ercise, and access to automated conveniences. United Nations studies suggest
for adult men fav ∼ 1.55 for light occupational work, 1.78 for moderate oc-
cupation work, and 2.10 for heavy occupational work. Other studies suggest
that the MR is much lower, with fav ∼ 1.3 for low activity (sedentary), 1.5 for

Table 6.26. Typical MET values for self care. (Using data from [340])

self-care MET

rest, sitting, standing, eating, conversation 1.0
dressing, undressing, washing hands and face, 2.0

propelling wheelchair
walking 2.5 mph 3.0
showering 3.5
walking downstairs 4.5
walking 3.5 mph 5.5
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Table 6.27. Typical MET values for housework. (Using data from [340])

housework MET

handsewing 1.0
machine sewing, sweeping floor 1.5
polishing furniture 2.0
peeling potatoes, scrubbing, hand washing clothes, 2.5

kneading dough
scrubbing floors, cleaning windows, making beds 3.0
ironing, mopping, wringing wash by hand,
hanging wash by hand 3.5
beating carpets 4.0

Table 6.28. Typical MET values for occupations. (Using data from [340])

occupational MET

sitting at desk, writing, riding in car, watch repair 1.5
typing 2.0
welding, radio assembly, playing musical instrument 2.5
parts assembly 3.0
bricklaying, plastering 3.5
heavy assembly work, wheeling wheelbarrow (115 lb, 2.5 mph) 4.0
carpentry 5.5
mowing lawn with hand mower, chopping wood 6.5
shoveling 7.0
digging 7.5

Table 6.29. Typical MET values for exercise. (Using data from [340])

exercise (level conditions) MET

walking 2 mph 2.5
cycling 5.5 mph 3.0
walking 2.5 mph, cycling 6mph 3.5
walking 3 mph; calisthenics 4.5
cycling 9.7 mph; swimming, crawl, 1.0 ft/s 5.0
walking 3.5 mph 5.5
walking 4 mph 6.5
jogging 5 mph 7.5
running 7.5 mph; cycling 13 mph 9.0
swimming, crawl, 2.0 ft/s 10.0
running 8.5 mph 12.0
running 10mph; swimming, crawl, 2.5 ft/s 15.0
running 12mph; swimming, crawl, 3.0 ft/s 20.0
running 15mph; swimming, crawl, 3.5 ft/s 30.0
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Table 6.30. Typical MET values for recreation. (Using data from [340])

recreational MET

painting, sitting 1.5
playing piano, driving car 2.0
canoeing 2.5 mph, horseback riding (walk) 2.5
volleyball (recreational), billiards 3.0
bowling, horseshoes 3.5
golf, cricket 4.0
archery, ballroom dancing, table tennis, baseball 4.5
tennis 6.0
horseback riding (trot), folk dancing 6.5
skiing, horseback riding (gallop) 8.0
squash 8.5
fencing, basketball, football 9.0
gymnastics, handball, paddleball 10.0

intermediate activity (some regular exercise), and 1.7 for a high level activity
(regular activity or physically demanding job).

The highest of these values for heavy occupational work, fav ∼ 2.10, is
still lower than that estimated for a Scottish coal miner in the 1950s before
the occupation became more automated. The peak metabolic rate of the coal
miner was 4.3 × BMR during working hours and averaged a still very high
2.5 × BMR during the day, as is calculated in Table 6.31. Most occupations
are physically less demanding now.

Mechanical Work and Power

The first law of thermodynamics (6.1) shows that stored energy can be used
to supply heat or work. For people, this is mechanical work and not any other
type (such as thinking deeply about your homework). Mechanical work is the
force you apply to an object × the distance you push or pull it.

In discussing metabolic rates we need to be careful about defining types
of work and energy [341]. Figure 6.10 shows that in lifting an object, which
we can call external work, work is also done about the joints of the body
to lift the center of mass of the body itself, which is internal work. Also,
concentric muscle contractions are said to do positive (mechanical) work, while
eccentric contractions do negative work. Walking on level ground requires
equal amounts of positive and negative work. Walking uphill requires relatively
more positive work, while walking downhill requires relatively more negative
work. The work efficiencies of positive and negative work are different.

Furthermore, the term efficiency can mean different things, so, in gen-
eral, we need to be careful and see what is being defined [341]. Metabolic or
muscle efficiency is the total mechanical work done by all muscles divided
by the metabolic work done by the muscles. Another measure of efficiency is



Table 6.31. Analysis of the metabolic power needs of a Scottish coal miner in the
early 1950s before mechanization. (Using data from [298], recalculated using the
data of [310])

activity time MR/BMR
= f

product
F × f

(min) (fraction of day, F )

in bed 501 0.348 1.00 0.348

nonoccupational
sitting 331 0.230 1.51 0.347
standing 19 0.013 1.71 0.022
walking 129 0.089 4.67 0.416
washing and dressing 43 0.030 3.14 0.094
gardening 17 0.012 4.76 0.057
cycling 21 0.015 6.28 0.094

occupational
sitting 130 0.090 1.60 0.144
standing 18 0.012 1.71 0.021
walking 58 0.040 6.38 0.255
hewing 11 0.007 6.38 0.045
timbering 59 0.041 5.43 0.223
loading 104 0.072 6.00 0.432

Totals 1,440 1.000 – 2.497

MR is the metabolic rate.

Fig. 6.10. “Internal” vs. “external” work in lifting an object. (From [341]. Reprinted
with permission of Wiley)
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Table 6.32. Mechanical power and efficiency of mechanical work. (Using data from
[296])

task mechanical power
output

metabolic rate
(W)

efficiency
(%)

(hp) (W)

cycling (typical) 0.15 112 505 19
tramming 0.12 90 525 17
shoveling sand 0.024 17.5 570 3

the mechanical efficiency, which is the total mechanical work done (internal +
external) divided by the metabolic energy cost in excess of the resting
metabolic cost. A more restrictive parameter is the work efficiency, which
is the external mechanical work divided by the metabolic cost in excess of the
zero-work metabolic cost. Inefficiency results from incomplete conversion of
metabolic energy to mechanical energy and from neurological inefficiency in
controlling this mechanical energy.

For our purposes we will simply define the efficiency, ε, as the rate of
doing mechanical work divided by the metabolic rate. Tables 6.32 and 6.33
show that it rarely exceeds 20%, and it is usually much less than this. Cycling
is relatively efficient, with ε approaching 22% for racing cyclists. Tramming
is also efficient. (This involves pushing railroad cars loaded with coal down a
railroad track.) Shoveling sand, a more common activity, is only 3% efficient.
For comparison, steam engines have an efficiency of 17% and gasoline engines
have ε = 38%.

Where does the balance of the energy go? The balance goes into the produc-
tion of heat. This means that 80–100% of the final product of your metabolism
is heat; this number is usually closer to 100%. In any case, the ∼500 kcal me-
chanical work done by a physical laborer during a day translates into dietary
needs of at least 2,500 kcal over the BMR, because the mechanical efficiency
is usually <20%.

Table 6.33. Efficiencies of mechanical work. (Using data from [306])

exercise activity or task efficiency (%)

cycling, level 24–34
cycling, uphill 19
ice skating 11
rowing 10–20
stepping machine 23
swimming, freestyle 2.9–7.4
walking, horizontal 20–35
walking, incline 21–43
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Table 6.34. World record running speeds. (As of 2006)

distance average running speed
(m) (m/s)

100 10.22
200 10.35
400 9.26
1,500 7.28
10,000 6.32
42,200a 6.12
100,000 4.46

aMarathon, 26 miles, 385 yd

The rate of oxygen intake is limited by the rate the lungs can take up
oxygen and the rate the heart can distribute this oxygen around the body for
aerobic metabolism. One example of this is the decrease in human running
speed with increasing distance (beyond ∼200 m), which is due to the limita-
tions on oxygen intake. This is clear from the world-record average running
speeds at various distances shown in Table 6.34.

Table 6.35 shows that the maximum power of mechanical work a well-
conditioned person can do decreases with the duration of the task. For short
times we can do mechanical work at a higher rate because of anaerobic
metabolic processes; longer-term work requires aerobic processes.

How to “Burn” off Food

Let us say you have just eaten a “standard” donut. You feel guilty and you
want to burn off those extra calories. What can you do?

If you are sitting at rest you are naturally burning off ∼103 kcal/h (70 kg
man). If you decide to play basketball your metabolic rate increases to
∼688 kcal/h, so you will be increasing your metabolic rate by ∼585 kcal/h.

Table 6.35. Approximate maximum mechanical power from well-conditioned hu-
mans. (Using data from [296])

power duration total energy

(hp) (W) (kJ) (kcal)

2 1,500 6 s 9.0 2.2
1 750 1min 45 10.8
0.35 260 35min 546 130
0.2 150 5 h 2,700 645
0.1 75 8 h day of a laborer 2,160 516
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You will burn off that standard 280 kcal donut in

280 kcal
585 kcal/h

= 0.48 h = 29min. (6.33)

That donut will cost you a half an hour of real up-tempo basketball.
Let us say you want to “walk off” that donut. The metabolic rate dur-

ing slow walking is ∼228 kcal/h, which exceeds that of sitting at rest by
∼125 kcal/h. To walk off that donut you would have to walk for

280 kcal
125 kcal/h

= 2.24 h = 2h 14min. (6.34)

Which is a little longer than most after-dinner strolls.
Why do people put on weight when they get older? One reason is the de-

crease in BMR with age (Tables 6.19 and 6.20). The activity level fav often
decreases with age. Also, sometimes people eat more (snacking) (see Prob-
lem 6.77). We now examine how caloric intake and activity combine to deter-
mine body weight.

6.4.3 Weight Gain and Loss

If your caloric intake exceeds your metabolic rate, you gain weight. If it is less,
you lose weight. You can control your caloric intake by controlling what you
put in your mouth. You have some control of your metabolic rate, by being
more or less active in general and by exercising more or less. (In a daring
example of his devotion to science and his readers, while writing this text the
author showed how easy it is to gain 10 lb in 6 months merely by exercis-
ing less and by snacking more at night. He needed no dietary supplements
to accomplish this feat! The author is considering the reverse experiment of
weight loss through more exercise and less snacking.) As we will see later in
this chapter, your metabolic rate is related to your body temperature and loss
of body heat. (For example, if you are very cold, you shiver and this increases
your MR.)

We will examine some very simple models of weight gain and loss here and
in the problems. How much weight in the form of body fat can you actually
lose in a week? How is body weight controlled by salt intake? How does your
body weight vary due to changes in caloric intake, age, and specific stature?
Our models are not only simple, they are overly simplistic – and yet it is a bit
difficult to make them more realistic. For example, increases in body weight
due to added muscle increase the BMR much more than those due to added
fat. How can this be included in the model?

Is it reasonable to apply the relations characterizing how the average
metabolic rate depends on body weight, age, and stature by using Kleiber’s
Law, Harris–Benedict equations, etc. to determine the steady-state weight and
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Fig. 6.11. Schematic of the time evolution of weight gain or loss, for a small sudden
increase or decrease in metabolic intake (which is then maintained at this new level).
Similar changes are expected for a small sudden decrease or increase in activity level,
respectively

weight changes for a given individual? It is not clear that it is reasonable, be-
cause the body controls metabolic rates differently for different individuals –
in response to stimuli such as dieting – making it easier for some, while harder
for others, to lose weight. For now, let us assume that these relations also ap-
ply for a given individual, although it is not obvious that this is true. They can
then be used to determine how the steady-state weight of a person changes
with food intake, activity level, and age. For a sudden change in metabolic
intake or activity to a new level, how fast does the body reach its new steady
state? General changes are depicted in Fig. 6.11.

If your weight gain or loss involved only fat, the caloric value of fat of
9 kcal/g means that an increase or decrease in metabolic input by 4,090 kcal
would result in a gain or loss of a pound (of fat). If your weight change in-
volved only protein (4 kcal/g), a change in 1,820 kcal would change body mass
by a pound. According to Wishnofsky’s rule, when you increase or decrease
your metabolic input by 3,500 kcal you gain or lose about a pound [342]. Con-
sequently, Wishnofsky’s rule suggests the gain or loss typically averages to
about 3/4 fat and 1/4 muscle.

Because of the different muscle, fat, and fluid masses in men and women
and in younger and older people, this long-used rule is now not thought to be
really that universal. This average energy content of weight change is really
significantly smaller for men (2,480 kcal/lb) than in women (3,380 kcal/lb).
Also, it is about 10% larger for older people (2,610 kcal/lb, 70-year-old men;
3,510 kcal/lb, 70-yr-women) than younger people (2,360 kcal/lb, 35-yr-men;
3,260 kcal/lb, 35-yr-women) [331]. (All for these have been scaled to the same
90 kg, 170-cm tall person.)

Let us say you increase or decrease your food intake by 1,000 kcal/day. If
it all went into increasing or decreasing your fat reserves, this would lead to
a change of (1,000 kcal/day)/(9 kcal/g fat) or about 110 g of fat a day, which
corresponds to 1/4 lb per day or roughly 2 lb per week. If you are on a diet,
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a decrease in caloric intake of 1,000 kcal/day is very large, so you can never
expect to lose more than 2 lb a week. (Of course, exercise would also accelerate
weight loss.)

Why do some diets claim faster weight loss, especially early on? Some
diets may really involve the loss of body water, with very little loss of fat,
carbohydrate, or protein. (Boxers who need to lose weight quickly to make
a weight division often follow such diets.) Also, weight loss in a legitimate
diet can be very fast early on. In the first days of dieting, burning 1,000 kcal
involves burning glycogen in the small glycogen pool. Burning glycogen con-
sumes 4.1 kcal/g glycogen, but because of the concomitant loss of water as-
sociated with the glycogen, only about 1 kcal is consumed per total g lost.
Therefore, 1,000 kcal/(1 kcal/g) = 1,000 g is lost, which is about 2 lb. Later
when fat is oxidized instead, this same deficit of 1,000 kcal results in a mass
loss of only 110 g (1/4 lb). This suddenly slower rate of weight loss (in the
approach to the new steady-state weight) can easily discourage dieters.

To paraphrase the advice given by Mr. Micawber to Charles Dickens’
David Copperfield, “Daily caloric intake 2,000 kcal, daily energy expenditure
2,100 kcal, result happiness. Daily caloric intake 2,000 kcal, daily energy ex-
penditure 1,900 kcal, result misery.” (This is true at least for those way beyond
their college years.)

During starvation, the body first utilizes all available carbohydrates –
mostly glycogen in the liver and muscles – and this satisfies the body’s energy
needs for about half a day. Then fat and protein are depleted by the body
(see Fig. 6.12); fat reserves are about 100× the initial carbohydrates reserves.
Then with no fat remaining, protein is further depleted until death. Death
occurs when about half of the proteins have been depleted because proteins
are needed for cellular function.

Fig. 6.12. Effect of starvation on energy supplies in the body. (Based on [314])
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6.5 Loss of Body Heat

Why is the loss of body heat important? Virtually all of our metabolism
goes into making heat, because very little energy usually goes into useful
mechanical work. Consider the BMR of an mb = 70 kg person, which is
∼1,680 kcal/day. This translates to 70 kcal/h. Using (6.5), the rate that body
temperature would increase with time if all the heat stayed within the body is

dT

dt
=

1
mbc

(
dQ

dt

)
=

BMR
mbc

, (6.35)

where the rate of heat production dQ/dt ≈ BMR and the average human
specific heat is c = 0.83 kcal/kg-◦C. (To be consistent with the literature, we
will usually express this in terms of degrees Kelvin in this section, which
is 0.83 kcal/kg-K.) This heat capacity is C = 0.83 kcal/kg-◦C × 70 kg =
58 kcal/◦C. The rate of temperature increase equals

dT

dt
=

70 kcal/h
58 kcal/◦C

= 1.2◦C/h = 2.1◦F/h. (6.36)

Our body temperature would go up very fast without effective modes of heat
loss, even with some production of mechanical work (0.8 MR < dQ/dt < MR).

The specific heat of the body is often cited as 0.829 kcal/kg-K. This is a bit
higher than that calculated using the specific heat for each body component,
which are (in kcal/kg-K) 0.507 for lipid, 0.299 for protein, 0.201 for mineral
matter, 0.272 for carbohydrate, and 1.00 for water. These calculated values
are 0.798 kcal/kg-K for a fat-free man (containing 72% water, 22% protein,
and 6% minerals by weight), 0.765 kcal/kg-K for a thin man (containing 12%
body fat), and 0.652 kcal/kg-K for an obese man (containing 50% body fat).
The heat capacity of different body tissues are shown in Table 6.36 and that
of other common materials in Table 6.37.

6.5.1 Modes of Heat Loss

There are four modes of heat loss. Their absolute magnitude and relative
importance depend on clothing, environment, surroundings, etc. (Figs. 6.13
and 6.14). For general discussions of heat loss in people see [297, 298, 300,
306, 340].

1. Radiation loss, also known as black body radiation, is the thermal radia-
tion emitted by an object in thermal equilibrium. At rest, about 54–60%
of energy loss is typically through thermal radiation.

2. Convection and conduction of air from the body account for ∼25% of heat
loss.

3. The evaporation of sweat accounts for ∼7% of heat loss.
4. The evaporation of water through breathing accounts for ∼14% of this

loss.
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Table 6.36. Thermophysical characteristics of body tissues and organs and other
materials. (Using data from [308])

organ or tissue thermal specific density
conductivity heat (approximate)

K cv ρ
(W/m-K) (MJ/m3-K) (kg/m3)

skin – very warm 2.80 3.77 1,000
skin – normal hand 0.960 3.77 1,000
skin – cold 0.335 3.77 1,000
subcutaneous pure fat 0.190 1.96 850
muscle – living 0.642 3.94 1,050
muscle – excised, fresh 0.545 3.64 1,050
bone – average 1.16 2.39 1,500
bone – compact 2.28 2.70 1,790
bone – trabecular 0.582 2.07 1,250
blood – water at 310 K 0.623 4.19 993
blood – plasma (Hct = 0%) at 310 K 0.599 4.05 1,025
blood – whole (Hct = 40%) 0.549 3.82 1,050
heart – excised, near fresh 0.586 3.94 1,060
liver – excised, near fresh 0.565 3.78 1,050
kidney – excised, near fresh 0.544 4.08 1,050
abdomen core 0.544 3.89 1,050
brain – excised, near fresh 0.528 3.86 1,050
brain – living 0.805 – –
lung – excised, bovine 0.282 2.24 603
whole body (average) – 4.12 1,156

Note that 1 MJ/m3-K = 239 kcal/m3-K and 1,000 kg/m3 = 1g/cm3.

During very heavy activity, heat loss increases from the resting value of
∼1.5 to ∼15 kcal/min. The amount due to radiation remains about the same,
0.8 kcal/min, but it decreases to about 5% of the total. The loss to conduction
and convection increases from ∼0.3 to 2.2 kcal/min and this represents about
15% of the total loss. Losses due to the evaporation of sweat increase from
∼0.3 to 12.0 mL/min and they constitute about 80% of the heat loss.

The principles of these modes of heat loss are totally determined by
physics; the absolute magnitudes of the actual loss can be modified by bi-
ological processes.

In modeling heat loss, people are often modeled as upright cylinders, while
four-legged animals are modeled as horizontal cylinders. In particular, a typi-
cal man is modeled as a cylinder that is 1.65 m high with a 0.234 m diameter.
(Recall the comment in the introduction that to zero order a physicist might
model a cow as a sphere and that our models here may get a bit more com-
plex here; a cylinder is indeed more complex than a sphere. See Fig. 1.31 for
a model of a man composed of many cylindrical components.)
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Table 6.37. Thermophysical characteristics of materials. (Using data from [308])

material thermal specific density
conductivity heat ρ

K cv (kg/m3)
(W/m-K) (MJ/m3-K)

air 0.009246 0.00119 1.18
cotton fabric at 310 K 0.0796 0.0267 160
rubber 0.156 2.41 1,200
ethanol at 310K 0.163 1.96 789
teflon 0.399 2.20 2,180
concrete 0.934 1.93 2,310
glass, plate 1.09 1.94 2,520
ice at 249K (−42◦C) 2.21 1.76 913
sapphire (normal to c-axis) at 310 K 2–20 2.89 3,970
stainless steel 13.8 3.68 7,910
aluminum 204 2.45 2,710
silver 405 2.59 10,500
diamond, natural 2,000 1.82 3,510

Note that 1 MJ/m3-K = 239 kcal/m3-K and 1,000 kg/m3 = 1g/cm3.

Fig. 6.13. Overall body modes of loss of heat and nonmetabolic gain of energy.
(From [340], adapted from [313]. Used with permission)
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Fig. 6.14. More microscopic view of modes of heat loss by removal from the skin.
When the skin temperature exceeds the environmental temperature, heat is removed
by sweat evaporation, while when it is less than the environmental temperature there
is net heat loss only by sweat evaporation. The skin is heated by arterial blood and
by thermal conduction through subcutaneous (below the skin) tissue. (From [340].
Used with permission)

We will focus mostly on heat loss in one dimension. For example, the heat
conduction equation (6.6) is one dimensional, and describes heat flow between
two flat interfaces separated by a thickness Δx (Fig. 6.15a). Mathematically,
heat flow radially through a thin cylindrical shell of thickness Δr on a cylinder

Fig. 6.15. Thermal flow between media 1 and 3, across medium 2, in different
geometries: (a) rectangular slab, (b) cylindrical shell, (c) spherical shell. In common
cases, Δr is much smaller than r
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of radius r (Fig. 6.15b) is identical to that across flat interfaces if the Δx in
(6.6) is replaced by r ln(1 + Δr/r). For conduction through a thin spherical
shell of thickness Δr on a sphere of radius r (Fig. 6.15c), it needs to be replaced
by r Δr/(r + Δr). In both cases the replaced parameter reduces to Δr when
r � Δr, i.e., when the new interface approximates a flat plane.

Heat Loss by Radiation

Bodies in thermal equilibrium emit a specific flow of energy per unit surface
area and time depending on their temperature. They also receive a flow of
thermal radiation from the outside world over their surface area that depends
on the temperature of the surroundings.

All objects at a temperature T emit such thermal radiation spread over
a range of wavelengths (or equivalently frequencies) according to the Planck
black body distribution for intensity, which is

I(λ, T ) dλ =
2hc2ε/λ5

exp(hc/λkBT ) − 1
dλ, (6.37)

where ε is a parameter known as the emissivity, h is Planck’s constant
(6.626 × 10−34 J-s), kB is Boltzmann’s constant (1.381 × 10−23 J/K), and T
is the temperature in degrees Kelvin (K) (T (K) = T (◦C) + 273◦). (I(λ, T )
is actually the intensity per unit wavelength range. I(λ, T )dλ is the intensity
covering the wavelength range from λ to λ + dλ, where dλ � λ. Intensity is
energy/area-time.)

Two features of this distribution are important to us. First, it peaks at a
wavelength λ given by Wein’s Law

λpeak(in μm) =
2,898

T (in K)
. (6.38)

This means that thermal radiation from a person or the inside wall of a house
peaks at 10 μm (mid-infrared light) because T ≈ 300 K, while that from the
sun peaks near 0.6 μm (600 nm, visible light) because the temperature of
the sun is ∼5,000 K. Second, the total energy flow per unit area and time
(the energy flux) is determined by integrating (6.37) over all wavelengths to
obtain the radiation flux, R, (which is energy/area-time)

R = εσT 4, (6.39)

where σ is the Stefan–Boltzmann constant = 5.67 × 10−8 W/m2-K4. This is
known as Stefan’s Law. At skin temperature (34◦C), the thermal emission is
505 W/m2 for ε = 1.

Radiation incident on an object can be reflected by it, absorbed by it, or
transmitted through it. The emissivity is the fraction of energy incident on
the object that is absorbed. For a perfect black body it is 1. Most objects have
a somewhat lower emissivity because of reflection and transmission, and an
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Table 6.38. Infrared emissivities. (Using data from [298, 326, 327], and other
sources)

fresh snow 0.89
ice 0.96
dry or wet sand 0.89
concrete 0.95
moist soil 0.97
grass surface 0.96
red brick 0.92
wood 0.90
white paint 0.93
aluminized paint 0.55
galvanized iron 0.28
aluminum foil 0.08
human skin 0.95–0.99

emissivity that actually varies with wavelength (and sometimes temperature).
We are interested in the emissivity in the infrared (Table 6.38), because black
body radiation from people and walls peaks near 10 μm, and that in the visible,
because it is needed to understand how thermal radiation from the sun affects
people and objects. In calculations the infrared emissivity of human clothing
and skin is generally taken to be 0.95.

The energy loss per unit time due to thermal radiation from the body is

−
(

dQ

dt

)

loss

= RA = εskinσT 4
skinAskin, (6.40)

where εskin is the skin (or clothing) emissivity, Tskin is the body skin temper-
ature, and Askin is the body surface area. (Remember that dQ/dt < 0 means
that the body loses energy and becomes colder. The left-hand side of equa-
tions such as this are positive.) The correct temperature to use is that of the
body skin (34◦C = 307 K), which is a bit lower than that of the core of the
body (37◦C = 310 K). The average body surface area is Askin ≈ 1.85 m2, so
the rate of body heat loss is

−
(

dQ

dt

)

loss

= (1)(5.67 × 10−8 W/m2-K4)(307K)4(1.85m2) = 932W,

(6.41)

assuming the emissivity εskin is 1. (Ignoring all sources of heat gain and other
sources of heat loss, this radiative cooling alone would cool the body at a rate
of 14◦C/h, as is seen by using (6.35) and (6.36). Fortunately, this loss of heat
is balanced by gains!)

The body also receives thermal radiation from its surroundings. The analy-
sis is somewhat different for a person who is indoors, i.e., in an enclosed space,
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and one who is outdoors, where there are no enclosures and there can be direct
heating by the sun during the day.

Receiving Thermal Radiation Indoors

Let us first assume that the body receives radiation from a source at room
temperature of the same area Aroom = Askin. Then the rate of heat gain in a
24◦C = 297 K environment (Troom) is
(

dQ

dt

)

gain

= εroomσT 4
roomAroom (6.42)

= (1)(5.67 × 10−8 W/m2-K4)(297K)4(1.85m2) = 816W, (6.43)

assuming these temperatures and an emissivity of 1. (We will call the tem-
perature in the environment Troom, whether or not the person is indoors or
outdoors.) Then the net radiative heat loss by the body is given by

−
(

dQ

dt

)

net

= −
(

dQ

dt

)

loss

−
(

dQ

dt

)

gain

= 932W − 816W = 116W, (6.44)

which we will now call −(dQ/dt)r. This depends on the temperature of the
environment. Because the body emissivity is a bit smaller than 1, this is a
slight overestimate, but it is still consistent with the body’s usual metabolic
rate.

This commonly used analysis is actually flawed. The walls of the room
have a much larger area, Aroom, than that of the person, which would seem to
increase the thermal radiation incident on the person relative to that emitted
by the person. However, only part of the radiation from this room enclosure
hits the person – most of it hits the other parts of the enclosure, and this
decreases the thermal gain by the body. We have also ignored the likelihood
that the emissivities of the walls of the room (or environment) and the person
are likely different. These effects are included by replacing εroomAroom in (6.42)
by (εroomAroom)effective, by using Christiansen’s equation

(εroomAroom)effective =
εskinAskin

1 + (Askin/Aroom)(εskin/εroom − 1)
(6.45)

(which we will not derive here). This expression approaches εskinAskin as the
room area becomes very large relative to the body, because only a small
amount of radiation from the room walls hits the body. The prediction of
(6.44) is therefore reasonable. (Of course, this analysis needs to be modified
when all the “walls” are not at the same temperature, such as when there
are cold windows.) A poorly insulated house feels cold, even when there are
no cold drafts leaking inside. With cold walls and windows, the air near our
bodies may be warm, but the walls are cold and so thermal radiation from
them is relatively low (Problem 6.84).
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In general, the net radiative heat loss is

−
(

dQ

dt

)

r

= εskinσT 4
skinAskin − εroomσT 4

roomAroom (6.46)

and in the limit of a large room we use (εroomAroom)effective and this becomes

−
(

dQ

dt

)

r

= εskinσ
(
T 4

skin − T 4
room

)
Askin. (6.47)

This can be used directly (and exactly) or it can be approximated by “lin-
earizing” it. This will also allow us to compare it with other modes of heat
loss. With δ = Tskin − Troom, then Troom = Tskin − δ and

−
(

dQ

dt

)

r

= εskinσ
(
T 4

skin − T 4
room

)
Askin

= εskinσ(T 4
skin − (Tskin − δ)4)Askin (6.48)

= εskinσ(4δT 3
skin − 6δ2T 2

skin + 4δ3Tskin − δ4)Askin (6.49)

� εskinσ(4δT 3
skin)Askin = εskinσ(Tskin − Troom)(4T 3

skin)Askin, (6.50)

where the last approximation follows because |δ| � Tskin. So we see that

−
(

dQ

dt

)

r

� (4σT 3
skin)εskinAskin(Tskin − Troom) (6.51)

= (4 × 5.67 × 10−8 W/m2-K4

× (307K)3)εskinAskin (Tskin − Troom) . (6.52)

Also, we find

−
(

dQ

dt

)

r

= h′
rεskinAskin(Tskin − Troom) = hrAskin(Tskin − Troom), (6.53)

where h′
r is the first power radiant heat transfer coefficient

h′
r = 4σT 3

skin = 5.6 kcal/m2-h-◦C (6.54)

for Tskin = 34◦C. In (6.53) we have also combined h′
rεskin into one factor

hr = 4σεskinT 3
skin to cast it into a form similar to those we will use for heat

transfer by convection, conductivity, and evaporation.
This linearization method is quite general and is applicable here because

|Tskin − Troom| � Tskin. However, because of the fortuitous factorization

T 4
skin − T 4

room = (Tskin − Troom)(T 3
skin + T 2

skinTroom + TskinT 2
room + T 3

room),
(6.55)

(6.53) becomes exact with 4T 3
skin replaced by (T 3

skin+T 2
skinTroom+TskinT 2

room+
T 3

room), and so

hr = σεskin(T 3
skin + T 2

skinTroom + TskinT 2
room + T 3

room) � 4σεskinT 3
skin. (6.56)
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Table 6.39. Reflectance in the visible. (Using data from [298])

from reflectance

clipped grass 0.24
dry sand 0.40
dry tar macdam 0.12
dry concrete 0.24
fresh snow 0.85
black human skin 0.18 (0.10a)
white human skin 0.35 (0.42a)

aFrom [297] for very black and very white human skin.

Receiving Thermal Radiation Outdoors

There are generally no wall-type enclosures outdoors that emit significant
thermal radiation, but there is thermal (infrared) radiation from the ground
(asphalt, grass, snow cover, etc.), buildings, trees, etc. There is also heating
by rays directly incident from the sun and scattered sun light; this depends
on the latitude, time of year, cloud cover, etc. The heat gained by the body
per unit area and time is

1
A

(
dQ

dt

)

gain

= (1 − ρ)(RS,D + RS,I + RS,R) + α(RIR,U + RIR,D), (6.57)

where the first term describes heating by the sun (mostly visible light) and
the second term longer wavelength, infrared light. The solar light can be that
directly from the sun (RS,D), indirect scattered or diffused light from the sky
(RS,I), or that reflected from the terrain (RS,R). A fraction ρ of that light is
reflected from the body (see Table 6.39). The contribution of each solar term
is seen in Table 6.40. The infrared light can be coming “up” from the terrain
(RIR,U) or “down” from the sky (RIR,D); this contribution is analogous to the
thermal emission from the room walls in the previous section. The component
of long wavelength, infrared radiation from the sky is seen in Table 6.41. A
fraction α of this infrared light is absorbed by the body (and this includes
reflection and angle averaging effects); this is typically ∼1/2. Typically more
of this radiant heat (solar plus infrared) is absorbed by the body than is
emitted by the body during the day; the reverse is typically true at night.

Heat Loss by Convection and Conduction

Convection is the transport of heat through mass flow of the medium. Conduc-
tion is the transport of heat through a medium without mass flow (involving
electrons, vibrations, local molecular motion, etc.). In gases and liquids both
mechanisms can contribute. Convection is the larger of the two and it is not
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Table 6.40. Solar radiation from clear skies on a fleeced sheep with its sides at
right angles to the solar beam, in W/m2. (Using data from [298], from [303])

solar elevation
(angle, ◦)

RS,D RS,I RS,R RS (1 − ρ)RS

5 14 29 5 48 36
10 79 34 12 125 94
15 150 43 19 212 159
20 208 48 27 283 212
25 252 51 35 338 254
30 285 52 44 381 286
45 331 55 67 453 340
60 344 53 86 483 362
75 348 52 97 497 373
90 352 52 101 505 379

The direct, indirect reflected components and the total fluxes are, respectively, RS,D,
RS,I, RS,R, RS, and (1 − ρ)RS. The atmospheric transmission coefficient was taken
to be 0.7.

always simple to differentiate between the two. In solids only conduction con-
tributes.

Convection

The convection heat flux consists of that from forced convection (air streams)
and natural or free convection (which is due to movement near the body in-
duced by thermal expansion caused by temperature gradients). In most gen-
eral form, the convective heat transfer coefficient per unit area (in W/m2-◦C)
is

hc-forced convection =
akwn

υnL1−n
, (6.58)

Table 6.41. Incoming long wavelength radiation from clear skies and the equivalent
radiation temperature. (Using data from [298], calculated using [339])

air T incoming radiation radiant T
(◦C) (W/m2) (◦C)

−30 67 −88
−20 108 −65
−10 155 −45

0 208 −28
10 266 −12
20 331 3
30 404 17
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where w is the wind speed in m/s, L is the characteristic dimension of the
object in m – which is the diameter of the cylinder in some models, υ is the
kinematic viscosity of air in m2/s, and a, k, and n are parameters. This is
used in

− 1
A

(
dQ

dt

)

c

= hc-forced convection(Tskin − Tair), (6.59)

which is derived [298] using scaling arguments involving the Reynolds number,
a parameter that is discussed in Chap. 7. The natural convective heat loss per
unit area A (in W/m2) from a man of height L (in m) has been predicted to
be

− 1
A

(
dQ

dt

)

c-natural convection

=
1.69
L0.25

(Tskin − Tair)1.25, (6.60)

which scales with temperature differently than (6.58) and (6.59) for forced
convection. Usually, only the larger of forced or natural convection is consid-
ered in the analysis, and it is modeled in the form

− 1
A

(
dQ

dt

)

c

= hc(Tskin − Tair), (6.61)

where hc is the convective heat transfer coefficient per unit area and Tair is
the air temperature very near the person, which is usually the same as Troom.
With still air and normal clothing, hc ∼ 2.3 kcal/m2-h-◦C, which is <hr (the
radiant heat transfer coefficient). The coefficient hc decreases with heavier
clothing and increases with less and lighter clothing; when you are nude you
get cold faster because of increases in hc. It also increases with air speed, as
is seen in Table 6.42. This leads to the wind chill factor. For a naked person

hc = 8.3w0.5 (6.62)

in W/m2-◦C, where w is the air speed in m/s. In another formulation [300],

hc = 10.45 − w + 10w0.5 (6.63)

in kcal/h-m2-◦C, for speeds between 2 m/s (�4.5 mph) and 20 m/s (�45 mph),
where again v is in m/s. Both clothed and bare regions on a body need to be
considered. The body “feels” the wind chill temperature, which is colder and
is

Twc = 13.12 + 0.6215T − 11.37w0.16 + 0.3965Tw0.16, (6.64)

where w is the wind speed in km/h and T the temperature in ◦C. (This is
the relation as revised in 2001.) Also see Table 6.43. (In contrast, humidity
makes you feel even warmer than expected from the ambient temperature, as
is described by the heat index discussed later in this chapter.)
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Table 6.42. The convective heat transfer coefficient (hc) and air insulation [1/(hc +
hr)] of the skin–air interface for a naked man. (Using data from [298])

wind speed convective heat
transfer coefficient

(W/m2-◦C)

air insulation
(m/s) (m2-◦C/W)

0.1 2.6 0.123
0.2 3.7 0.109
0.4 5.2 0.093
0.6 6.4 0.084
0.8 7.4 0.077
1.0 8.3 0.072
2.0 11.7 0.058
3.0 14.4 0.50
4.0 16.6 0.045
5.0 18.6 0.041

The radiant heat transfer coefficient hr is 5.5 W/m2-◦C.

With Troom = Tair, the total heat flux due to (net) radiation and convection
comes from summing (6.53) and (6.61):

− 1
A

(
dQ

dt

)

total

= − 1
A

(
dQ

dt

)

r

− 1
A

(
dQ

dt

)

c

= (hr+hc)(Tskin−Troom), (6.65)

which gives

Tskin − Troom = − (1/A)(dQ/dt)total
hr + hc

(6.66)

Convection within the Body We have been discussing the convection of heat
from the outside of the body to air by the convection of air. There is also of
convection within the body by the flow of blood. This does not change the

Table 6.43. Wind chill factor temperature, in ◦C, as a function of wind speed and
temperature; the temperature is given in the first row for the 0 km/hr wind speed.
(Using the scale revised in 2001 by the US National Weather Service)

wind speed wind chill factor temperature (◦C)
(km/hr)

0 10 0 −10 −20 −30 −40
20 7.4 −5.2 −17.9 −30.5 −43.1 −55.7
40 6.0 −7.4 −20.8 −34.1 −47.5 −60.9
60 5.1 −8.8 −22.6 −36.5 −50.3 −64.2
80 4.4 −9.8 −24.0 −38.2 −52.4 −66.6

100 3.9 −10.6 −25.1 −39.6 −54.1 −68.6
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average temperature of the body, but the distribution of temperature within
the body. Equation (6.5) says that heat flow Q = mc(ΔT ) is needed into a
body of mass m and specific heat c to heat the mass by ΔT and heat flow of
this magnitude away from the body is needed to cool it. This means that if
blood flows into a body part, such as the foot in Problem 6.95, at a rate of
Fm (mass per unit time) with a temperature Tblood and leaves it (at the same
rate, of course) at Tblood + ΔTblood, it will draw away heat from the part at
a rate

−
(

dQ

dt

)

blood flow

= Fmc(ΔTblood). (6.67)

Therefore heat is left in the body part by the blood when dQ/dt > 0 and the
blood gets colder, ΔTblood < 0. Of course, this transfer of heat between the
blood and local tissues occurs by thermal conduction.

This analysis has not addressed what (dQ/dt)blood and ΔTblood actually
are, but only how they are related. To determine them, we would have to
consider the rates of thermal conduction between the blood in the arteries,
capillaries, and veins and the surrounding tissue and the actual flow rates of
blood in each of these vessels. If the flow is very fast, there may not be enough
time for much heat flow to occur.

If the arteries flowing into a body part, such as a hand or foot, are phys-
ically displaced from the veins that return the blood to the heart, there is
minimal transfer of heat from arteries to veins. If they are instead very near
to each other, there can be substantial heat transfer from the warmer blood
flowing in the arteries to the cooler blood flowing in the veins. (The venous
blood is cooler because of heat loss to the local tissues which can be much
colder than the core.) This is called countercurrent heat exchange, and is shown
in Fig. 6.16 [325]. It lowers overall heat loss at the body part – particularly for
extremities and surface regions – and therefore overall heat loss in the blood
and the body, because it decrease the difference in temperature between the
blood in the body part and the tissue (and locally, outside the body). As part
of its temperature control system (Chap. 13), the body can decide whether
to minimize heat loss, by using countercurrent cooling, or to maximize it, by
diverting more blood flow nearer to the skin. Countercurrent heat exchange
is modeled in Problem 6.102.

Figure 6.17 shows how this occurs in the forearm through two different
sets of veins. If it is cold at the surface of the body, blood returns to the heart
through veins that are very close to the arteries, so heat loss is minimized
through countercurrent heat exchange. Because this minimizes the warming
of the hands, this is one way you can get excessively cold hands. If it is
warm, blood flow near the surface and heat transfer and cooling are maxi-
mized. Blood is directed to these “inner” and “outer” veins by vasodilating
and vasoconstricting muscles surrounding the appropriate veins (to dilate and
constrict them, respectively), as controlled by the temperature sensor and the
temperature regulatory system (Chap. 12).
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Fig. 6.16. Example of countercurrent heat flow from an artery to a nearby vein.
Without this flow the temperature drop along the artery would be even greater
under cold conditions because there would be more heat flow to the environment.
All temperatures are in ◦C. Also see Fig. 6.17a. (Based on [325])

Counterflow heat exchange is also used to regulate the temperature of
the testes. The testes are kept outside the core of the body because fertility
is improved at a few degrees below core temperature. Before blood enters
the testes region it often undergoes counterflow heat exchange so that cooler
blood enters this region. This prevents excessive heating of the testes by warm
blood, as well as the excessive loss of body heat from this “thermally” exposed
region.

A counterflow multiplier mechanism is also used by the body in diffusion
in the kidney to overcome large gradients in concentrations [325, 336].

Conduction

As shown in (6.6), the heat flow during thermal conduction is the product of
the thermal conductivity K and the temperature gradient

− 1
A

(
dQ

dt

)
= K

dT

dx
∼ K

ΔT

Δx
. (6.68)

For a well-defined distance d = Δx between two regions of different but uni-
form temperature, say due to the thickness of clothing or an air boundary
layer, we can define a heat transfer coefficient per unit area ht = K/d and

− 1
A

(
dQ

dt

)
= htΔT, (6.69)
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Fig. 6.17. Countercurrent heat exchange in the (right) arm for blood flowing
through the brachial artery in (a). At the higher room temperatures (30◦C) in
(b) and during exercise the venous return flow occurs through superficial vessels to
enable heat loss to the room. At the lower temperature (10◦C) in (a) this return
path is shifted to deep veins, which helps retain heat in two ways: Heat from the
arteries is lost to the venous blood before it is lost to the room, which is countercur-
rent heat exchange (Fig. 6.16), and little heat is lost to the room from these veins
because they are deep. Note that in the lower arm the temperature in the venae
comitantes is 1◦C lower than that in the artery. The venae comitantes are the veins
accompanying the arteries in the limbs. Different types of arrows are used to denote
blood flow in arteries (solid, narrow), blood flow in veins, (dashed, narrow), and
heat flow (wide, gray). (Based on [299, 315])

as in (6.7). This looks similar to the form for heat loss due to (net) radiation
(6.53) and forced convection (6.59).

Let us determine how much heat a person loses when he puts his hand
and forearm in very cold water (4◦C) for 2 min [293]. His hand and forearm
can be modeled as a cylinder with a length of L = 30 cm and an average
radius of 3 cm. Let us assume the body has a Δr = 3 mm thick layer of fat
with thermal conductivity K = 0.2 W/m-◦C that separates the cylindrical
core (of radius r = 2.7 cm, at 37◦C) from the cold water. The contact area
between the arm and water is A = 2πrL. Using (6.68) modified for cylinders
(by replacing Δx with r ln(1+Δr/r), as above), the rate heat leaves the arm is
(2πrL)(K ΔT )/(r ln(1 + Δr/r)) � (2πrLK ΔT )/(Δr). The exact expression
gives 118 W, while the approximation gives 112 W. In 2 min, the body loses
(118 W)(120 s) = 14,200 J or 3.4 kcal.

Insulation I can be formally defined as I = 1/ht = d/K. It is sometimes
expressed in terms of the clothing or Clo value, where 1 Clo is the insulation
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Table 6.44. The insulation from animal coats, fabrics, body components, and other
materials, in units of m2-◦C/W per cm of insulation. (Using data from [293, 298];
also see [302])

material insulation per cm

cattle coat 0.07–0.10
sheep coat 0.13–0.24
husky dog coat 0.24
pig coat 0.04
wool 0.29
goose down 0.38
human clothing (average) 0.25
air 0.36/0.39
muscle, bone 0.01/0.024
body fat 0.01/0.05
water 0.01/0.017
ice 0.01/0.004
typical wooda 0.01/0.062

ht is this 1/(insulation per cm × the thickness in cm). Thermal conductivity K is
1/(insulation per cm) or 0.01 × this value when expressed in units of W/m-◦C.
aBalsa wood is higher; green lumber is smaller.

for a man in an average suit with no gloves or light gloves, wearing leather
shoes and light socks [297, 302]. An insulation of 1 Clo = 0.155 m2-◦C/W
(= 0.88 ft2-◦F/BTU). A nude person has 0 Clo insulation. A light working
ensemble (undershorts, wool socks, cotton work shirt – shirt tail out and neck
open – and work trousers) corresponds to 0.6 Clo. A typical light suit has 0.7–
1.0 Clo insulation, while a heavy business suit has 1.2 Clo insulation. A polar
weather suit made of heavy wool pile has 3–4 Clo insulation. Typical values of
insulation are given in Table 6.44. The insulation provided by human clothing
is about 0.25◦C-m2/W per cm of clothing thickness. The thermal conductivity
of various body tissues is given in Table 6.36 and that of common materials
in Table 6.37.

Heat Loss by Evaporation of Water: Sweating and Breathing

The amount of heat needed to evaporate 1 L of water is 540 kcal; this is the
heat of vaporization. When we sweat there is loss of heat only if the water is
allowed to evaporate. (Wiping off the sweat will not cool you.) This normally
accounts for ∼7 kcal/h loss.

We normally breathe in air that is cooler than body temperature. It gets
warmed up and is then exhaled: this is also a source of body cooling. Also,
we breathe in relatively dry air, and exhale air saturated with water vapor.
Because this water vapor is formed by the evaporation of liquid water, this is
yet another source of cooling.
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Respiratory heat loss due to the lungs can be described by

−
(

dQ

dt

)

l

= ρaircp, air(Texp − Tinsp)
dVair

dt

+ ΔHevap, water(ρexp, water − ρinsp, water)
dVair

dt
, (6.70)

where ρ is the mass density (of air or of expired or inspired water vapor),
cp, air is the specific heat of air (2.4 × 10−4 kcal/g-◦C), T is the temperature
of expired or inspired air, dV/dt is the rate of inhaling air, and ΔHevap, water

is the heat of evaporation of water (0.54 kcal/g). The first term accounts for
body cooling by the heating of inspired air before expiration (exhalation) and
the second term accounts for body cooling by the evaporation of water in the
lungs that increases the water content of inspired air before expiration.

When it is hot, why does it feel even hotter than the ambient temperature
when it is humid? Humidity decreases the rate of heat loss from the body
by decreasing the rate of heat flow from the body to the air, decreasing the
evaporation of sweat (because the vapor pressure of water in the air decreases
the difference between the vapor pressure above the sweat and in the air), and
decreasing the rate of respiratory loss of heat due to the last term in (6.70).
The heat index describes how hot it really feels at a given temperature and
humidity [337, 338]. For example, when it is 90◦F (32◦C), it feels like it is
95◦F (35◦C) when the relative humidity is 50%, 109◦F (43◦C) when it is 75%,
and 132◦F (56◦C) when it is 100%. (The relative humidity is the actual vapor
pressure of water in air divided by the equilibrium vapor pressure of water (in
contact with liquid) water, at the same temperature. It is usually expressed in
per cent.) The likelihood of heat disorders, such as heat stroke and sunstroke,
are characterized by warnings such as “caution” for heat index values of 80–
90◦F (27–32◦C), “extreme caution” from 90 to 105◦F (32 to 41◦C), “danger”
from 105 to 129◦F (41 to 54◦C), and “extreme danger” above 130◦F (54◦C).
The heat index is explored more in Problems 6.108–6.111.

6.6 Body Temperature

The body is very good at controlling its temperature. Figure 6.18 shows
that the nude body can maintain the core temperature between 97 and
100◦F (36 and 38◦C) for several hours with environmental temperatures
ranging between 70 and 130◦F (21 and 54◦C) in dry air. However, we
clearly have limits. Figure 6.19 shows that we can take only limited expo-
sure to hot air, while Fig. 6.20 shows we can survive only limited exposure
to cold water; in both cases the larger the temperature deviation from nor-
mal body temperature, the shorter the maximum possible exposure time
until death. Figure 6.21 tracks how skin and inner body temperatures de-
crease during exposure to cold water, and how it recovers when the body
is then placed in warm water. How do the energetics of the body change to
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Fig. 6.18. Body control of core temperature for several hours with large variations
in local environmental temperature, for dry air. Normal body temperature 98.6◦F
(37◦C) is maintained for atmospheric temperatures from ∼70 to 130◦F (∼21 to
54◦C). The exact shape of this curve depends on the surroundings: humidity, air
movement, thermal radiation to the body, and so on. (Based on [314])

Fig. 6.19. Maximum tolerable elevated temperatures (of air) as a function of ex-
posure times, for different body conditions. Tolerable conditions are below the lines
for each skin condition and for the body, and intolerable conditions are above them.
(From [297])
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Fig. 6.20. Life expectancy of a person without an exposure suit in cold water for
different times. (From [297])

maintain normal temperature and to resist changes that can be induced by
extreme environmental temperatures or by exercise?

Each of the modes of body heat loss we have described is important for
regulating the body temperature. You can control the convection route by
changing your clothes. Some are controlled involuntarily by your body, such as
the sweating and breathing modes. What happens when the room temperature
exceeds the body core and skin temperature? The body is then heated by
radiation. Convection needs to be re-evaluated. Exhaled air is no longer heated
up. What happens when you exercise and your metabolic rate increases? The
body has to respond in a way to increase the rate of losing body heat. All these
modes of losing heat are important. A quantitative model of this regulation
is presented in Chap. 13, as part of the discussion of feedback and control in
the body.

Heat production varies with the local, environmental temperature, which
we called Troom above. It is high at low temperatures, then decreases with in-
creasing temperature until Tc, becomes constant, and then at Th it increases
again, as is shown in Fig. 6.22. The critical temperature Tc (or lower critical
temperature) is therefore the environmental temperature at which heat pro-
duction begins to rise when the environmental temperature falls. It is 26◦C
for a naked adult man and 35◦C for a naked baby, assuming minimal air
movement. Similarly, the temperature of hyperthermal rise Th (or upper crit-
ical temperature) is the environmental temperature at which heat production
begins to rise when the environmental temperature increases. Between Tc and
Th is the zone of minimal metabolism or the thermoneutral zone.
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Fig. 6.21. Variation in skin and internal temperatures when a person is immersed in
6◦C (43◦F) water for 52 min and then warmed slowly using 39◦C water. (From [297])

Below Tc, the heat loss increases due to nonevaporative pathways, such
as radiation and convection. The increased metabolism is due to increases in
muscle tension and shivering, which is technically the visible movement of
subcutaneous muscle. This increases as the difference between body and envi-
ronmental temperature increases, until the summit metabolism is reached for
that environmental temperature. The summit metabolism is about 21m0.75

b ,
in W with mb in kg, for man (and generally about 25m0.75

b for most mam-
mals). This is about 7 × the fasting rate of metabolism or 2–3 × the field rate
of energy expenditure. (It is still much lower than the peak metabolic rates
you can achieve during cycling, running, and so on.) At lower temperatures,
the core body temperature cannot be maintained and there is body cooling
and hypothermia. Above Th the heat loss is dominated by evaporation.
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Fig. 6.22. Critical temperatures and relation between the environmental tempera-
ture and heat production in homeothermic animals (which are those having constant
and relatively high body temperature, which means birds and mammals). (Based
on [298, 328])

The critical temperature can be evaluated by equating heat loss and heat
production by the metabolism. During exercise the work done and heat stored
or liberated from tissues need to be considered also. The core body tempera-
ture can be related to the maximal aerobic capacity by

Tcore(◦C) = 36.5 + 3.0 × oxygen consumption
maximum possible oxygen consumption

, (6.71)

because the oxygen consumption rates are proportional to the metabolic rates.
Also, movement during exercise increases convective heat loss. A rise in body
temperature of 1◦C increases heat production by ∼13%. Heat production is
also induced by pyrogens, etc., and by trauma, bone fractures, burns, etc.

The temperature T in (6.35) is the average body temperature. The tem-
perature of the body skin Tskin(34◦C = 307 K) is usually lower than that of
the core (rectal) Tcore(37◦C = 310 K) – that you measure with a thermome-
ter. Table 6.45 gives the normal temperature of different body organs and
blood vessels. The temperature of inner organs can differ by 0.2 − 1.2◦C and
by 0.9◦C in a given organ under normal conditions [308]. There are 1.4◦C
temperature variations in the brain, with the cortex being cooler than the
basal regions. The average temperature of the body is the weighted aver-
age of the two temperatures, Tav = (80 ± 5%)Tcore + (20 ± 5%)Tskin. The
temperature throughout the body varies with the temperature in the environ-
ment. As shown in Fig. 6.23, these variations can be very large in a cold room.
These internal distributions can be modeled using the thermal properties of
the body (Table 6.36) and the thermal transport models presented here.
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Table 6.45. Core temperatures within the human body. (Using data from [308])

body region normal temperature (◦C)

skin 32–35
scrotum 34.0
liver 36.4–36.8
oral cavity 36.5–36.6
superior vena cava 36.65
esophagus, lungs 36.75
heart (right ventricle) 36.75
aorta, inferior vena cava 36.75
pulmonary artery and vein 36.75
kidney 36.85
spinal cord 36.95
stomach, rectum (mean) 37.0
rectum (range) 36.2–37.8
brain, uterus 37.3

Let us interrelate the body temperature in the deep body or core, Tcore,
of the skin, Tskin, on the outside of our clothes, Tclothes, and in the air, Troom.
This can viewed in terms of the model of Fig. 6.24 in which each region is a
rectangular slab. More refined models would consider the body as a cylinder,
as in Fig. 6.15b.

Fig. 6.23. Temperature in the body in cold and hot environments. (From [308].
Courtesy of Robert A. Freitas Jr., Nanomedicine, Vol. 1 (1999), http://www.
nanomedicine.com)
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Fig. 6.24. Model of heat flow from the body core to air

Following (6.66), we can model the flow between two of these adjacent
regions by

(T1 − T2) = −I12
1
A

(
dQ

dt

)
, (6.72)

where the heat flow, dQ/dt, across a cross-sectional area A between regions 1
and 2 is controlled by the insulation between them

I12 =
1∑
hx,12

, (6.73)

where hx,12 are the relevant heat transfer coefficients between the two regions,
such as those due to radiation, convection, conduction, and evaporation.

The difference between the temperature in the body core and on the skin
is determined by the flow of heat from the core to the skin and the tissue
insulation It, and is

Tcore − Tskin = −It

A

[(
dQ

dt

)

r

+
(

dQ

dt

)

c

+
(

dQ

dt

)

v

]
, (6.74)

where (dQ/dt)r, (dQ/dt)c, and (dQ/dt)v are, respectively, the flows of ra-
diative heat loss, convective/conductive heat loss, and the loss of heat by
vaporizing moisture on the skin surface. (The loss of heat from the lungs and
respiratory passages is not included.) Because the heat flow is from the core to
the skin for each, each term is negative and the skin is cooler than the core, as
is expected. The insulation provided by human tissue has a maximum value of
0.10◦C-m2/W in adults at cold temperatures (below the critical temperature)
and a minimum value of 0.03◦C-m2/W at high temperatures. In babies these
high and low values are of 0.05◦C-m2/W and 0.015◦C-m2/W, respectively.

The difference between the temperature on the skin and the outside of
one’s clothing is

Tskin − Tclothes = −Ic

A

[(
dQ

dt

)

r

+
(

dQ

dt

)

c

]
, (6.75)
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where Ic is the insulation of the clothing (or fur for animals). The insulation
provided per cm thickness of human clothing averages to 0.25◦C-m2/W-cm
(Table 6.44).

The difference between the temperature outside of one’s clothing and the
air is

Tclothes − Troom = −Ia

A

[(
dQ

dt

)

r

+
(

dQ

dt

)

c

]
, (6.76)

where Ia is the insulation of the air (Table 6.42).

6.7 Summary

The energy used by the body and body temperature are determined by the
body metabolism, which includes the use of food, the energy needed to operate
the body, and the production of heat, and by the loss of heat by the body. The
energy value of food can be analyzed and compared to the production of ATP
by the body and the use of ATP in different activities. The body metabolic
rate is composed of many components, each of which can be modeled. This
includes analyzing the rate that energy is needed for the operation of body
functions for a person who is inactive, which combine to form the BMR, and
the rate that energy is needed for the body to engage in physical activity. The
body metabolism and food intake can be linked to models of the steady-state
body weight and of weight gain and loss. The body can lose heat by radiation,
convection, conduction, and the evaporation of water, each of which can be
modeled and linked to models that determine the body temperature.

Problems

Heat Capacity

6.1. A person weighing 60 kg drinks 600 mL (0.6 kg) of water. Say the water
is at a temperature that is either 25◦C above or below the body temperature.
How does the body temperature change? (Use the fact that the specific heat
of the water is 1 kcal/kg-◦C, so that it is supplying the body with an energy
of 1 kcal/kg-◦C × 0.6 kg × 25◦C, and that the specific heat of the body is
0.83 kcal/kg-◦C.) Would such a warm drink (+25◦C) help with hypothermia?
Would such a cold drink (−25◦C) help with a fever?

6.2. What is the heat capacity of a typical 20 μm diameter human cell? As-
sume it is a sphere and has a specific heat equal to the body average.

6.3. In a typical 20 μm diameter human cell there is approximately 5 ×
10−6 J, 2.0 × 10−5 J, and 8 × 10−6 J of energy available respectively from
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carbohydrates, protein, and fat. If all of this energy were converted to heat,
what would be the temperature rise in the cell? Use the results of Problem 6.2
and ignore heat losses.

6.4. A British thermal unit (BTU) is the amount of heat needed to raise the
temperature of 1 lb of water by 1◦F. (This unit is therefore defined as being
equal to the specific heat of water, which is 1.0 cal/g-◦C.) The amount of
heat needed to freeze water or melt ice (the latent heat of fusion (freezing))
is 80 cal/g = 335 J/g and that needed to vaporize water (the latent heat of
vaporization) is 543 cal/g = 2,272 J/g.
(a) Show that 1 BTU = 1,055 J.
(b) Find the number of BTU required to melt a pound of ice.
(c) Find the number of BTU required to vaporize a pound of water.

Caloric Value

6.5. Consider the oxidation of the fat tributyrin: C3H5O3(OC4H7)3 + 18.5
O2 → 15CO2 + 13H2O + 1, 941 kcal.
(a) Find the energy release/g, calorific equivalent, and respiratory exchange
ratio (RER) (or respiratory quotient (RQ)).
(b) Are these values representative of a fat? Why or why not?

6.6. Consider the oxidation of the alcohol (ethanol): C2H5OH + 3O2 →
2CO2 + 3H2O + 327 kcal.
(a) Find the energy release/g, calorific equivalent, and respiratory exchange
ratio (RER) (or respiratory quotient (RQ)).
(b) Compare these values to those for carbohydrates, proteins, and fats.

6.7. Determine the energy content in one fluid ounce of 86 proof liquor from
the caloric content of alcohol. (200 proof means that the volume fraction of
alcohol is 100%.)

6.8. Show that the volume of alcohol in a (1 oz) shot of liquor, a glass of wine,
and a bottle of beer are all about the same, and therefore they have the same
energy content (use Table 6.5).

6.9. Are the energy densities per unit mass for carbohydrates, proteins, and
fats listed in Table 6.3 consistent with the values in Table 6.2?

6.10. (a) Derive general expressions for the percentage of energy coming from
carbohydrates and fats and the heat energy per L oxygen consumed for an
arbitrary RER between 0.71 and 1.00.
(b) Determine the percentage of kcal coming from carbohydrates and fats and
the heat energy per L oxygen consumed for each of these RERs: 0.71, 0.75,
0.80, 085, 0.90, 0.95, and 1.00.
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6.11. Show how rounding off the carbohydrate, protein, and fat masses in the
standard donut to the nearest integral value of grams can easily lead to the
difference in the calculated and listed caloric content. (Show that this is true
even ignoring the likely rounding off of the total caloric content to the nearest
tens of kcal – so 280 kcal could mean any value from 275.1 kcal to 284.9 kcal.)
Assume that carbohydrates and proteins have caloric content 4.0 kcal/g and
fats have caloric content 9.0 kcal/g.

6.12. Repeat Problem 6.11, assuming that the mass contents are exact but
now considering uncertainties in the caloric contents of the donut carbohy-
drates, proteins, and fats.

6.13. The Entenmann’sTM Rich Frosted Donut designated in the text as our
standard donut was sold as a stand-alone item for many years and as of 2006
was still available in the donut variety pack with the same food content. In
2006, the Rich Frosted Donut in stand-alone packaging had somewhat different
food content: 26 g fat, 29 g carbohydrate, 2 g protein and a total mass of 64 g.
Compare its caloric content to that of our standard donut.

6.14. The Entenmann’sTM Glazed Donut has 13 g fat, 34 g carbohydrate, 2 g
protein, and a total mass of 60 g (as of 2006).
(a) Compare its caloric content as listed on the package (260 kcal) to that of
our standard donut.
(b) Find percentage of calories that come from fat.
(c) Find the percentage of donut mass that does not come from fat, carbohy-
drate, or protein.

6.15. For which foods in Table 6.5 do the caloric contents of carbohydrates,
proteins, and fats not explain the total caloric value? Why?

6.16. We know that fats have about 9 kcal/g energy content and proteins and
carbohydrates have about 4 kcal/g. Explain why the metabolizable energy
per unit mass of the foods in Tables 6.5 and 6.6 are so different than these
numbers? In particular why are the values for milk and carrots so low? What
can we learn about oatmeal and flour? What do you learn about butter and
nuts?

6.17. A certain fruit has a metabolizable energy of 0.4 kcal/g normally and
2.4 kcal/g after it has been dried. Assume the fruit consists of only water,
sugar, and nonmetabolizable matter and find the fraction of each in the fruit
and in the fruit after it is dried.

6.18. Determine the energy content per unit mass (kcal/g) for each nonalco-
holic food in Table 6.5. Explain the variation in terms of relative amounts of
carbohydrates/protein/fat, water, and “ash.”

6.19. Determine the percentage of calories from fat for each nonalcoholic food
in Table 6.5.
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6.20. If nonfat milk is simply whole milk minus the fat, determine the caloric
content, mass of carbohydrate, protein, and fat, and % water of 1 cup (245 g)
of nonfat milk.

6.21. How much oil is there in French fries? More precisely, what fractions of
the mass and caloric value of French fries are due to the oil and what fractions
are due to the potato? Use the data given in Table 6.5. Ignore the skin of the
potato and consider the possibility that water is lost in the frying process. Oil
is all fat. How much water is lost in the frying process?

6.22. The yolk from a large raw egg has a mass of 17 g, of which 3 g is protein
and 5 g is fat (and a trace amount is carbohydrate). It has a total of 59 kcal
energy content and is 49% water. Determine the corresponding values for the
white of the egg, using Table 6.5.

6.23. For the wine and beer listed in Table 6.5, calculate the number of kcal
and mass (g) due to alcohol (ethanol) in each, and the fractional volume of
alcohol in each, assuming ethanol has a mass density of 0.79 g/cm3.

6.24. You eat a pound of food. You know that 10% of its weight is water, 5%
of its weight is from nondigestible solids, and 30% of its calories come from
fat. How many calories have you ingested?

6.25. In a hypothetical proposed diet, a person is supposed to derive 40±5%,
30 ± 5%, and 30 ± 5%, of her calories from carbohydrates, proteins, and fat,
respectively.
(a) Use Table 6.5 to design two different diet plans for a 2,000 kcal/day diet,
using very different foods in each plan.
(b) Which diet has a daily lighter mass, and therefore is perhaps better for
backpacking or space trips? Why is this so?

6.26. (a) You are at a salad bar and want to intake 600 kcal. If you assume the
food is 20% water (by mass) and 5% ash, how much food should you take (in
oz and g) if you assume that of the remaining amount 50% is carbohydrate,
20% is protein and 30% is fat?
(b) For this amount of food, what would the caloric value be if nonwater,
nonash content were really all carbohydrate, all protein, or all fat?

6.27. The energy released per ton of detonated TNT (trinitrotoluene) is 4.18×
109 J. The same food energy is found in how many tons of our standard
donuts?

6.28. A body consumes 0.3 L-atm. of oxygen every minute.
(a) Determine the rate of heat production if only carbohydrates are being
consumed.
(b) Determine the rate of heat production if only fats are being consumed.

6.29. From the discussion after (6.18), what is pa − pv in the blood in the
system (in mL of O2/L of blood)?
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Metabolic Rates

6.30. The Gibbs free energy ΔG of a chemical reaction is the energy available
when it occurs at a constant temperature T and constant pressure (1 atm.).
The free energy of ATP hydrolysis (6.16) is ΔG0 = −7.3 kcal/mol under the
standard conditions of T = 298 K, 1 atm., pH = 7.0, and equal 1 M (molar,
mol/L) concentrations of all reactants and products. For other conditions, it
is ΔG = ΔG0 +RT ln(K/K0), where R is the gas constant (1.987 cal/mol-K),
T is the temperature for the condition, K is the equilibrium for the condition,
and K0 is the equilibrium constant for standard conditions [329]. The equilib-
rium constant is the product of the concentrations of the products (ADP and
Pi here) divided by that of the reactants (ATP here). (The concentrations of
other products and reactants in (6.16), such as H2O, are essentially the same
for the different conditions and do not need to be included. Why?)
(a) Calculate the free energy at T = 310 K in the cell of a representative hu-
man erythrocyte (red blood cell) with concentrations of 2.25 mM (millimolar,
millimol/L) for ATP, 0.25 mM for ADP, and 1.65 mM for Pi.
(b) In resting muscle, the concentration of free ADP is thought to be between
1 and 37 μM (micromolar). Calculate the free energy at T = 310 K if the ADP
concentration is 25 μM (and other concentrations are the same as in (a)). How
do these values in (a) and (b) compare to those given in the text? (Other than
the difference in cell types, the major difference with part (a) is that the rel-
evant concentration is that of free ADP and not total ADP, which includes
free ADP and that bound to cellular proteins.)
(c) How does the use of such free energies under cellular conditions rather
than those for standard conditions affect the calculation of the efficiency of
converting glucose into ATP by the body relative to that of oxidizing glucose?

6.31. Find what the efficiency of body usage of glucose would be if in aerobic
metabolism 1 mol of glucose produced 36–38 mol of ATP (the conversion factor
often cited several years ago), instead of the currently accepted range 30–
32 mol, as given in the chapter. Assume the energy released from ATP is
14.0 kcal/mol.

6.32. Assume that the oxidation of glucose extracts all the free energy pos-
sible. Find the maximum number of ATP molecules that could be formed if
ATP hydrolysis were 100% efficient. Assume the energy released from ATP is
14.0 kcal/mol.

6.33. Say that in aerobic metabolism 1 mol of glucose can produce 32 mol of
ATP, while under similar conditions 1 mol of carbohydrates from glycogen can
produce 33 mol of ATP. Because glycogen is made by the body from glucose, is
the body getting 1 additional mole of ATP for free by first converting glucose
to glycogen and then using it or is something else really happening? Explain.

6.34. The standard free energy for the hydrolysis of ADP to AMP (adenosine
monophosphate) is −7.8 kcal/mol. What is it for cellular conditions? Assume
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the conditions for an erythrocyte in Problem 6.30a and an AMP concentration
of 0.2 mM [329].

6.35. Redo Problem 6.30 for palmitic acid.

6.36. (a) The molar mass of ATP is 507 g. If a 60 kg person has a metabolic
rate of 2,000 kcal/day and ATP releases 14.0 kcal/mol during hydrolysis, what
mass of ATP would be needed by that person per day if the ADP formed after
ATP hydrolysis were not recycled back to ATP?
(b) How does this compare to the person’s mass?
(c) How many cycles of ATP hydrolysis and re-creation does an average ATP
molecule make per day and per minute if there are a total of 0.2 mol of ATP
in the body?
(d) Repeat each part for ATP releasing 7.3 kcal/mol during hydrolysis.

6.37. (a) The molar mass of ATP is 507 g. How many kcal would be available
to the body if all of the rest mass of one ATP molecule were converted to
(useful) energy? Use E = mc2.
(b) What mass of ATP (in g), would a person with a metabolic rate of
2,000 kcal/day use if all of the ATP were converted to energy?
(c) If a 1 GW nuclear power plant were to convert this ATP energy to electri-
cal energy with 20% efficiency, how much ATP would it use (in g) per second
and per year?
(d) In nuclear reactions, only of fraction of the rest mass is converted to en-
ergy. Repeat (a)–(c) if that fraction were 2.5 × 10−5, which is the fraction
of rest mass energy converted to kinetic energy in the alpha particle decay
241Am → α + 237Np.

6.38. Sketch on the same set of labeled axes the available rate of ATP usage
(normalized to its maximum possible value) vs. time for a person beginning
moderate physical activities at t = 0, for each of the following cases:
(a) Only the phosphagen system is available.
(b) There is not much oxygen, so only the phosphagen and anaerobic glycolysis
systems are available.
(c) There is much oxygen available, so the phosphagen and aerobic metabolism
systems are used.

6.39. The maximum anaerobic peak power for men is 2.1 hp and the maximum
metabolic rate during anaerobic glycolysis is 1.6 mol of ATP/min. Are these
rates consistent? Why? (Assume 10 kcal per mole ATP here).

6.40. Table 6.3 shows that ATP stores much less energy per unit volume and
mass than other fuels. Why then is it so important?

6.41. Stearic acid is an 18-carbon chain fatty acid that undergoes 8 complete
passes in the aerobic metabolism. How many moles of ATP are formed per
mole of stearic acid?
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6.42. Use the data in Table 6.22 to find what the maximum power output
of a human (in W) would be if the entire human volume were composed of
typical tissue cells operating at maximum power output. Does this exceed the
listed maximum human body power output? Is this reasonable? Why?

6.43. (a) If the usual volume of a person were instead occupied only by tightly
packed myosin muscle motors, what would the power consumed by the body
be (in W) and how does this compare to the basal and maximum metabolic
rates?
(b) What would be the rate of temperature rise of the body for such a volume,
assuming the heat capacity is that of a normal human and there are no heat
losses?

6.44. How many myosin cross bridges would be needed to power a 200 hp
car? (Assume the data for the myosin molecules in Table 6.22.) How does this
compare to the number of crossbridges in a typical human?

Basal Metabolic Rates

6.45. Use Kleiber’s Law to compare the BMR per unit mass (with over-
all units kcal/kg-day) for a mouse (30 g), human (70 kg), and a blue whale
(105 kg).

6.46. Compare the metabolic rate expected for the standard man in Chap. 1
using Kleiber’s Law and the Harris–Benedict equations? Why are they differ-
ent? Is this reasonable or not?

6.47. How many standard donuts must a 60 kg person eat daily to maintain
that person’s BMR, assuming Kleiber’s Law.

6.48. How much food would you have to eat each day (in g) to balance a
basal metabolic rate (BMR) of 1,700 kcal/day if you only ate (a) glucose or
(b) (typical) fat?

6.49. Another formulation of the Harris–Benedict equations (6.28) and (6.29)
utilizes rounded-off numbers:

For men: BMR = 66 + 13.7mb + 5H − 6.9Y (6.77)
For women: BMR = 665 + 9.6mb + 1.7H − 4.7Y , (6.78)

where the BMR is in kcal/day, mb is the body mass in kg, H is the height in
cm, and Y is the age in yr. How different are the two formulations for a 6-ft-
tall, 25-yr-old male weighing 200 lb and a 5 ft 2 in., 50-yr-old female weighing
125 lb? Are these differences significant?

6.50. How much higher is the BMR for a pregnant women? Estimate this by
considering the increase in her BMR from two factors. She must supply food
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to build the fetus along with the supporting structure in the womb and must
supply the energy for the fetus’ BMR. (She is literally eating for two.) Assume
she is late in pregnancy and is gaining 4 lb a month of typical human tissue,
assuming this does not include extra fluid retention outside of the womb.
Assume the fetus has a BMR for a baby at birth that weighs 7 lb (and use
the BMR charts for children under 3-yr-old).

6.51. You tell an 80-kg-man who has been sitting and inactive for some time
that he is no different from an 80 W light bulb. How accurate is your statement
in terms of:
(a) total power emitted
(b) power emitted per unit volume
(c) approximate cost of energy output (in terms of US cents/kW-h)
(d) types of energy that are output
(e) types of energy that are input
(f) spectrum of any light (electromagnetic radiation) that is emitted
(g) flow of gases to and from each object?

6.52. Use Fig. 6.12 to find the metabolic power (in kcal/day) a starving person
has by metabolizing stored body energy reserves during the fourth week of
starvation. How does this compare to a typical basal metabolic rate?

6.53. Does the basal metabolic rate per unit volume for a human make quanti-
tative sense, given the basal metabolic rates for different cells and the fraction
of the body that contains cells (Table 6.22)?

Metabolic Rates During Activities

6.54. In a high jump a 70-kg person elevates his center of mass by 51 cm
during an extension phase (with constant acceleration) that takes 0.25 s.
(a) What is the person’s kinetic energy upon takeoff?
(b) If the muscle efficiency is 20%, how much chemical energy is used to
make one jump? (Express your answer in joules and in kcal (the usual food
calories).)
(c) What is the average power generated by the person during the jump in
watts and horsepower (1 horsepower (hp) = 746 W)?
(d) How frequently would someone have to jump (during a 12 h awake cycle)
to increase his/her (daily averaged) metabolism rate to twice the basal value
(which is 1,500 kcal/day)?

6.55. Use Fig. 3.25 to find the metabolic rates (in kcal/h) for running at speeds
of 2 and 4 m/s, each for 50 and 90 kg people? (Have you included the BMR?)

6.56. Convert the data on aerobic capacities in the paragraph describing the
capacities of people from mL/kg-min to kcal/h for 70 kg men and 50 kg women.
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6.57. The metabolic rate during walking, MR in cal/min, has been determined
by measuring the rate of oxygen consumption, as a function of walking speed,
v in m/min:

MR = 0.267v2 + 2, 160. (6.79)

(a) Determine the walking speed at which the energy expended per unit dis-
tance is a minimum, in m/min, m/s, and mph (miles per hour) [316]. How
does this compare to the minimum shown in Fig. 3.25?
(b) Determine the power consumption rate at this optimal speed in kcal/hr.

6.58. (a) Show that the rate of change of potential energy when walking or
running at a speed v on a gradient at an angle θ (positive for uphill, negative
for downhill) is mbgv sin θ.
(b) Consider the metabolic needs for a slow walk by a 50 kg female, assuming
the energy cost of walking above that of standing is 2.13 J/kg-m at 1.2 m/s
(2.6 mph). Assume the work and power required going uphill is about 2.7× the
increase in potential energy and when moving downhill less power is needed
than that needed on level terrain by about 50% of the rate of decrease of
potential energy. Find the average (total) metabolic need in kcal/min for this
person walking at this constant speed: (i) on a level surface, (ii) on a 10%
grade uphill, (iii) on a 10% grade downhill, and (iv) when half is on the 10%
uphill grade and half on the 10% downhill grade (so the final elevation is the
same as the initial). (v) How does the answer in (iv) compare to that in (i)?
(c) If you wanted to maintain your metabolic rate whether you were walking
on the level surface, uphill, or downhill in part (b), how fast would you walk
up and downhill, assuming that on the level terrain you were moving with the
speed v in part (b).

6.59. Consider the accelerating sprinter in Chap. 3. What is the metabolic
rate of the sprinter (in kcal/min) if the efficiency of converting metabolic
energy to mechanical energy is 20%? How much metabolic energy does the
sprinter consume in a 100 m dash?

6.60. (a) Determine the metabolic rate and oxygen consumption rates for
each stage of the Bruce Protocol for a 75 kg male.
(b) How many kcal are burned in each stage and what is the total energy
burned if the patient finishes all stages?

6.61. (a) Determine the metabolic rate and oxygen consumption rates for
each stage of the Naughton Protocol for a 75 kg male.
(b) How many kcal are burned in each stage, and what is the total energy
burned if the patient finishes all stages?

6.62. How do the metabolic rates at the highest stages of the Bruce and
Naughton Protocol compare?
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6.63. (a) If the energy needed to supply the basal metabolism needs of a 70 kg
male for one day were used to increase that person’s gravitational potential
energy with 100% efficiency, how high would that person be lifted?
(b) If a person can climb stairs with 20% mechanical efficiency, how high can
the person climb using the daily metabolic energy described in part (a)? This
corresponds to about how many floors?

6.64. In football, an offensive and defensive lineman, each 300 lb, face each
other, crouched in a “stance,” separated by 2 yards (which is a bit of an
overestimate). When a “play” begins they rush at each other, each accelerating
at g/2, and then they collide and spend the next 5–10 s pushing each other
with, in this model, no motion. Consider one of the linemen, say the offensive
lineman.
(a) How much kinetic energy does he develop before the collision (in J)?
(b) If he converts metabolic energy into this kinetic energy with 10% efficiency
and plays 50 plays per game, how much metabolic energy does he use in a
game (in kcal)?
(c) It is said that linemen use up to 10,000 kcal in a game. Does your answer
in (b) support this statement? If not, why not?

6.65. As described in Chap. 7, a person tries to fly by flapping his arms. Say
that at the beginning of each flap each arm starts with no kinetic energy and
at the end of the flap each arm is moving at an average speed of 20 m/s.
(a) If this kinetic energy of the arms needs to be generated 3 times a second,
and the body converts metabolic energy to this mechanical energy with 10%
efficiency, how many kcal/min would a 70 kg body consume in this attempt
to fly? (Use the anthropometric data in Chap. 1 to determine the mass of the
arms.)
(b) Would it be difficult for a person to continue this fruitless and quite silly
attempt to fly for a long time? Why?

6.66. A person lifts a 15-kg mass from the floor to over his head (a distance of
2 m). How many times does he have to do this to lose a pound of fat, assuming
a muscle efficiency of 25%?

6.67. A 50 kg woman does 10 chin-ups in a minute (each raising her center of
mass by 0.5 m). After 5 min how much mechanical work has she done (in J)
and how much metabolic energy has she used (in kcal), assuming 25% muscle
efficiency?

6.68. How much energy (gravitational potential energy) is required to lift a
70 kg person by 1 m (in kcal)? If your muscles can do this with 25% efficiency,
how many times would you have to lift such a person to burn off the caloric
content in one standard donut (280 kcal/donut)?

6.69. After a long run, you walk for 10 min at a leisurely pace. Is your
metabolic rate the same as for walking in Table 6.21? Why?
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6.70. You run for a half hour and expend 300 kcal/hr above the BMR during
that time. After running, you huff and puff for another 5 min. Estimate the
number of kcal you expend in excess of the BMR amount during this time. Is
this significant?

6.71. Short-term peak metabolic rates are much greater than the average
rates that we can maintain for long times. Let us estimate them by assuming
that we operate at this peak rate when we throw a m = 1 kg ball a distance
of d = 60 m. This is done by throwing it at a speed of v at takeoff angle of
45◦ and ignoring air resistance. Also ignore the difference between the takeoff
and landing in the trajectory of the ball.
(a) Show that the peak mechanical power is Pmech = mv2/t + mgv/

√
2,

where t is the time needed to launch the object by accelerating one’s arms (at
a constant rate) over a distance s. We will take s = 1 m.
(b) If the efficiency to do mechanical work is ε, show that the needed peak
metabolic power is Pmet = m(gd)3/2/2εs + mg3/2d1/2/

√
2 ε.

(c) Using the given values, show that the peak metabolic rate is about
14,000 W, and therefore about 200× the BMR. (The BMR is roughly the same
– and is usually higher – than the maximum long-term rate of doing mechan-
ical work. They would be equal if the daily-average activity factor were 2.)

Activity Factors

6.72. Estimate the average daily metabolic rate and activity factor of a 50 kg
“homemaker.” (Assume that f = MET.)

6.73. Calculate your activity factor f for a typical day. (Assume that f =
MET.)

6.74. A student spends 6 h a day sleeping, 11 h sitting (attending classes (and
awake), eating, playing video games, etc.), 0.5 h washing and dressing, 4.75 h
walking, 1 h standing, 0.25 h playing basketball, and 0.5 h cycling. What are
the student’s MR and activity level? (Assume the BMR of a 55 kg, 20-yr-old
female student and that f = MET.)

Weight Gain and Loss

6.75. Determine how many standard donuts a (70 kg) person should eat after
playing basketball for 2 h to maintain the same energy reserve as the person
(a) had before the basketball playing or
(b) would have had after 2 h of sitting instead.

6.76. A 150 lb (68 kg) person consumes 2,500 kcal every day and maintains a
steady weight. Now this person decides to eat an extra slice of bread every
day (100 kcal) and eventually achieves a new steady-state weight.
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(a) How much weight does that person gain (in steady state) if the person’s
entire metabolic rate scales, respectively, as (i) m

3/4
b or (ii) mb (mb = body

mass)?
(b) For both scaling relationships, how much weight will that person lose if
he/she ate one less slice of bread each day?
(c) If the person wants to eat that extra slice of bread everyday, but does not
want to gain the extra weight, how long would that person have to run each
day to keep that extra weight off?

6.77. How much weight do people gain with age? Consider a 30-yr-old, 6 ft
(1.83 m), 150 lb (68 kg) male with an activity factor f = 1.5 and assume that
the person’s BMR scales as in (6.30) – which has a strong m

3/4
b dependence –

and that the total metabolic rate MR equals this BMR times the activity
factor. Find how much weight the person will gain (to his new steady-state
weight):
(a) when he turns 50 (with the same food intake, activity level, etc.).
(b) if the activity level of this 30-year decreases from 1.5 to 1.4 (with the same
food intake, etc.).
(c) if the 30-year old (f = 1.5) increases his food intake by 100 kcal/day (one
big slice of bread a day).
(d) if each of (a)–(c) occurs (i.e., the 30-year-old becomes older (now 50), is
less active (f now 1.4), and eats more (100 kcal/day more)).
(e) Do the separate changes in (a)–(c) sum to give that in (d)?
(f) If the person in (c) wants to eat that extra slice of bread everyday, but
does not want to gain the extra weight, how long would that person have to
run each day to keep that extra weight off?
You may assume that the specific stature remains constant, at its initial value,
in parts (a)–(d).

6.78. If your daily metabolic rate exceeds your caloric intake by 1,000 kcal
(which is a very large difference) for a week, how much weight will you lose?
Assume that the change is due only to the use of body fat to make up this
difference, with 9 kcal per gram of body fat, so there is no other concomitant
loss of weight. (Are there other concomitant weight losses? Some weight loss
supplements may also lead to more trivial loss of body water.)

6.79. If 5 lb (2.3 kg) of body fat were changed to 5 lb of body muscle, how
would that decrease the level of other body fat because of the increased MR?

6.80. What is the mass in kg and weight in pounds of a hemisphere of human
tissue with a diameter of 0.4 m (with the average density of such tissue being
0.9 g/cm3)? (This is a model of the weight gain of a pregnant woman – aside
from that due to water retention – or that due to a relatively small “beer
belly.”)
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6.81. A change in body mass of 1 kg is caused by a change in metabolizable
energy of about 3,500 kcal. This means that about 3,500 kcal of chemical en-
ergy is obtainable by oxidizing 1 kg of average body storage materials. Special
relativity teaches that the total energy content of a mass m is E = mc2. How
much is this for 1 kg (in units of kcal)? How many times larger is this than
the chemical energy?

6.82. The level of sodium ions in the body depends on salt intake and how
the body controls the level. The body maintains a Na+ concentration of about
10 mM (millimolar) for intracellular fluid (normally ∼5 L) and about 145 mM
for extracellular fluid (normally ∼2.5 L, which is the blood plasma half of the
5 L of whole blood). Let us say that you eat a bag of potato chips that contains
2 g of sodium (as sodium ions) and let us assume that – for the moment – it all
stays in the body, and, in particular, in these fluids. Now let us say that the
body responds by trying to maintain the previous Na+ concentrations, so you
then drink (and retain) enough water to maintain these concentrations. How
much weight will you gain, assuming all the new Na+ (and therefore the added
water) goes to either (a) the intracellular water, (b) the extracellular water,
or (c) both, so as to keep the same ratio of intracellular and extracellular fluid
volumes? (The recommended daily intake of Na is about 2.5 g.)

6.83. Repeat Problem 6.82 for eating a big bag of pretzels that contains 8 g
of sodium.

Heat Loss

6.84. In (6.44) there was a net radiation deficit of 116 W for a wall (and air)
temperature of 24◦C. Find the deficit for a wall temperature of 0◦C.

6.85. A standard person is in interstellar space. He emits thermal radiation
based on his body surface temperature and receives thermal radiation from the
3 K black body background. How long would it take the person’s temperature
to decrease by 5 K? Assume no other sources of heat generation and loss,
and ignore the fact that the person would not live very long for many other
reasons. Also assume thermal transport in the body occurs on a much shorter
time scale than the one you calculate here.

6.86. Consider a person sitting nude on a beach in Florida [300]. On a sunny
day, visible radiation energy from the sun is absorbed by the person at a rate
of 30 kcal/h or 34.9 W. The air temperature is a warm 30◦C and the individ-
ual’s skin temperature is 32◦C. The effective body surface exposed to the sun
is 0.9 m2. (Assume this same area for sun absorption, radiative transfer, and
convective loss. Is this a good assumption?)
(a) Find the net energy gain or loss from thermal radiation each hour. (As-
sume thermal radiative gain and loss according to (6.51) and an emissivity
of 1.)
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(b) If there is a 4 m/s breeze, find the energy lost by convection each h (use
(6.61), with (6.63))
(c) If the individual’s metabolic rate is 80 kcal/h (93.0 W) and breathing ac-
counts for a loss of 10 kcal/h (11.6 W), how much additional heat must be lost
by evaporation to keep the body core temperature constant?

6.87. How different are (6.62) and (6.63) over the range where the latter is
valid?

6.88. A racing cyclist produces heat at a rate 1,300 kcal/h in excess of the
normal rate. If all of this excess heat is lost by perspiration and evaporative
cooling, how many liters of water must the cyclist drink every hour to maintain
body fluids (at the level she would have had without cycling)?

6.89. What happens when room temperature exceeds the body temperature –
for both the black body and breathing “cooling” routes?

6.90. In indirect calorimetry the rates of O2 consumption, dVO2/dt, and CO2

production, dVCO2/dt, are determined while the subject is engaged in a phys-
ical activity.
(a) Describe how they can be determined by measuring the rates of inspiring
and expiring volumes of air, dVair/dt, and the fractions of O2 and CO2 in
both the inspired and expired air.
(b) A subject is inspiring and expiring air at a rate of 100 L/min, the inspired
air is 21% O2, and the expired air is 16% O2. Show that dVO2/dt is 5 L/min.
(c) What is the metabolic rate of the subject in kcal/min?
(d) In what type of activity could the subject be engaging?

6.91. Compare the thermal conductivities of the materials in Table 6.37 to
those of the parts of the body.

6.92. Use Table 6.37 to explain why is it bad to make clothing for cold weather
out of aluminum foil, very good to make it out of cotton fabric, and great to
make it out of layers of cloth separated by air?

6.93. (a) How thick does your clothing have to be on a cold day? Model a
person by a cylinder 1.65 m high and 0.234 m in diameter. Assume that heat
loss is 1,500 kcal/day and occurs at the circumference of the cylinder (but not
top or bottom). Your skin temperature is 34◦C and the outside temperature
is 0◦C. Assume the insulation values in Table 6.44 and that this is the only
significant form of insulation. Use the ordinary heat flow equation for flat
surfaces and planar regions (6.72).
(b) The radial heat flow in a cylinder of radius r can be modeled assuming
flat surfaces if the thickness Δx is replaced by r ln(1 + Δr/r). How does this
change the result in (a)?

6.94. The R-value is often used to characterize insulation (or thermal resis-
tance) needed and used for insulating houses. It is formally the same as the
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term insulation defined in this chapter. When expressed in SI units, the in-
sulation value is called the RSI-value, so if the insulation is 3 m2-◦C/W, the
insulation value is RSI-3.
(a) In the US, the value of insulation in units of ft2-◦F-hour/BTU is used and
called the R-value. Show that an R-value of 10 corresponds to an RSI-value
of 1.761 and that an RSI-value of 1 corresponds to an R-value of 5.6745.
(b) Find the R-value and RSI-value of 1 Clo.
(c) R-19 insulation is typical of modest insulation needed for a house. Ap-
proximately how many polar weather suits made of heavy wool pile does this
correspond to? (These suits would be in series of course. Assume they are fully
open, so you have a single, and not double, layer of insulation from each.)

6.95. (a) How much energy (kcal) do you lose every hour by thermal conduc-
tion when you stand barefoot on ice? Assume the flow is between the plane
of the ice, which is at a temperature 0◦C, and a plane 5 mm deep into your
body (across the skin), which is at 34◦C [293, 325]. (Why is this temperature
reasonable?) Assume the coefficient of thermal conductivity is 0.3 W/m-◦C.
(Why is this value reasonable?) Also assume that each foot contacts the ice
over an area of 0.02 m2.
(b) You need to heat your body by this amount every hour to maintain your
average body temperature. How much body fat (expressed in g and lb) would
your body have to burn with 100% efficiency each hour to make up for this
heat loss?
(c) How many donuts would you have to eat every hour to account for this
heat loss (again assuming 100% efficiency in conversion to heat)?
(d) Assume that a burning a match provides 1 kJ of energy and determine
how many matches would have to be burnt every hour to supply the body
with heat to make up for this loss (assuming perfect transfer of energy from
the match)?

6.96. Say you stand barefoot on ice [325]. Can blood flowing into your foot
supply enough heat (by the convection of the flowing blood) to counter the
loss of heat by thermal conduction from your foot to the ice, which we will
assume here to be 20 W? Use (6.67). Assume that blood flows into the foot at
a temperature of 36◦C and leaves it at 32◦C, so the foot is at 34◦C, and the
specific heat of blood is 1 cal/g◦C. The mass flow rate of blood Fm = ρAu,
where ρ = 1.06 g/cm3 is the blood mass density, A is the cross-sectional area
of the artery, and u is the linear speed of blood flow. Assume a major artery
modeled as cylindrical tube of radius 2 mm with a blood speed of 35 cm/s.

6.97. Assume your core body temperature varies linearly with distance from
38◦C in your head to 31◦C in your feet (so dT/dx is constant). (You might
say that you are “hot-headed” and have “cold feet,” which is not a very
good combination.) Assume you are 1.8 m tall, have a mass of 80 kg and
a constant transverse body cross-sectional area estimated from the data in
Chap. 1, and the average thermal conductivity coefficient in your body is
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Fig. 6.25. Return blood flow in three hypothetical veins in the right arm, labeled
A, B, and C)

0.3 W/m-◦C. What is the heat flow in your body by thermal conduction and
which way is the heat flowing [325]?

6.98. Model a person as a right circular cylinder [325]. In which case does
the person lose heat faster: (i) the surface is 34◦C everywhere or (ii) half of
the surface is at 36◦C and the other half is at 32◦C, assuming loss either
by
(a) radiation or
(b) conduction.

6.99. Use (6.64) to find a relation for the wind chill temperature in metric
units, with temperature still in ◦C, but with wind speed in m/s.

6.100. Use (6.64) to find a relation for the wind chill temperature in English
units, with temperature in ◦F and wind speed in mph.

6.101. Blood flow in which veins in Fig. 6.25 promotes
(a) relatively low heat loss to the outside world by direct thermal conduction
(b) high heat loss to the outside world by direct thermal conduction
(c) low heat loss by countercurrent flow?

6.102. (advanced problem) Determine the temperature profile in an artery
(Ta(x)) and a vein (Tv(x)) that are close enough that they form a countercur-
rent heat exchange system [325], as in Figs. 6.16 and 6.17. Use the model in
Fig. 6.26. The artery and vein are in such close proximity that there is rapid
heat transfer between them. For simplicity, assume both vessels are identical
and have cross-sectional area A. Blood flows in them with a speed v in the x
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Fig. 6.26. Model of countercurrent heat exchange between an artery and vein. Heat
from the artery flows either from region I to II by convection or from I to III by
heat conduction. (Based on [325])

and −x directions, respectively, and has a specific heat c and mass density ρ.
(a) Explain why conservation of energy implies that the rate of heat con-
duction from the warmer artery to the colder vein (from region I to III in
Fig. 6.26) equals the loss of heat energy in the convection of blood flowing in
the artery (from region I to II, because it gets colder along the x direction),
and that this also equals the gain of heat energy in the convection of blood
flowing in the vein (from region IV to III, because it gets warmer as it travels
in the −x direction).
(b) If the thermal conductivity is K, the distance between the vessels is d
(approximately the combined thicknesses of the vessels), and the contact area
is w dx, where w is the width of the contact area along length dx, show that
the rate of heat conduction from the artery to the vein is

Rconduction =
Ka

d
(Ta(x) − Tv(x)) (6.80)

(c) Show that the loss of heat flow in convection along the artery is

Rconvection = −cρAv
dTa(x)

dx
(6.81)

(d) Combine (6.80) and (6.81) to obtain

dTa(x)
dx

=
Kw

cρAvd
(Ta(x) − Tv(x)) (6.82)
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and similarly for veins show that

dTv(x)
dx

=
Kw

cρAvd
(Ta(x) − Tv(x)) (6.83)

(e) Solve these two equations to show that the temperature difference between
the artery and vein is constant along x and that the temperature in each
decreases linearly with x, by

Ta(x) = Ta(0) − Kw

cρAvd
ΔT x (6.84)

and

Tv(x) = Tv(0) − Kw

cρAvd
ΔT x, (6.85)

where ΔT = Ta(0) − Tv(0).
(f) Sketch Ta(x) and Tv(x) vs. x along a limb of length L, alternately if
(Kw/cρAvd)L is � or �1. What do these two very different conditions in-
dicate?

6.103. Someone has a daily metabolic rate of 2,200 kcal, which is all converted
to heat. If 21% of heat loss is through evaporation of water (on the skin and
in the lungs), how much water is evaporated each day (in L)?

6.104. Derive (6.70).

6.105. Equation (6.70) explicitly neglects any heating or cooling of the water
vapor. Is this a reasonable approximation? Why?

6.106. Calculate the values of the two terms in (6.70) in kcal/day units as-
suming the person inspires air at 20◦C (68◦F) that is very dry (0% relative
humidity) at a rate of 6 L/min and exhales air (at the same rate of course) at
37◦C (98.6◦F) that is totally saturated with water vapor (100% relative hu-
midity, 47.1 mmHg partial pressure, 44.0 g/m3 water vapor). How significant
is each loss to the overall heat loss by the body?

6.107. Repeat Problem 6.106 for the following three cases.
(a) For a person inhaling air at 20◦C that is totally saturated with water
vapor (100% relative humidity, 17.5 mmHg partial pressure, 17.3 g/m3 water
vapor).
(b) For a person inhaling air at 40◦C (104◦F) that is very dry (0% relative
humidity).
(c) For a person inhaling air at 40◦C that is totally saturated with water vapor
(100% relative humidity, 55.3 mmHg partial pressure, 51.1 g/m3 water vapor).
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(d) Compare the overall cooling rate for these three cases with each other and
that in Problem 6.106.

6.108. Explain each of the factors leading to the heat index.

6.109. The heat index, HI, has been fit by

HI = −42.379 + 2.04901523T + 10.14333127R − 0.22475541TR

− 6.83783 × 10−3T 2 − 5.481717 × 10−2R2 + 1.22874 × 10−3T 2R

+ 8.5282 × 10−4TR2 − 1.99 × 10−6T 2R2, (6.86)

with the HI and the ambient dry bulb temperature T in ◦F and the relative
humidity R in % [337, 338]. (This assumes a wind speed of 5.65 mph (5 knots)
and has an error of ±1.3◦F. Exposure to full sunshine can increase the HI by
up to 15◦F.)
(a) Construct a table of the heat index in ◦F, with columns describing dry
(bulk) temperatures ranging from 80–110◦F (in steps of 2◦F) and rows de-
scribing the relative humidity ranging from 40–100% (in steps of 5%).
(b) Mark the combinations of temperature and humidity in the table for each
of the four health warning regions described in the text.

6.110. Repeat Problem 6.109 for 27–47◦C (in steps of 2◦C) and relative hu-
midity ranging from 40–100% (in steps of 5%). (Convert the temperatures
from ◦C to ◦F and then use (6.86).)

6.111. (a) Convert (6.86) from HI and T both being in ◦F to both being in
◦C.
(b) Repeat Problem 6.110, working directly in ◦C.

6.112. Consider two animals that we will model as cylinders [325]. Both have
body temperatures of 35◦C and live in an environment of 0◦C. Animal A has a
length of 1 m, diameter of 1 m, and a 1-cm thick layer of fat (outside the given
diameter) for insulation. Animal B has a length of 6 m, diameter of 0.5 m, and
a 4-cm thick layer of fat for insulation.
(a) Which animal has more thermal energy (heat)?
(b) Which animal loses heat at a faster rate? (Include losses around the di-
ameter and at the ends, and use simple theory – i.e., assume planar flow and
ignore the corrections needed for cylindrical flow.)
(c) Which animal loses a larger fraction of heat per unit time?
(d) Which animal do you expect to have the larger BMR per unit mass? Why?
(e) Are heat losses less for the more spherically shaped animals, such as an-
imal A, or the more pencil-shaped animals, such as animal B? (Ignore the
different thicknesses of the fat insulating layers.)

6.113. (a) Find the skin temperature assuming that 1 cm of fat, skin (with
no thermal insulating properties assumed here), and 1 cm of clothing separate
the body core at 37◦C and the outside at 20◦C. Take the thermal conductivity
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K of fat to be 5 × 10−4 cal/cm-s-◦C and that of the clothing to be equal to
that of air 6 × 10−5 cal/cm-s-◦C [325].
(b) Find the heat loss per cm2 per day.
(c) Find the heat loss per day over the entire body using a surface area of
1.5 m2. How does this compare to the BMR? Does this make sense?

6.114. Repeat Problem 6.113 assuming the person is wearing no clothing.
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Fluid Pressure, Fluid Flow in the Body,
and Motion in Fluids

In the following two chapters we will examine the flow of two fluids in the body:
blood in the heart and circulatory system, and air in the lungs and respiratory
system. Flow of fluids elsewhere in the body is also important, such as in the
urinary system (urine, liquids through the kidneys, etc.). Such directed flow
of material in the body occurs predominantly by fluid flow in systems of
vessels. Directed transport also occurs on microtubules in the body by motor
proteins, such as kinesin and dynein, as described in Chap. 5. Undirected
motion occurs by diffusion. Over “longer” distances such direct transport is
preferred to diffusion because it provides a directed motion and a motion that
is faster than diffusion. Diffusion is important in the body only over very short
distances, up to ∼100 μm.

In this chapter we will discuss the concept of pressure as it relates to
fluids in the body. For example, the pressure of the vitreous humor in the
eyeball serves several functions, including maintaining the shape of the eye-
ball. This pressure is similar to the stress we examined in Chap. 4, such as
that in our long bones when we walk. They both describe a force per unit
area. The pressure in the fluid is hydrostatic, i.e., the force per unit area is
the same stress in all directions. In solids the stress is often anisotropic. We
will review the basic physics of pressure and fluid flow, including the relation-
ship of pressure and fluid flow, and diffusion [353]. We will also examine the
flow of humans in fluids, i.e., swimming, along with the possibility of human
flight.

7.1 Characteristic Pressures in the Body

7.1.1 Definition and Units

The pressure of a fluid column is given by (2.48), P = ρgh, where ρ is the
fluid density, g is the gravitational constant, and h is the height of the column.
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For mercury ρ is 13.6 g/cm3. For water ρ = 1.00 g/cm3 at 4◦C. The density
of whole blood is a bit higher, 1.06 g/cm3 at 37◦C. The units of pressure are
presented in Table 2.6.

So far we have been discussing absolute pressure, Pabs, which is the total
force per unit area. In discussions concerning the body it is very common to
cite the gauge pressure, Pgauge, which is the pressure relative to a standard,
which is usually atmospheric pressure, and so Pgauge = Pabs − 1 atm. This
is helpful because it is the difference in pressure that is the net force that
acts on a unit area. In discussing blood pressure and the pressure of air in
the lungs, it is assumed that the term pressure P refers to the gauge pressure
relative to the local atmospheric pressure. During breathing in (which is called
inspiration), the pressure in the lungs is lower than that outside the body and
so the internal (gauge) pressure is <0. Table 7.1 gives typical pressures in the
body.

Table 7.1. Typical (gauge) pressures in the body (in mmHg). (Using data from
[345])

arterial blood pressure
maximum (systolic) 100–140
minimum (diastolic) 60–90

capillary blood pressure
arterial end 30
venous end 10

venous blood pressure
typical 3–7
great veins <1

middle ear pressure
typical <1
eardrum rupture threshold 120

eye pressure
humors 20 (12–23)
glaucoma threshold range ∼21–30

cerebrospinal fluid pressure
in brain – lying down 5–12

gastrointestinal 10–12

skeleton
long leg bones, standing ∼7,600 (10 atm.)

urinary bladder pressure
voiding pressure 15–30 (20–40 cmH2O)
momentary, up to 120 (150 cmH2O)

intrathoracic
between lung and chest wall −10
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Fig. 7.1. Manometer

7.1.2 Measuring Pressure

One way of directly measuring pressure is with a manometer (Fig. 7.1). The
measured pressure is that corresponding to the height of the fluid column plus
the reference pressure, so

P = Pref + ρgh. (7.1)

The most common way to measure blood pressure is with a sphygmo-
manometer (sfig-muh-ma-nah’-mee-ter), which consists of a cuff, a squeeze
bulb, and a meter that measures the pressure in the cuff (Fig. 7.2). The cuff
is the balloon-like jacket placed about the upper arm above the elbow; this

Fig. 7.2. Measuring blood pressure with a sphygmomanometer, listening to
Korotkoff sounds (of varying levels during the turbulent flow shown in A–C). (Lis-
tening to sounds is called auscultation). (From [364])
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Fig. 7.3. Variation of blood pressure with time, for blood leaving the left heart for
the systemic system, with the systolic and diastolic pressures shown

encircles the brachial artery. The cup of a stethoscope is placed on the lower
arm, just below the elbow, to listen for the flow of blood. With no pressure in
the cuff, there is normal blood flow and sounds are heard through the stetho-
scope. Gurgling sounds are heard after the cuff is pressurized with the squeeze
bulb and then depressurized by releasing this pressure with a release valve in
this bulb.

To understand when these sounds occur and their significance, we need
to understand how the pressure in the main arteries varies with time. (This
will be detailed in Chap. 8.) In every heart beat cycle (roughly 1/s), the blood
pressure in the major arteries, such as the brachial artery, varies between
the systolic pressure (∼120 mmHg) and the diastolic pressure (∼80 mmHg),
as is depicted in Fig. 7.3. (The units of these cited gauge pressures are in
mmHg – see (7.1) and Chap. 2.) When the pressure in the cuff exceeds the
systolic pressure, there is no blood flow to the lower arm and consequently
there are no sounds. When the pressure in the cuff is lowered with the release
bulb to just below the systolic pressure, there is intermittent flow. During
the part of the cycle when the arterial blood pressure is lower than the cuff
pressure there is no flow; when it is greater, there is flow. This intermittent flow
is turbulent and produces gurgling sounds. These sounds, the Korotkoff or K
sounds, are heard by the stethoscope. As the cuff pressure is lowered further,
the K sounds get louder and then lower, and are heard until the cuff pressure
decreases to the diastolic pressure. Blood flow is not interrupted when the cuff
pressure is less than the diastolic pressure and the K sounds cease because
the blood flow is no longer turbulent. Therefore, the onset and end of the K
sounds, respectively, denote the systolic and diastolic blood pressures. (This
auscultatory method of Korotkoff was introduced by Russian army physician
Korotkoff [362] who discovered a century ago that sound can be heard distally
from a partially occluded limb [349].)

7.2 Basic Physics of Pressure and Flow of Fluids

In this section we overview the basics of fluids. Some of this will be a review
for most. Some of the more advanced results are derived, while others are
merely presented. These basics will be used in subsequent chapters.
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Both gas and liquid fluids are important in the body. Gases will be treated
by the ideal gas law

P = nRT, (7.2)

where P is the pressure, n is the gas density, R is the gas constant
(= 8.31 J/mol-K), and T is the temperature (in K). The gas density n = N/V ,
where N is the total number of molecules in a volume V . The gas constant
R = NAkB, where NA is Avogadro’s number, 6.02 × 1023, and kB is Boltz-
mann’s constant, 1.381 × 10−23 J/K.

One guiding principle is Pascal’s Principle: the pressure applied to a con-
fined fluid increases the pressure throughout by the same amount. Also quite
important is Archimedes’ Principle: the buoyant force on a body immersed
in a fluid is equal to the weight of the fluid displaced by that object. Another
important relation is the Law of Laplace, which relates the difference of pres-
sures inside and outside a thin-walled object – of a given shape – to the tension
in the walls of the object. We will also need to understand the properties of
flowing fluids to be able to analyze the physics of the circulatory system.

7.2.1 Law of Laplace

The pressure inside blood vessel walls, P , exceeds that outside, Pext, by ΔP =
P −Pext. How large of a tension should the vessel walls be able to withstand to
support this positive pressure difference in equilibrium? The answer is provided
by the Law of Laplace for hollow cylinders. It is derived here and then used
in Chap. 8.

Consider a tube of radius R and length L. Figure 7.4a shows a section of
this tube with angle θ � 1. The outward force (upward in the diagram) on this

Fig. 7.4. Derivation of the Law of Laplace for the cylinder in (a), with the force
diagram for a section of a cylinder in (b), leading to the force diagram in (c), and
the resolution of pressures for analysis of a half cylinder in (d)
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area is the pressure difference, ΔP , times the area, (Rθ)L. The circumferential
tension T is the force per unit length (along the tube length). (Note that this
use of the word “tension” has a different meaning than in earlier chapters,
where it meant a force, often used to pull things apart.) This film tension
has units of force/length or energy/area. It is equal to a circumferential stress
σ = T/w, where w is the cylinder thickness (with w � R). These forces can
be those within the blood vessel walls (Chap. 8). The horizontal components
of the film tension to the left and right cancel. The vertical components are
inward and each equal to T sin(θ/2) � T (θ/2) for small angles. With both of
these tension components multiplied by L, in static equilibrium force balance
gives

ΔP (Rθ)L = 2
(

T
θ

2

)
L. (7.3)

This means

ΔP =
T

R
or T = R(ΔP ). (7.4)

This is a differential method. Alternatively we could integrate the forces
over a half cylinder, as shown in Fig. 7.4d. The total downward force is the
area of the walls, 2wL, times the stress, σ, or 2wLσ. The total upward force is
the cross-sectional area, 2RL, times the pressure difference, ΔP , or 2RL(ΔP ).
In equilibrium

2RL(ΔP ) = 2wLσ (7.5)

ΔP =
wσ

R
=

T

R
, (7.6)

which is the same as (7.4). (Figure 7.4d shows that the total upward force is
really the integral of the upward force component, ΔP cos θ, times the area
element, RLdθ, integrated from −90◦ to 90◦ or

(ΔP )RL

∫ 90◦

−90◦
cos θdθ = (ΔP )RL(sin(90◦) − sin(−90◦)) = 2(ΔP )RL, (7.7)

which turns out to be the same as (ΔP )2RL.)
The Law of Laplace is also important in spheres, such as soap bubbles and

the alveoli in the lungs. For a sphere of radius R and wall thickness w, we can
balance the forces in the half sphere. The total downward force is the area of
the walls, 2πRw, times the stress, σ, or 2πRwσ. The total upward force is the
cross-sectional area, πR2, times the pressure difference, ΔP , or πR2(ΔP ). In
equilibrium

πR2(ΔP ) = 2πRwσ (7.8)

ΔP =
2wσ

R
=

2T

R
. (7.9)
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Table 7.2. Surface tension (γ) for several liquids. (Using data from [351, 358, 363])

liquid T (◦C) γ (10−4 N/m)

water 0 7.56
20 7.28
60 6.62
100 5.89

whole blood 20 5.5–6.1
blood plasma 20 5.0–5.6
lung surfactant 20 0.1
cerebrospinal fluid 20 6.0–6.3
saliva 20 1.5–2.1
benzene 20 2.89
mercury 20 46.4

This is the Law of Laplace for a sphere. We will use it in Chap. 9. (It is derived
in more detail in Problem 7.12.)

For a spheroid with different radii of curvature, R1 and R2, (7.4) and (7.9)
generalize to

ΔP =
T

R1
+

T

R2
. (7.10)

For a cylinder, R1 = R and R2 = ∞ and this reduces to (7.4). For a sphere,
R1 = R and R2 = R and it reduces to (7.9).

Our force balance arguments have made a direct connection between this
tension, or really surface tension, and its units of force/length. Surface tension
also has the same units as energy/area. This is reasonable because it is also the
energy “cost” of making a unit area of a surface (or interface). Representative
values of surface tension are given in Table 7.2.

7.2.2 Fluids in Motion

There are five attributes of the flow of fluids:

1. Flow can be laminar/streamline/steady or turbulent/unsteady. In laminar
flow, a particle in the flow moves in a smooth manner along well-defined
streamlines. In contrast, the motion is very random locally in turbulent
flow. The Reynolds number Re is a dimensionless figure of merit that
crudely divides the regimes of laminar and turbulent flow. It is the ratio
between inertial force (ρu2/2; ρu2 is used here) and viscous force (ηu/d)
per unit volume on the fluid, where ρ is the fluid density, u is the average
speed of flow, d is the tube diameter, and η is the fluid coefficient of
viscosity or the dynamic or absolute viscosity, which is defined later. This



412 7 Fluid Pressure, Fluid Flow in the Body, and Motion in Fluids

Fig. 7.5. Motion of a filament of dye in a straight pipe, showing (a) steady, laminar
flow at low Re, (b) short bursts of turbulence for Re above the critical value, and
(c) fully turbulent flow with random motion of the dye streak for higher Re. (From
[346]. Used with permission of Oxford University Press)

gives

Re =
ρu2

ηu/d
=

ρud

η
=

ud

υ
, (7.11)

where υ = η/ρ is the coefficient of kinematic viscosity.
Although this dividing line is not hard and fast, generally, flow in a rigid
tube with Re < 2,000 is laminar and that with Re > 2,000 is turbulent.
This dividing region is often cited as being between 1,200–2,500, and in
the higher range for smoother-walled tubes. Figure 7.5 shows flow in the
laminar and turbulent regimes, and in the transition region between them.

2. Flow can be compressible or incompressible. Gases, such as air, are very
compressible. Liquids are less compressible, and are often approximated
as being incompressible.

3. Flow can be viscous or nonviscous. Fluids (other than superfluids) always
have some viscosity, but in some cases it can be ignored totally, or first
ignored and then considered as a perturbation.

4. Flow can be rotational or irrotational. In the cases we will consider there
is no local rotation (such as vortices), so the flow will be irrotational.

5. Flow can be steady (constant in time) or pulsatile (with pulsing changes).
Blood flow in the body is pulsatile, but is commonly treated as being
in steady state in simple models. We will use both steady and pulsatile
models in Chap. 8.
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Fig. 7.6. Continuity of flow when the tube cross-sectional area changes

7.2.3 Equation of Continuity

The equation of continuity is a statement of the conservation of mass during
flow. As seen in Fig. 7.6, when a fluid of a given mass density ρ moves with
average speed u in a tube of cross-sectional area A, the product ρAu is constant
(i.e., it is conserved). Because the speed is a longitudinal distance per unit
time, Au is the volume flow per unit time (because A × distance = volume).
Consequently, ρAu is the mass per unit time. In steady state, the same mass
flows into a volume and leaves it. For the regions marked 1 and 2 in Fig. 7.6,
this means that

ρ1A1u1 = ρ2A2u2. (7.12)

If the fluid is incompressible, the density in ρ1A1u1 = ρ2A2u2 does not
change with pressure and is the same everywhere. With ρ1 = ρ2, we follow the
volume or volumetric flow rate Q, which is now a constant. This means Q1 =
A1u1 and Q2 = A2u2, and so the continuity equation becomes Q = Q1 = Q2

with

Q = A1u1 = A2u2. (7.13)

7.2.4 Bernoulli’s Equation

Bernoulli’s Principle (or equation) relates the average flow speed u, pressure
P , and height y of an incompressible, nonviscous fluid in laminar, irrotational
flow (Fig. 7.7). At any two points

P1 +
1
2
ρu2

1 + ρgy1 = P2 +
1
2
ρu2

2 + ρgy2. (7.14)

The densities ρ1 = ρ2 = ρ for this incompressible fluid. (Bernoulli’s equation
actually applies to any two points along a streamline.)

There are three special cases of Bernoulli flow. (1) For static fluids (u = 0),
and Bernoulli equation’s reduces to P1 + ρgy1 = P2 + ρgy2. (2) It reduces to
Torricelli’s theorem when P1 = P2, namely ρu2

1/2 + ρgy1 = ρu2
2/2 + ρgy2.
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Fig. 7.7. For irrotational and nonviscous flow, the pressure, flow speed, and height
are related by Bernoulli’s equation along any streamline

(3) It reduces to the Venturi flow regime when y1 = y2 (Fig. 7.8), so

P1 +
1
2
ρu2

1 = P2 +
1
2
ρu2

2. (7.15)

Because the continuity of flow in such a Venturi tube is A1u1 = A2u2

u2 =
A1

A2
u1. (7.16)

Therefore we find

P1 +
1
2
ρu2

1 = P2 +
1
2
ρ

(
A1

A2
u1

)2

(7.17)

and

P2 − P1 =
1
2
ρu2

1

(
1 −

(
A1

A2

)2
)

. (7.18)

With A2 < A1, we see that u2 > u1 and P2 < P1. This shows that the flow
becomes faster and the pressure becomes lower in clogged blood vessels.

Fig. 7.8. Flow in a tube when the tube cross-sectional area changes. This is a
Venturi tube, for which pressure and flow speed are related by Bernoulli’s equation
in the limit of constant height
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7.2.5 Interactions among the Flow Parameters

Pressure P , volume V , and flow rate Q are all interrelated in flow through
vessels, be it blood flow in the circulatory system or air flow in breathing.
Resistance Rflow is the pressure difference ΔP needed to cause a given flow
rate Q

Rflow =
ΔP

Q
. (7.19)

Compliance Cflow is the change in volume caused by a change in pressure in
a vessel

Cflow =
ΔV

ΔP
. (7.20)

Occasionally, the inertance Lflow is also defined. It is the change in pressure
caused by a change in flow rate

Lflow =
ΔP

ΔQ
. (7.21)

See Appendix D for an analog to electrical circuits.

7.2.6 Viscous Flow and Poiseuille’s Law

Bernoulli’s equation would predict that the pressure does not change during
flow if the tube cross-section and height do not change. This is true for an
ideal, nonviscous fluid. Viscosity is the friction during flow. It is always present
and causes the pressure to drop during flow.

The coefficient of (dynamic or absolute) viscosity η is formally defined in
(7.22), which gives the tangential or shear force F required to move a fluid
layer of area A at a constant speed v, in the x direction, when that layer is a
distance y from a stationary plate (Fig. 7.9) [350, 354]

F = η
A

y
v. (7.22)

Fig. 7.9. Viscous fluid flow, with a linear gradient of fluid speed with position
between a fixed and moving plate. This is shown for Newtonian flow
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This equation is also written as

τ = η
dv

dy
, (7.23)

where τ = F/A is the shear stress, as in (4.5) and Figs. 4.10 and 4.11, and
dv/dy is called the shear rate. (Check that the units of the shear rate are
those that a rate should have, 1/s.) Fluids that are characterized by (7.22)
and (7.23) are called “Newtonian fluids” and are said to undergo “Newtonian
flow.”

The SI units of η are (N/m2)s, which is equal to kg/m-s and Pa-s; this
is called a Poiseuille (PI), but this unit is not often used. More commonly
used than this last unit is the poise (P) which is 10× smaller. It is a natural
unit in the CGS units system with 1 poise = 1 g/cm-s = 0.1 (N/m2)s =
0.1 kg/m-s = 0.1 Pa-s. Also common is the centipoise (cP), with 1 cP =
0.01 poise = 0.001 Pa-s, because the viscosity of water at 20◦C is almost equal
to 1 cP (and is actually 1.002 cP). We will usually use the units of Pa-s. Also,
this viscosity coefficient is often called η by physicists (and is used as such
here), whereas it is often called μ by biomedical engineers. It is also related to,
but different from the viscosity damping constant for the dashpot c in (4.48).

Because of this drag, there must be a pressure difference (gradient) to
maintain fluid flow in a tube. The relation between this pressure drop and
the volumetric flow rate Q is given by Poiseuille’s Law (or Hagen-Poiseuille’s
Law)

Q =
πR4

8ηL
(P1 − P2), (7.24)

where R is the radius of the tube and L is its length (Fig. 7.10). This relation
can be viewed as the flow rate for a given pressure drop. Alternatively, it can
be viewed as the pressure drop when there is a flow Q in the tube

P1 − P2 = ΔP =
8ηL

πR4
Q. (7.25)

We will use this expression in Chap. 8 to determine the pressure drops in blood
vessels during circulation. It is derived later as an advanced topic.

Equation (7.25) is formally analogous to Ohm’s Law for resistors, V =
IRelect (or in a manner more parallel to this equation, V = RelectI), where
V is the voltage or potential difference across the resistor and is the driving
term (which is analogous to ΔP ), Relect is the electrical resistance (analogous
to the resistance of flow 8ηL/πR4 here, which we will call Rflow), and I is the
electrical current, which is the flow resulting from the driving term (analogous
to the volumetric flow Q here).

Consider a tube with cross-sectional area A. The net force on the fluid in
it is (ΔP )A. If this force moves the fluid a distance L, the work done on it is
FL = (ΔP )AL. If this volume AL is moved in a given time, the work needed
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Fig. 7.10. Calculation of Poiseuille’s Law for a tube in (a), using the cylindrical
shell in (b), and balancing forces between the hydrostatic flow pressure force and
the differential shear stress on the shell in (c)

to do this in this given time – the power – is

Ppower, flow = (ΔP )Q, (7.26)

or Ppower, flow = Q2Rflow = (ΔP )2/Rflow. These expressions are analogous to
those for the power dissipated by an electrical resistor: Ppower, elect = V I =
I2Relect = V 2/Relect.

The coefficient of viscosity for water is 1.78 × 10−3 Pa-s at 0◦C and
it decreases with temperature, dropping to 1.00 × 10−3 Pa-s at 20◦C and
0.65 × 10−3 Pa-s at 40◦C. At 37◦C, η is 1.5 × 10−3 Pa-s for blood plasma
and 4.0 × 10−3 Pa-s for whole blood, which are both higher than that for
water at the same temperature. (Blood is really thicker than water.) The co-
efficients of viscosity of common human body fluids and other materials are
listed in Table 7.3. As is clear from the table, the viscosity of liquids decreases
with increasing temperature T , because the kinetic energy of molecules in-
creases with T and this can overcome intermolecular forces that slow down
motion between the dense, adjacent layers. In contrast, viscosity increases
with temperature for gases, as T (in K)1/2, because diffusion between adjacent
layers increases with T .

Derivation of Poiseuille’s Law (Advanced Topic)

Now consider flow in a tube of radius R (Fig. 7.10). The distance radially from
the center line of the tube is r. Using (7.22) and (7.23), the shear force and
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Table 7.3. Coefficient of viscosity η of common materials, in Pa-s (1 poise =
0.1 Pa-s). (Using data from [351, 358, 363])

material T (◦C) η

water 0 1.78 × 10−3

20 1.00 × 10−3

37 0.69 × 10−3

50 0.55 × 10−3

100 0.28 × 10−3

blood plasma 37 1.5 × 10−3

whole blooda 37 ∼4.0 × 10−3

low shear rate, Hct = 45% ∼100 × 10−3

low shear rate, Hct = 90% ∼1,000 × 10−3

high shear rate, Hct = 45% ∼10 × 10−3

low shear rate, Hct = 90% ∼100 × 10−3

cerebrospinal fluid 20 1.02 × 10−3

interstitial fluid 37 1.0–1.1 × 10−3

human tears 37 0.73–0.97 × 10−3

synovial fluidb 20 >0.3
castor oil 20 1
motor oil, SAE 10 20 0.065
motor oil, SAE 50 20 0.54
machine oil, heavy 37 0.13
machine oil, light 37 0.035
ethylene glycol 37 0.011
mercury, liquid 37 1.465 × 10−3

methanol 37 0.47 × 10−3

ketchup 20 50
peanut butter 20 250
glass (anneal) 720–920K 2.5 × 1012

(blowing) ∼1,300 K ∼1 × 106

(furnace) 1,500–1,700 K ∼1 × 102

air 20 1.8 × 10−5

100 2.1 × 10−5

Hct is the hematocrit, which is the volume fraction of red blood cells in blood.
aSee Figs. 8.10 and 8.11.
bSee Fig. 7.14.

stress are

F = ηA
dv

dr
(7.27)

τ = η
dv

dr
. (7.28)

Imagine a series of concentric cylinders within this tube of thickness dr and
length L (centered about the center symmetry axis, Fig. 7.10b), with a pres-
sure drop ΔP along L. The force pushing one of these cylindrical shells forward



7.2 Basic Physics of Pressure and Flow of Fluids 419

is this pressure drop, ΔP , times the area of the front (and back) cylinder face,
2πrdr, or (ΔP )2πrdr. The viscous drag force that the cylindrical shell feels
from the other shells (i.e., from the liquid) is the difference between the shear
stress felt on its inner and outer surfaces × its surface area, 2πrL. Using
(7.28), this difference is

d(2πrLτ)
dr

dr =
d

(
2πrLη dv

dr

)

dr
dr = 2πLη

d
(
r dv

dr

)

dr
dr (7.29)

assuming the viscosity does not depend on r.
In steady state, the force due to the pressure drop plus the drag force

equals zero, so

(ΔP )2πrdr + 2πLη
d

(
r dv

dr

)

dr
dr = 0 (7.30)

or

d
(
r dv

dr

)

dr
= −ΔP

ηL
r. (7.31)

Integrating gives

r
dv

dr
= −ΔP

2ηL
r2 + C (7.32)

dv

dr
= −ΔP

2ηL
r +

C

r
. (7.33)

The constant C must equal zero, because otherwise the second term would be
infinite at the center.

Integrating again gives

v(r) = −ΔP

4ηL
r2 + D. (7.34)

(see Appendix C). Because at the tube radius the velocity is zero (v(R) = 0),
D is determined and this gives

v(r) = −ΔP

4ηL
r2 +

ΔP

4ηL
R2, (7.35)

so

v(r) =
ΔP

4ηL

(
R2 − r2

)
=

R2ΔP

4ηL

(
1 − r2

R2

)
. (7.36)

This speed is seen to be maximum in the center where r = 0. This maximum
value of R2ΔP/(4ηL) decreases to 0 as r increases from 0 to R.

The flow rate in the tube Q equals uA when the speed is uniform across
the area A. When it is not, as here, Q is obtained by integrating v(r) across
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the cross-sectional area. This is done by multiplying v(r) by the area element
2πrdr (the circumference × the differential in r) and integrating r from 0 to
R, which gives

Q =
∫ R

0

ΔP

4ηL

(
R2 − r2

)
2πrdr (7.37)

Q =
∫ R

0

πΔP

2ηL

(
rR2 − r3

)
dr =

πΔP

2ηL

(
R4

2
− R4

4

)
=

πR4ΔP

8ηL
. (7.38)

This is Poiseuille’s Law ΔP =
(
8ηL/πR4

)
Q ((7.24) and (7.25)). Because Q

is also equal to the area × the average speed, this average speed is

u =
πR4ΔP/8ηL

πR2
=

R2ΔP

8ηL
(7.39)

and

v(r) = 2u
(

1 − r2

R2

)
. (7.40)

This is depicted in the rightmost profile shown in Fig. 7.11.
Many fluids are non-Newtonian fluids (Fig. 7.12), which means they are

not characterized by (7.22) and (7.23), but by other relations. We assumed
earlier that a fluid could generate no shear stress at any shear or strain
rate; this is a frictionless or nonviscous fluid, which is unrealistic except
for superfluids. (Note that such shear or strain “rates” are really gradi-
ents with respect to the direction normal to flow, i.e., y, and not with re-
spect to time t. However, this terminology is reasonable because they have
the same units as strain rates and because of the scaling argument given
in Problem 7.23.) In some real non-Newtonian fluids, the shear stress is
F/A = η(dv/dy)n, where n could be greater or less than 1, as in Fig. 7.12.
This is sometimes phrased as F/A = η′(dv/dy) where the effective viscos-
ity η′ = η(dv/dy)n−1 depends on the strain rate; as such a Newtonian fluid

Fig. 7.11. Establishment of steady-state Newtonian flow into the parabolic velocity
profile (in the fully developed flow). (From [351], based on [355]. Courtesy of Robert
A. Freitas Jr., Nanomedicine, Vol. 1 (1999), http://www.nanomedicine.com)
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Fig. 7.12. Newtonian and non-Newtonian fluid flow. (From [357])

would have an effective viscosity that is independent of the strain rate. A
dilatant or shear-thickening fluid has an effective viscosity that increases with
increasing stress. A plastic or shear-thinning fluid has an effective viscos-
ity that decreases with increasing stress. A Bingham plastic, such as tooth-
paste, has a finite yield stress even for dv/dy = 0, and above the yield
stress it has a linear relationship with strain rate, F/A = α + η(dv/dy).
The composition of blood makes it a non-Newtonian fluid; this is discussed
in Chap. 8. Consequently, the flow pattern of blood is decidedly nonparabolic
(Fig. 7.13).

Synovial fluid is one example of a non-Newtonian fluid. Figure 7.14 shows
that its coefficient of friction is high at low shear rates and much lower at
high shear rates. Figure 8.11 shows that whole blood is also a non-Newtonian
fluid.

The dependence of flow on pressure drop within the laminar, intermediate,
and turbulent regimes is shown in Fig. 7.15.
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Fig. 7.13. Velocity flow profile of whole blood is blunted relative to the ideal par-
abolic flow of a Newtonian fluid. (From [351], based on [355]. Courtesy of Robert A.
Freitas Jr., Nanomedicine, Vol. 1 (1999), http://www.nanomedicine.com)

Approach to Steady Flow

The results of Sect. 7.2.6 apply to steady, laminar flow. If a tube bifurcates –
such as in branching arteries, the velocity profile we derived with its boundary
layer at the tube circumference (where the flow velocity decreases to zero),
will not represent the flow distribution immediately after the bifurcation. It
will be valid only after a distance past the bifurcation called the entrance
length, X [346]. Experimentally

X = 0.03d(Re) (7.41)

Fig. 7.14. (a) Synovial fluid is a non-Newtonian fluid, with a coefficient of friction
that decreases with shear rate. (b) Another property of such a non-Newtonian fluid
is that it can create a normal stress that depends on shear rate. (From [361])
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Fig. 7.15. Pressure drop per unit length vs. log of the flow rate for a long tube,
showing a transition region between laminar and turbulent flow. (From [346]. Used
with permission of Oxford University Press)

for a straight pipe, where d is the diameter (d = 2R). For the laminar flow
regime with Re < 10, this is not valid and the entrance length is smaller;
when Re � 1 and inertial forces can be ignored

X ∼ d. (7.42)

For Re > 2,500, the flow is likely turbulent and the entrance length (for steady
state turbulent flow) is shorter than that for fast laminar flow

X = 0.693d(Re)1/4. (7.43)

The development of parabolic flow for a Newtonian fluid in the laminar
flow region is illustrated in Fig. 7.11.

Flow in Curving Tubes such as Arteries

When you hold a hose with flowing water and try to change its direction you
feel a resistance. This resistance is the force you need to apply to change the
direction of the momentum of the water flow. This centripetal force becomes
larger with faster flow rates (i.e., for larger hose areas and faster water flow
speeds), as is well known to all firepersons. Curving arterial walls, such as
the aorta, feel a pressure due to the difference in hydrostatic pressure inside
and outside the vessel that arises from this force. This pressure is felt equally
around the wall.

Consider a tube or artery of inner radius R that is turning with a radius
R. Figure 7.16 shows an arc of angle θ (in radians) � 1 of such a vessel. The
average speed of flow is u and the mass density of blood is ρ. The magnitude
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Fig. 7.16. Flow in a curved tube. (From [344])

of the momentum in the vessel per unit volume is ρu(AL), for a vessel with
cross-sectional area A = πR2 for a length L of blood flow. In traversing an
angle θ, the momentum vector changes by ∼(ρu)(AL)θ. This occurs when the
blood moves a distance Rθ, given by the arc length, with a speed u, so this
occurs in a time Rθ/u. Consequently, the force needed to do this is the change
of momentum per unit time, which is (ρuALθ)/(Rθ/u) = ρu2AL/R. Because
the mass of this volume of blood is m = ρAL, this looks like the centripetal
force mu2/R. (It looks like it, because that is what it is.)

This force is distributed across the outer half of the inner arterial wall,
which has a cross-sectional area πRL. Because the force is outward, there is a
larger load on the outermost portions shown in Fig. 7.16 and a smaller load on
the outer upper and lower regions. Therefore, the peak force per unit area is
more accurate when you use a smaller effective area, say πRL/2. Consequently,
the peak pressure is the force per unit area ρu2AL/R, with A = πR2, divided
by this area πRL/2, or

Pcent =
ρu2(πR2)L/R

πRL/2
= 2ρu2 R

R . (7.44)

Flow of Objects in Fluids: Drag and Lift

The viscosity of a fluid also creates a drag force on objects that move in the
fluid [343]. The reason for this is clear from (7.22); such objects are just like
the plate in Fig. 7.9 in this functional definition of viscosity. Viscosity causes
the boundary layer of the fluid near the ball (or plate) to move with it. If the
object is moving at a speed u relative to the fluid, this drag force on the object
is given by Stokes Law

Fdrag,Stokes = 6πRηu, (7.45)
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where R is the hydrodynamic radius of the object, which is about half the
typical lateral dimension D. This expression for Stokes friction is valid when
the flow speed is slow enough that the streamlines about it are laminar. Here
this means the Reynolds number Re = ρDu/η = 2ρRu/η is smaller than
∼100.

For Reynolds numbers much larger than 100, viscosity is no longer totally
dominant and the main drag force is due to the formation of vortices that
appear and trail the object, particularly as turbulent flow becomes important.
This hydrodynamic drag force is

Fdrag,hydrodyamnic =
1
2
CDAρu2, (7.46)

where A is the frontal surface area and CD is the drag coefficient. For 100 <
Re < 2× 105, CD � 1.0 for circular cylinders. For spheres, CD decreases from
1.0 to �0.5 as Re increases from 100 to 1,000 and it remains about 0.5 for
1, 000 < Re < 2 × 105. For both cylinders and spheres, CD becomes smaller
at somewhat higher Re. These vortices or eddies are produced at the Strouhal
frequency

fSt =
(St)u

D
, (7.47)

where St is the Strouhal number. St depends on CD and Re, and is typically
between 0.12 and 0.23.

Problem 7.39 examines which drag regime dominates for human motion
in fluids: walking and running in air and swimming in water.

Another source of drag that is present at all speeds is skin friction, which is
due to the acceleration of the initially still fluid to the object speed u, because
fluid in the boundary layer near the object sticks to it. This is different from
Stokes drag, which is due to frictional losses in the fluid. This skin friction is

Fdrag,skinfriction =
1
2
CsfSρu2, (7.48)

where Csf is the skin friction coefficient, which depends on the details of the
flow, and S is the wetted surface area. When you swim at or near the surface,
fluid builds up to a higher than ambient level in front of your head (as you
push the water forward). The water is depressed to a level lower than ambient
after your head, as it “ventilates.” This ventilation drag force varies as u4.

The power consumed by each of these drag forces is

P = Fdragu. (7.49)

When a foil that is tilted up at an angle β moves in a fluid, an upward
force is generated on it called lift, which is

Flift =
1
2
CliftSρu2. (7.50)
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Fig. 7.17. Schematic of how the locations of particles vary at successively later
times, from (a) to (c), as a result of diffusion

The lift coefficient, Clift, varies linearly with this angle of attack. For small
angles, it varies linearly from −0.4 to 1.2 for β varying from −4◦ to 12◦ (for
Re = 1.7 × 106). Of course, Clift = 0 for β = 0◦. For β much larger than 12◦,
the flow separates from the upper edge of the wing and there is stalling of the
lift.

Chapter 3 discussed the lift force on spinning objects, such as thrown base-
balls and such, which is commonly called the Magnus force.

7.3 Diffusion (Advanced Topic)

When the concentration of particles (or molecules) is not uniform, the random
particle thermal motion leads to a net movement (or diffusion) of particles
from regions of higher concentration to regions of lower concentration. The
net effect is to make the concentration more uniform (Fig. 7.17). This diffusion
flow rate increases with the nonuniformity or gradient of the concentration,
which is Fick’s First Law of Diffusion

J = −Ddiff
∂n

∂x
(7.51)

for flow in one-dimension, where J is the flux of particles (particle flow per unit
area per unit time), Ddiff is the diffusion coefficient, and n(x, t) is the concen-
tration of particles. (We must use partial derivatives here because everything
depends on x and t.) The diffusion coefficient depends on the background
medium, and is on the order of ∼10−1 cm2/s in gas, ∼10−5 cm2/s in liquid,
and ∼10−9 cm2/s in solid backgrounds.

During this flow the total number of particles must be conserved. Consider
the cylindrical volume construct in Fig. 7.18, with its axis along the x-axis, and
of length dx and cross-sectional area A. The total number of particles entering
from the left in a unit time dt is J(x)A(dt) and the number leaving from
the right in this same time is J(x + dx)A(dt) � (J(x) + (∂J/∂x)dx) A(dt).
Therefore the net increase in the number of particles in the cylinder is the
difference −(∂J/∂x)(dx)A(dt). This must be accounted for by the change in
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Fig. 7.18. Particles are conserved for any flow in and out of the cylinder through
a change in concentration inside of it, for any flow process and for diffusion

density in this time in the volume, which is [(∂n/∂t)dt][A(dx)]. This gives the
conservation of the number of particles

∂n

∂t
= −∂J

∂x
. (7.52)

These two equations can be combined by differentiating (7.51) in space
to get ∂J/∂x = −Ddiff ∂2n/∂x2 (assuming that Ddiff does not depend on x)
and replacing ∂J/∂x from (7.52). This gives the Diffusion equation (or Fick’s
Second Law of Diffusion)

Ddiff
∂2n

∂x2
=

∂n

∂t
. (7.53)

Such diffusion leads to a slow gaussian-like, undirected spreading of the
species over a distance x ∼

√
2Ddifft in a time t. (A gaussian profile is of

the general form exp
(
−x2/a2

)
.) For a total number of particles N initially at

x = 0 at t = 0, the concentration is approximately

n(x, t) ∼ N√
2πDdifft

exp
(
−x2/2Ddifft

)
. (7.54)

As presented, this solution is not valid for small times. The exact solution
is slightly more complicated in other ways as well, but it is essentially the
same result when the initial spread of particles is very small (Fig. 7.19) (see
Appendix C). If the initial distribution is gaussian, (7.54) becomes

n(x, t) =
N√

2πσ2(t)
exp

(
−x2/2σ2(t)

)
, (7.55)

where

σ2(t) = σ2(0) + 2Ddifft (7.56)

and σ(0) is the initial spread.
In three-dimensions, the spreading of particles by diffusion is described by

n(x, t) =
N

(2πσ2(t))3/2
exp

(
−r2/2σ2(t)

)
, (7.57)
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Fig. 7.19. Diffusion in one dimension, with gaussian spreading, with the initial
distribution (σ(0)), one at time t during which σ2 has tripled (in this particular
example) (σ(t)), and one at time 2t (σ(2t)). (From [360])

with

σ2(t) = σ2(0) + 6Ddifft, (7.58)

where r2 = x2 + y2 + z2.
Diffusion can be very important in the body over very small distances, on

the order of 1–100 μm (∼100 μm for oxygen diffusion), but is not very useful
over much longer distances. The amount of material that can be transported
from one place to another is limited by the lack of directionality of diffusion
(Problem 7.26). It leads to an increase in disorder, whereas a functioning
organism requires careful control and regulation within characteristic time
frames. (The level or disorder is known as entropy, which is discussed in more
detail in discussions of thermodynamics, statistical mechanics, and in several
areas of biophysics.) Smelling object depends on the diffusion of molecules to
your nose (Problem 7.30).

Diffusion is also important in flowing systems. This is illustrated in
Fig. 7.20 for an artery.

7.4 Pressure and Flow in the Body

Table 7.1 gives characteristic pressures in the body. The blood pressure
ranges from ∼1–140 mmHg in different vessels and the speed of blood flow
in these vessels ranges from ∼0.05–50 cm/s. The overall volumetric flow rate
is ∼5 L/min. The relationship between pressure and flow in the circulatory
system is detailed in Chap. 8. The characteristic pressure difference between
the lungs and surrounding media is several mmHg and the volumetric flow
rate of air into the lungs is ∼6 L/min; this is discussed further in Chap. 9.
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Fig. 7.20. Diffusion of an injected impulse, such as a dye, in an artery, with the
shown line source initial distribution. The profile of the injection distorts as it adopts
the velocity profile of the flow and it also diffuses. (From [353])

The flow rates in much of the human alimentary (digestive) system are
quite slow (Table 7.4). Propulsive movements in this system are due to peri-
staltic action, with muscular contraction of the contractile ring around the gut
sliding food forward, as diagrammed in Fig. 7.21. When there is a large amount
of food in it, the gut stretches or distends and through sensors and feedback
this stimulates a contractile ring 2–3 cm upstream. Mixing movements in the
gut are caused by these peristaltic actions and by local constrictive contrac-
tions that occur every few cm in the gut and last for several seconds.

Table 7.4. Approximate flow rates and other properties of the human alimentary
system, estimated for a 70 kg male. (Using data from [351])

component length external internal luminal contents contents
(cm) dimension volume area passage speed

or width (cm3) (cm2) time (cm/s)
(cm)

mouth and pharynx 8 2–5 ∼50 ∼80 1–10 s 1–8
esophagus 25 1.3–2.5 ∼100 ∼200 5–20 s 3–5
stomach 12 8 230–1,000 ∼600 2–6 h ∼0.001
small intestine 400 3–6 1,100 ∼3,500 3–5 h 0.03
large intestine ∼150 5.0–7.5 300 ∼2,000 10–20 h 0.004–0.008
rectum 16–20 2.5–3.8 40 ∼100 ∼1 h 0.006
total, average,
or range ∼600 ∼3.5 1,800–2,600 ∼6,500 16–32 h ∼0.01
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Fig. 7.21. Peristaltic action in the gut. (See Fig. 8.14 for peristaltic assistance in
the return of venous blood to the heart). (Based on [356])

The relationship between volume and pressure is important in this diges-
tive system. Pressure (tension) in the walls of the stomach increases during
eating. The volume of the stomach of radius R increases as R3. (This models
the stomach as a sphere of volume V and ignores its finite radius with no
food contents.) From (7.9), σ = R(ΔP )/2w = ((ΔP )/2w)(3V/4π)1/3, so the
tension in the stomach walls should increase, much slower, as R. Pressure in
the stomach can also increase because of air swallowed during eating, which
can lead to burping or belching. Bacterial action produces gas in the gut; at
high enough pressure this causes flatulence.

As with the stomach, the pressure within the bladder increases slower than
its volume, and this is seen in Fig. 7.22. The pressure rises to 5–10 cmH2O
when it is filled by 30–50 mL of urine. (The units of cmH2O are commonly
used in this area, with 1 cmH2O = 0.738 mmHg.) Much additional urine can
collect, 200–300 mL, with only a small rise in pressure. Above 300–400 mL
the pressure increases rapidly. At ∼30 cmH2O (3 kPa), there is an urge to
urinate. Muscle contraction in the bladder (micturition reflexes) momentarily

Fig. 7.22. Normal pressure–volume in the human urinary bladder (cystometro-
gram), also showing acute pressure waves (dashed spikes) caused by micturition
reflexes. (Based on [356])
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increases this pressure to 150 cmH2O (15 kPa), with the normal voiding pres-
sure being 20–40 cmH2O (2–4 kPa). The wall tension increases with the volume
of the bladder V

1/3
bladder, as seen from the Law of Laplace assuming a constant

wall thickness. Therefore, the sensors to signal the urge to urinate would seem
to be in the wall, sensing wall stress, and not sensing the pressure inside the
bladder, because the pressure is fairly constant.

7.5 Motion of Humans in Fluids

We have already encountered several examples of humans in fluids. One is
the loss of heat by thermal conduction and convection to the surrounding
air in Chap. 6. Drag is also important in walking, running, cycling, and so
forth, as is clear from how wind increases the metabolic needs during walking
and running (Table 6.25). Locomotion in water, i.e., swimming, and potential
human flight are examples in which the effects of the fluid are paramount
[384].

7.5.1 Swimming

We are fairly buoyant, but not all can float. To float we must have an average
density less than that of water (1.0 g/cm3). (Equivalently, we must have a
specific gravity (= density/water density) <1.) Those with relatively more
fat (with an endomorph body shape) can float, with face, chest, and toes
above the surface, because fat (�0.8 g/cm3) has a density lower than water.
Those who are relatively muscular or big-boned (a mesomorph) cannot float
because the densities of muscle (�1.0 g/cm3) and bone �1.5–2.0 g/cm3 are,
respectively, roughly equal to and larger that of water. People with an average
density a bit higher than that of water may be able to float after taking in a
deep breath because of the low density of air (0.0012 g/cm3). Most men and
women will float after taking in a deep breath, but most men will sink with
just residual air in their lungs (after an normal exhalation, see Chap. 9). Very
young and very old people are more likely to float because they have more
fat, less muscle mass, and (for old people) lower long bone density. (Measuring
body density and fat percentage is described in Problem 1.40.)

When floating (or almost floating) people push water parallel to the sur-
face, in the “backwards” direction, they are propelled forward by the reaction
force (Newton’s Third Law). In other words, they swim. Because the arm and
leg strokes are periodic, the forward propulsion is really periodic in theory,
much like the periodic nature of blood rhythmically pumped by the heart.
The net forward acceleration of the swimmer is due to the sum of this for-
ward reaction response of the backward pushing of water and drag. (We are
ignoring other lift forces [343, 347, 359].) For a person swimming with speed u

mb
du

dt
= Fforward propulsion − Fdrag (7.59)
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Fig. 7.23. Arm and leg motion during freestyle swimming (the crawl). Also see
Problem 7.36. (From [353])

(More rigorously, −Fdrag is really − | Fdrag |.) As is proved in Problem 7.39,
the main source of drag is hydrodynamic, which scales as u2, and not vis-
cous Stokes-type drag, which scales as u; consequently, Fdrag,hydrodynamic =
1
2CDA�wateru

2 (7.46). Actually, there are three identifiable sources of drag
that scale as u2: that due to frontal resistance, eddy resistance (due to water
not filling in the body’s wake and forcing the body to drag along these eddies),
and surface drag. The first two types are sometimes collectively called hydro-
dynamic drag. Assuming now that this propulsion is continuous (as opposed
to cyclic), the left side of (7.59) is zero and the steady state speed is

u2 =
2Fforward propulsion

CDA�water
. (7.60)

For freestyle swimming (which is technically called the “crawl,” Fig. 7.23),
the propulsion force during a stroke can be estimated as the momentum gained
by the pushed water during the duration of the stroke Tstroke, divided by that
stroke time. (Remember, F = ma can be expressed in terms of the momentum
p = mv, as F = dp/dt or Δp/Δt.) The momentum of the water is the mass
of water displaced, �waterVwater, times the final water speed, vwater (relative
to the swimmer), or �waterVwatervwater. Therefore we find

Fforward propulsion, stroke �
�waterVwatervwater

Tstroke
. (7.61)

Let us consider forward propulsion due to motion of the hands and arms
only and ignore leg motion. Let us also assume that the swimmer’s arm is
straight during the stroke and rotates about the shoulder in a cylindrical
sweeping motion with a radius of the arm length larm and a width equal to the
hand width whand (which we will say is also roughly equal to the arm width,
warm). Therefore, the volume of displaced water is Vwater = πl2armwhand/2.
(The factor of two accounts for the half of the cylindrical volume that is
in the water.) The speed of the end of the arm is roughly larm/Tstroke and
near the shoulder it approaches zero. Because the water is moved at the arm
speed, the average speed of the water is vwater � larm/2Tstroke. (Part of the
water is pushed downward during an ideal circular motion of the arm and this
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does not contribute to this forward propulsion; we will ignore this because the
stroke motion is not really circular.) Therefore, (7.61) becomes

Fforward propulsion,stroke �
�waterπl3armwhand

4T 2
stroke

. (7.62)

We can estimate the arm length as the sum of the lengths of the upper and
lower arms and half the length of the hand (because it is cupped), and so using
Table 1.6 we see that larm = 0.386H, where H is the body height. We estimate
that whand = 0.07H. Excellent swimmers make about 60 strokes a minute,
so Tstroke = 1 s. Using H = 1.8 m, we find that Fforward propulsion,stroke � 27 N.
This is what we would expect for an effective force from a muscle with a
cross-section of 1.3 cm2 going into this motion, which seems a bit low. The
steady state speed u is obtained from (7.60), using CD = 1.0 and the trans-
verse area A ∼ 0.076 m2 (from the shoulder width, 0.259H, times the chest
depth, 0.09H, using H = 1.8 m). The average speed during a stroke is then
u � 0.8 m/s.

The next stroke, with the other arm, starts when the previous one has
stopped. The arm of this previous stroke “recovers” to the forward position
above the water line and so it does not provide propulsion in reverse. There-
fore, the forward propulsion is really continuous and this average speed seems
reasonable. This speed of 0.7 m/s is not that different from typical swimming
speeds and is not that far from the speeds of world-class freestyle swimmers.
(The average speed for world-record men’s freestyle swimming (in 2006) is
∼2 m/s, decreasing from 2.3 m/s for 50 m distances to 1.8 m/s for 400 m.) Drag
may be less than estimated here – in particular CD and A may be smaller –
and more water is likely being pushed per stroke by good swimmers than we
estimated here. Remember that we totally ignored propulsion by the kick of
the feet and legs and any propulsion by the rest of the body. Also, our analysis
has ignored the complication of the initial dive into the pool and of reversing
directions at the ends of the pool, etc.

The stroke is not exactly as described here. Actually, the arm does not
pull straight in any stroke (freestyle (crawl), butterfly, breaststroke, and
backstroke); after starting straight, it bends midway through and then (ex-
cept for the breaststroke) straightens again for the crawl. This suggests
that good swimmers use their hands more like propellers than paddles and
that this type of motion can make lift significant, which we have ignored
here.

The allometric relation for the swimming speed u of aquatic animals is

u � 0.5m0.19
b , (7.63)

where u is in m/s and mb is in kg. This suggests that a 70 kg aquatic animal,
such as a common dolphin, would swim at about 1 m/s, which is not far off
from typical human performance. (Bottle nose dolphins have the same mass,
but swim several times faster.)
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What happens if a swimmer stops stroking and just glides? With no for-
ward propulsion, (7.46) and (7.59) combine to give

mb
du

dt
= −1

2
CDA�wateru

2. (7.64)

Bringing the velocity terms to the left gives

du

u2
= −CDA�water

2mb
dt (7.65)

and integrating from the initial speed ui at t = 0 to the speed at time t gives

− 1
u(t)

+
1
ui

= −CDA�water

2mb
t. (7.66)

Therefore the swimmer’s speed approaches zero as

u(t) =
ui

1 + CDA�waterui
2mb

t
(7.67)

with a characteristic time of say 18mb/CDA�waterui, at which time u = 0.1ui

(see Appendix C).
Because u = dx/dt, we find

dx =
ui

1 + CDA�waterui
2mb

t
dt (7.68)

Integrating from position x = 0 at t = 0 gives

x(t) =
2mb

CDA�water
ln

(
1 +

CDA�waterui

2mb
t

)
. (7.69)

7.5.2 Human Flight

Why cannot we fly? (That is, why cannot we fly without the assistance of a
jet or helicopter, or propulsion devices on our backs?) The answer is easy. We
cannot generate enough vertical force to counter our weight to enable us to
hover or fly. In principle, we could do this by pushing air down fast enough or
by generating a vertical force by aerodynamic lift – which could be possible
if we could propel ourselves forward fast enough.

What happens if we try to fly by pushing air down by flapping our arms up
and down? The volume of air we could push down per arm flap is the arm area,
which is length × width, times the distance pushed, which is approximately
the arm length. This is roughly 0.7 m × 0.1 m × 0.7 m per arm or ∼0.1 m3

for both arms. The mass density of air is 10−3 g/cm3 = 1 kg/m3, so the mass
displaced per flap is ∼0.1 kg. If the ends of our arms attained a speed of
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80 mph � 40 m/s (which is the speed of a fair major league fastball, and
is clearly an overestimate), our average arm speed would be about 20 m/s.
If we flapped our arms 3 times a second (which is also faster than ex-
pected), the change in momentum in the moved air per unit time would be
(0.1 kg)(20 m/s)(3/s) = 6 N (assuming no air is moved when our arms return
to their initial positions at the end of each flap). This is much less than the
weight of a 70 kg person, which is 700 N. Let us say we wear lightweight wings
that would increase the effective flapping area to 2 m2 (1 m2 per wing) and
the volume of the air we would move increases to 2 m3. We would then gen-
erate an upward force of 120 N from this downward draft, and so even with
our wildly high estimates of wing speed and flapping rate, we could not even
approach developing enough vertical force to counter gravity and fly (or at
least hover). (Because water has a density that is 1,000× that of air, we can
easily keep ourselves afloat by pushing water down, and this is also assisted
by buoyancy.) Such hovering, by the reaction force to the down draft in air,
is more difficult than flying because there is no upward lift. Perhaps we could
flap and propel ourselves forward and develop some lift.

Could we at least “takeoff” after running fast with our artificial wings in
place? Assume that a person accelerated to the world record speed of about
10 m/s and suddenly spread his or her 2 m2 area wings. Using (7.50) under op-
timal conditions, we find Flift = 1

2CliftSρu2 = (0.5)(1.2)(2 m2)(1 kg/m3)(100
m2/s2), or 120 N of lift, which is still not enough. (Of course, even if the lift
were enough and the person became airborne, forward deceleration due to
drag would lead to a landing (or a crash).)

Clearly, any combination of wing flapping, for forward and some upward
propulsion, and wing gliding for lift will also not lead to flight. The old saying,
“If man (or woman) were meant to fly, he (or she) would have wings.” is not
true, because we could not fly even if we had wings. Of course people can
hang glide with artificial wings; such gliding involves lift, drag, wind, and
gravity.

Human-powered flight has indeed been demonstrated in the bicycle-
powered aircraft built by the Paul MacCready team and cycled/flown by
Bryan Allen, a champion bicyclist. In this aircraft the pedaling pilot propelled
the propeller at the rear of the craft, which is connected to the cycle by a series
of gears. Consequently thrust is created in this craft, which was optimized for
lift, with minimal drag and weight. The “Gossamer Condor” flew for 7min,
2.7 s in a closed course, and then on June 12, 1979 the “Gossamer Albatross”
(with 30 m wingspan and 30 kg mass without the pilot) flew the first com-
pletely human-powered flight across the English Channel. It covered 35.6 km
in 2 h 49 min, and thereby won the Kremer Prize established in 1959. This
world-class cyclist provided 125 W of mechanical power, flew very close to the
surface to take advantage of the “ground effect” – which is a temperature
inversion near the surface – and was completely exhausted at the end of the
flight.
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7.6 Summary

The Law of Laplace, the equation of continuity and Bernoulli’s equation for
nonviscous flow, and Poiseuille’s Law of viscous flow can be used to model
the flows of fluids in the body, such as blood and air – which are described in
Chaps. 8 and 9, and the movement of the body in fluids, such as swimming
and flight, which is described in this chapter. The physics of pressure in fluids
and diffusion are also used in these models.

Problems

Basic Fluidics and Pressure

7.1. Your blood pressure is measured with a sphygmomanometer, however
with your upper arm pointed upward instead of downward. If your blood
pressure is really 120 mmHg/80 mmHg, approximately what pressure would
be measured?

7.2. The water level in a 4 m wide and 20 m long pool rises 0.75 mm when a
person enters it and floats. What is the mass of that person?

7.3. You want to measure the volume of your whole arm by sticking it in
an upright, long cylindrical tube with internal diameter of 15 cm, which is
partially filled with water. The water level rises by 12.7 cm when a 50 kg
female makes this measurement? What are the mass, weight, and volume of
her arm? (See Chap. 1.)

7.4. Who is more buoyant and consequently floats higher: a large-boned,
heavy muscled person with little body fat or a small-boned, lightly muscled
person with more body fat?

7.5. Will retaining water affect a person’s ability to float?

7.6. A 50 kg woman has a density of 1.01 g/cm3 after normal exhalation. Does
she float? Will she float after she inhales 2 L of air?

7.7. A 70 kg man with a density of 1.03 g/cm3 ages. He gains 5 kg of fat. Will
he float?

7.8. Will a person with an ectomorph shape float?

7.9. Why can all people float in the Dead Sea? (It has a specific gravity of
1.2–1.3. We have been assuming floating in water with no salt. Ocean water
has a density of 1.027 g/cm3.)

7.10. Three 50 kg women are airborne in a balloon filled with He. What is the
minimum diameter of the balloon? (What assumptions are you making about
the mass of the basket in which they are riding and the balloon itself?)
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Fig. 7.24. Palpation of a blood vessel. (From [352].) For Problem 7.14

7.11. The gauge pressure inside a cylindrical tube is 100 mmHg and its radius
is 1 mm, what is the tension in the tube wall at equilibrium (in SI units)?

7.12. (advanced problem) Derive the Law of Laplace for a sphere (7.9) by
careful integration of the normal force on a hemisphere, in a manner analogous
to the integration in (7.7) for a half-cylinder.

7.13. Over a large range of volumes, the pressure in the bladder is at a fairly
constant value near 8 mmHg. If the thickness of the bladder is 5 mm, show
that the wall tension is σ = 600 Pa/cm V

1/3
bladder where the bladder volume is

in cm3.

7.14. The internal pressure of an elastic vessel, such as an artery, vein, eyeball,
aneurysm, or balloon, can be estimated by pushing down on it with your finger;
this method is called palpation (Fig. 7.24):
(a) Show that the pressure felt by the finger is affected by the tension in the
vessel wall.
(b) Show that the pressure you feel equals the pressure internal to the vessel
when you push down on it so that the vessel wall is flat.

7.15. Assuming no viscosity and no changes in height, determine how the flow
speed in a vessel changes if its diameter decreases by a factor of 4.

Viscous Flow

7.16. Compare the SI units of dynamic viscosity, η in (7.23), with those of
the viscosity damping constant of the dashpot, c in (4.48).

7.17. One wants to use oil in car engines so the oil viscosity is a specific, opti-
mized value – especially when the engine is started cold. Usually a heavyweight
oil is used in very hot weather, such as SAE 50, and a lightweight oil in very
cold weather, such as SAE 10. Using Table 7.3, estimate the viscosity needed
at moderate temperature. Also estimate how the motor oil viscosity changes
with temperature. (Nowadays, multiviscosity oils, such as SAE 10W/40 are
used, which are suitable over a wide range of temperatures.)
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7.18. Viscous flow with flow rate Q in a big tube of diameter D and length
L, subdivides into N identical small tubes of length L with equal flow rates:
(a) What is the flow rate in each small tube?
(b) You are told that the pressure drops across the big tube and across the
small tubes are the same (and both equal to ΔP ). Find the diameter of the
small tubes and determine if this is possible.
(c) If instead, the diameters and lengths of the small tubes are α× and
β× that of the big tube, what is the resistance across each small tube and
across the whole small tube system in terms of the resistance across the big
tube?

7.19. We are very sensitive to even small changes in core body temperature.
Let us examine what happens when the viscosity of blood changes because of
such temperature changes. It is known that the dynamic viscosity of whole
blood decreases by 30% when temperature increases from 25◦C to 37◦C. What
is the increase in systolic blood pressure, from its normal value of 120 mmHg,
needed to pump blood throughout the body at the same rate if the core
body temperature decreased to 25◦C, with everything else being the same?
(This temperature change will affect the body in many other ways even more
dramatically; see Chap. 13.)

7.20. (a) How much force F (in N and lb) must be applied to a plunger
to inject 1.0 × 10−6 m3 of the solution in 3.0 s with a hypodermic syringe?
Apply Poiseuille’s Law for the pressure drop across the needle, as in Fig. 7.25
[348]. The needle is injected into a vein with a (gauge) pressure of 14 mmHg
(1,900 Pa). Assume the plunger has an area of 8.0 × 10−5 m2 and the syringe
is filled with a solution with viscosity of 1.5 × 10−3 Pa-s. The needle has an
internal radius of 4.0 × 10−4 m and a length of 0.025 m. Remember that you
want to apply a (gauge) pressure in excess of the venous pressure to achieve
the desired flow rate Q.
(b) Why are such injections performed intravenously and not intra-arterially?

Fig. 7.25. Intravenous injection by a hypodermic syringe. (Based on [348].) For
Problem 7.20
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7.21. Calculate the Reynolds number for each component of the alimentary
system. Assume the coefficient of viscosity is 1 N-m/s to the stomach and
10 N-m/s after the stomach. Is the flow streamline or turbulent?

7.22. (a) For Newtonian flow, calculate the shear stress on the wall of a tube
of radius R, for an average fluid speed u and fluid viscosity η.
(b) Estimate this (in SI units) for a typical human artery.

7.23. (advanced problem) Show that the strain rate dv/dy used in flow is
related to the time rate of change of strain dε/dt. (Hint: Express strain as
the partial derivative of a deformation u, ε = ∂u/∂y and speed as v = ∂u/∂t.
Then evaluate ∂ε/∂t, and switch the order of the y and t derivatives.)

Diffusion

7.24. Important molecules are formed in the middle of a 2 μm-diameter cell.
How long does it take for them to diffuse throughout the cell? (Assume the
cell contents are liquids and that the diffusion coefficient Ddiff = 10−5 cm2/s.)
Is this fast enough to achieve normal metabolic activity rates?

7.25. In one-dimension, estimate the characteristic distances for diffusion in
1 s in a gas, liquid, and solid.

7.26. A 1 mm3 volume of biological material must be transported 2 cm away
to another 1 mm3 region:
(a) If it flows in a vessel at a speed of 10 cm/s, how fast does it get there and
what fraction of it arrives there?
(b) If it diffuses in a liquid with Ddiff = 10−5 cm2/s, approximately when will
the maximum amount of it arrive and approximately what fraction of it will
arrive?
(c) Which mode of transport is preferred and why?

7.27. Refer to Fig. 7.19. If σ and the abscissa are in cm and t is in s, what is
Ddiff?

7.28. Use substitution to confirm that (7.55) and (7.56) are the solution to
the one-dimensional diffusion equation, (7.53).

7.29. (advanced problem) Use substitution to confirm that (7.57) and (7.58)
are the solution to the three-dimensional diffusion equation

Ddiff
1
r2

∂

∂r

(
r2 ∂n

∂r

)
=

∂n

∂t
. (7.70)

7.30. (a) You can detect 4× 108 molecules of ethyl mercaptan (which causes
the rotten fish smell) per cm3, which corresponds to one molecule per 1011

molecules in air (because the air density is 5 × 1019/ cm3). If 1 mm3 of this
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liquid is released 10 m away, how long will it take to notice this release?
(Ethyl mercaptan, C2H5SH has 62.1 g/mole and is a liquid with a density
of 1.01 g/cm3. It has an odor resembling that of rotten eggs, and is added to
natural gas and propane to give those normally odorless fuels a distinctive
smell.)
(b) If your dog’s nose is a thousand times more sensitive, when will she or he
smell it?

Swimming, Flying, and Drag Forces

7.31. Repeat the analysis that determines the speed of a swimmer, but now
assume that the effective force of 2 in diameter muscles is providing 405 N
continuously. (Why is this force reasonable?) Does your answer make sense?
Why?

7.32. Repeat the analysis of the speed of a swimmer, but now assume that
Stokes friction is the only dominant drag force. Does your answer make sense?
Why?

7.33. Go through all the steps in determining the position during gliding in
swimming, from (7.68) to (7.69).

7.34. Using the parameters in the text, estimate the characteristic time
needed for a world class freestyle swimmer who stops stroking and glides
to slow down. Also estimate the distance she travels in that time.

7.35. Repeat the analysis of gliding, (7.64)–(7.69), assuming only Stokes drag.

7.36. In Fig. 7.23, the lower leg of a swimmer is hinged at the knee (at x = 0)
and is acted on by forces that are normal to its axis with force per unit length
of p(x). Show that the work done by the leg, of length L, as is rotates by dθ
is [353]

dW =

(∫ L

0

p(x)xdx

)
dθ. (7.71)

7.37. Could people fly on another planet using artificial wings? How would g
and the mass density of the atmosphere ρ have to change? (Does a change in
g imply the same or an oppositely signed change in ρ?) Ignore the impact of
spacesuits, differences in temperature, changes in metabolism, muscle atrophy,
and so on.

7.38. What is the Reynolds number of a piece of matter 1 μm in diame-
ter, such as a cell in water or particulate in blood? Assume a density of
1 g/cm3, a speed of 4 mm/s, and the viscosity of blood. What type of drag
dominates?
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7.39. (a) Is Stokes friction or hydrodynamic drag dominant for people walking
and running in air?
(b) Which is dominant for people swimming in water?
(Make sure you calculate the Reynolds numbers in each case.)

7.40. (a) Estimate the hydrodynamic drag force on a very fast runner.
(b) How much power is lost to drag?
(c) How does this compare to the metabolic power needed for running?

7.41. Speed skaters often adopt a position with a nearly horizontal trunk and
downhill skiers adopt the “egg” position with a hunched-down body and skis
pointed backward when they are not maneuvering. Why?

7.42. A person without a parachute is dropped from a plane at an altitude of
1,000 m. Determine the “terminal” speed of the person by equating the forces
of gravity and drag. (Which drag limit is appropriate? Is there enough time
for a constant final speed to be attained?)

7.43. (a) A person with a parachute is dropped from a plane at an altitude of
1,000 m. Determine the final steady state speed of the person by equating the
forces of gravity and drag. (Which drag limit is appropriate? Is there enough
time for a constant final speed to be attained?) Assume the person has a mass
of 70 kg and the parachute has a negligible mass and is 7 m across when it is
open.
(b) What is the minimum height above ground that the parachute should be
opened so the person lands with a speed no greater than 1.5 m/s? Assume it
takes 2.5 s for the parachute to deploy fully.
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Cardiovascular System

There are three components of the cardiovascular system. (a) Blood is the
vehicle for transport. It transports fuel from the digested food to the cells,
transports oxygen from the air in the lungs so it can combine with fuel to
release energy, and it disposes of waste products – such as carbon dioxide
from the fuel engine and other metabolic wastes. (b) The circulatory system
is the distribution system, and consists of a series of branched blood vessels.
(c) The heart is the four-chambered pump composed mostly of cardiac muscle
that enables this circulatory flow. General descriptions of the cardiovascular
system can be found in [368, 369, 372, 373, 376, 378, 384, 385, 388, 390, 395,
396, 402, 410, 417].

8.1 Overview of the Circulatory System
and Cardiac Cycle

8.1.1 Circulation

Blood flow from the heart branches into two separate systems (Fig. 8.1). In the
pulmonary circulation system, the right side of the heart pumps oxygen-poor
(“blue”) blood to the lungs to be oxygenated; oxygen-rich (“red”) blood then
returns to the left side of the heart. In the systemic circulation system, the
left side of the heart pumps this oxygen-rich (“red”) blood to the rest of the
body where it is used; oxygen-poor (“blue”) blood then returns to the right
side of the heart. This occurs in a system of arteries that conducts the blood
from the heart to the lungs and other organs and components, and a system
of veins that returns the blood to the heart.

In the pulmonary system (Fig. 8.1), blood enters the right atrium (RA) of
the heart (Fig. 8.2) through the inferior and superior vena cava(e) (vee’-na
cae’vuh). The blood passes through the right atrioventricular (or tricuspid)
valve to enter the right ventricle (RV). Blood is first pumped through the
pulmonary semilunar valve to the pulmonary arteries, which branch out into
a series of more minor arteries and arterioles, and then into capillaries in the
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Fig. 8.1. Blood circulation system, and labeled within the heart: the (a) right
atrium, (b) right ventricle, (c) left atrium, (d) left ventricle, (1) right atrioventricular
(tricuspid) valve, (2) pulmonary semilunar valve, (3) aortic semilunar valve, (4) left
atrioventricular (bicuspid, mitral) valve. (From [416])

lungs. These pulmonary capillaries combine into venules (veen’-yools), then
into more major veins, and finally into the pulmonary veins.

In the systemic system (Fig. 8.1), blood enters the left atrium (LA) of
the heart through the pulmonary veins. The blood passes through the left
atrioventricular (or bicuspid or mitral) valve to enter the left ventricle (LV).
Blood is pumped through the aortic semilunar valve to the aorta, which first
branches out into a series of major and then minor arteries (with smaller
diameters, the arterioles), and finally into a series of capillaries in the systems
where gas exchange and diffusion occur. These systemic capillaries combine
into venules, then more major veins, and finally into the superior (from above
the heart) and inferior (from below the heart) vena cavae.
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Fig. 8.2. Diagram of the heart, with its principle chambers, valves, and vessels.
(From [367])

(A useful mnemonic for the flow of blood in the heart comes from knowing
that the author once lived on Rahlves Drive in Castro Valley, California – a
town approximately 20 miles south of Berkeley. The whole heart cycle starts
with blood flowing into the right atrium (RA) and then getting oxygenated
in the lungs, returning to the heart (H), and then continuing with the blood
leaving the left ventricle (LV) and exiting (E) for the systems (S). Put together
this spells RAHLVES. The most important concept here is that deoxygenated
blood enters the heart through the right atrium (RA) and eventually oxy-
genated blood leaves through the left ventricle (LV) of the heart to be used
by the body for metabolism. For some, it may be easier to remember that
an American Daron Rahlves was the winner of the super-G downhill skiing
competition in the 2001 World Championships.)

The systemic and pulmonary systems have similarities and differences.
They have the same volumetric flow rate Q. (If they were not equal, blood
would have to pile up somewhere.) In the systemic system the blood disposes
of oxygen and receives carbon dioxide, while in the pulmonary system the
blood disposes of carbon dioxide and receives oxygen. Table 8.1 shows that

Table 8.1. Normal resting values of blood pressure, with system volumes

P (mmHg) V (L)

systemic arteries 100 1.0
systemic veins 2 3.5
pulmonary arteries 15 0.1
pulmonary veins 5 0.4
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the systemic system has higher pressures (in the arteries) and larger volumes
than the pulmonary system (even with the same Q). This difference in pressure
makes sense because the blood vessels need to be longer to get to more distant
regions in the body in the systemic system. The left heart (LA + LV) is
bigger (and is a larger pump) than the right heart (RA + RV) because of
this need to generate higher pressure for systemic circulation. The heart walls
consist mostly of the thick middle muscle layer, the myocardium, which is
lined internally by a thin layer of tissue, the endocardium, and externally by
a membrane, the epicardium. The two sides of the heart are separated by a
wall called a septum. The difference in volume is due to the longer distance
of travel and the much higher number of systems that receive blood in the
systemic system. Table 8.1 also shows that arteries have higher pressure than
the corresponding veins, whereas the veins have larger volumes. The total
volume of blood is �5 L.

For a person at rest, 12% of the blood is in the heart chambers, 2% in the
aorta, 8% in the arteries, 1% in the arterioles, 5% in the capillaries, 50% in
the systemic veins, and 18% in the pulmonary circulation.

Major arteries and veins are shown in Figs. 8.3 and 8.4. Tables 8.2 and
8.3 provide a very approximate quantification of the vessels in the circulatory
system.

8.1.2 Cardiac Cycle

There is a highly controlled timing cycle in well-functioning hearts, the cardiac
cycle, which lasts a time τ (Fig. 8.5). In the first stage of diastole (die-as’-toe-
lee), the veins fill up both the right and left atria, while the right and left
ventricles are relaxed. In the second stage, the cardiac muscle (myocardium)
of the right and left atria contract and pump blood through the atrioventric-
ular valves, into the right and left ventricles, respectively, at the same time
t = 0. (This is actually a gross simplification of ventricular filling, because
∼75% of this blood flows into the ventricles from the atria before atrial con-
traction.) In the first step of systole (sis’-toe-lee, which has the same cadence
as Sicily), both ventricles contract (isovolumetrically) at the same time Δ. In
the second stage, they eject blood through the respective semilunar valves:
the right ventricle into the pulmonary arteries and the left ventricle into the
aorta. The systolic (sis-stah’-lic) blood pressure occurs in this second stage of
systole, while the diastolic (die-uh-stah’-lic) pressure is that during diastole.
(One way to measure the flow of blood ejected by the left ventricle is ballisto-
cardiography, which is described in Problem 8.47. Another method is Doppler
ultrasonography echocardiography, which is used more often clinically; it is
described in Problem 10.23.)

The right and left hearts must work at exactly the same time to keep
the flow rate Q the same in both systems. There is a timing mechanism
in place to do this and to set the contraction times 0 and Δ for one
beat, followed by τ and τ + Δ for the next, 2τ and 2τ + Δ for the next,
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Fig. 8.3. Major arteries in the body. Arteries carry blood away from the heart in
the systemic and pulmonary system. Many come in pairs, such as the right and left
radial arteries. (From [408]. Used with permission)
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Fig. 8.4. Major veins in the body. Only the superficial veins are shown in the left
limbs and only the deep veins are shown in the right limbs. Veins carry blood back
to the heart in the systemic and pulmonary system. Many come in pairs, such as
the right and left radial veins. (From [408]. Used with permission)
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Table 8.2. Approximate quantification of individual vessels in the human circula-
tory system. (Using data from [382])

vessel diameter length wall thickness pressure
(mm) (mm) (μm) (mmHg)

aorta 25.0 400 1,500 100
large arteries 6.5 200 1,000 100
main artery branches 2.4 100 800 95
terminal artery branches 1.2 10 125 90
arterioles 0.1 2 20 60
capillaries 0.008 1 1 30
venules 0.15 2 2 20
terminal venules 1.5 10 40 15
main venous branches 5.0 100 500 15
large veins 14.0 200 800 10
vena cavaa 30.0 400 1,200 5
heart chambers – – – 120

This is for a 30-yr-old male, with mass 70 kg and 5.4 L blood volume.
aThere are really two vena cavae.

and so on. There is a heart pacemaker at the sinoatrial or sinus node
(see the conducting system in Fig. 8.6), which sends an electrical signal
to the atrial cardiac muscle of both atria for simultaneous atrial contrac-
tion. This electrical signal then travels to the atrioventricular or AV node,

Table 8.3. Approximate quantification of total vessel systems in the human circu-
latory system. (Using data from [382])

vessel number total
length
(mm)

total
surface area

(mm2)

total blood
volume
(mm3)

aorta 1 400 31,400 200,000
large arteries 40 8,000 163,000 260,000
main artery branches 500 50,000 377,000 220,000
terminal artery branches 11,000 110,000 415,000 120,000
arterioles 4,500,000 9,000,000 2,800,000 70,000
capillaries 19,000,000,000 19,000,000,000 298,000,000 375,000
venules 10,000,000 20,000,000 9,400,000 355,000
terminal venules 11,000 110,000 518,000 190,000
main venous branches 500 50,000 785,000 1,590,000
large veins 40 8,000 352,000 1,290,000
vena cavaa 1a 400 37,700 280,000
heart chambers – 450,000

Total ∼19,000 km 312,900,000 5,400,000

This is for a 30-yr-old male, with mass 70 kg and 5.4 L blood volume.
aThere are really two vena cavae.
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Fig. 8.5. The left ventricular and atrial pressures are plotted along with the left
ventricular volume, aortic pressure and flow rate, the electrocardiogram and the
phonocardiogram (which is the signal from heart sounds) in this Wiggers diagram.
The opening and closing times of the aortic semilunar and bicuspid (mitral) valves
are also shown. (Based on [390], [414], and [417])

is delayed there for a time Δ, and then the node sends a signal to the
ventricular cardiac muscle of both ventricles for simultaneous ventricular
contraction.

The electrocardiogram (EKG or ECG) is a measurement of these electrical
signals, and their timing, as measured by probes on the body [379, 386, 401].
Figure 8.6 shows the EKG during one ∼1 s long heart beat (also see Fig. 12.28).
The P wave is due to atrial depolarization (which is atrial contraction). The
QRS complex is due to ventricular depolarization (contraction). The T wave
is due to ventricular repolarization (relaxation). The atrial repolarization (re-
laxation) signal is masked by the larger QRS complex. Depolarization and
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Fig. 8.6. Conducting system of heart with the sinoatrial/sinus and atriventricu-
lar/AV nodes, along with the electrical waveforms of the activity of each – including
the EKG on the bottom. Also see Fig. 12.28. (From [404])

repolarization, and the electrical properties of the heart and the use of the
EKG are discussed more in Chap. 12.

There are several cardiac arrhythmias (i.e., timing irregularities) of varying
degrees of concern that affect this cardiac timing mechanism. In an atrioven-
tricular block, there is injury to the atrioventricular (AV) fibers from the AV
node to the ventricle or to the AV node itself (Fig. 8.6). In an incomplete
AV block, the conduction time through the AV junction increases from the
normal 0.16 s to 0.25–0.50 s and there are dropped ventricular beats; these
sometimes lead to 2:1, 3:2, or 3:1 rhythms of atrial to ventricular beats. In a
complete AV block, a person may faint until ventricular beats develop (with
40/min, compared to 100 beats/min in the atria). There can also be prema-
ture contractions of the atria or ventricles. In paroxysmal tachycardia, there are
sudden increases in the heart rate, say from 95 to 150 beats/min in the atria
or ventricles, which can cause serious ventricular (not atrial) damage. Ven-
tricular fibrillation is the most serious arrhythmia and is fatal if not treated
immediately. It can be caused by 60-cycle AC. There is uncoordinated muscle
contraction of the ventricles, and so parts of them contract while other parts
relax; this leads to little or no pumping of blood. Unconsciousness occurs
in 4–5 s and the death of tissues begins in a few minutes. Atrial fibrillation
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involves similar uncoordinated muscle contraction, but it is less serious be-
cause most blood flows passively from the atria to ventricles. Blood flow de-
creases by only ∼20–30%. Resuscitation after cardiac arrest can occur in many
cases by cardiac pulmonary resuscitation (CPR) [390].

Cardiac muscle is similar to the skeletal muscle described in Chap. 5
(Fig. 5.1b). In particular, the basic building block is the sarcomere with its
sliding actin and myosin filaments. There are some differences, however. At the
resting muscle length, the maximum tension for skeletal muscle is ∼20 N/cm2

or more, while it is only ∼7 N/cm2 for cardiac muscle. Also, the resting, pas-
sive tension is fairly large at the length of peak tension in cardiac muscle
(as is depicted in Fig. 5.25a). Both of these differences can be attributed in
part to the greater fraction of noncontractile tissue in heart muscle, which
contains collagen and other fibrotic tissue. The first difference also arises
from the nonparallel nature of cardiac muscle fibers. Another difference be-
tween skeletal and cardiac muscle is that it is usually not possible to tetanize
cardiac muscle. The twitches merge only partially at very high stimulation
frequency.

Echocardiography is the use of ultrasound to diagnose heart disorders and
blood flows. It and related methods are described briefly in Chap. 10 (and in
Problems 10.22 and 10.23).

8.1.3 Valves

There are four major valves in the heart (Fig. 8.7). The right atrioventricular
valve controls flow between the right atrium and right ventricle. It has three
flaps (or cusps) and is therefore also called the tricuspid valve. The pulmonary
semilunar valve controls blood flow from the right ventricle to the left and right
pulmonary arteries. The left atrioventricular valve controls flow from the left
atrium to the left ventricle. It has two flaps and is therefore also called the

Fig. 8.7. Drawing of the four major heart valves, showing the cusps (flaps). (From
[418])
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Fig. 8.8. Schematic of the unidirectional flow of an atrioventricular heart valve. (a)
The pressure in the atrium exceeds that in the corresponding ventricle and the valve
opens, with a jet of blood rushing in. Toward the end of diastole, the jet is broken.
The deceleration of the blood creates a pressure, which tends to close the valve. (b)
The valve is normally closed. (Based on [417])

bicuspid valve. Another name for this valve is the mitral valve, because it looks
like a miter. The aortic semilunar valve controls flow from the left ventricle
to the aorta.

These four valves share some common traits. They are one-way valves
(Fig. 8.8) that allow blood flow in the described direction under some con-
ditions, but never in the opposite direction (unless they are defective). We
can imagine a flapped unidirectional valve that will not allow any back flow.
With this type of valve we can see how the flaps will open, allowing this uni-
directional flow, when the pressure in front of the valve exceeds that on the
other side. In this way, the valve is closed until the pressure in the cham-
ber increases due to contraction to a value greater than that after the valve.
However, such a valve could not withstand very much back pressure. Back-
ward opening of the atrioventricular valves is also prevented by the papillary
muscles on the ventricular side that contract when the valve is closed, mak-
ing the chordae tendineae that are attached to the flaps taut (Fig. 8.9). This
prevents the flaps from bending backward, so there is no backward flow of
blood.

Let us consider the cycle for the aortic semilunar valve. During ventricular
relaxation the pressure in the left ventricle is ∼0 mmHg. In the aorta the pres-
sure is ∼120 mmHg during systole and then decreases to ∼80 mmHg during
diastole, just before ventricular contraction. The valve is still closed. During
ventricular contraction the pressure in the LV increases to 80 mmHg, contin-
uing up to ∼120 mmHg. Because the pressure in the aorta is ∼80 mmHg, the
aortic semilunar valve opens once the pressure in the LV exceeds 80 mmHg
and then remains open. During this flow, the pressure in the LV and aorta
become equal, ∼120 mmHg, and then the valve closes as the flow cycle comes
to an end.

The measurement of systolic and diastolic pressure by listening to
Korotkoff sounds is described in Chap. 7. This method is the standard way
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Fig. 8.9. The papillary muscles on the ventricular side of the atrioventricular valves
contract when the values are closed, making the chordae tendineae taut, as in (b).
The muscles and the chordae tendineae are relaxed when there is forward blood
flow, as in (a). (Based on [417])

of determining blood pressure even though it routinely underestimates systolic
pressure by 5–20 mmHg and overestimates diastolic pressure by 12–20 mmHg
[377].

Cardiac valve openings and closings and the flow of blood in the heart
create sounds that can be heard with a stethoscope, and are described in
Chap. 10. (Also see Fig. 8.5.)

8.2 Physics of the Circulation System

We now examine the circulation system in more detail. First, we will ex-
amine how the blood pressure varies with distance along the arteries and
veins, including within the capillaries. We then investigate the consequences
of nonuniformities in arteries, such as clogged arteries and aneurysms – in
the context of the strength of the artery walls. We next calculate the work
done by the heart, to see how this contributes to the metabolic needs of the
body. In the last section of this chapter we will develop a model of the entire
circulatory system and the heart.

8.2.1 Properties of Blood

Blood is a non-Newtonian fluid, in part because of its complex, inhomoge-
neous composition. The blood solution consists of plasma, red blood cells
(erythrocytes; 5 million/mm3; 45% of total blood volume), white blood cells
(leukocytes; 0.3%), and platelets (0.15%). (The red blood cell volume fraction
is called the hematocrit.) The red blood cells are biconcave disks that are
toroidal in shape with the center partially filled in, and have a diameter of
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Fig. 8.10. Blood viscosity vs. hematocrit. (Based on [390])

7.5 μm and maximum thickness of 2 μm. Their diameter is about the same
as the inner diameter of capillaries, but they can deform and flow in even
smaller tubes. White blood cells are spherical, with a diameter of 7 μm, while
the platelets are much smaller. The blood plasma is 90% water and behaves
like a Newtonian fluid with a viscosity of 0.0012 Pa-s. The blood rheology is
greatly altered by the red blood cells, and not much by the white blood cells
or platelets because they comprise very small fractions of the blood volume.
(Rheology is the study of the deformation and flow of materials, particularly
unusual materials.) The blood viscosity increases with the hematocrit, as seen
in Fig. 8.10.

The effective viscosity of blood decreases as the shear rate increases
(Fig. 8.11). For very slow shear rates, this viscosity is more than 100× that of
water, while at the high shear rates characteristic of flow in larger vessels it
is about 4× that of water, with a value of 0.004–0.005 Pa-s.

The viscosity of some fluids changes even while the strain rate is constant.
Blood is a thixotropic fluid, for which the shear stress decreases while the
strain rate is constant. Still, for our purposes it will be adequate to treat
blood as a Newtonian fluid, even though the velocity flow profile is not the
ideal parabolic form for a Newtonian fluid (Fig. 7.13).

8.2.2 Blood Pressure and Flow in Vessels

Structure of Blood Vessels

Arteries contain inner layers that are 1–2 endothelial (lining) cells thick – along
with elastic issue (composed of collagen and elastic proteins). This innermost
region surrounding the opening – the lumen – is known as the tunica intima.
Next in the wall comes a layer of circular, smooth muscle fibers interspersed
with elastic tissue (the tunica media) and finally connective tissue (the tunica
adventitia) (Fig. 8.12, also see Fig. 8.44). The walls of veins have a thickness
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Fig. 8.11. Blood viscosity vs. shear rate for a hematocrit of 45%, at 310K. (From
[382]. Courtesy of Robert A. Freitas Jr., Nanomedicine, Vol. 1 (1999), http://www.
nanomedicine.com, based on [375])

w that is typically ∼d/10, where d is the lumen diameter; they are thinner
than the walls in arteries of corresponding diameters, for which w ∼ d/5.
The aorta and other large arteries contain much elastic tissue and stretch
during systole and recoil during diastole. The walls of the arterioles contain

Fig. 8.12. Schematic of the walls of arteries and veins. (From [408]. Used with
permission)
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less elastic tissue and more smooth muscles, and stretch relatively little. The
walls of the capillaries are composed of a single layer of endothelial cells. The
diameters of the capillaries are so small that red blood cells can barely pass
through them.

Approximately 70% of the walls of arteries and veins is composed of wa-
ter, which is not elastic, except in how it withstands compression. The other
30% consists of the dry mass: elastin, collagen, and smooth muscle fibers,
each having different materials properties. As discussed in Chap. 4, elastin is
rubber-like and has a Young’s modulus of ∼3× 105 Pa; it can be stretched to
twice its relaxed length. Collagen is much stiffer, with a Young’s modulus of
∼1×108 Pa. Elastin has an ultimate tensile stress (UTS) less than 5% of that
of collagen. Smooth muscle has a Young’s modulus more like that of elastin,
with Y ∼ 1 × 105 Pa when relaxed and ∼2 × 106 Pa when active. About half
the dry mass in vessels is elastin and collagen, with more elastin than colla-
gen in the aorta (∼1.5×) and relatively less elastin in other arteries (∼0.5×)
and veins (∼0.3×). Veins contain less elastin than arteries. The fraction of
smooth muscle in the dry mass averages to ∼50%, and is ∼25% in the aorta,
and increases to ∼60% more peripherally in the arteries and arterioles. The
mechanical properties of these vessels (Chap. 4) also depend on the tissue to
which they are attached. This is particularly significant for capillaries, because
the vessel walls are essentially a single layer of endothelial cells.

Blood Pressure

Blood pressure is needed to push blood flow. Figure 8.13 is a schematic of
the mean arterial and venous blood pressure at different positions in the

Fig. 8.13. Blood pressure along the circulatory system for a person lying horizon-
tally. (Based on [371])
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circulation cycle, for a person lying horizontally. The oscillations in blood
pressure along the major arteries in systemic circulation reflect the oscillat-
ing pressure of this blood when it was leaving the aorta, at pressures be-
tween ∼80 mmHg (Pdiastole, at diastole) and ∼120 mmHg (Psystole, at systole)
(Fig. 8.13). Because systole lasts for about 1/3 of the cycle and diastole for
about 2/3, the mean blood pressure is a weighted sum,

Pmean =
Psystole + 2Pdiastole

3
, (8.1)

or (1/3)120 mmHg + (2/3)80 mmHg ∼ 94 mmHg in this example. This dif-
ference in pressure of 40 mmHg between systole and diastole is the arterial
pulse pressure Ppulse. We will see that blood flows at a speed of ∼20 cm/s in
these systemic arteries, so with a heart rate of about 1 Hz = 1 cycle/s it is
reasonable that there are quasiperiodic variations every 20 cm or so. Much of
the pressure drop in the arterial system is in the arterioles (small arteries) and
the capillaries. We will see that this can be attributed to viscous flow. There is
very low pressure in the veins. It is too little pressure to pump the blood back
to the heart – even with the large diameters of the veins and consequently
low resistance to flow (7.24). There is a peristaltic pumping mechanism by
muscles surrounding the large veins that assists the return of venous blood
to the heart, with one-way valves to prevent backflow (Fig. 8.14). (Similarly,
blood flow in the capillaries is usually not continuous, but is turned on and
off every few seconds or minutes, due to sphincter muscles that can contract
the feeding arterioles (vasomotion).) The pulmonary system mirrors this sys-
temic circulation, except the pressures are all lower. Figures 8.13, 8.15, and
8.16 show the blood pressure and flow speed at different points in the arterial
tree.

Fig. 8.14. Musculovenous pump of veins, with outward expansion of the bellies of
contracting muscles pumping the blood back to the heart against gravity and distal
valves closing to prevent backflow. (From [408]. Used with permission)
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Fig. 8.15. Simultaneous pressure and flow velocity at different points in the human
arterial tree for a person lying horizontally. All data were taken from one patient
except for the right renal artery and the right common iliac artery. (From [391].
Adapted from [407])

Fig. 8.16. Flow speed (solid curve) and total area (dashed curve) in the systemic
circulation system. (Based on [371])
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Fig. 8.17. Mean arterial and venous (gauge) pressures for a vertical person. (From
[372], after [412]. Used with permission of Oxford University Press)

The pumping cycle sets up a pressure pulse wave in addition to the hydro-
static pressure variation. This pulse wave is independent of the speed of blood
flow – and is faster than this blood flow speed: 4 m/s in the aorta, 8 m/s in
the large arteries, and 16 m/s in the small arteries of young adults.

When you stand upright vertically (Fig. 8.17) there is an additional pres-
sure ρgh, where h is the height relative to the heart. This is approximately
the height in the upper arm where blood pressure measurements are made.
For ρ = 1.06 g/cm3 = 1,060 kg/m3, g = 9.8 m/s2 and h = 1 m, this pressure is
10,400 N/m2 = 10,400 Pa = 79 mmHg (with 1 MPa = 7,600 mmHg). At any
given height, the driving pressure difference from the arteries to the veins
is unchanged. Also, this pressure change is not important when considering
pressure changes between the inside and outside of a vessel because ρgh is
added both inside and outside the vessel.

Still, this effect of gravity can be significant. The blood pressure at the
aorta has to be high enough to pump the blood to the top of your brain. This
distance is about h = 40 cm, so the pressure drop is about 30 mmHg (compared
to the diastolic pressure of ∼80 mmHg). Problems 8.1 and 8.2 explore what
happens to cranial blood circulation in humans in rapidly climbing jets and on
more massive planets with higher g, and also in giraffes. One manifestation of
this effect of gravity is potential fainting when you stand. When you stand up,
the volume of blood in the leg veins increases and the pressure in the veins
pumping blood back to the heart decreases. This can decrease the cardiac
output and the flow of blood to the brain. This rarely happens because there
is a reflex constriction of the veins in the legs (due to a contraction of the
skeletal muscle surrounding the veins, Fig. 8.14) that limits the blood pool
and an arteriolar constriction that increases flow resistance and lessens the
decrease in arterial blood pressure. The effect of gravity on humans – who
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Fig. 8.18. Measuring the mechanical properties of blood vessels by fixing the vessel
(a) length (which is called inflation) or (b) diameter (which is called extension).
Some investigators do combined loading, with combinations of inflation, extension,
and torsion

normally stand upright – also explains why standing on your head for long
periods is not advisable (Problem 8.3). The veins in your head are not designed
to pump blood back to the heart (as are those in the lower body). Also, your
feet would stop getting blood. It also explains why varicose veins are worse
when you stand upright, because blood then needs to be pumped up.

Body control of blood pressure is briefly described in Chap. 13.

Measuring Flow in Blood Vessels

The mechanical properties of blood vessels can be measured under two types
of conditions (1) The length of a given vessel can be kept constant, while
its diameter is measured as a function of the distending pressure. This leads
to a tensile stress on the wall, directed around the circumference, which is
called the circumferential or hoop stress. (2) The diameter of a vessel can be
kept constant, while its length is measured as it is stretched longitudinally.
Examples of both are shown in Fig. 8.18.

The flow of blood in arteries is affected by changes in the heart beat rate
and stroke volume (which is the volume pumped per beat), and also by changes
in the arteries themselves that control their diameters by chemical and neural
mechanisms.

Modeling Flow in Blood Vessels

Figure 8.19 is a schematic describing the flow in a vessel of length L, with a
volumetric flow rate Q1 in and Q2 out. In steady state Q1 = Q2 = Q. At the
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Fig. 8.19. Blood flow: general vessel

beginning of the vessel the pressure is P1 and at the end it is P2. The pressure
outside the vessel is Pext, which can be taken to be 0 when considering gauge
pressure. The volume of the vessel is V . The relation between these various
parameters depends on the properties of the vessels.

There are two physical attributes of blood vessels. (a) They have a resis-
tance to flow, and so they need a pressure difference along the length of the
vessel to drive the blood flow. (b) They have a compliance in response to a
distending pressure. This is much like a balloon expanding when the pressure
inside increases much above that outside.

One special case is a rigid vessel with constant volume V , which is called
a resistance vessel (Fig. 8.20). Equation (7.25) applies to this vessel, so

P1 − P2 = RflowQ (8.2)

or
Q =

1
Rflow

(P1 − P2), (8.3)

where the vascular resistance is Rflow = 8ηL/πr4 for a tube with radius r. The
former equation has the same form as Ohm’s Law Velect,1 − Velect,2 = RelectI,
which relates the drop in voltage, Velect, when a current of charges I traverses
a structure with electrical resistance Relect.

A second special case is an elastic vessel that has no noticeable resistance,
which is called a compliance vessel. There is no pressure drop, so P1 = P2 = P .
One model (Fig. 8.21) of the properties of such a vessel is

V (P ) = Cflow(P − Pext) = CflowP, (8.4)

where Cflow is the compliance and Pext is taken to be 0. Because the vessel
usually has a volume with no pressure, called the dead volume Vd, a better

Fig. 8.20. Blood flow: ideal resistance vessel
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Fig. 8.21. Blood flow: ideal compliance vessel

relation is

V (P ) = Vd + CflowP. (8.5)

Note that a property of the resistance vessel, namely the flow rate, is affected
by the pressure drop along (and inside the vessel), while a property of the
compliance vessel, its volume, is affected by the pressure difference between the
inside and outside of the vessel. We can also describe compliance by changes
in the radius r

r(P ) = rd +
C ′

flow

2
P, (8.6)

where rd is the radius with no pressure difference. Therefore

dr

dP
=

C ′
flow

2
. (8.7)

Because V = πr2 and Vd = πr2
d, these two formulations can be interrelated.

Real vessels have some attributes of both types of vessels. Still, the
aorta, large arteries and large veins are much like compliance vessels. We
will see that the pressure drops along them are relatively small. Arterioles,
capillaries, and venules act like resistance vessels. We will see that they,
and in particular the arterioles, are the main sites of the pressure drop,
and this is the reason why the heart needs to pump blood to such high
pressures.

Pressure Drops in Arteries and Resistive Vessels

We will use Poiseuille’s Law ΔP =
(
8ηL/πr4

)
Q (7.25) to estimate the pres-

sure drop ΔP = P1−P2 across the aorta, large arteries, arterioles, and capillar-
ies, and compare these results to the plot in Fig. 8.13 (also see Fig. 8.15). First
we calculate the resistance Rflow,0 = 8ηL0/πr4

0 for a standard radius r0 = 1 cm
and standard length L0 = 1 cm and scale the results for each specific case.
With the viscosity η = 4.0 × 10−3 Pa-s = 4.0 × 10−3 (N-s/m2) = 4.0 × 10−2
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poise for whole blood at 37◦C

Rflow,0 =
8 × (4.0 × 10−3 N-s/m2)(1 cm)

π(1 cm)4
=

1.02 × 10−2 N/m2

cm3/s
(8.8)

=
1.02 × 10−8 N/mm2

cm3/s
=

7.7 × 10−5 mmHg
cm3/s

, (8.9)

where we have used 0.1 N/mm2 = 1 atm. = 760 mmHg. The units in (8.9) are
mmHg-s/cm3. This is the resistance when the pressure difference is 1 mmHg
and the flow rate is 1 mL/s, and is also known as a PRU, a peripheral resistance
unit. This unit is commonly used in physiology.

The resistance of a vessel of an arbitrary length and radius is

Rflow = Rflow,0
L/L0

(r/r0)4
= Rflow,0

L(in cm)
r(in cm)4

(8.10)

and so

ΔP = RflowQ = 7.7 × 10−5 mmHg
L(in cm)
r(in cm)4

Q (in cm3/s). (8.11)

The total flow rate, Qt, from the aorta, enters the large arteries, and the
whole flow from the large arteries enters the arterioles, and finally this whole
flow enters the capillaries. In each level of flow we will model the arteries as
n parallel vessels of roughly equivalent length and diameter carrying roughly
the same flow (Fig. 8.22), where n increases for each successive level of flow.
So in a given level of flow with n vessels, the flow rate in each vessel is
∼Qt/n.

Fig. 8.22. Schematic of blood flow in idealized branching vessels
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With Qt = 80 cm3/s and Q = Qt/n, we get

ΔP = 7.7 × 10−5 mmHg
L(in cm)
r(in cm)4

80
n

(8.12)

=
0.0062mmHg

n

L(in cm)
r(in cm)4

. (8.13)

This is the pressure drop across any vessel in a given level of flow and, because
they are in parallel, it is the pressure drop across the entire given level of
arterial flow. We now determine this for the various levels of arteries.

Aorta. There is one aorta (n = 1) with r ∼ 1.25 cm and L ∼ 10 cm, and
so ΔP across the aorta is 0.025 mmHg, which is insignificant.

Largest arteries. There are about 200 large arteries with r ∼ 0.2 cm and
L ∼ 75 cm, and so ΔP is 1.4 mmHg, which is pretty insignificant.

Smallest arteries and arterioles. There are about 5 × 105 arterioles with
r ∼ 30 μm and L ∼ 0.6 cm = 6 mm, and so ΔP is 91 mmHg, which is very
significant.

Capillaries. There are about 1010 capillaries with r ∼ 3.5 μm and L ∼
0.2 cm = 2 mm, and so ΔP is 8.2 mmHg, which is fairly significant.

We could have just plugged the parameters for each vessel directly into
(7.25), without calculating Rflow,0, but our scaling approach does give some
new insight.

These estimates agree with what we would expect from Fig. 8.13. Also,
arterioles and capillaries are seen to be well modeled as resistance vessels.
The aorta and large arteries have very small pressure drops across them, and
behave more like compliance vessels. Veins have larger diameters than the
corresponding arteries, and consequently much lower resistances and pressure
drops across them.

Along any vessel there is obviously a linear pressure drop with distance
x along the vessel. This is seen from Poiseuille’s Law, (7.25), (ΔP/L) =(
8η/πr4

)
Q or, recognizing that this change in pressure is negative,

dP

dx
= − 8η

πr4
Q. (8.14)

This represents a “distributed” or “transmission-line” view of blood flow,
in which flow is analyzed per unit length along the vessel, whereas in (8.2)
and (8.11) flow was analyzed with the vessel as a “lumped” parameter (see
Appendix D).

We can study the pressure drop in clogged arteries. There could be a larger
pressure drop for the same Q or a smaller Q for the same pressure drop if r
decreases, as occurs with clogged arteries, or with fewer vessels. This can
stimulate an increase in blood pressure to maintain the flow rate or lead to a
reduction in flow at a given inlet pressure, which is what actually happens in
coronary artery disease.

How can we “optimize” the design of resistive vessels and how such vessels
bifurcate and otherwise branch into smaller vessels (and what does it really
mean to optimize the design)? See Problems 8.28–8.31.
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Radial Profile of Blood Flow

Blood flow in vessels is not uniform. We have implicitly been assuming that
the blood flow is parabolic (Fig. 7.11) because we are modeling blood as a
Newtonian fluid. However, the parabolic profile of blood flow speed in a resis-
tive vessel from (7.40) is not quite accurate. This assumes steady-state flow,
which begins only a certain distance from a bifurcation ((7.41)–(7.43)). This
approach to steady-state flow is depicted for a different initial condition in
Fig. 7.11. Furthermore, because whole blood is not a Newtonian fluid, the
steady-state profile is not parabolic, as is seen in Fig. 7.13.

Properties of a Compliance Vessel

We can show that (8.4) and (8.5) are reasonable models of an elastic compli-
ance vessel and determine the compliance Cflow by examining a thin-walled
cylindrical tube of inner radius r, thickness w, and length L, with a pressure
difference P between the inside and outside of the vessel (Fig. 8.23). The Law
of Laplace for cylinders (7.4) shows that the tension T in the walls of a cylin-
der in equilibrium is rP . We can conceptually slit the vessel along its length
and see that this tension (force per unit length along L) corresponds to a
force per unit area of T/w on the rectangular face with dimensions w and L.
The length of the rectangular solid is 2πr. Let us consider the stress–strain
relation σ = Y ε in the context of this unfolded vessel. The stress is σ = T/w.

Fig. 8.23. Compliance vessels: unfolding the vessel
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The strain is ε = d(2πr)/2πr = dr/r or really dr/r0, where r0 is the radius
with no pressure. The stress–strain relation is

T

w
= Y

dr

r0
(8.15)

or with T = rP

dr

r0
=

T

wY
=

rP

wY
=

r0

w

P

Y
. (8.16)

The internal volume of the vessel is V = πr2L. Therefore we see that dV =
2πr(dr)L and dV/V = 2dr/r = 2(r0/w)(P/Y ). For small changes in volume

V (P ) = Vd

(
1 +

dV

Vd

)
= Vd

(
1 + 2

r0

w

P

Y

)
(8.17)

= Vd + 2Vd
r0

w

P

Y
= Vd + 2(πr2

0L)
r0

wY
P, (8.18)

with Vd = πr2
0L. Using (8.5) the compliance is

Cflow =
2πr3

0L

wY
. (8.19)

How large is this expansion? The pressure in the aorta and large arteries
is 120 mmHg = 0.0158 MPa during systole. The value of Y for such vessels
is about 1 MPa (Table 4.2) and so P/Y = 0.0158 ∼ 1.6%. The thickness of
arterial walls is typically 1/5 of the radius, so r0/w = 5. This means that the
fractional increase in radius of these vessels due to this internal pressure is 8%
and the fractional increase in volume is 16% – both sizeable fractions. Also,
this predicts that the radius changes by ∼3% during each heart beat during
the changes between systolic (120 mmHg) and diastolic (80 mmHg) pressure.
Veins are also compliance vessels.

Distensibility

Such compliance changes are equally well described in terms of the disten-
sibility Dflow of the tube. The cross-sectional area A of a tube increases by
ΔA when the pressure difference between the inside and outside of the tube
increases by ΔP . The distensibility is defined as the fractional change in area
for a change in pressure:

Dflow =
ΔA/A

ΔP
. (8.20)

With A = πr2 and ΔA = 2πr Δr, we see that ΔA/A = 2Δr/r and using
(8.16),

Dflow =
2Δr/r

ΔP
=

2(r/w)(ΔP/Y )
ΔP

=
2r

wY
=

1
Y (w/d)

, (8.21)

where d = 2r is the diameter, w is the wall thickness, and w/d (�1).
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A more exact analysis relates the Young’s modulus for circumferential
stretch, which we still call Y , to the external and internal diameters de and
di, the change in external diameter Δde occurring with this change in pressure
difference, and Poisson’s ratio υ [372]. This gives

Y =
ΔP

Δde

2ded
2
i

d2
e − d2

i

(1 − υ2). (8.22)

For a thin-walled tube with wall thickness w = (de − di)/2 � di, and with
de ∼ d and di ∼ d − 2w, we find

Y =
ΔP

Δd

d2

2w
(1 − υ2). (8.23)

With ΔA/A = 2Δd/d

Dflow =
ΔA

A

1
ΔP

=
2Δd

d

1
ΔP

=
(1 − υ2)
Y (w/d)

. (8.24)

This reduces to (8.21) for small Poisson’s ratios.

Flow with Resistance and Compliance

If a vessel is resistive and compliant [405], the change in pressure with distance
is

dP

dx
=

dP

dr

dr

dx
=

2
C ′

flow

dr

dx
, (8.25)

using dP/dr = 2/C ′
flow from (8.7). Setting this equal to dP/dx from (8.14)

and bringing the r terms to the left and the x terms to the right, gives

r4dr = −4C ′
flowη

π
Qdx. (8.26)

After integrating over a vessel length from x = 0 to x = L, we get

(r(x = 0))5 − (r(x = L))5 =
20C ′

flowη

π
QL (8.27)

and after using (8.6)

(
rd +

C ′
flow

2
P (x = 0)

)5

−
(

rd +
C ′

flow

2
P (x = L)

)5

=
20C ′

flowη

π
QL. (8.28)

(See Appendix C.)
Both terms on the left side can be expanded to five terms. The first

terms are both r5
d, which cancel, and for relatively small compliance
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(C ′
flowP/2rd � 1) only the next two of the remaining four terms in each

need to be retained, giving

Q =
πr4

d

8ηL
(P (0) − P (L))

(
1 +

C ′
flow

rd
(P (0) − P (L))

)
. (8.29)

This is Poiseuille’s Law (7.24) with a correction for compliance. So, for a
rigid wall vessel (C ′

flow = 0) the flow rate Q is linear with the pressure drop,
but when compliance is included, the variation with pressure drop is between
linear and quadratic. This relation says that for a given pressure drop, the
flow rate is increased due to the compliant nature of the vessel.

The electrical analog of blood flow is described in Appendix D.

The Strength of Blood Vessel Walls

The pressure inside blood vessel walls P exceeds that outside Pext, by ΔP =
P − Pext. How large of a tension should the vessel walls be able to withstand
to support this positive pressure differential? Chapter 7 showed the answer is
provided by the Law of Laplace for hollow cylinders (7.4). For a cylinder of
radius of curvature R, this tension T is

ΔP =
T

R
. (8.30)

Table 8.4 shows that the tension capillaries need to withstand is very small
because of their small radius. This circumferential stress, the tension (force

Table 8.4. Calculated tension in blood vessel walls. (Using data from [382] and
[391])

vessel diameter wall internal wall T/w
(mm) thickness, pressure, tension, (kPa)

w ΔP T
(mm) (mmHg) (dyne/cm)

aorta 24.0 3.0 100 160,000 53
large artery 8.0 1.0 97 52,000 52
medium artery 4.0 0.8 90 24,000 30
small artery 2.0 0.5 75 10,000 20
arteriole 0.3 0.02 60 1,200 60
capillary 0.008 0.001 30 16 16
venule 0.02 0.002 20 27 13
small vein 3.0 0.2 18 3,600 18
medium vein 5.0 0.5 15 5,000 10
large vein 15.0 0.8 10 10,000 12
vena cava 30.0 1.5 10 20,000 13

The wall thickness w is R/5 for arteries and R/10 for veins (where R is the vessel
radius) and 1 μm for capillaries. Also see Table 8.2.
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per tube length) divided by the vessel wall thickness w, is surprisingly similar
for these very different vessels. T/w can be compared to the UTS of such
vessels.

Flow in Curving Arteries

In Chap. 7 we showed that the arterial walls feel a pressure due to the differ-
ence in hydrostatic pressure inside and outside the vessel. This pressure is felt
equally around the wall. When blood flows in an artery that curves, a force
equal to the centripetal force is felt on the arterial wall on the outer surface of
the curve to change the direction (but not the magnitude) of the momentum
vector of blood flow. How large is this force? Is it comparable to the uniform
hydrostatic pressure? Does it constitute a significant extra load on the arterial
wall?

For an artery of internal radius R that is turning with a radius R
(Fig. 7.16), with blood of density ρ and average flow speed u, (7.44), this
peak pressure is

Pcent = 2ρu2 R

R . (8.31)

This is largest for the fastest blood flow, which is in the aorta. Using
ρ = 1 g/cm3, R = 1.25 cm, R = 2 cm, and u = 100 cm/s, we find Pcent =
4.7 mmHg. This ∼5 mmHg is the extra pressure that must be supplied by the
outer aorta wall to turn the blood around the aortic arch. This is small com-
pared to the typical average aorta pressure of 100 mmHg, and does not likely
promote pathological conditions such as aneurysms.

8.2.3 Capillaries and Osmotic Pressure

The purpose of systemic circulation is to supply blood to the capillary bed.
We have seen that pressure is needed to bring the blood to the capillaries.
There is diffusion and bulk flow between the blood in the capillaries and the
interstitial fluid. Diffusion across the capillary wall transports oxygen, which is
carried in red blood cells, and carbon dioxide, which is dissolved in the blood.
(Not enough oxygen can be directly dissolved in the blood for our metabolic
needs.) In the systemic capillaries there is net diffusion of oxygen out of the
capillaries and carbon dioxide into them. In the pulmonary capillaries there
is net diffusion of oxygen into the capillaries and carbon dioxide out of them.
There is also bulk flow of fluid across the capillary walls due to the net pressure
across the walls.

There are two forces driving this bulk transport: the force/area mechan-
ical pressure P we have been discussing, which we will call hydrostatic pres-
sure in this section, and a chemical driving force, called osmotic pressure,
Π. The osmotic pressure characterizes the flow across a semipermeable mem-
brane that occurs to equalize the concentrations of solutes on either side of
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the wall. This drives species that can permeate across the membrane, such
as water, across it from the side of low concentration of solute to the side of
high concentration. For low concentrations, the osmotic pressure is given by
the van’t Hoff equation

Π = nsRT, (8.32)

where ns is the density (or concentration) of the solute in solution in moles
per unit volume. This looks deceptively similar to the ideal gas law (7.2). It is
the difference in the sum of these on either side of the capillary walls, P + Π,
that drives the net transport across these walls.

As seen in Fig. 8.24, the hydrostatic force in the capillary is always greater
inside the vessel than outside, and it decreases from about 36 mmHg at the
arteriole side to 15 mmHg at the venule end because of viscosity. If this were

Fig. 8.24. Osmotic pressure in a capillary. (Based on [417])
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the only driving force, there would be a large net flow of fluid from inside
the capillary to the interstitial fluid! Small molecules, such as oxygen and car-
bon dioxide, are able to diffuse across the capillary wall, but larger molecules,
such as proteins, cannot. Because there is a much higher density of proteins
in the blood than in the interstitial fluid, there is a chemical driving force of
fluid into the capillary to try to equalize these densities. This leads to a net
osmotic pressure of about 25 mmHg into the capillary. In Fig. 8.24, the net
pressure is 36 mmHg − 25 mmHg = 11 mmHg outward at the arteriole end
and 15 mmHg − 25 mmHg = −10 mmHg inward at the venule end. Therefore,
there is net flow out of the capillary in the arteriole end and net flow into the
capillary in the venule end. There is a small imbalance in this and a small net
bulk flow out of the capillary.

We have assumed that the flow in all blood vessels, including the cap-
illaries, is laminar. This cannot be really true for capillaries because many
capillaries have an inner diameter of 5 or 6 μm and the red blood cells have
a diameter of about 7.5 μm. The red blood cells deform to pass through the
capillary and the resulting flow is called bolus flow. The red blood cells form
plugs and the blood plasma is trapped in the regions between these plugs and
moves in streamlines. Nowhere else in the body is the multicomponent nature
of blood more apparent.

One major function of this capillary blood flow is the transfer of oxygen
to the cells, leaving oxygen-depleted blood in the veins. As in (6.18), the rate
of body consumption of O2, dVO2/dt equals the product of the cardiac output
Qt (see below) and the difference in the oxygen partial pressure in the arteries
and veins, pa − pv

dVO2

dt
= Qt(pa − pv). (8.33)

If the lungs are bringing in air fast enough, then pa − pv is fixed, and during
aerobic exercise dVO2/dt increases linearly with Qt. For a person with average
fitness, the maximum blood flow rate is ≈19 L/min, for a highly fit person it
is ≈25 L/min, and for an elite athlete it can be 35 L/min.

Oxygen combines with hemoglobin in the red blood cells in the lungs
where the partial pressure of oxygen is high, about 100 mmHg. It is trans-
ported in the arteries to the tissues where it is released because the partial
pressure of oxygen is low – and it is then used. The blood in the veins is
then depleted in oxygen. Figure 8.25a shows the hemoglobin–oxygen disso-
ciation curve. Clearly, hemoglobin is over 90% saturated with O2 for partial
pressures above 60 mmHg O2. Increased CO2 levels, increased temperature,
and decreased pH all shift this curve to the right (Fig. 8.25b), which improves
body performance. In Fig. 8.25a the dissociation curve for the lung is seen to
be to the left of that in the tissues because the pH is higher and the CO2 level
is lower in the lung, increasing oxygen binding in the lungs relative to that
in the tissues. During exercise, the muscle tissue pH falls and the local par-
tial pressure of CO2 and the local temperature increase. All of these changes
move the curve to the right and this leads to more oxygen release (Fig. 8.25b).
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Fig. 8.25. (a) Hemoglobin–oxygen equilibrium in the lungs and tissue. During
exercise oxygen intake is improved by the lung curve moving to the left and the
tissue curve (exercising muscle) moving to the right due to increasing temperature,
CO2 partial pressure, and 2,3-diphosphoglycerate (DPG) (an end-product of red
blood cell metabolism), and decreasing pH. (b) The hemoglobin–oxygen equilibrium
shifts to the right with increasing temperature, increasing CO2 partial pressure, and
increasing DPG (not shown), and decreasing pH. (Based on [411] and [419])

During exercise pa − pv increases from the resting value of about 50 mL of
oxygen per L of blood to 150 mL/L in normal people at (dVO2/dt)max (and to
160–170 mL/L in very fit people), in part because blood flow is being diverted
from the organs to the muscles, where oxygen extraction is higher because of
the exercise (see Fig. 8.25).

8.2.4 Blood Flow Rates and Speeds

The heart pumps about 80 mL (= 80 cm3) of blood per contraction; this quan-
tity is called the stroke volume Vstroke. The pump rate is the heart beat rate
F of about 60/min or 1/s = 1 Hz. The cardiac output or total volumetric flow
rate Qt is the product of these two

Qt = FVstroke (8.34)

or about 80 cm3/s = 4.8 L/min. The total volume of blood is about 4.5–5.0 L,
so all the blood is pumped throughout the body every minute. The flow rate in
the arteries, arterioles, capillaries, venules, and veins are all the same because
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of the continuity of flow. (Qt is actually a little less in the venules and veins
because of the net fluid loss in the capillaries.)

The total flow in each of these vessel systems, Qt, equals the total cross-
sectional area A times the blood speed u, Qt = Au. The parameters A and
u are plotted in Fig. 8.16, which shows this inverse relationship for a flow
rate of 90 cm3/s. The cross-sectional area of the aorta is 3 cm2, so in the
aorta u = (90 cm3/s)/3 cm2 = 30 cm/s. In the capillaries the flow speed is
much slower, (90 cm3/s)/4,000 cm2 = 0.022 cm/s = 0.22 mm/s. The net cross-
sectional area in the capillaries is larger (∼4,000 cm2) even though they are
very small (∼3.5 μm in radius) because there are so many of them (∼1010). In
the vena cava the flow speed is relatively fast (90 cm3/s)/18 cm2 = 5 cm/s. In
the arterial and venous systems, the smaller the vessel radius, the larger the
total cross-section of all vessels in that order and the slower the blood speed.
These are actually average blood flows during each cycle.

The maximum Reynolds number (Re = ρud/η, (7.11)) over a cardiac cycle
ranges from ∼6,000 in the heart and aorta to <10−3 in the capillaries. The
nominal lower threshold for turbulent flow is Re ∼ 2, 000, so it is possible that
flow in the aorta is turbulent.

The overall flow in the systemic arterial system can be described by relating
the total cardiac output Qt to the systemic arterial pressure Psa, by

Psa = (TPVR)Qt, (8.35)

where TPVR is the total peripheral vascular resistance – which is due to the
combined effect of all the organ beds of systemic circulation (mostly arteri-
oles and capillaries). (Psa should really be replaced by the pressure drop in the
system. See Problem 8.20.) Normal values for the systemic system range from
700 to 1,600 dyne-s/cm5, and analogous normal values for the pulmonary sys-
tem range from 20 to 130 dyne-s/cm5. Equation (8.2) applies to an individual
vessel, while this describes the entire systemic system. The body regulates Psa

by controlling the cardiac output and this peripheral resistance. When we lie
down, a large volume of blood is transiently stored in the lower extremities
and abdomen, and so when we stand there is initially less flow of blood to the
heart and a drop in blood pressure, which can make you faint. Even though
Qt decreases, Psa drops only mildly because there is a prompt reflex that in-
creases the TPVR (vasoconstriction). In contrast, when blood pressure rises
suddenly, feedback tends to decrease the overall vascular resistance, to restore
a lower blood pressure. These are two examples of body feedback and control,
as described in Chap. 13.

We can also evaluate the overall compliances of the vascular systems, such
as those of the systemic arterial and venous systems. The compliance is the
reciprocal of the slope of a pressure–volume curve in Fig. 8.26. The smooth
muscles surrounding a large vessel can change the volume of the vessel at a
given pressure, either decreasing it (by stimulating the muscles) or increasing
it (by inhibiting the muscles).
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Fig. 8.26. Volume–pressure curves for the systemic arterial and venous systems, for
normal conditions and for sympathetic stimulation and inhibition. (Based on [390])

During even moderate exercise the blood flow rate increases substantially,
as seen in Fig. 8.27, and the absolute and relative distribution of blood to dif-
ferent parts of the body also changes radically. Figure 8.28 shows an example
in which the flow rate increases from 5 to 12.5 L/min during exercise. There
are extremely large increases of blood flowing to the skeletal muscle to sup-
ply oxygen for aerobic metabolism (up 1,066%), to the heart so it can pump
faster (up 367%), and to the skin (up 370%) to assist cooling (which increases

Fig. 8.27. Variation in cardiac output (and cardiac index) and oxygen consumption
needed during varying levels of exercise with work output. (The cardiac index is the
cardiac output divided by the person’s surface area.) (Based on [389] and [390])
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Fig. 8.28. Blood flow to different organs at rest and during moderate exercise,
showing no change to the brain, increases to the skin, heart, and skeletal muscles
(thick arrows), and less blood flow elsewhere (dashed arrows). (Based on [417])

the skin temperature, thus accelerating radiative and convection conduction
from the body). Blood flow to the brain is unchanged. In contrast, blood flow
to the digestive track, liver, and kidneys decrease by a factor of ∼2. These
changes are also seen in Tables 8.5 and 8.6. Figure 8.29 shows that the blood
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Table 8.5. Total cardiac flow (mL/min) for organs during exercise, including per-
centage of total flow. (Using data from [381])

organ rest light exercise heavy exercise maximal exercise

brain 750 (13%) 750 (8%) 750 (4%) 750 (3%)
heart 250 (4%) 350 (3.5%) 750 (4%) 1,000 (4%)
muscle 1,200 (21%) 4,500 (47%) 12,500 (72%) 22,000 (88%)
skin 500 (8.5%) 1,500 (16%) 1,900 (11%) 600 (2.5%)
kidney 1,100 (19%) 900 (9.5%) 600 (3.5%) 250 (1%)
abdomen 1,400 (24%) 1,100 (11.5%) 600 (3.5%) 300 (1.2%)
other 600 (10.5%) 400 (4%) 400 (2%) 100 (0.4%)

Total 5,800 (100%) 9,500 (100%) 17,500 (100%) 25,000 (100%)

flow to the calf during rhythmic exercise is higher than normal and it varies
with time.

This increase in cardiac output occurs because of increases in both the
heart rate and the stroke volume; the blood speed also increases because
Qt = Au. The faster the heart rate, the shorter is diastole, while the duration
of systole does not change. For short term (5–10 min) submaximal exercise, the
cardiac output increases from 5 L/min to a new steady-state value in about
2 min. For a steady-state cardiac output of 18 L/min, the stroke volume
increases from about 70 to 120 mL/beat and the heart rate F from about

Table 8.6. Approximate blood flow (perfusion) for tissues and organs, per gram.
(Using data from [382])

tissue type location or organ specific blood flow rate
(mm3/s-g)

adipose tissue abdomen, ∼20 mm thick 0.51
abdomen, >40 mm thick 0.31
thigh, ∼20 mm thick 0.33

bone humerus, marrow flow only 0.055

connective tissue typical basal (max) 0.50 (2.5)

muscle typical basal (max) 0.50 (10)

organ brain, basal (max) 9.1 (18.3)
gastrointestinal track, basal (max) 6.7 (26.7)
heart, basal (max) 13.7 (64.0)
kidney, basal (max) 68 (100)
liver, basal (max) 12 (54)
lung, basal (max) 90 (490)

skin typical resting flow (max) 1.7 (25.0)

In some cases the basal rate is given, along with the maximum rate in parentheses.



478 8 Cardiovascular System

Fig. 8.29. Blood flow to the calf during rhythmic contraction exercises, showing
less blood flow during contractions than between them. (Based on [366] and [390])

70 to 150 beats/min. The cardiac output returns to the resting value in 5–10
min after exercise.

For a longer submaximal workout (30–60 min), the new steady-state car-
diac output is maintained, but the stroke volume slowly decreases and the
heart rate gradually increases with time, particularly in warmer environments.
This cardiovascular drift is caused by a decrease in the venous return of blood
to the heart, which decreases the stroke volume and so the heart rate must
increase to maintain the same cardiac output. This decrease in venous return
is caused by two factors. (1) During such exercise more blood flows under the
skin to help lower the increase in body core temperature caused by the in-
creased metabolic activity (Chap. 6), and this lowers the steady-state flow of
blood back. (2) During exercise water flows from the blood to the surrounding
cells and tissues because of increased arterial pressure and the compression of
venules due to muscle action. This produces a steady-state decrease in blood
plasma and blood volume, and a steady-state decrease in blood returning to
the heart and the stroke volume.

Stroke volume and cardiac output are determined by the preload and af-
terload conditions (see later), contractility (ability to contract), and heart
rate. The cardiac output is not directly regulated, but there is a feedback and
control system that regulates arterial pressure that affects the heart rate and
contractility, as well as afterload and other factors that control the preload
[415].

The Frank–Starling mechanism (or Starling’s Law of the heart) states that
the larger the end-of-diastole volume or pressure (the preload), the larger
the stroke volume, as is seen in Fig. 8.30. Furthermore, the larger the aor-
tic pressure, the less blood can be ejected by the left ventricle (the after-
load), as is seen in Fig. 8.31. An increase in the heart rate also increases
cardiac output, however, the increase is sublinear because the stroke volume
decreases (Fig. 8.32) due to the above preload and postload factors. With
greater cardiac output there is less blood in the veins to return to the heart
for diastole (lower preload) and the arterial pressure is higher so the heart
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Fig. 8.30. The stroke volume increases with diastolic volume and pressure, as seen
with data for four heart beats. This dependence, along with the explanation of
it, is known as the Frank–Starling mechanism. (Reprinted from [415]. Used with
permission of Elsevier)

Fig. 8.31. The left ventricular output (the cardiac output) vs. left atrial pressure
for different aortic pressures. It increases with this atrial pressure and then levels
off, and decreases with increasing aortic pressure. (Reprinted from [415]. Used with
permission of Elsevier; adapted from [413])
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Fig. 8.32. Typical dependence of cardiac output and stroke volume on heart rate.
(Reprinted from [415]. Used with permission of Elsevier)

can eject less blood (higher afterload), assuming the peripheral resistance is
constant.

For the most part, these are changes in the systemic system. Similar in-
creases in cardiac output have to occur in the pulmonary system. (Why?)
This occurs by an increase in the number of open capillaries in the lung, by
up to a factor of three, and by a distending of all the pulmonary capillaries,
which increases the flow in each capillary by up to a factor of two, with very
little change in the pulmonary arterial pressure (Fig. 8.33).

The maximum heart rate Fmax (in beats/min) depends on age Y (in years)
as

Fmax = 220 − Y. (8.36)

The standard error in this relation is ±10 beats/min, which means 67% of
people have a maximum rate ±10 beats/min within the value predicted by

Fig. 8.33. The pulmonary arterial pressure vs. cardiac pressure, showing it does
not change much during exercise. (Based on [390])
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this relation and 95% of all people have a rate that is ±20 beats/min within
the predicted value. Because F does not depend on the level of fitness, athletes
increase their maximum cardiac output by increasing their stroke volumes.
Stroke volumes in untrained athletes are 50–70 mL at rest and reach 80–
110 mL during heavy activity. For trained and highly trained athletes these
stroke volumes increase to 70–90 mL and 90–110 mL at rest and 110–150 mL
and 150–220 mL during heavy activity.

In steady state, the cardiac output Qt must equal FVstroke (8.34), as well
as Psa/TPVR (8.35). During heavy exercise, Qt increases from 5 to 20 L/min,
so not only must F and Vstroke increase, as we have described, but Psa/TPVR
must increase accordingly. Diastolic pressure changes little during exercise,
remaining within ±10 mmHg of the resting value. The systolic pressure in-
creases to about 200 mmHg for men and 180 mmHg for women. Using (8.1),
the mean arterial pressure then increases only to 140–150 mmHg, which can-
not account for most of the increase in blood flow rate. During heavy exercise
the systemic vascular resistance TPVR decreases to about 40% of its resting
value because of the widening of muscular vascular beds that are normally
constricted at low levels of activity.

Figure 8.34 show that blood pressure typically increases with age. Hy-
pertension begins with systolic pressure ≥140 mmHg or diastolic pressure
≥90 mmHg. In essential hypertension this blood pressure is heightened for
no obvious reason. The average blood pressure is the product of the total pe-
ripheral vascular resistance and the cardiac output, Psa = (TPVR)Qt (8.35).
In people under 40 years of age, hypertension is driven by increased cardiac
output, with normal TPVR. In older people, the cardiac output is normal or
reduced, but the TPVR is high.

Fig. 8.34. Systolic and diastolic blood pressure is shown for males and females,
averaged over age groups. The trend is to increased blood pressure with age. (Based
on [400] and [403])
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Fig. 8.35. Cardiac output and arterial pressure with decreased blood volume from
hemorrhaging. (Based on [390])

Circulatory shock occurs when there is too little blood flowing generally
in the body, and this results in tissue damaged from the inadequate delivery
of oxygen and nutrients to the cells and the inadequate removal of waste
products. Such shock can occur from inadequate pumping of blood by the
heart or by inadequate venous return of blood to the heart, such as due
to diminished blood volume (hypovolemia), decreased capillary vasomotion,
or obstructed circulation. Hemorrhage is often the cause of the diminished
blood volume. Figure 8.35 shows that cardiac output and arterial pressure
can withstand a ∼10% blood loss – if this were not so you would not be
able to donate blood – but decrease for larger losses and approach zero with
35–45% blood loss. The localized loss of blood flow to the brain, strokes, is
discussed later. This occurs due to clogged arteries and hemorrhaging. The
localized loss of blood flow to the heart results in a myocardial infarction
(heart attack).

8.2.5 Consequences of Clogged Arteries

Atherosclerosis (a-thear-oh’-scler-oh-sis) occurs when a deposit or atheroma
(a-thear-oh’-ma) (or plaque) forms on an arterial wall (Fig. 8.36). The smaller

Fig. 8.36. Sketch of flow in a clogged artery
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Fig. 8.37. The flow is partially turbulent in clogged arteries. (From [382]. Adapted
from [398]. Courtesy of Robert A. Freitas Jr., Nanomedicine, Vol. 1 (1999), http://
www.nanomedicine.com)

cross-sectional area at this site, because A2/A1 < 1, leads to a faster flow
speed due to continuity of flow, with

u2 =
A1

A2
u1 (8.37)

from (7.16). For A2/A1 = 1/3, we find that u2 = 3u1. Also from Bernoulli’s
equation (7.18) we find that

P2 − P1 =
1
2
ρu2

1

(
1 −

(
A1

A2

)2
)

(8.38)

and so P2 < P1 and for A2/A1 = 1/3 we see that P2 − P1 = −4ρu2
1. This

pressure drop increases with blood speed and so it is expected to increase with
increased physical activity. This flow is not necessary laminar in the occluded
region, as is seen in Fig. 8.37.

In 1954 Arturo Toscanini was conducting the NBC Symphony Orchestra.
(This orchestra was pretty prestigious then, performing on radio and the then-
new television, but it does not exist now.) He was vigorously waving his arms,
as conductors often do, and he fainted. Why? Equation (8.38) contains the
answer and Fig. 8.38 illustrates why. He suffered a transient ischemic attack,
or TIA [387, 399]. Ischemia (iss-kee’-mee-uh) is the local decrease in blood
flow. TIA is the temporary loss of blood to the brain by the “subclavian steal
syndrome.” It results in temporary dizziness, double vision, headache, and
weakness in the limbs. By its nature it is only temporary, but it indicates a
more severe problem.

The left and right carotid arteries are two major arteries supplying blood
to the anterior brain. The left and right vertebral arteries supply blood to the
posterior part of the brain. They branch off from the subclavian arteries that
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Fig. 8.38. Anterior view of the blood flow to the brain with the subclavian steal
syndrome, resulting in a transient ischemic attack. Blood flow in the left vertebral
artery is shown by the unbroken line arrow. Without the constriction, the blood flow
in the right vertebral artery is normal, as shown by the dashed arrow, so there is
normal blood flow to the basilar artery. With the constriction, there can be blood
flow from the left vertebral artery to the right vertebral artery (dotted arrow), and
there is no blood flow into the basilar artery. (Based on [387])

also supply blood to the arms. The internal carotid and vertebral systems join
with each other at the base of the brain, forming the circle of Willis (Fig. 8.39,
also see Fig. 8.43). Posteriorly, the flow in the left and right vertebral arteries
merge to form a single basilar artery to the brain.

Say there is a constriction in the right subclavian artery near where the
vertebral artery branches off (Fig. 8.38). The pressure before the constriction

Fig. 8.39. Circle of Willis in the brain. (From [391])
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and in the same region in the normal right side is P1. Because of the con-
striction, the pressure on the left side is P2 < P1. This difference increases
with faster blood flow. With vigorous motion of the arms, there is a need for
greater blood flow in the subclavian arteries to supply more oxygen to the
skeletal muscle in the shoulder and arms, and the blood speed in these arter-
ies u1 increases. If u1 increases enough, P2 becomes so much smaller than P1

that flow in the left vertebral artery is diverted to the right vertebral artery –
and does not flow to the basilar artery to the brain. When this happened to
Toscanini, he fainted. He stopped waving his hands, of course. Blood flow to
his arms then slowed down. The difference in P1 and P2 decreased to its usual
smaller value (even with this constriction). Blood from both vertebral arteries
then flowed to his basilar artery. His brain started receiving a normal flow of
blood again, and he regained consciousness. All was fine – but this constric-
tion had to be removed. (Toscanini never conducted again. The underlying
reason for his fainting spell was not known in 1954; TIA was first explained in
1961.)

More examples of the effects of obstructions in arteries will be examined
later in this chapter.

8.2.6 Work Done by the Heart and the Metabolic Needs of
the Heart

How much work is done by the heart? Consider the left ventricle, which is a
pump during systole, as diagrammed in Fig. 8.40.

Fig. 8.40. (a) Schematic of the heart left ventricle as a pump, (b) and the pres-
sure and volume of the left ventricle during systolic contraction during systole
(from t1 to t2), showing the work done by the heart (shaded area). (Based on
[367])
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Work is done by this pump, with a force pushing the piston from the initial
to final positions Li to Lf to give

W =
∫ Lf

Li

F dL =
∫ Lf

Li

(F/A)(AdL) =
∫ Vf

Vi

P dV, (8.39)

where the force/area is the pressure, P , and the distance times the area is the
ventricular volume, V . During systole the ventricular pressure increases from
a very low value (that in the left atrium), to Pdiastole ∼ 80 mmHg (at time t1),
and then up to Psystole ∼ 120 mmHg, and it stays at this value until the end of
systole (at time t2). The aortic valve first opens when this pressure rises above
Pdiastole (at t1), and blood is pumped out until systole is over (at t2). At t1,
the volume of pumped blood is Ωi = 0 and at t2 it is Ωf = Vi−Vf . Figure 8.40
shows this evolution of the ventricular pressure and pumped volume from t1
to t2.

The area under this curve is the work done and so W = PavVstroke, where
Pav is average pressure during this cycle (averaged over the volume displaced
and which does not necessarily scale linearly with time, and assuming no
back pressure), and Vstroke = Ωf , the stroke volume. Clearly, Pdiastole < Pav <
Psystole. For a linear variation, we see that Pav = (Pdiastole + Psystole)/2 ∼
100 mmHg = 1.3 × 104 N/m2. (This averaging is different from that in (8.1)
because of the simplicity of this model. This leads to an ∼20% uncertainty.)
We take Vstroke = 80 cm3 = 8 × 10−5 m3, so W = (1.3 × 104 N/m2)(8 ×
10−5 m3) = 1.04 J per cycle. With a heart rate of 60/min = 1/s, the rate
the left ventricle does work is Ppower,mech,av = (1.04 J per cycle)(1 cycle/s) =
1.04 W.

The efficiency, ε, of converting metabolic energy into this mechanical work
is approximately 20% (and sometimes this range is given as 12–30%), and
so the metabolic power needed to run the left ventricle is Ppower,metab,av =
Ppower,mech,av/ε = 5 W.

The heart pumps for about 1/3 of the cardiac cycle and rests for the other
2/3 of the time. Therefore the peak powers are higher than these average
values by a factor of 3, with Ppower,mech,peak = 1.5 W and Ppower,metab,peak =
15 W.

The energy consumed to run the left ventricle is (86,400 s/day)(5 W) =
4.32 × 105 J/day = 104 kcal/day. So far we examined the work done by only
the left ventricle. The right ventricle pumps the same volume per cardiac cycle
(to maintain the steady-state flow throughout), but at a pressure 1/5 times
that of left ventricle, so the work and all of these powers are smaller by a
factor of five. This increases the required metabolic power by 20%. Similarly,
the pressures for the two atria are also relatively very small. Overall, with
20% muscle efficiency we expect to need ∼125 kcal/day to run the heart; with
10% muscle efficiency it would be ∼250 kcal/day.

The experimental value for the BMR contribution for the entire heart
is ∼117 kcal/day (Table 6.17), which is close to our estimate. The biggest
uncertainty here is the efficiency of the cardiac muscle.
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What happens with strenuous exercise? The blood pressure can increase
by 50% and the blood flow rate can increase by a factor of 5. Therefore, the
mechanical power exerted by the heart and the associated metabolic require-
ments can increase by a factor of 7.5.

8.3 Strokes and Aneurysms

Cerebral blood flows from the internal carotid and vertebral arteries and
through the circle of Willis at the base of the brain (Fig. 8.39), and then
permeates the brain through a complex series of capillaries.

Any severe restriction of blood to the brain is called a stroke [391, 393].
Ischemia means there is a lack of blood flow. The nearby tissue becomes defi-
cient in oxygen and metabolites, and has excessive metabolic waste products.
(We saw an example of ischemia earlier this chapter with the Toscanini TIA.
Because TIA is transient, there is an oxygen deficiency due to the stroke
but the patient can still recover with little or no brain damage.) Hypoxia
means a lack of oxygen, and it can result from ischemia or other causes, such
as high altitude (see Chap. 9) or CO poisoning. Infarction means that the
stroke causes permanent brain damage. (The terms ischemia and infarction
are actually more general and also apply to tissues outside the brain, with a
myocardial infarction in the heart as one example.) The transition from the
reversible event to the irreversible infarct with the formation of necrotic tissue
occurs when the stroke is particularly long or of particularly large magnitude.
(Necrotic tissue is dead tissue that did not die in a manner programmed by
the body, which is in contrast to apoptotic tissue which the body kills as part
of the life cycle.) The occurrence of a transient ischemic attack, or ministroke,
sometimes means a more damaging stroke is imminent.

Hemorrhagic strokes are due to a ruptured vasculature (blood vessels)
within the brain, attributed to an aneurysm or weakened blood vessel
(Fig. 8.41). An aneurysm is an enlarged blood vessel. In addition to the loss

Fig. 8.41. Fusiform and saccular/berry aneurysms, the latter in a vessel and for
bifurcated flow
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of blood to the targeted regions, during hemorrhages blood fills the surround-
ing spaces and compresses the surrounding tissues. This accumulating blood
compresses other blood vessels, decreasing their diameters and reducing the
flow of blood to other parts of the brain, and increases the intracranial pres-
sure, which leads to neurological complications. About 20% of all strokes are
hemorrhagic; they occur mostly in the young and middle-aged, due to vas-
cular lesions such as arteriovenous malformations and aneurysms. (Lesions
are entities of diseased or abnormal tissue.) In the elderly, blood vessels are
brittle and less distensible due to atherosclerotic deposits, and this can lead
to possible spontaneous rupture of these vessels in the brain and hemorrhagic
stroke. In atherosclerosis (“hardening of the arteries”) lipid or fatty deposits
in the blood accumulate on the inner vessel wall and eventually form hard
arterial plaques.

During an ischemic stroke there is cessation of blood flow in arteries trans-
porting blood to the brain due to a luminal obstruction or clogging. (As al-
luded to earlier, the lumen is the opening of a blood vessel.) About 80% of all
strokes are ischemic. An embolus is a gaseous (air bubble), particulate matter,
or blood clot that travels within a blood vessel and causes the obstruction of
blood flow. For example, artherosclerotic lesions (in the brain and elsewhere in
the body) cause an irregular inner vessel surface and blood platelet aggrega-
tion due to turbulence, that can produce emboli that are platelet aggregates.
Such emboli can be formed outside the brain, in the heart, lungs, and sys-
temic circulation, and travel to the brain until they reach vessels too small for
further travel; this prevents blood flow to more distal (downstream) regions
in the brain. A thrombus is blood coagulation that can produce a local fibrin
clot; this can also cause an ischemic stroke. (If the thrombus forms and moves
elsewhere, such as to a smaller diameter vessel or a partially occluded vessel,
it is an embolus.)

The majority of cerebral aneurysms are saccular (or berry) aneurysms
that most often occur where large cerebral arteries bifurcate (Figs. 8.42 and
8.43). In fusiform aneurysms there is uniform ballooning of the circumfer-
ence of the vessel walls, instead of in localized regions of the vessels as in
saccular aneurysms; this leads to ellipsoidal or football shaped aneurysms.
(Fusiform means tapering at each end. Here it indicates a cylindrically sym-
metric aneurysm that tapers to the normal vessel at either end, while for the
fusiform muscles in Chap. 5 it indicates a cylindrically symmetric muscle that
tapers to tendons on each end.) Fusiform aneurysms are less common in the
brain than are saccular aneurysms, but are common elsewhere in the body.
The abdominal aortic aneurysm, which develops along the aorta in the ab-
dominal or gut region, is the most common aneurysm found in the body and
is a fusiform aneurysm (Fig. 8.44).

Healthy arteries contain the structural proteins elastin and collagen. Col-
lagen has the larger Young’s modulus (Table 4.2) and is expected to dominate
the elastic properties of arteries. Still, the elastin contributes to the distensi-
bility of the artery. The resistance to stretching at low pressures seems to be
due to the elastin fibers, at normal physiological pressures it is due to elastin



8.3 Strokes and Aneurysms 489

Fig. 8.42. Saccular (berry) aneurysm at an apex of a branching vessel, showing an
angiographic projectional image (top) and a model (bottom). (From [391])

Fig. 8.43. Photograph of an inferior view of an excised human circle of Willis.
Bilateral (i.e., on both sides) saccular aneurysms are seen near the junction between
the internal carotid artery and the circle; the larger lesion (the one on the left side
of the photograph) had ruptured. (From [395])
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Fig. 8.44. Schematic of an abdominal aortic aneurysm, showing an attenuated
media and an intraluminal thrombus. (From [395])

and collagen fibers, and at even higher pressures it is due to collagen. When
the artery wall balloons or sacculates (i.e., it balloons in one circumferential
part of the wall) as the aneurysm develops, the elastin becomes less effective
in maintaining structural integrity of the artery and the collagen takes on
most of the load. (The artery becomes less distensible and this translates to
greater stress for the same strain, thereby accelerating structural fatigue.)
This process accelerates the load on the arterial wall, and leads to rupture.
A possible scenario for the formation and rupture of a saccular aneurysm is
shown in Fig. 8.45. Figure 8.46 shows the equilibrium circumferential tension
for a vessel assuming the Law of Laplace, for a normal artery, and one with
an aneurysm. Figure 7.11 shows that the maximum blood flow velocity is in
the center, where the wall shear stress is minimum. The minimum blood flow
velocity is near the wall, where the wall shear stress is maximum.

Fig. 8.45. A possible natural history for the development of a saccular aneurysm.
A local weakening of the vessel wall, leading to a mild dilatation, can be caused by
an initial “insult” from one of several causes. (From [395])
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Fig. 8.46. Circumferential tension needed for equilibrium as a function of vessel ra-
dius, assuming the Law of Laplace, a normal artery, and an artery with an aneurysm.
(From [391, 392])

There are (at least) four physical reasons why the larger radius of a
fusiform aneurysm can lead to rupture. All are related to the stress rela-
tion T/w = r(ΔP )/w, where w = wall thickness and r is local vessel radius.
(1) r is larger so more tension is needed to withstand even an unchanged
pressure difference (because T = r(ΔP )). (2) This increase in vessel radius
can be accompanied by thinning walls (if the volume of vessel wall per unit
length, ∼ 2πrw, is relatively unchanged by the aneurysm), so the stress T/w
increases even more. (3) With this wall thinning there may be damage that
lowers the UTS locally, and the UTS needs to be �T/w to avoid rupture.
(4) A larger r, and the concomitant larger cross-sectional area A, leads to a
slower blood speed u, through volumetric continuity (7.16). This in turn leads
to a larger pressure P , through Bernoulli’s equation (7.18). This increases the
tension that the vessel must withstand. The magnitudes of several of these
effects are evaluated in Problem 8.32.

8.3.1 Arterial Bifurcations and Saccular Aneurysms

Two of the reasons for the formation of saccular aneurysms are the forces
on the arterial walls caused by the change of momentum (like the fire hose
effect in curving arteries) and shear stress. Figure 8.47 depicts a “parent”
artery with cross-sectional area A1 in which blood flows at an average speed
u1, which divides into two “daughter” vessels at an angle θ to the parent
(and 2θ to each other). (The half-angle is shown as θ2 in the figure.) Each
daughter vessel has cross-sectional area A2 and blood speed u2. The angle
2θ usually ranges from 30 to 120◦ (also see Problems 8.28–8.31). The apex
of the bifurcation (Fig. 8.47) is the site of maximum stress due to the im-
pact, deflection, and separation of the flow, and possible turbulence and vor-
tex formation (Fig. 8.48). Conservation of flow rate Q (volume flow/time)
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Fig. 8.47. Diagram of asymmetric bifurcation in vessel, with bifurcation angle
θ2a +θ2b. For the symmetric bifurcation described in the text the “a” and “b” labels
can be ignored, and the half-angle is called θ. (See Problems 8.28–8.31)

means
Q = u1A1 = 2u2A2. (8.40)

In these vessels, usually 2A2 > A1, so u2 < u1.
How large is the force on the arterial wall at the apex? The linear momen-

tum per unit volume of blood in the parent artery (which we will say is in
the x direction) is ρu1, where ρ is the blood mass density. The momentum
per unit volume carried in each daughter artery is ρu2, of which ρu2 cos θ is
along the x direction. This change in momentum causes a force on the arterial
wall. The force this flow exerts on an imaginary screen across the vessel in
the parent artery is the change of this momentum per unit time, which equals
this linear momentum per unit volume × the flow rate

Fz,parent = ρu1Q. (8.41)

Because the flow rate in each vessel is Q/2 and there are two of them, the
force of the flow in the daughter arteries is

Fz,daughters = 2
ρu2 cos θ Q

2
= ρu2 cos θ Q. (8.42)

The difference of these forces is

Farterial wall = Fz,daughters − Fz,parent

= ρu2 cos θ Q − ρu1Q = ρQ(u2 cos θ − u1) (8.43)

or with (8.40)

Farterial wall = ρQu1

(
A1

2A2
cos θ − 1

)
= ρA1u

2
1

(
A1

2A2
cos θ − 1

)
. (8.44)
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Fig. 8.48. Disturbed flow streamlines for progressively large angle bifurcations at
bifurcations, and approach to steady flow afterward. (From [382], based on (a) [409],
(b) [397], and (c) [398]. Courtesy of Robert A. Freitas Jr., Nanomedicine, Vol. 1
(1999), http://www.nanomedicine.com)
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This has a maximum negative value of −ρQu1 = −ρA1u
2
2 when θ = 90◦

(which is a bit larger than the typical maximum angles). Because pressure is
force/area, if this force is exerted on the vessel wall of cross-sectional area A1,
as in Fig. 8.42, there is a pressure on the arterial wall of

Parterial wall =
ρQu1

A1
=

ρA1u
2
1

A1
= ρu2

1 (8.45)

(which is also the kinetic energy per unit volume). This can lead to the forma-
tion of an aneurysm there. This mechanism of momentum change is the same
as that causing a force on an arterial wall during flow in a curving artery. The
saccular aneurysm gets larger and larger until it ruptures.

The shear stress near the bifurcation apex due to viscosity is another
factor in the formation of a saccular aneurysm. Figure 8.47 shows that
in steady flow the velocity is small near the walls and the velocity gradi-
ent and consequently the shear stress is large near the walls. After bifurcation
and momentum transfer to the apex, the blood velocity, velocity gradient, and
shear are larger near the vessel walls after the apex. The shear stress is large,
until the flow pattern rearranges to give (7.40) (Fig. 7.11). This is also seen in
Fig. 8.48 for bifurcations at increasingly large angles. Equation (7.41) can be
used to estimate the distance from the apex for steady-state flow. Note that
the Law of Laplace for spheres applies to saccular aneurysms.

8.3.2 Stenosis and Ischemic Strokes

Strokes can also occur by stenosis (narrowing or closure of lumens) or occlu-
sions (closures or obstructions) (Fig. 8.49). They are most commonly due to
artherosclerotic lesions. Such lesions are irregularly distributed masses of calci-
fied fatty deposits that narrow the arterial lumen. If the normal inner diameter
of the vessel is dnorm and the minimum diameter due to the stenotic lesion
is dsten, then the % stenosis is defined as: ((dnorm − dsten)/dnorm) × 100%.
They are characterized as being mild (1–39%), moderate (40–59%), severe
(60–79%), critical (80–99%), and occluded (100%). Poiseuille’s Law (7.24)
shows that the flow decreases with decreasing lumen diameter for a given ini-
tial pressure. Flow decreases dramatically above the onset of critical stenosis,
and the pressure drop across the stenosis increases, resulting in a need for a
greater blood pressure to maintain the same flow rate.

This calcified lesion stiffens the vessel and abruptly changes the flow pat-
tern as the blood flows from an elastic, distensible region of a vessel to this
rigid and narrower region and back to a distensible vessel. Overall blood flow
is slower because of the stenosis (unless the pressure increases), which can
lead to clotting. The resulting clot (or thrombus) does not adhere well to
the vessel wall and can move to elsewhere in the flow stream and this em-
bolus can lead to a stroke. Within the stenosis itself, the blood flow is faster
than just before it, from Bernoulli’s Principle. This increased blood flow has
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Fig. 8.49. Clogging of arteries by plaque. A schematic of the atherosclerosis is
shown, along with some of the preferred sites of atherosclerosis in the vasculature
(blood vessels). (From [395])

several negative consequences. As this increased kinetic energy (per unit vol-
ume) in the stenotic region decreases in the poststenotic normal vessel (due to
Bernoulli’s Principle), there can be structural fatigue in this latter region lead-
ing to distention and this possible dilatation can lead to a fusiform aneurysm.
The increased stenotic flow speed and irregular geometry can increase the
Reynolds number, resulting in turbulent flow and the eventual disengaging
of arterial plaque, which then becomes a particulate embolus. The increased
speed also leads to higher shear stresses on the lesion.

8.3.3 Equation of Motion of Arteries and Aneurysms during
Pulsatile Flow (Advanced Topic)

For steady flow, the tension in the arterial wall balances the pressure difference
inside and outside the artery, as described by the Law of Laplace. Because the
pressure inside the artery really varies within every cycle (during the arterial
pulse), this balance needs to be evaluated to account for these cyclic pressure
variations. Let us model a saccular aneurysm as a sphere of radius R, with a
thin wall of thickness w. (We could similarly model a fusiform aneurysm as a
cylinder of radius R.)

If the change in radius due to this time-varying pressure is r, then the cir-
cumference of the sphere changes from 2πR to 2π(R+ r). The circumferential
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strain ε is (2π(R + r)− 2πR)/2πR = r/R, and the circumferential stress σ is
related to this strain by

σ = Y ε = Y
r(t)
R

. (8.46)

The response of the arterial wall has a component that balances the average
pressure Pav – which is a time-weighted average of the systolic and diastolic
pressures for larger arteries – and a time varying component – due to the
pulse Ppulse(t) = Pp cos ωpt, where Pp is a time-weighted difference of the
systolic and diastolic pressures for larger arteries and ωp is the pulse (radial)
frequency. This time-varying pressure is P (t) = Pss + Pp cos ωpt.

The inertial response force ma, per unit area on the sphere is the mass
per unit area of the spherical shell, ρw, where ρ is the mass density, times the
radial acceleration, d2r/dt2, or ρw d2r/dt2. The hydrostatic pressure term
P (t) tends to increase the radius, while the stress due to the wall resists this
change, so the inertial response is

ρw
d2rp (t)

dt2
= Pav + Pp cos ωpt − Y

r(t)
R

(8.47)

because d2rav/dt2 = 0.
The perturbation r(t) has a component in response to the average pressure

Pav and a time-varying part in response to the pulse pressure Pp cos ωpt.
Substituting r(t) = rav + rp(t) into (8.47), we get

ρw
d2rp (t)

dt2
= Pav + Pp cos ωpt − Y

rav + rp(t)
R

. (8.48)

Equating the time-varying terms to give one equation and the average terms
to give another leads to

ρw
d2rp (t)

dt2
= Pp cos ωpt − Y

rp(t)
R

(8.49)

and

0 = Pav − Y
rav

R
. (8.50)

Equation (8.50) is related to the Law of Laplace for a sphere (7.9) (ΔP =
2T/R). Equation (8.49) can be rewritten as

d2rp (t)
dt2

+ ω2
0rp(t) =

Pp

ρw
cos ωpt, (8.51)

where ω2
0 = Y/Rρw. This looks like the equation of motion for a simple

harmonic oscillator of frequency ω0 plus an extra term (the last one), which
is due to the pulse driving force at frequency ωp. The steady-state solution to
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this equation is

rp(t) =
Pp/ρw

ω2
0 − ω2

p

cos(ωpt), (8.52)

which can be verified by substitution (see Appendix C). If rp is large, it could
lead to rupture. In principle, rp can become larger as the aneurysm develops
because Y , R, ρ, or w change (in ω2

0 = Y/Rρw). Without the driving term
(Pp = 0), the solution is the usual harmonic solution: rp(t) = A cos(ω0t + φ).

If ω0 were to approach ωp, (8.52) indicates that the change in radius would
become very large because of this resonance. If this were to occur (and it does
in some examples of driven oscillators but it really does not for aneurysms), the
viscous (or damping) properties of the vessel wall would have to be included
through a term −γ drp/dt, leading to the new equation of motion

d2rp (t)
dt2

+ γ
drp (t)

dt
+ ω2

0rp(t) =
Pp

ρw
cos ωpt (8.53)

with steady-state solution

rp(t) =

(
ω2

0 − ω2
p

)
Pp/ρw

(
ω2

0 − ω2
p

)2 + (γωp)2
cos(ωpt). (8.54)

(See Appendix C.) This now includes the viscoelastic properties of the arterial
wall, which dampens the resonance a bit.

Far above the ω0 � ωp resonance (with ω0 � ωp), (8.52) and (8.54) give

rp(t) � Pp

ρwω2
0

cos(ωpt). (8.55)

Without the driving term (Pp = 0), the solution is that of a damped
harmonic oscillator: rp(t) = A exp(−γt/2) cos(ω0t + φ), for ω0 � γ. This har-
monic oscillation damps in a time ∼1/γ, which corresponds to about ω0/(2πγ)
cycles; this last number is often called the quality factor Q of the system, as is
discussed in the Chap. 10 discussion of acoustic resonances and in Appendices
C and D.

8.4 Modeling the Circulatory System and the Heart

The branching in the circulatory system is very complex. Still, there is an
orderly transition from larger to smaller arteries and then from smaller to
larger veins, and so we can imagine an overall model of the circulation with
all arteries or veins of a given diameter combining to form a subsystem. We
have seen that larger vessels can be modeled quite well as ideal compliance
vessels, while smaller vessels can be modeled as resistance vessels. We will now
use these models to develop a comprehensive model of circulation, which can
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handle steady-state flow and changes that depend on time, like the arterial
pulse. It can be used to understand the control of circulation. For a complete
circulation model, we need to include the action of the heart, which is really
two separate pumps: the right heart for the pulmonary system and the left
heart for the systemic system. We first develop static and dynamic models of
the left and right hearts.

8.4.1 Model of the Heart

Let us consider the left ventricle, which is the major pump in the left heart;
the treatment of the right heart is analogous. During systole, the mitral valve
is closed and the aortic valve is open. The pressure that develops is essentially
that in the systemic arteries (sa) Psa because of the very small pressure drop.
During diastole the aortic valve is closed and the mitral valve is open. The left
ventricle receives blood from the left atrium at a pressure that is pretty low,
and is essentially equal to that in the pulmonary veins (pv), Ppv ∼ 5 mmHg,
that feeds the left atrium.

Static Model of the Ventricles

We will model the left (or right) ventricle as a hemispherical shell, with an
inner radius ri and outer radius ro, with a very thick wall of thickness ro − ri.
Assume the open side is facing upward, as in Fig. 8.50. The (gauge) pressure
inside Pi pushes the ventricle down and reaches a maximum during systole of
120 mmHg. The pressure outside (acting on the round bottom surface) Po is
from the pericardium and pushes the ventricle up and is approximately the
pleural pressure, which can be negative (i.e., less than an atmosphere). The
circumferential wall stress σ acts vertically and pushes the ventricle up. These
arguments are the same as those for the Law of Laplace for a sphere (7.9),
except we are now assuming the wall has finite thickness.

Fig. 8.50. Model of the left ventricle. (Based on [405])
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Force balance in the vertical direction gives

(πr2
i )Pi = (πr2

o)Po +
(
π(r2

o − r2
i )

)
σ (8.56)

and so the circumferential wall stress is

σ =
Pir

2
i − Por

2
o

r2
o − r2

i

. (8.57)

The first two terms in (8.56) are not just the surface areas of the respective
areas, 2πr2

i,o, times the hydrostatic pressure, Pi,o, but half of that, because
only part of the force due to the pressure is in the vertical direction (as in the
Law or Laplace for spheres and Problem 7.12). Because Pi � Po

σ � Pi

(ro/ri)
2 − 1

. (8.58)

Because the material in the heart wall is incompressible, the volume of
the heart wall Vwall does not change with pressure. From the difference of the
volumes of the outer and inner hemispherical shells, we know that Vwall =
2π(r3

o − r3
i )/3 and so (ro/ri)

2 = (1 + Vwall/Vi)2/3, where the inner volume of
the left ventricle is Vi = 2πr3

i /3. Therefore we see

σ � Pi

(1 + Vwall/Vi)2/3 − 1
. (8.59)

Using the expansion (1 + x)n � 1 + nx for | x |� 1 and the fact that the
internal volume of the left ventricle is much larger than the volume of the
heart wall, we find

σ � 3Vi

2Vwall
Pi. (8.60)

This shows how excessive systolic pressure or the enlargement of the left ven-
tricle (and of the heart) will lead to excessive cardiac wall stress (for a constant
wall thickness).

Dynamic Model of the Ventricles

We will now model a ventricle as a compliance vessel with a compliance that
changes with time [394], so we use (8.5)

V (t) = Vd + C(t)P (t). (8.61)

(We will simply call the flow resistance Rflow and compliance Cflow, respec-
tively R and C in this section.) Figure 8.51 shows how the compliance of
the ventricle changes during a cardiac cycle. During systole the compliance
becomes low, which causes a high pressure to develop because the volume
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Fig. 8.51. Changes in ventricle compliance during the cardiac cycle, from a small
value while it is contracting during systole to a large value when it is relaxing during
diastole. (From [394])

remains pretty constant. In diastole the ventricle relaxes, which is associated
with a large compliance that induces a low pressure.

The changes of volume and pressure in the ventricle during a cardiac cy-
cle are modeled in Fig. 8.52. Stage A is when the inflow valve (which is the
mitral valve for the LV) closes, which marks the end of diastole (ED) and the
beginning of systole. The ventricle volume is a maximum

VED = Vd + CdiastolePpv. (8.62)

Fig. 8.52. Cycle of pressure and volume in either ventricle is given by the ABCD
rectangle in this simplified model. The slanting lines radiating from the dead volume
are the ventricle pressure–volume relationships at the end of systole and diastole.
(Similar slanting lines with different slopes (not shown) characterize the ventricle
at other times.) The venous pressure is the same as the inflow atrial and venous
pressures during diastole. The arterial pressure is the outflow ventricle pressure
during systole. (From [394])
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During systole, the compliance decreases isovolumetrically, so the pressure
increases. At Stage B, the outflow valve (which is the aortic valve for the
LV) opens; the pressure remains constant as blood leaves the ventricle and
concomitantly the volume of the ventricle decreases. Stage C is when the
outflow valve closes, which marks the end of systole (ES) and the beginning
of diastole. The ventricle volume is a minimum:

VES = Vd + CsystolePsa. (8.63)

During diastole, the compliance increases isovolumetrically, so the pressure de-
creases. At Stage D, the inflow valve opens; the pressure then remains constant
as blood enters the ventricle and concomitantly the volume of the ventricle
increases – until the end of diastole is reached, Stage A again.

The stroke volume is

Vstroke = VED − VES = CdiastolePpv − CsystolePsa. (8.64)

Because Csystole ∼ 0, we can take

Vstroke = CdiastolePpv. (8.65)

With a heart rate F , the volumetric flow is

Q = FVstroke = FCdiastolePpv. (8.66)

Calling K = FCdiastole the pump coefficient, we can model the left ventricle
by

QL = KLPpv. (8.67)

Analogously for the right heart, the right ventricle, which is fed by the systemic
veins (sv), is modeled by

QR = KRPsv. (8.68)

8.4.2 Model of the Overall Flow in the Circulatory System

We will model the eight subsystems shown in Fig. 8.53, two hearts (L and R),
large arteries in the systemic and pulmonary systems (sa and pa), large veins
in the systemic and pulmonary systems (sv and pv), and the small vessels
(arterioles/capillaries/venules) in the systemic and pulmonary systems [394].
Blood flows from the left ventricle successively through the systemic large
arteries, small vessels, and large veins, and to the right ventricle. Then blood
goes from the right ventricle successively through the pulmonary large arteries,
small vessels, and large veins, and to the left ventricle.

The flows through the ventricles are determined by the pressures in the
veins feeding them (through the atria)

QL = KLPpv and QR = KRPsv. (8.69)
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Fig. 8.53. The eight subsystems in systemic and pulmonary flow, with their model
equations. (From [394])

The volumes in the large arteries are determined by their compliances and
the pressures within them

Vsa = CsaPsa and Vpa = CpaPpa, (8.70)

as are the volumes of the veins

Vsv = CsvPsv and Vpv = CpvPpv. (8.71)

(A more refined model would include the dead volume in these large vessels.)
The pressure drop across the small vessels is the difference in pressure between
the large arteries and large veins. For the respective systemic and pulmonary
systems, the pressure drop is determined by their resistances (Rs and Rp) and
the flows through them (Qs and Qp)

Psa − Psv = RsQs and Ppa − Ppv = RpQp. (8.72)

We see a symmetry here. There are three types of variables, the flow Q,
volume V , and pressure P . Each subsystem depends on relations between two
of them: Q and P for the ventricles, V and P for the large vessels, and P and
Q for the small vessels.

There are 12 unknowns: four flows: QR, QL, Qs, Qp; four pressures: Psa,
Psv, Ppa, Ppv; and four volumes: Vsa, Vsv, Vpa, Vpv. We need 12 equations to
solve for these 12 unknowns, but have only eight here and need four more.
However, for steady-state flow, the flow in each region is the same, so QR =
QL = Qs = Qp. These are really the three independent equations

QR = QL, QR = Qs, and QR = Qp, (8.73)
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with each flow rate equal to Q. The fourth equation describes the constant
total volume and is

V0 = Vsa + Vsv + Vpa + Vpv. (8.74)

We can now solve these equations. From the pump (8.67) and (8.68), the
venous pressures are

Psv =
Q

KR
and Ppv =

Q

KL
. (8.75)

Inserting these venous pressures into the resistance (8.72) gives

Psa =
Q

KR
+ RsQ and Ppa =

Q

KL
+ RpQ. (8.76)

Inserting these venous and arterial pressures into the compliance (8.70) and
(8.71) gives

Vsa = QCsa

(
1

KR
+ Rs

)
and Vpa = QCpa

(
1

KL
+ Rp

)
(8.77)

Vsv = QCsv

(
1

KR

)
and Vpv = QCpv

(
1

KL

)
. (8.78)

These can be expressed as

Vi = TiQ for i = sv,pv, sa,pa, (8.79)

with

Tsa = Csa

(
1

KR
+ Rs

)
and Tpa = Cpa

(
1

KL
+ Rp

)
(8.80)

Tsv = Csv

(
1

KR

)
and Tpv = Cpv

(
1

KL

)
. (8.81)

Inserting these equations in (8.74) for the total blood volume gives

V0 = Vsa + Vsv + Vpa + Vpv (8.82)
= Q(Tsa + Tsv + Tpa + Tpv) (8.83)

or

Q =
V0

Tsa + Tsv + Tpa + Tpv
. (8.84)

All the volumes are obtained from this and (8.79)

Vi =
TiV0

Tsa + Tsv + Tpa + Tpv
(8.85)

and all of the pressures from Pi = Vi/Ci (from (8.70) and (8.71))

Pi =
1
Ci

TiV0

Tsa + Tsv + Tpa + Tpv
. (8.86)

With known values of the flow rate and the total volume, the model pa-
rameters can be determined – see Table 8.7.
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Table 8.7. Normal resting parameters of the circulation model. (Using data from
[394])

systemic system pulmonary system

resistance, mmHg/(L/min) Rs = 17.5 Rp = 1.79
compliance, L/mmHg
arterial Csa = 0.01 Cpa = 0.00667
venous Csv = 1.75 Cpv = 0.08
heart KL = 1.12 KR = 2.8

total volume: V0 = 5.0 L

8.4.3 The Arterial Pulse

This model is capable of analyzing much more than just this idealized average
flow. We can use it to understand the arterial pulse, which is the periodic
deviation of the systemic arterial pressure from the diastolic value due to
systole (Fig. 8.54). This pulse pressure is

Ppulse = Psystole − Pdiastole, (8.87)

which is ∼40 mmHg (= 120 mmHg − 80 mmHg). These steady-state assump-
tions we just made are no longer appropriate here for this pulsatile flow.

Consider the systemic artery system, which has volume Vsa and pressure
Psa. As a compliance vessel its volume can change, and it will change when the
flow into it does not equal to the flow leaving it (Fig. 8.55). The flow into it is
that from the left heart QL and the flow out of it goes into the (noncompliant)
small vessel system, which has flow Qs. Conservation of volume gives

dVsa(t)
dt

= QL(t) − Qs(t). (8.88)

Fig. 8.54. The systemic arterial pulse. Also see the aortic pressure in Fig. 8.5. (From
[394])
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Fig. 8.55. During pulsatile flow, the change of arterial volume is equal to the
volumetric inflow minus the outflow, as required by the conservation of volume
(mass). (From [394])

For this compliance vessel we know that

Vsa(t) = Vsa,d + CsaPsa(t), (8.89)

where we have now included the dead volume. Differentiating this equation
with respect to time and combining it with the previous equation gives

dVsa(t)
dt

= Csa
dPsa(t)

dt
= QL(t) − Qs(t). (8.90)

Using (8.72) gives

RsQs = Psa − Psv ∼ Psa (8.91)

since Psv � Psa. Therefore we arrive at

Csa
dPsa(t)

dt
= QL(t) − Psa

Rs
. (8.92)

This determines the time dependence of the systemic artery pressure, and
consequently the arterial pulse, if the flow rate out of the left ventricle is
known.

We will assume that systole occurs very fast (for a very small fraction of
the cardiac cycle of duration T , with T = 1/F ) with a very large QL(t) for
t ∼ 0, and that it is zero for the rest of the cardiac cycle. This idealized model
is amenable to simple analysis. Although it is not very accurate, some of the
features it predicts are accurate.

When QL(t) = 0, (8.92) is

Csa
dPsa(t)

dt
= −Psa

Rs
(8.93)

or

dPsa(t)
dt

= − Psa

RsCsa
= −Psa

τ
, (8.94)

where τ = RsCsa. Therefore

Psa(t) = Psa(0) exp(−t/τ), (8.95)
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Fig. 8.56. Systemic arterial pulse from idealized model. (From [394])

as is depicted in Fig. 8.56 (see Appendix C). In this model, at the start of the
cardiac cycle Psa(0) = Psystole and at the end of the cardiac cycle Psa(T ) =
Pdiastole = Psystole exp(−T/τ). The pressure of the arterial pulse is Ppulse =
Psystole − Pdiastole.

We can determine these pressures in terms of the stroke volume using
(8.62)–(8.64) and (8.70)

Vsa(0) = Vsa,d + CsaPsa(0) (8.96)

Vsa(T ) = Vsa,d + CsaPsa(T ). (8.97)

The difference is the stroke volume

Vstroke = Vsa(0) − Vsa(T ) = Csa(Psa(0) − Psa(T ))
= CsaPsa(0)[1 − exp(−T/τ)]. (8.98)

Consequently, we find

Psystole = Psa(0) =
Vstroke

Csa[1 − exp(−T/τ)]
(8.99)

Pdiastole = Psa(T ) =
Vstroke exp(−T/τ)

Csa[1 − exp(−T/τ)]
. (8.100)

With (8.87) we see

Ppulse = Psystole − Pdiastole =
Vstroke

Csa
(8.101)

and so Psystole, Pdiastole, Vstroke, the heart rate 1/T , Csa, and Rs (= τ/Csa)
are all interrelated.

Let us consider a numerical example. For Vstroke = 70 cm3 = 0.070 L and
Ppulse = 40 mmHg, (8.98) gives Csa = Vstroke/Ppulse = 0.00175 L/mmHg.
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Using Rs from Table 8.7 of 17.5 mmHg/(L/min), we know that τ = RsCsa =
0.0306 min. With T = 1/80 min = 0.0125 min, (8.99) and (8.100) give the
last remaining parameter, which could be either Psystole or Pdiastole, be-
cause they are related by Ppulse = Psystole − Pdiastole. From (8.101), we
get Psystole = 120 mmHg. As expected from self-consistency, Pdiastole =
Psystole exp(−T/τ) = 120 mmHg × exp(−0.0125 min/(−0.0306 min)) =
80 mmHg.

A better model for the arterial pulse is described in Problem 8.49, in which
the flow of blood from the left ventricle to the systemic arteries occurs with a
finite (nonzero) duration in the cardiac cycle. It gives predictions that agree
with Fig. 8.54 better than do those in Fig. 8.56. Even this improved model
does not explain the small increase in pressure just after systole that is seen
in Figs. 8.5 and 8.54, which is known as the “incisura” or “dicrotic notch.”
When the semilunar valve closes, some backward flowing blood bounces off
the elastic aorta walls, setting up a pressure wave in the aorta; this pressure
blip can be included with even more refinement in the model.

8.4.4 Windkessel Model

This simplified model of the arterial pulse is also known as the Windkessel
Model [370], which was the first real model of blood flow. In this model blood
flows from the left ventricle at a rate Qin(t) into an elastic chamber of compli-
ance C (i.e., the larger arteries) of volume V (t) and leaves it at a rate Qout(t)
to enter a resistive element of resistance Rp (peripheral resistance of the ar-
terioles and capillaries). It assumes that all pressure changes in the arteries
occur at the same time. Because conservation of volume for an incompressible
fluid gives

Qin(t) =
dV (t)

dt
+ Qout(t), (8.102)

with C = dV (t)/dP (t) (8.61) and Qout(t) = P (t)/Rp (8.72), (8.102) becomes

Qin(t) = C
dP (t)

dt
+

P (t)
Rp

. (8.103)

The formal solution to this is

P (t) = exp(−(t/τ))
(

P (0) +
1
C

∫ t

0

exp(t′/τ)Qin(t′)dt′
)

, (8.104)

where τ = RpC. This can be shown to be the solution by substitution and by
the method shown in Appendix C. Still it is simple and instructive to examine
what happens after ventricular ejection, starting at t = 0 when Qin(t) = 0
and P = P (0), until the next cycle starts at t = T . Then

dP (t)
dt

+
P (t)
RpC

= 0 for 0 < t < T. (8.105)
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Fig. 8.57. Electrical analogs of the (a) classic or elastic Windkessel Model (W2),
(b) three-element (or improved) Windkessel Model (W3), and (c) viscoelastic Wind-
kessel Model (VW). The electrical resistances represent flow resistances and the
electrical capacitances represent flow compliances. (See Appendix D)

The solution is

P (t) = P (0) exp(−(t/τ)) for 0 < t < T, (8.106)

which is the same as (8.95) (see Appendix C).
This two-element classic Windkessel Model is formally equivalent to the

electrical circuit, where the electrical resistance Relect maps into the flow resis-
tance in the capillaries and the electrical capacitance Celect maps into the flow
compliance (Table D.1, Appendix D). (This is how the model is expressed in
Fig. 8.57a.) The voltage Velect in the electrical model corresponds to the pres-
sure P in the flow model and the current I corresponds to the volumetric flow
rate Q. Ohm’s Law relates Velect and I across the resistor by Velect = IRelect.
The voltage across the capacitor is Velect = q/Celect, where the charge on the
capacitor is q. The voltages across both elements sum to zero (Kirchhoff’s
2nd Law, Chap. 12), so IRelect + q/Celect = 0. Because I = dq/dt, we have
(dq/dt)Relect + q/Celect = 0 or with Velect = q/Celect

dVelect

dt
+

Velect

RelectCelect
= 0. (8.107)

The two-element Windkessel Model can be refined by adding more ele-
ments to the electrical analog. The three-element Windkessel Model shown in
Fig. 8.57b predicts a more realistic arterial pulse. The vascular resistance Ra

of the aorta is added in series, and the value of the resistance in parallel is now
Rb, which equals Rp−Ra. The viscoelastic Windkessel Model (Fig. 8.57c) rep-
resents a different type of improvement of the two-element Windkessel Model.
The compliant arterial systems are represented by a capacitance (in the elec-
trical analog of flow compliance) that is in series with a resistor Rd, which
represents the viscous wall motion to more fully represent the viscoelasticity
of the aorta.
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Fig. 8.58. Left ventricular performance (Frank–Starling) curves relate cardiac per-
formance to preconditions (preloading), such as the pressure or volume of the left
ventricle after diastole. (Based on [380])

8.4.5 Modeling the Malfunctioning Heart

There are many ways a heart can malfunction [402]. These conditions can be
characterized quantitatively and, in principle, can be included in our models
of the heart and circulation. Cardiac performance can be characterized by
several parameters, such as the stroke volume Vstroke and cardiac output Qt =
FVstroke, described earlier.

Figure 8.58 shows cardiac performance as a function of the conditions
at the end of diastole in the left ventricle. The middle curve describes the
operation of that person’s heart, and point a represents that normal person
at rest. After heart failure, such as after a myocardial infarction, the curve
shifts down due to lessened left ventricle contractility. Point b represents the
person described by point a after heart failure. Increased circulatory volume
in this person is represented by point c. The stroke volume is increased due to
increased contractility in the uppermost curve, perhaps caused by the infusion
of the drug norepinephrine.

The solid line pressure–volume loops in Fig. 8.59 represent normal heart
function, and are more accurate representations than the simplified rectangu-
lar one depicted in our model in Fig. 8.52. In systolic dysfunction, the systolic
curve shifts from 1 to 2 in (a) due to decreased cardiac contractility. As seen
in the dashed loop, the volume at the end of systole increases. In diastolic dys-
function, the diastolic curve shifts from 1 to 2 in (b) due to increased stiffness
(decreased compliance). As seen by the dashed loop, the ventricular pressure
is higher than normal at any diastolic volume.

Several series of problems occur when there is leakage between heart cham-
bers. In valvular regurgitation there is backflow through one of the heart
valves, such as mitral regurgitation and aortic regurgitation in the left heart
valves. The regurgitant fraction for mitral regurgitation is the volume of blood
flowing back through the mitral valve divided by the left ventricle stroke
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Fig. 8.59. Pressure–volume curves for the left ventricle for normal performance
(solid loop), systolic dysfunction (dashed loop in (a)), and diastolic dysfunction
(dashed loop in (b)). (Based on [380])

volume. There can also be openings in the septum between the atria or
the ventricles, called a septal defect [374]. For example, a ventricular sep-
tal defect is a congenital condition in which there is an opening between
the left and right ventricles (Fig. 8.60). During systole blood flows from the
left to right ventricle because of the higher pressure in the former. This
leads to increased blood return to the left side of the heart which causes
the left atrium and ventricle to enlarge. The ejection fraction (EF) is the
stroke volume divided by the ventricular volume at the end of diastole (when
the ventricle is full). It is normally 55–75%, but can be less with a septal
defect.

Fig. 8.60. With a ventricular septal valve defect blood flows from the left to right
ventricle. (Based on [374])
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8.5 Summary

The flow of blood in the vessels of the circulation system can be modeled using
the resistive and compliant nature of the flow. This can be combined with a
model of the heart to understand the flow in the entire circulation system.
These models can also be used to understand the physical consequences of a
malfunctioning heart and problems in the circulation system, such as clogged
and weakened arteries, that can lead to strokes and aneurysms. The energy
needed to operate the heart can also be modeled.

Problems

Blood Pressure

8.1. (a) The brain in a human is 55 cm above the heart. If the average blood
pressure in the major arteries near the heart is 100 mmHg, what is the blood
pressure in major arteries in the brain (in both mmHg and cmH2O) when a
person is either lying down or standing up.
(b) Repeat part (a) for an erect human on the moon (g = gEarth/6) and on
Jupiter (g = 2.34gEarth).
(c) A pilot coming out of a dive experiences an upward centripetal acceleration
a of magnitude v2/r, where v is the speed of the jet and r is the radius of
curvature of the trajectory, that adds to gravity (effectively increasing g to
g + a). What is the arterial pressure in the pilot’s brain for v = 200 m/s and
r = 2 km? What could happen to the pilot during this recovery from the
dive? Would you expect dizziness because of a lack of blood to the head? (See
Fig. 8.61.)
(d) What must the pressure in the aorta in a giraffe be (on Earth) for its brain
to receive blood? (How can you estimate the elevation of its brain above its
aorta?)

8.2. In Problem 8.1d we saw that the pressure of the blood leaving the heart
of a giraffe and entering its systemic system must be much larger than that
for humans because of its long neck.

Fig. 8.61. Trajectory of a pilot coming out of a dive, with the acceleration and
velocity vectors shown for the low point of the dive. For Problem 8.1. (From [367])
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(a) Would a blood pressure of 280 mmHg/180 mmHg account for pumping the
blood up this long neck in large arteries and then for the pressure drop that
occurs in the very small arteries in the brain?
(b) The giraffe has this relatively high blood pressure because of this long
neck, which is usually nearly vertical. However, we could expect that there
would be a rush of blood to the brain because of this high pressure when the
giraffe lowers its head by almost 7 m when it bends down to drink water, and
that this could lead to rupture of the arteries in the brain. Why?
(c) This artery rupturing does not occur because of compensating effects.
Explain this by considering the following (i) The elastic walls of the long
giraffe carotid artery help force blood upward (which is a peristaltic action),
and this also means that this artery can swell to absorb excess blood when
the head is lowered because it is very compliant. (ii) The giraffe jugular vein
contains a series of one-way valves that prevent back-flow of the blood when
the giraffe’s head is down.

8.3. When you stand on your head, why does your head become red and why
do your legs become pale?

8.4. Why is blood pressure measured using major arteries in the upper arm,
rather than those in the lower arm or leg?

8.5. You are told that your blood pressure is 880 mmHg/840 mmHg. You are
quite understandably concerned because these values are astronomically high,
but you are told not to worry because your blood pressure is normal. Should
you be concerned?

8.6. (a) An intravenous infusion is made under gravity. If the fluid to be
delivered has a density of 1.0 g/cm3, at what height above the vein, h, should
the top surface of the fluid in the bottle be positioned so the fluid just barely
enters the vein? The gauge pressure in the vein is 18 mmHg. (Assume the
needle entering the vein has a “large” inside diameter.) (See Fig. 8.62.)
(b) If this needle has a “very small” inside diameter, should the bottle be
placed higher, lower, or at the same height? Why?
(c) Why are such infusions performed intravenously and not intra-arterially?

Fig. 8.62. Intravenous infusion under gravity. (Based on [387].) For Problem 8.6
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8.7. You are lying down and are injured in such a way that blood from a
major artery squirts upward. How high can it spurt?

8.8. Twirl one arm around as fast as you can many times until you see your
fingers on that arm turn red. (Continue even if you do not see them getting
redder.) [365]
(a) Estimate the centrifugal acceleration at the end of your finger tips,
v2
radial/r = v2

radial/larm, where larm is your arm length (to your fingertips)
and vradial is the radial speed of your finger tips. (Why is vradial = 2πlarm/T ,
where T is the period for a complete cycle of this motion?)
(b) Express this acceleration in units of g.
(c) Calculate the effective pressure pushing your blood to your fingers by this
motion. This is the apparent outward force divided by the cross-sectional area
of your fingers, Afingers, or (mfingersv

2
radial/larm)/Afingers. Because mfingers =

ρfingerslfingersAfingers, this pressure is ρfingersv
2
radial(lfingers/larm).

(d) Compare this to the systolic pressure 120 mmHg and explain why your
fingers (could have or should have) turned red.

Blood Pressure Drop During Flow

8.9. Calculate the pressure drop (in mmHg) across the following arterial sys-
tems using Poiseuille’s Law with ηblood = 4 × 10−3 Pa-s, for a total flow of
80 cm3/s across each system:
(a) aorta (internal radius r = 1.25 cm, length L = 10 cm, all of the flow in this
one aorta)
(b) large arteries (r = 0.2 cm, L = 75 cm, n = 200 of them, each with equal
flow and the same dimensions)
(c) arterioles (r = 30 μm, L = 0.6 cm, n = 5 × 105)
(d) capillaries (r = 3.5 μm, L = 2 mm, n = 1010).

8.10. In estimating pressure drops across the different arterial branches we
assumed specific numbers of arteries of given diameters and lengths. There is
really a wide range of arterial diameters and lengths. How does this affect the
pressure drops in the systemic arterial system?

8.11. In estimating pressure drops across the arterioles we assumed a specific
number of arterioles with the same diameter and length.
(a) Let us say that all arterioles have the same radius, but their lengths (in-
stead of all being L) range between 0.8L and 1.2L (with equal probability
throughout). How does this change the overall resistance of the arteriole sys-
tem?
(b) Let us say that all arterioles have the same length, but their radii (instead
of all being r) range between 0.8r and 1.2r (with equal probability through-
out). How does this change the overall resistance of the arteriole system?
(c) The pressure drop across each arteriole in the system must be the same
because each is fed by the large arteries, whose pressure is set by the left
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ventricle, and by the arterial side of the capillaries, whose pressure is also set.
If the overall pressure drop across the arterioles is unchanged (by the changes
in (a) or (b)), how is the overall flow rate in the arteriole system changed and
what is the flow in each arteriole, for the situations alternately described in
(a) and (b).
(d) If you wanted the flow rate to stay the same in each arteriole in (a) and
(b) for the given distributions of lengths and radii, how would you have to
change the distributions of radii and lengths in each, respectively?

8.12. Find the pressure drop across the arterioles in Problem 8.9c, if – with
the same total flow in both cases – and either
(a) all the arterioles become clogged in such a way that their radii decrease
to 28 μm or
(b) the number of the arterioles decreases to 4 × 105.
(c) By how much would the pressure in the main arteries need to change if
the body responded to either change by maintaining the same flow rate?

8.13. Assume that the diameter of each blood vessel in a person is doubled
and the total volumetric flow rate is not changed.
(a) What is the new total volume of blood? (Assume the base line parameters
in the chapter.)
(b) What is the new circulation time for blood (total blood volume/total
volumetric flow rate)?
(c) How do the resistances of the arterioles and capillaries change?
(d) How does the pressure drops across the arterioles and capillaries change?
(e) How does the work done by the heart change?

8.14. Repeat Problem 8.13 if instead the length of each blood vessel is
doubled.

8.15. The length of a blood vessel is doubled and its diameter is doubled.
(a) How does the flow resistance change?
(b) If the flow through it is unchanged, how does the pressure drop change?
(c) How does the flow through it change if instead the pressure drop is un-
changed?

8.16. Your internal body temperature increases from 37 to 40◦C. Assuming
that the only thing that changes is the viscosity of blood, how must the blood
pressure change to ensure the flow rate remains unchanged?

8.17. Use (8.29) to relate P (L) to P (0) and other flow terms.

8.18. (a) Estimate how much the flow is changed in small arteries by including
the influence of compliance by using (8.29) and assuming the same pressure
drop.
(b) Repeat this estimate for how much the pressure drop changes with this
analysis assuming the same flow rate.
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8.19. Express the flow resistance units of N-s/m5 in terms of (N/m2)/(cm3/s),
dyne-s/cm5, and PRU (with 1 PRU = 1 mmHg-s/mL).

8.20. (a) Calculate the total peripheral vascular resistance in the systemic
and pulmonary systems for someone with a steady-state blood flow rate of
5 L/min, and with 120 mmHg/80 mmHg blood pressure in the systemic sys-
tem and 25 mmHg/8 mmHg pressure in the pulmonary system. Express your
answer in the units of dyne-s/cm5, which are CGS units and those that are
often used by cardiologists.
(b) The expression given in the text for this vascular flow resistance should
be corrected because it uses the average pressure at the beginning of the
system instead of the pressure drop across the system. For the systemic sys-
tem the final pressure is that at the right atrium (2 mmHg) and for the pul-
monary system it is that at the left atrium (5 mmHg). How does using the
actual pressure drop affect your calculations in part (a) (both qualitatively
and quantitatively)?

8.21. (a) The pulmonary vascular resistance changes with lung volume.
Figure 8.63 shows that it increases much with larger lung volumes, in part
because the larger alveoli stretch the pulmonary capillaries. It also increases
at very small lung volumes because these capillaries surrounding the alveoli
become narrow. Calculate the range of pulmonary blood flow rates (in L/min),
assuming this range of resistances and assuming that the pulmonary pressures
are the same as in Problem 8.20.
(b) The pulmonary pressures actually change with lung volume. If they
changed in a manner to keep the average flow the same as it is for a 110 mL
lung volume, determine this change. (For the purpose of this calculation,

Fig. 8.63. Effect of lung volume on pulmonary vascular (blood flow) resistance
(from an animal lobe preparation). (Based on [419].) For Problem 8.21
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assume that the ratio of systolic and diastolic pressures remains a constant
and that the left atrium pressure remains the same.)

8.22. (a) Determine the overall compliances of the systemic arterial and ve-
nous systems by using Fig. 8.26.
(b) Is the ratio of these two compliances reasonable, given our model for com-
pliance and the data for the vessels in both groups? (Consider only the large
vessels in both groups.)

8.23. Does Fig. 8.26 suggest that sympathetic stimulation and inhibition
change the vessels’ compliances, dead volumes, or both?

Flow and Pressure

8.24. What is the average time blood spends in a capillary?

8.25. The cardiac index is the cardiac output divided by the person’s surface
area. It normally ranges from 2.6 to 4.2 (L/min)/m2. Use this to determine
the cardiac output of a standard human. How does this value compare to the
normal cardiac output we have assumed?

8.26. An artery with radius r1 and blood speed u1 divides into n arteries of
equal radius. Find the radius r2 and blood speed u2 in these daughter arteries
assuming that the pressure drop per unit distance dP/dx is the same in the
initial artery and each daughter artery.

8.27. Four veins with radius r1 and flow speed u1 combine to form one vein
with radius r2 = 4r1. Find the flow speed in the larger vein.

8.28. The design of blood vessels is sometimes optimized by minimizing a
“cost function,” F , which is the sum of the rate work is done on the blood in
the vessel and the rate that energy is used by metabolism through the blood
in the vessel [385]. The first term is Q(ΔP ), for flow rate Q and pressure drop
ΔP , and the second term is assumed to be proportional to the volume of the
vessel of radius r and length L, Kπr2L, where K is a constant. Consequently,
the cost function can be written as

F = Q(ΔP ) + Kπr2L. (8.108)

(a) For a resistive vessel, show that this becomes

F =
8ηL

πr4
Q2 + Kπr2L. (8.109)

(b) For a fixed vessel length and flow rate, show the optimal radius is

ropt =
(

16η

π2K

)1/6

Q1/3 (8.110)
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Fig. 8.64. (a) A planar, bifurcating vessel. Determining variations in the length of
each vessel for small planar displacements of B to B′ in the (b) AB, (c) AC, and
(d) DB directions. (Based on [385].) For Problem 8.29

and the minimum cost function is

Fmin =
3π

2
KLr2

opt. (8.111)

8.29. (advanced problem) We will use the cost function defined in Prob-
lem 8.28 to optimize the flow in a vessel of radius r0 and length L0 with
flow rate Q0, that bifurcates into a vessel of radius r1 and length L1 with flow
rate Q1 at an angle θ to the first vessel and one with radius r2 and length L2

with flow rate Q2 at an angle φ to the first vessel, as seen in Fig. 8.64a [385].
Having straight, coplanar vessels minimizes the vessel lengths.
(a) Show that the total cost function is

Fmin =
3πK

2
(r2

0L0 + r2
1L1 + r2

2L2). (8.112)

(b) We can optimize the lengths and angles of the vessels by considering how
the displacements of point B in Figs. 8.64b–d change the cost function. Show
that any such movement of point B causes length changes δL0, δL1, and δL2
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that lead to a change of the cost function of

δFmin =
3πK

2
(r2

0(δL0) + r2
1(δL1) + r2

2(δL2)). (8.113)

This is optimized by setting δFmin,opt = 0.
(c) Show that moving point B along AB to B′ by a distance δ as shown in
Fig. 8.64b gives δL0 = δ, δL1 = −δ cos θ, and δL2 = −δ cos φ, and δFmin,opt =
(3πKδ/2)(r2

0 − r2
1 cos θ − r2

2 cos φ) = 0, and so it is optimized by

r2
0 = r2

1 cos θ + r2
2 cos φ. (8.114)

(d) Show that moving point B along CB to B′ by a distance δ as shown
in Fig. 8.64c gives δL0 = −δ cos θ, δL1 = δ, and δL2 = δ cos(θ + φ), and
δFmin,opt = (3πKδ/2)(−r2

0 cos θ + r2
1 + r2

2 cos(θ + φ)) = 0, and so it is
optimized by

−r2
0 cos θ + r2

1 + r2
2 cos(θ + φ) = 0. (8.115)

(e) Show that moving point B along DB to B′ by a distance δ as shown in
Fig. 8.64d gives the optimization condition

−r2
0 cos φ + r2

1 cos(θ + φ) + r2
2 = 0. (8.116)

(Note the symmetry in the last two equations.)
(f) Show that (8.114)–(8.116) can be solved to give

cos θ =
r4
0 + r4

1 − r4
2

2r2
0r

2
1

, (8.117)

cos φ =
r4
0 − r4

1 + r4
2

2r2
0r

2
2

, (8.118)

and

cos(θ + φ) =
r4
0 − r4

1 − r4
2

2r2
1r

2
2

. (8.119)

(g) Use continuity of flow and (8.110) to show that

r3
0 = r3

1 + r3
2. (8.120)

(h) Show that (8.117) then becomes

cos θ =
r4
0 + r4

1 − (r3
0 − r3

1)
4/3

2r2
0r

2
1

(8.121)

and find the analogous relations for (8.118) and (8.119).
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8.30. Use Problem 8.29 to show that for optimized bifurcating vessels if
[385]
(a) r1 = r2, then θ = φ,
(b) r2 > r1, then θ > φ,
(c) r2 is much greater than r1, then r2 approaches r0 and φ approaches π/2,
(d) r1 = r2, then r1/r0 = 2−1/3 = 0.794 = cos θ and so θ = 37.5◦.
These results generally agree with observations.

8.31. Use Problem 8.30d to show that it would take ∼30 generations of sym-
metric bifurcations starting with a vessel with the aorta radius of 1.5 cm to
arrive at a vessel with the capillary radius of 5×10−4 cm [385]. (Note, however,
that such arterial divisions are usually not simple symmetric bifurcations.)

8.32. There is a fusiform aneurysm in an aorta where the internal radius in-
creases from r1(= 1.25 cm) in the normal section to r2 = 1.3r1 in the diseased
section, while staying at the same vertical height. The speed of blood flow is
v1 = 0.4 m/s in the normal section and the (gauge) pressure P1 is 100 mmHg.
The blood density is 1,060 kg/m3.
(a) Find the speed of blood flow v2 in the aneurysm.
(b) Find the pressure P2 in the aneurysm.
(c) Use the Law of Laplace to find the tensions required in the normal part
of the aorta and in the aneurysm to maintain the pressure difference (from
inside to outside the vessel). Compare these values.
(d) Describe how this increase in the tension needed in the aneurysm wall
and the decreased strength of the wall (due to the thinner aorta wall in the
aneurysm) can lead to an unstable situation.

8.33. The normal inner radius of a large artery is 2 mm. It is 75 cm long, and
the flow through it is 1/200 of the total blood flow. How would the pressure
drop across it change if the flow through it were unchanged and there were
severe stenosis in the artery
(a) across its entire length or
(b) across 5 cm of it?
(c) In each case, if the pressure at the beginning of the artery were 75 mmHg,
would the pressure drop be severe enough to affect flow in the arterioles and
capillaries?
(d) In each case, what added pressure would be needed at the beginning of
the artery to maintain an unchanged flow in these arterioles and capillaries?

8.34. Arteriosclerotic plaque narrows down a section of an artery to 20% of its
normal cross-sectional area. What is the pressure in that section if immediately
before it the pressure is 100 mmHg and the flow speed is 0.12 m/s?

8.35. The osmotic pressure of blood is 25 mmHg higher than that of intersti-
tial fluid because it has a higher density of proteins. What is the difference in
their densities of proteins that accounts for this?
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8.36. (more advanced) The blood hematocrit is usually higher nearer the
center of a blood vessel than at the blood vessel wall and has a distribution
that we will take as h(r) = H[1 − (r/R)2] from r = 0 to R [406]. (The
reason why flowing suspended particles, such as red blood cells, have higher
concentrations near the center, called the Fahraeus–Lindquist effect, is not
obvious.)
(a) The volume flow of a cylindrical shell in the vessel is 2πrv(r)dr, where
v(r) = 2u

(
1 − r2/R2

)
from (7.40), so this flow weighted for the hematocrit is

2πrh(r)v(r)dr. Therefore the average hematocrit in the transported blood is
hav =

∫ R

0
2πrh(r)v(r)dr/

∫ R

0
2πrv(r)dr. Show that H = 3hav/2.

(b) Now find the average value of the hematocrit at any given time in the blood
vessel by calculating

∫ R

0
2πrh(r)dr/

∫ R

0
2πr dr. Show that for the parabolic

distribution of hematocrit this volume-averaged hematocrit is 3hav/4.
(c) The result in (b) states that the average hematocrit of the blood in the
vessel at any given time is less than that in the blood that is being transported.
Is this a contradiction?

8.37. (more advanced) Repeat parts (a) and (b) in Problem 8.36 assuming
h(r) = H exp(−r/R) and show the volume-averaged hematocrit is 0.88hav

[406].

8.38. (more advanced) The analysis in Problems 8.36 and 8.37 assumed
that the parabolic v(r) we derived earlier assuming a constant viscosity is
still valid when the hematocrit – and consequently the viscosity – decreases
with radius. This should not be true. Qualitatively, how would you expect
the spatially varying hematocrit and viscosity to affect the parabolic flow
rate?

The Heart and Circulation

8.39. Would you expect cardiac muscle to be most similar to Type I, IIA, or
IIB skeletal muscle? Why?

8.40. Compare the total mechanical and metabolic powers needed by the left
heart and the right heart to pump blood.

8.41. Determine all the pressures, volumes, and flow rates in the overall body
circulation model using the data provided in the Table 8.7. Do your answers
agree with your expectations, such as the values in Table 8.1?

8.42. The volumetric flow rate out of a ventricle has been described in terms
of the heart rate F and stroke volume Vstroke as Q = FVstroke, while flow rates
have also been expressed in terms of the vessel cross section A and flow speed
u as Q = Au. Explain why these two characterizations are either consistent
or inconsistent.
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8.43. If the cardiac output is 5 L/min and heart rate is 1 Hz, determine
the volume of the left ventricle at its peak if the ejection fraction is
65%.

8.44. There is a hole in the septum that separates the left ventricle and right
ventricle (Fig. 8.60).
(a) Explain why you would expect the pressure in the left ventricle to decrease
and that in the right ventricle to increase.
(b) Explain why you would expect the stroke volume from the left ventricle
to decrease because of this.
(c) Explain why the oxygenation of the blood in the left ventricle would de-
crease and that in the right ventricle would increase.
(d) If during systole the (gauge) pressure, stroke volume, and oxygenation
levels (relative to that in the vena cavae) in the left ventricle each decreases
by 10% as a result of this, explain quantitatively how the body could try to
compensate for this?

8.45. (a) If the inner volume of the left ventricle is 100 cm3 and the wall
volume is 30 cm3, find the inner radius, outer radius, and wall thickness for
the ventricle modeled as a hemispherical shell.
(b) Find the wall stress during systole.

8.46. The cardiac output of a woman remains at 5 L as she ages from 25 to
65 years of age, while her blood pressure increases in the average way.
(a) How does her total vascular resistance change?
(b) What fractional changes in vessel radius do this correspond to? (Assume
conditions for arterioles.)

8.47. When blood is pumped out of the left ventricle, it travels “upward” a
distance of about 10 cm in the aorta during the ∼0.2 s duration of the peak
of systole, stretching the walls of this very compliant vessel. There are no
external forces on the body during this time, so the center of mass of the
body does not move. Consequently, when the stroke volume of blood (of mass
mblood � 70 g) is ejected upward, the rest of the body (of mass mrest � 70 kg)
moves “downward” (ignoring gravity and frictional forces). This is the basis
of the diagnostic method called ballistocardiography, in which a person rests
horizontally on a light, very low friction horizontal suspension [367]. (Such
devices have been used to develop methods that assess heart function, but are
not in clinical use.) Assume the person is lying along the x direction on this
“couch” – with his head pointing in the positive direction – and the center of
mass of ejected blood is at xblood, that of the rest of the body is at xrest, and
that of the entire body is xbody.
(a) Show that xrest = (xbloodmblood + mrestxrest)/(mblood + mrest) always.
(b) Now let us call the positions in (a) those before systole. At the end of
the main part of systole, the blood and rest of the body have moved by
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Δxblood and Δxrest, respectively. Show that the body has moved by Δxrest =
−(mblood/mrest)Δxblood and that this is −0.1 mm.
(c) Because the blood moves with a constant velocity in this motion in the
aorta, show that the velocity of the body during systole is −0.5 mm/s in the
x direction.
(d) What is the average of Δxrest during a full cardiac cycle? Why?

8.48. Someone wants to donate two pints of blood instead of the usual (and
allowed maximum of) one. What consequences could this have?

8.49. (advanced problem) (a) Solve (8.92) assuming that the flow QL(t) is a
constant a from t = 0 to αT , and 0 from t = αT to T , where 0 ≤ α ≤ 1. (This
repeats for every heart beat.) Note that the pressure at the beginning and
end of each cardiac cycle is Pdiastole and it becomes Psystole at t = αT . (Hint:
The analysis is similar to that for exciting an isometric muscle in Chap. 5 (see
(5.11)–(5.13)) and temperature regulation in Chap. 13 (see (13.18)); also see
Appendix C.)
(b) Show that a = Vstroke/αTCsa.
(c) Show the solutions from (a) lead to the relations

Pdiastole = Psystole exp(−(1 − α)T/τ) and (8.122)

Psystole = Vstrokeτ/αTCsa+(Pdiastole−Vstrokeτ/αTCsa) exp(−αT/τ). (8.123)

(d) Sketch Psa(t) for several heart beats for α = 1/3. Compare this sketch
with those from the simple model in Fig. 8.56 and the real pulse in Fig. 8.54.
Is this model better? Why?
(e) Show that when α = 0 the solutions in (a) and (c) give the results presented
in the text for the simpler model.

8.50. The solution to the classic Windkessel Model for steady-state flow that
is suddenly turned off is exponential decay of the flow, as we saw in the simple
model of the arterial pulse. In the electrical analog in Fig. 8.57 this corresponds
to tracking the current when a constant voltage is initially applied and is
suddenly turned off. Analyze this electrical problem analog and show that it
has the same solution as the flow problem.

8.51. (advanced problem) Solve the electrical analog in Problem 8.50 for the
three-element Windkessel Model.

8.52. (advanced problem) Solve the electrical analog in Problem 8.50 for the
viscoelastic Windkessel Model.

Scaling

8.53. Calculate the heart mass and heart beat rate (in beats per minute) for a
man (70 kg), woman (50 kg), and an infant (5 kg) using the allometric relation
parameters in Table 1.13.
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8.54. The heart rate of mammals F is known to decrease with body mass
as m

−1/3
b . This seems to be true interspecies and also within a species. The

human heart rate is known to decrease from infancy, through childhood and
to maturity in a manner described better by body mass than age. Derive this
relation using the dimensional analysis methods presented in Chap. 1. Assume
that the stroke volume scales as body mass. Assume that a primary function
of circulation is to bring warm blood from the core to the body surface to
keep it warm. This means that the total blood flow rate scales as the rate of
heat loss from the body.
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Lungs and Breathing

Our lungs serve several important functions. They interact with blood by ex-
changing carbon dioxide for oxygen (Chap. 8) and they maintain the blood pH.
The lungs are involved in heat exchange and fluid balance in the body, because
relatively dry and usually cooler air is inhaled and air at the body temper-
ature saturated with water vapor is exhaled (Chap. 6). They are also a key
element in voice production (Chap. 10). We will highlight the mechanics of
breathing [423, 424, 428, 429, 430, 432, 434, 435, 439, 443, 444].

We typically breathe in 6 L/min of air. (This compares to the ∼5–
6 L of blood pumped per min in the pulmonary circulation through the
lungs.) Because air is ∼20% oxygen, we inhale (inspire) 1.2 L oxygen/min.
The breathing rate is typically 12/min for men, 20/min for women, and
60/min for infants. The air we inhale has 80% N2/20% O2 (or more pre-
cisely 78.084% N2/20.947% O2/0.934% Ar/0.035% CO2), and the air we
exhale (expire) has 80% N2/16% O2/4% CO2. (If the air we exhaled had
little or no oxygen, we could not use it for mouth-to-mouth resuscita-
tion.) We breathe in roughly 10 kg air/day, with ∼2 kg O2/day. The lungs
absorb about 0.5 kg O2/day (400 L). We exhale air with ∼0.5 kg water
vapor/day.

Because we inspire and expire air at the same rate (if not where would
the difference go?), it is clear the body uses ∼0.3 L oxygen/min during usual
sedentary activity, delivered by the ∼5–6 L of blood pumped per min. We
have called this rate of oxygen consumption in the body dVO2/dt in Chaps. 6
and 8. During aerobic exercise dVO2/dt increases linearly with cardiac output
Qt (see Fig. 8.27, and (6.18) and (8.33)). The maximum rate of oxygen usage
is ≈2.8 L/min for a person of average fitness and ≈4 L/min for a highly fit
person. This assumes the lungs bring in air at a rate fast enough to maintain
the needed oxygenation of arterial blood.

Gauge pressures, relative to atmosphere, are usually used in discussing
breathing. Two roughly equal types of units are commonly used, mmHg and
cmH2O, with 1 mmHg = 1.36 cmH2O.
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9.1 Structure of the Lungs

Air is inhaled through the nose or mouth and then through the pharynx,
larynx, and the trachea (windpipe) (Fig. 9.1). The trachea divides into the
right and left bronchus (Fig. 9.2), each of which continues to bifurcate into
smaller and smaller bronchi and bronchioles over 23 levels of bifurcation
(224 = 1.6 × 108) (Table 9.1, Figs. 9.2 and 9.3) until they form alveoli (which
is the plural of alveolus) (al-vee-oh’-lie (lus)), which are the actual operat-
ing units of the lungs. The average diameter of the airways decreases with
generation z, as d(z) = 2−z/3d(0) until generation 16. This relation is the
optimal design of a branched system of tubes in hydrodynamics. There are
about 3 × 108 alveoli, each ∼0.2–0.3 mm in diameter, with walls that are

Fig. 9.1. Diagram of parts of the respiratory system. (These components are also
important in voice production (Chap. 10). The vocal cords (or vocal folds) used in
speaking are in the larynx.) (From [425]. Used with permission)
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Fig. 9.2. The relationship between the lung and heart is shown. The first few
generations of the branching of the air vessels in the lungs, pulmonary arteries, and
the pulmonary veins are shown. These three systems can be called the three “trees”
of the lung. Note that the pulmonary arteries are close to the bronchi, while the
pulmonary veins stand alone. (From [427])

∼0.4 μm thick. They are in contact with blood in the pulmonary capillaries
(Fig. 9.4), which themselves form after subdividing in 17 branches (Table 9.2,
Figs. 9.2 and 9.5). Oxygen diffuses from the alveoli to the red blood cells,
while carbon dioxide diffuses from the blood into the air in the alveoli. The
total surface area of the alveoli is ∼80 m2 (ranging from 50–100 m2). The total
external surface area of the lungs is only ∼0.1 m2, so subdividing into alve-
oli results in a tremendous increase in the surface area in contact with the
blood, by a factor of almost 1,000. This is also the factor by which the oxygen
intake increases. Without this, we would never even come close to meeting
our metabolic needs for oxygen. Our chests expand when we breathe because
incoming air filling the alveoli makes each one bigger, just as with ordinary
bubbles.

The circulatory system is the conduit for the transfer of O2 and CO2

between the alveoli and tissues, and so we should track the partial pressure
in each system. Within the alveoli the partial pressure of O2 is �105 mmHg,
which is smaller than that in the atmosphere (159 mmHg = 21% of 760 mmHg)
because of the dead volume in the respiratory system. The partial pressure
of O2 blood in the pulmonary capillaries increases from 40 to �100 mmHg
after O2 is transferred from the alveoli, and this is the partial pressure in the
pulmonary veins and systemic arteries. The partial pressure of O2 in tissue
is 40 mmHg, so that after transfer of O2 from the capillaries to surrounding
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Table 9.1. Approximate quantification of the bronchial system. (Using data from
[426, 440]. Also see [441, 442])

pulmonary branch generation branch branch total volume air
z diameter length cross- (cm3) speed

(mm) (mm) sectional (cm/s)
area (cm2)

trachea 0 18.0 120.0 2.5 31 393
main bronchus 1 12.2 47.6 2.3 11 427
lobar bronchus 2 8.3 19.0 2.1 4.0 462

3 5.6 7.6 2.0 1.5 507
segmental bronchus 4 4.5 12.7 2.5 3.5 392

5 3.5 10.7 3.1 3.3 325
bronchi 6 2.8 9.0 4.0 3.5 254

w/cartilage in wall 7 2.3 7.6 5.1 3.8 188
8 1.86 6.4 7.0 4.4 144
9 1.54 5.4 9.6 5.2 105

10 1.30 4.6 13 6.2 73.6
terminal bronchus 11 1.09 3.9 20 7.6 52.3

12 0.95 3.3 29 9.8 34.4
bronchioles 13 0.82 2.7 44 12 23.1

w/muscle in wall 14 0.74 2.3 69 16 14.1
15 0.66 2.0 113 22 8.92

terminal bronchiole 16 0.60 1.65 180 30 5.40
respiratory bronchiole 17 0.54 1.41 300 42 3.33
respiratory bronchiole 18 0.50 1.17 534 61 1.94
respiratory bronchiole 19 0.47 0.99 944 93 1.10
alveolar duct 20 0.45 0.83 1,600 139 0.60
alveolar duct 21 0.43 0.70 3,200 224 0.32
alveolar duct 22 0.41 0.59 5,900 350 0.18
alveolar sac 23 0.41 0.50 12,000 591 0.09
alveoli, 21 per duct 0.28 0.23 3,200

The air speed is assumed to be 1 L/s. The data include that for both lungs. The
number in each generation is 2z (for generations z = 0–23), and 300 × 106 for the
alveoli.

tissues, the partial pressure in the systemic veins and pulmonary arteries is
also �40 mmHg – and then it is again increased to 100 mmHg in the lungs.

Similarly, within the alveoli the partial pressure of CO2 is �40 mmHg; this
is much larger than that in the atmosphere (∼0.25 mmHg), again because of
the dead volume. The partial pressure of CO2 blood in the pulmonary capil-
laries decreases from 46 to �40 mmHg after CO2 is transferred to the alveoli,
and this is the partial pressure in the pulmonary veins and systemic arteries.
The partial pressure of CO2 in tissue is 46 mmHg, so that after transfer of CO2

into the capillaries from the tissues, the partial pressure in the systemic veins
and pulmonary arteries is also �46 mmHg – and then it is again decreased to
40 mmHg in the lungs.
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Fig. 9.3. Bifurcations of lung airways, showing generation number z. (From [436])

Fig. 9.4. The details of the alveolar bifurcation are shown in (a). These alveoli are
sacs imbedded in capillary beds. The details of the interaction between the alveoli
and capillaries are depicted in (b) and (c). (From [436])
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Table 9.2. Branching structure of the pulmonary arterial network. (Using data
from [426, 438])

pulmonary number vessel vessel
branching of branches length diameter
order of each order (mm) (mm)

1 1 90.5 30.0
2 3 32.0 14.83
3 8 10.9 8.06
4 20 20.7 5.82
5 66 17.9 3.65
6 203 10.5 2.09
7 675 6.6 1.33
8 2,290 4.69 0.85
9 5,861 3.16 0.525

10 17,560 2.10 0.351
11 52,550 1.38 0.224
12 157,400 0.91 0.138
13 471,300 0.65 0.086
14 1,411,000 0.44 0.054
15 4,226,000 0.29 0.034
16 12,660,000 0.20 0.021
17 300,000,000 0.13 0.013

Fig. 9.5. A silicone elastomer cast of the venous tree of the lung of a cat. The
venous pressure was −7 cmH2O (= −5 mmHg), the airway pressure was 10 cmH2O
(= 7 mmHg), and the pleural pressure was 0 cmH2O. (From [427])
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9.2 The Physics of the Alveoli

The alveoli are similar to interconnected bubbles. Inside them the pressure is
Pin and outside the pressure is Pout, with ∆P = Pin − Pout, and they have a
radius R. The Law of Laplace for a sphere (7.9) is

∆P =
2T

R
, (9.1)

where T is the tension in the sphere walls. The main source of this tension
in the alveoli is not within the walls but on the surfaces. This contribution is
called the surface tension γ, which has the same units as T – of force/length or
energy/area. In typical bubbles, such as soap bubbles, both surfaces contribute
the same surface tension and so T is replaced by 2γ. Therefore we find

∆P = Pin − Pout =
4γ

R
. (9.2)

For the water/air interface γ � 7.2×10−4 N/m (Table 7.2). In alveoli, however,
only the surface tension of the inner surface is really important because it is
a fluid/air interface with larger surface tension than the fluid/fluid interface
of the outer surface, and so

∆Palveoli = Pin − Pout =
2γ

R
. (9.3)

There is an apparent instability that seemingly leads to an unreasonable
situation in interconnected bubbles or alveoli. Consider two bubbles that are
initially not interconnected, as in Fig. 9.6, because there is a plug between
them. Bubble #1 has an internal pressure P1 and radius R1, and Bubble #2
has an internal pressure P2 and radius R2. (Because the difference between
the pressure inside and outside the bubble is what is significant, the external

Fig. 9.6. Instability of bubbles, according to the Law of Laplace. This assumes that
the surface tension does not change with bubble (or alveolus) radius. The external
pressure is 0
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pressure is equal to zero.) In equilibrium, the internal pressure Pinternal =
4γ/R for each bubble. (Whether this factor is 4 or 2 is not significant here.) Say
Bubble #2 is the smaller bubble. Because R2 < R1, in equilibrium P2 > P1;
the smaller bubble has the higher internal pressure. If the plug is opened,
air will flow from higher pressure to lower pressure, and therefore from the
smaller bubble to the larger bubble. The loss of air in Bubble #2 makes it
smaller. With this smaller radius, the equilibrium internal pressure increases.
Because this pressure is still higher than in Bubble #1, air continues to flow
from the smaller bubble to the larger bubble, until it collapses.

This implies that the largest of the hundreds of millions of alveoli would
get ever larger at the expense of all of the smaller ones and the system of
alveoli we have described for the lungs could not be stable. What is wrong?
There is no error in our reasoning; however, we have made one assumption
that is not accurate for alveoli. We implicitly assumed that the surface tension
is not a function of radius R. There is a surfactant on the surfaces of the alveoli
of healthy people, containing dipalmitoyl phosphatidycholine or DPPC, that
causes γ(R) to decrease for decreasing R. With ΔP = 2γ(R)/R, as R of
the smaller bubble or alveolus becomes smaller in Fig. 9.6, eventually γ(R)
decreases with smaller R faster than R does itself, as in Fig. 9.7, so ΔP begins
to decrease with smaller R. Such a system of interconnected alveoli is stable.

We can see how such a dependence of γ(R) can occur with the following
model. The surface of an alveolus can be covered either with a lipoprotein
or by water; the surface tension of the lipoprotein is much lower (γlung =
1×10−3 N/m) than that of water (γwater = 7.2×10−2 N/m (= 72 dynes/cm)).
Assuming the alveolus is spherical, for one particular radius R0 there is exactly
one monolayer of lipoprotein on the whole surface and at that radius the
surface tension is γlung over the 4πR2

0 surface area. If this alveolus becomes
smaller, so R < R0, it has several monolayers of lipoprotein on its surface and

Fig. 9.7. Surface tension on alveoli walls (lung extract) in (b), as measured by the
surface balance in (a) which measures surface tension vs. area. Similar measurements
for detergent and water are also shown. (Based on [430, 443])
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its surface tension is still γlung, and so

γ(R) = γlung for R ≤ R0. (9.4)

If this same alveolus instead becomes larger, so R > R0, it has a monolayer
of lipoprotein over only a portion of its surface (of surface area 4πR2

0 because
the layer cannot become smaller than a monolayer) and water over the rest
of the surface (of area 4πR2 − 4πR2

0). So the average surface tension is

γ(R) =
4πR2

0γlung + (4πR2 − 4πR2
0)γwater

4πR2
for R > R0 (9.5)

or

γ(R) = γwater −
R2

0

R2
(γwater − γlung) for R > R0. (9.6)

This approaches the much larger γwater for R � R0 at a rate that is faster
than 1/R, so the alveoli will be stable.

Because this lipoprotein is only on one of the surfaces, the stability con-
dition is ∆P = 2γ/R. For R > R0, there is a stable equilibrium when
d(∆P )/dR = d[2γwater/R − 2(R2

0/R3)(γwater − γlung)]/dR = 0 or

d(∆P )
dR

= −2γwater

R2
+ 6

R2
0

R4
(γwater − γlung) = 0 (9.7)

or

Req =
√

3
γwater − γlung

γwater
R0. (9.8)

Because γwater � γlung, the equilibrium radius Req �
√

3R0.
Figure 9.7 shows that this surface tension of the surfactant in the lung

decreases from 5×10−2 N/m (50 dynes/cm) to zero as the area of the film gets
smaller. Alveoli are typically stable at approximately 1/4 of their maximum
size.

One function of the surfactant is to provide alveolus stability. Another
function is to lower the amount of force needed to be supplied by the di-
aphragm to inflate the alveoli. With γwater = 7.2×10−2 N/m and R = 0.05 mm
of the alveoli when they are collapsed (and need to be inflated), (9.3) gives
∆Palveoli = 2.9×103 N/m2 = 22 mmHg. The area of an adult diaphragm mus-
cle is about 500 cm2, so the force it needs to exert to expand the alveoli for
breathing is ∼150 N – which corresponds to a weight of 15 kg. With the lower
surface tension of the lung surfactant, this force is over an order of magni-
tude smaller and breathing is easier, especially for infants. This explains why
people with insufficient surfactant – with hyaline membrane disease – have
difficulty breathing.
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Fig. 9.8. (a) Pushing a fist into a balloon is analogous to the lungs in the pleural
cavity. (b) Schematic of the lungs in the pleural cavities. (Based on [439])

9.3 Physics of Breathing

Each lung is surrounded by a sac membrane within the thoracic cavity. We can
picture the pleural sac as a balloon, as in Fig. 9.8, filled with intrapleural fluid.
The inside wall of this sac, the visceral pleura (membrane), attaches to the
outer lung wall. The outside wall of this sac, the parietal pleura (membrane),
attaches to the thoracic wall. It is the springiness of the lung that pulls the
two pleural membranes apart, and this causes a slight decrease of pressure of
the pleural sac relative to atmospheric pressure of −4 mmHg to −6 mmHg.
This pressure difference is what keeps the lungs expanded, and keeps them
from collapsing. The mechanical “driving force” in controlling lung volume is
the transpulmonary pressure, which is the difference in pressure in the alveoli
in the lungs and that around the lung in the pleural sac, which is called
the intrapleural (or pleural) pressure. (The alveolar and pleural pressures are
gauge pressures, referenced to atmospheric pressure.)

The lungs are expanded and contracted by the motion of structures sur-
rounding them by way of inspiratory and expiratory muscles. This occurs in
two ways (Fig. 9.9), of which only the first is used during quiet breathing (1)
The diaphragm moves downward to lengthen the chest cavity (by pulling the
bottom of the lungs downward) during inspiration. During quiet breathing,
the lungs contract by the natural elastic recoil of the lungs and chest wall,
with the diaphragm relaxed, while in heaving breathing this contraction is
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Fig. 9.9. Expansion and contraction of the thoracic cage during expiration and
inspiration, showing the ribs, lungs and heart, the external intercostal muscles (that
contract during inspiration to elevate the rib cage and widen it laterally so the cage
increases in all three dimensions), and the diaphragm (that contracts to increase the
vertical dimension of the cage during inspiration). (From [437])

accelerated by the contraction of the abdominal muscles that push the ab-
dominal contents and then the diaphragm upward to shorten the chest cavity.
(2) The ribs are elevated by the neck muscles to increase the anteroposte-
rior (front-to-back) diameter of the chest cavity and are depressed (lowered)
by the abdominal recti to decrease it. This causes chest cavity expansion
and contraction, respectively, because the ribs slant outward and have larger
transverse cross-sectional areas in the lower sections; this can increase the
anterior–posterior chest thickness by about 20% during inspiration.

How does this help bring air into the lungs? Before inspiration, there is
atmospheric pressure in the lungs. The attractive force of the visceral pleura
for the parietal pleura and the outward force of the outer lung wall due to the
lower-than-atmospheric pressure in the pleural sac (∼ −4 mmHg) cause each
lung to expand. In equilibrium their sum is balanced by the tendency of the
lungs to contract due to their springiness. This preinspiration force balance is
shown in Fig. 9.10. They are no longer in balance during inspiration.

The steps in inspiration (inhaling) are shown in Fig. 9.11. The inspiratory
muscles (diaphragm and external intercostals) increase the dimensions of the
rib cage (the thoracic cavity). This causes the visceral and parietal pleurae
to separate. The lung volume then increases because (1) the attraction of the
visceral and parietal pleurae increases as they are separated further and (2)
this separation causes Plung − Ppleura to decrease even more, from ∼ −4 to
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Fig. 9.10. Force balance of the visceral pleura/outer lung wall during preinspiration.
Note that the forces are really normal to the wall everywhere, not just at the bottom
as depicted. (Based on [439])

∼ −6 mmHg (i.e., from ∼756 to 754 mmHg absolute pressure). Because both
of these forces in the direction of lung expansion increase, they now overcome
the springiness of the lungs that favors lung contraction – and the lung ex-
pands. The pressure in the lungs and alveoli decreases from ∼0 to ∼ −1 mmHg
(i.e., from ∼760 to 759 mmHg absolute pressure), and then air flows from the

Fig. 9.11. (a) Force imbalance at the onset of inspiratory muscle contraction (and
expansion of the thoracic wall/parietal pleura) leads to a (b) subatmospheric pres-
sure in the lungs and flow of air into the lungs. (Compare this to the preinspiration
force balance in Fig. 9.10). (Based on [439])
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Fig. 9.12. The measurement of the pressure–volume curve of an excised lung, which
shows hysteresis in inflation and deflation. (Based on [443])

mouth and nose into the lungs. During normal breathing exhaling is auto-
matic, requiring no contraction by muscles. Muscle contraction is necessary
during heavy exercise to inhale more fresh air and to actively exhale stale air.

9.4 Volume of the Lungs

The volume of the lungs depends on the transpulmonary pressure, as is seen
in Fig. 9.12 for an excised lung. The inflation and deflation curves are not the
same; as in Chap. 4, this is called hysteresis.

The volume of the lungs during different stages of normal and deep breath-
ing is a good diagnostic of lung functionality. It is easily measured using a
spirometer (Fig. 9.13). Figure 9.13 shows one such measurement during dif-
ferent types of breathing. In this example, during normal breathing the lung
volume is seen to oscillate between 3.2 L after normal inspiration and 2.2 L
after normal expiration. The difference is the tidal volume (TV) (∼1 L), which
is the usual lung volume used during breathing when at rest. The volume af-
ter normal expiration is the functional residual capacity (FRC). After a deep
inspiration the lung volume is the total lung capacity (TLC), ∼6L. This ex-
ceeds the volume after normal inspiration by the inspiratory reserve volume
(IRV, which is also one of the author’s nicknames). After a deep expiration,
the remaining volume is the residual volume (RV), ∼1 L. The difference in
lung volumes after deep inspiration and deep expiration is the vital capac-
ity (VC) ∼5 L, which also equals the total lung capacity minus the residual
volume. After deep expiration the lung volume is smaller than that after nor-
mal expiration by the expiratory reserve volume (ERV), which also equals the
functional residual capacity minus the residual volume.

The vital capacity is an important measure of how well the lungs are
functioning. (More importantly, you need a robust vital capacity to inflate
balloons.) The functional reserve capacity is the volume of stale air that nor-
mally mixes with new air (the tidal volume). There is also dead space. Some is
anatomic (0.15 L), due to the trachea and bronchii, and some is physiological
alveoli dead space, where the alveoli have no access to blood.
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Fig. 9.13. (a) Lung volume changes during breathing cycles, (b) along with a
schematic of a spirometer. (Based on [422, 443])

We know that we inhale air that is 80% N2/20% O2/0% CO2, it mixes
with stale air, and after diffusion across the alveoli walls we exhale air that
is 80% N2/16% O2/4% CO2. What is the composition of this stale air? Let
us call its composition 80% N2/x% O2/y% CO2. After inspiration the lungs
have a tidal volume of 80% N2/20% O2/0% CO2 air that has mixed with
a functional reserve capacity of 80% N2/x% O2/y% CO2 air. If the tidal
volume is a fraction α of this volume, the functional reserve capacity volume
fraction is 1 − α. After inhalation the composition of air in the lungs is 80%
N2/[20α + (1 − α)x]% O2/(1 − α)y% CO2. Say a fraction β of all of the
inhaled air is absorbed by the lungs. This means that a fraction β of the
20α% O2 in the lungs is absorbed, which is 20αβ% O2. There is an equal
20αβ% increase in CO2 that diffuses into the lungs. So, after the oxygen
and carbon dioxide transfer, the air in the lungs has a composition of 80%
N2/[20α− 20αβ + (1−α)x]% O2/[20αβ + (1−α)y]% CO2, which is exhaled.
Therefore, the oxygen and carbon dioxide fractions are, respectively,

16% = [20α − 20αβ + (1 − α)x]% (9.9)

4% = [20αβ + (1 − α)y]%. (9.10)

The tidal volume fraction is α = 1/3 and the fraction of inhaled oxygen that
is absorbed by the lungs is β = 1/4. This gives x = 16.5 and y = 3.5, so
the stale air in the lungs has a composition 80% N2/16.5% O2/3.5% CO2.
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(This air is clearly oxygenated enough to be useful during mouth-to-mouth
resuscitation.)

9.5 Breathing Under Usual and Unusual Conditions

9.5.1 Flow of Air During Breathing

During inspiration, air flows because the pressure is lower in the lungs and
alveoli by a positive amount ∆P than in the atmosphere. The amount of air
that flows is determined by the resistance and compliance of the respiratory
system.

The compliance of the lung is ∼0.2 L/cmH2O and it decreases for a normal
person with higher expanding pressures, as is seen by the decreasing slope in
Fig. 9.12. In trying to evaluate lung performance, the specific compliance of the
lung is perhaps more meaningful, for which the lung compliance is normalized
by a characteristic of the person’s size, such as a characteristic lung volume
(FRC, VC, TLC, etc.), the lung dry weight, or the body weight. The elasticity
of the chest, as well as that of the lung, contributes to the lung compliance.

Airway resistance is dominant in the generation of the intermediate sized
bronchii, as seen in Fig. 9.14a and Problem 9.21. Poiseuille’s Law (7.24) can
be used to calculate the airway resistance in the lungs (Problems 9.21–9.23)
and other passages (Problems 9.16 and 9.18). The total airway resistance
is typically ∼2 cmH2O/(L/s) during normal breathing and it decreases with
increasing lung size (Fig. 9.14b). (It is measured as in Fig. 9.17 later).

Fig. 9.14. (a) Airway resistance for each bronchus generation, and (b) total airway
resistance and conductance vs. lung volume. (Based on [443], from (a) [433], (b)
[421])
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Fig. 9.15. Pressure–volume curves of the lungs, chest wall (no lungs), and chest wall
with lungs, with relaxed respiratory muscles. The lung data are the same as those
in Fig. 9.12, except no hysteresis is shown and the airway pressure is of the opposite
sign to the pressure around the lung. FRC is the functional residual capacity. The
measurement is made with a spirometer-like apparatus, similar to that in Fig. 9.13b.
(Based on [443])

This airway resistance is about 80% of the total pulmonary resistance. The
other 20% is due to viscous forces in chest and lung wall movement, and this
is called tissue resistance.

The elastic properties of the thoracic cage (with the chest well) are impor-
tant in breathing, as are those of the lungs. Figure 9.15 shows the volume of
the lungs, chest walls alone, and the lungs in the chest wall as a function of
pressure. This is measured after inspiration or expiration with a spirometer
and subsequent relaxing of respiratory muscles. At every volume the pressure
(the relaxation pressure) of the lung/chest wall combination is the sum of
those for the lungs and chest walls separately.

Is the pressure difference between the alveoli and atmosphere large enough
to drive the right amount of air into our lungs each breath? (Under normal
conditions, it had better be.)

During each breath, this pressure difference starts at zero, increases to
a maximum ΔPmax, and then decreases to zero again at the end of the
breath. Let us determine the average pressure difference in this sequence.
We will model inhalation as a half cycle of a sine wave with: ΔP (t) =
ΔPmax sin(2πft) = ΔPmax sin(πt/Thalf period), which lasts a half-cycle time
Thalf period = 1/(2f). (The parameter f is the same as the breathing or res-
piratory rate only if the inhalation and exhalation times are the same.) For
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f = 0.25 Hz, Thalf period = 2 s. The average pressure difference during this
inhalation is

ΔPav =
1

Thalf period

∫ Thalf period

0

ΔPmax sin(πt/Thalf period)dt (9.11)

ΔPav =
ΔPmax

Thalf period

Thalf period

π
(cos(πThalf period/Thalf period) − cos(0))

=
2
π

ΔPmax, (9.12)

so for ΔPmax = 1.1 mmHg, we see that ΔPav = 0.7 mmHg.
Let us say that the inflow of air per breath is Vin. Then the average flow

rate is Qav = Vin/Thalf period. For Vin = 0.5 L, this is 0.25 L/s. If the flow rate
is proportional to the pressure drop, Q and ΔP have the same dependence
on time and so Qmax = (π/2)Qav, which is (π/2)0.25 L/s = 0.4 L/s, and
Q(t) = Qmax sin(2πft) = Qmax sin(πt/Thalf period). Moreover, Q = ΔP/Rflow,
where Rflow is the total resistance to flow in the nasal passages, trachea, and
so on. The resistance to flow is Rflow = ΔP/Q, and so using average values
we see that Rflow = 0.7 mmHg/(0.25 L/s) = 3.7 × 105 Pa-s/m3.

Is the flow laminar or turbulent? If the trachea has a radius of 9 mm, the
air flows at a maximum speed umax = Qmax/A = (400 cm3/s)/(π(0.9 cm)2) =
160 cm/s. The Reynolds number (7.11) is Re = ρud/η. Using the mass
density of air at body temperature ρ = 1.16 × 10−3 g/cm3 and the air
viscosity 2 × 10−5 Pa-s = 2 × 10−5(N/m2)s, we find that Re = (1.16 ×
10−3 g/cm3)(160 cm/s)(1.8 cm)/(2 × 10−4(dyne/cm2)s) = 1,600, so the flow
would generally be expected to be laminar in the trachea, as well as in the
nasal passages and pharynx. However, some turbulence is expected because
the walls of these passages are not smooth.

9.5.2 Mechanical Model of Breathing and Model Parameters

We have just examined only the resistance to flow during breathing. Figure
9.16b shows a more complete mechanical model of the lungs and breathing.
It is a compliance vessel described by V (t) = Vd + CflowP (t), attributed to
the springiness of the lungs, in series with an inertial element. They are in
parallel with a resistive element, attributed to the airway resistance we just
examined. These model elements are driven by a pressure determined by the
inspiratory muscles.

9.5.3 Inspiration/Expiration Cycle

Figure 9.17 shows the lung pressure, rate of flow of air into the lungs, and
lung volume vs. time during a cycle of inspiration and expiration. If the effect
of airway resistance were neglected, the alveolar pressure would be zero and
the intrapleural pressure would follow the broken curve, which is determined
by the elastic recoil of the lung.



542 9 Lungs and Breathing

Fig. 9.16. (a) Work done during inspiration (areas I + II + III) and work recovered
during expiration (area I). With no viscous, resistive forces, the work in inflating
the lung would be areas I + II, and this is associated with the lung compliance. The
extra work done overcoming respiratory flow resistance is area III. (b) Mechanical
model of breathing has the lumped compliance (elastance) Cflow, resistance Rflow,
and inertance Iflow, and P represents the inspiratory muscles. The inertance can be
neglected except for large flows. (Based on [430, 444])

Fig. 9.17. Lung volume, intrapleural pressure, flow, and alveolar pressure vs. time
during a breathing cycle. If the effect of airway resistance were neglected, the alveolar
pressure would be zero and the intrapleural pressure would follow the broken curve.
(Based on [443])
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Fig. 9.18. Typical lung volume vs. pressure for patients with various respiratory
conditions. The monotonically increasing curves are for static conditions, with the
lower horizontal bar being the residual volume and the upper horizontal bar the func-
tional residual capacity. Representative dynamic breathing loops (enclosed dashed
curves) for tidal volume breathing are shown for each condition. (Reprinted from
[430], with permission of Elsevier)

It is also instructive to plot these variables as functions of each other.
Lung volume is plotted vs. lung pressure for all times during a breathing
cycle in the dashed cycle trajectories in Fig. 9.18. Time is an implicit variable
along the trajectories. Such plots are useful because the model of the lungs
includes a compliance vessel in which volume and pressure are interrelated.
The differences in various modes of breathing are easily seen in such plots.

9.5.4 Breathing with a Diseased Lung

The static and dynamic pressure–volume curves in Fig. 9.18 indicate how dif-
ferent diseases affect lung compliance, lung volume, and airway resistance.
Obstructive disorders are due to airway obstructions, and include chronic
bronchitis (excessive mucus production in the bronchial tree), emphysema
(enlargement of air spaces after the terminal bronchiole, with the destruction
of respiratory system walls, such as those of the alveoli), and asthma (wide-
spread narrowing of airways, sometimes spontaneously). Such obstructions
(Fig. 9.19) can be due to excessive secretions (due to chronic bronchitis),
thickening of airway walls (edema or muscle hypertrophy), and outside



544 9 Lungs and Breathing

Fig. 9.19. (a) Normal airway and obstructed airways due (b) blocking, (c) airway
wall thickening, and (d) outside abnormality. Also see Fig. 9.22. (Based on [444])

abnormalities (edema, enlarged lymph nodes, or destruction of lung alveoli
tissue as in emphysema). (Edema is an excessive accumulation of fluid in tis-
sue spaces or a body cavity.) These obstructions and the loss of small airways
due to the destruction of lung tissue all increase airway resistance. The break-
down of elastic alveoli walls also reduces the springiness, and therefore also
the compliance. Restrictive disorders are those in which the expansion of the
lung is restricted. The decreased compliance (slope) in pulmonary fibrosis and
idiopathic respiratory distress syndrome (RDS) is clear in Fig. 9.18. They are
characterized by a lower vital capacity, but airway resistance (per lung vol-
ume) is not increased. There are also vascular disorders, such as pulmonary
edema, which is the abnormal accumulation of fluid in the lungs.

Poor breathing due to a diseased lung is manifest in different ways. As
seen in Fig. 9.20, the inspired volume is very low if the compliance is less than
normal and/or the airway resistance is greater than normal. A spirometer with
a low resistance can also be used to test for lung malfunctions in a manner that
is slightly different from that used in Fig. 9.13. After a very deep inhalation,
a person forces air out as fast as possible. The total volume exhaled is the
forced vital capacity (FVC), which can be a bit less than the vital capacity

Fig. 9.20. Lung volume during inspiration for (a) normal conditions, (b) decreased
compliance, and (c) increased airway resistance. (Based on [443])



9.5 Breathing Under Usual and Unusual Conditions 545

Fig. 9.21. Forced expiration for (a) normal, (b) obstructive, and (c) restrictive
patterns. (Based on [444])

measured with slower expiration. Also of note is the volume exhaled in the
first 1 s, which is the forced expiratory volume (FEV) (or FEV1, which denotes
specifically that this volume was expired in 1 s), and the ratio FEV/FVC. As
seen in Fig. 9.21, for a normal lung FVC = 5.0 L and FEV/FVC = 80%.
The example of an obstructive pattern has a lower FV, 3.1 L, and smaller
FEV/FVC, 42%. The example of a restrictive pattern also has a lower FV,
3.1 L, but a high FEV/FVC, 90%. The flow rates for the obstructive pattern
are also abnormally low (Problem 9.27).

Figure 9.18 shows cycles that typify the breathing cycles of a normal per-
son and of people with lung disorders. The divisions between the alveoli break
down in people with emphysema. Consequently, the lungs become less springy
and more compliant, and the airway resistance contribution dominates breath-
ing. In pulmonary fibrosis, the compliance is reduced by an increase in fibrous
tissue. This condition increases in pulmonary emphysema and in normal ag-
ing, due to a change in elastic tissue in the lungs. The volume/pressure locus
is also shown for idiopathic respiratory distress syndrome (RDS). It is seen
to move to higher pressure due to a lack of alveoli surfactant, as occurs in
some premature babies. In such infants the minimal surface tension is only
2 × 10−4 N/m, compared to �0.5 × 10−4 N/m for normal lungs. With less
surfactant, the alveolus surface tension decreases and, at the same pressure
difference the alveolus is smaller. Figure 9.22 shows that the airways tend

Fig. 9.22. Airways dimensions for different patients. (Based on [444])
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to collapse in emphysema because of the loss of radial traction with exterior
structures, while in interstitial fibrosis the airways can become large in di-
ameter, due to excessive radial traction, making the airways large in volume
relative to the lungs.

9.5.5 Breathing at Higher Elevations

The partial pressure of oxygen is 161 mmHg (21.2 kPa) at sea level (300 K).
Hypoxia (which is the lack of oxygen reaching living tissues) occurs below a
critical partial pressure of 57 mmHg (7.5 kPa), for a normal, relaxed breathing
rate. (Another way of saying this is: Our bodies have been designed so that our
rate of breathing air, rate of transferring oxygen to the blood, the capacity of
the blood to hold oxygen, the rates of blood flow to tissues, and so on leads to
a metabolism that functions well when the partial pressure of oxygen is above
this critical value.) At what elevation above sea level does hypoxia occur?

The pressure of a fluid column of constant fluid density ρ and constant
gravitational constant g is given by (2.48), P = ρgh, where h is the height of
the column. In Chap. 8 we considered a column of blood; now let us consider
a column of air at a height z and above, where z = 0 at sea level. The change
in pressure for a change in height is

dP = −ρgdz. (9.13)

Because we will be considering heights above sea level that are much smaller
than the radius of the earth, we have ignored the dependence of the gravita-
tional acceleration g on z. (It is considered in Problem 9.35.)

The ideal gas law (7.2) is P = nRT , where n is the density, R is the gas
constant, and T is the temperature, or P = ρRT/m

P =
RT

m
ρ, (9.14)

where ρ = mn is the mass density, with m the molecular mass. We will
assume that the atmospheric temperature (300 K) does not vary with height
(see Problem 9.40). Dividing (9.13) and (9.14) gives

dP

P
= −mg

RT
dz. (9.15)

Integrating from sea level, z = 0 with pressure Psea level, to a height h, with
pressure P (h), gives

P (h) = Psea level exp
(
−mg

RT
h
)

. (9.16)

Using the partial pressure of oxygen at sea level and m = 32 g/mol for oxygen,
this shows that hypoxia occurs at a height of 8.25 km (= 27,100 ft = 5.1 miles).
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9.6 Work Needed to Breathe

During inspiration the thorax and abdomen do positive work to expand the
lungs [420, 430, 431, 443]. The body does no work during normal expiration,
but during forced breathing work is also done to contract the lungs during
expiration. Because V = Vd + CflowP , for the breathing cycle with volume
changing between the functional residual capacity volume, VFRC, and that
plus the tidal volume, VFRC + Vt, we can write V (t) = VFRC + CflowP (t). We
see that ΔV (t) = V (t)− VFRC = CflowP (t) or P (t) = ΔV (t)/Cflow. The work
done during inhaling a tidal volume Vt is

W =
∫ Vt

0

Pd(ΔV ) =
∫ Vt

0

ΔV

Cflow
d(ΔV ) =

V 2
t

2Cflow
. (9.17)

In Fig. 9.16a, the work done overcoming these elastic (compliance) effects is
the area defined by regions I + II, and this is what we have derived here (and
will use later). The work is really larger, the area represented by regions I +
II + III, because of viscous (resistive) effects. (These viscous/resistive effects
also lead to the hysteresis here and in Fig. 9.12, just as in Chap. 4.)

For a breathing rate of f , the rate of doing work for inspiration is

dW

dt
= f

V 2
t

2Cflow
. (9.18)

With a breathing rate of 20/min, tidal volume of 500 cm3, and lung compliance
of 0.1 L/cmH2O = 0.1 cm3/(dyne/cm2), this is

dW

dt
=

(20/min)(500 cm3)2

2 × 0.1 cm3/(dyne/cm2)
= 3.6 × 103 J/day = 0.86 kcal/day. (9.19)

The respiratory muscle efficiency is ε = 5–10%, and so the metabolic
need is

dE

dt
=

dW/dt

ε
=

0.86 kcal/day
0.05

= 17 kcal/day (9.20)

assuming 5% efficiency; this calculation is very sensitive to the values chosen
for Cflow and ε. This result is about 1% of the BMR; however this value is
really about 2% of the BMR, so maybe ε is closer to 3% or other effects
need to be considered, such as dissipation due to resistance of the flow and
the viscous nature (of the overall viscoelasticity) of the lungs and chest wall.
Airflow resistance in the nose seems to be responsible for about half of the
work needed to breath.

During normal breathing there is no mechanical work done in expiration.
During heavy workouts and strenuous exercise the metabolic needs increase
because there is (1) also work done during expiration, (2) a faster breathing
rate, and (3) a larger tidal volume. The work done to breathe can use 25%
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Fig. 9.23. Intrapleural, alveoli, airway, and atmospheric pressures in cmH2O during
inspiration and forced expiration. (Based on [443])

of the total body energy consumption. Such a large increase is suggested by
Fig. 8.27. Rapid shallow breathing (as recommended in Lamaze training for
childbirth) requires more energy than does normal breathing, to overcome
the resistive nature of flow in the air passages. Similarly, slow, deep breathing
requires more energy to overcome the elastic nature of the lung and chest.
Problem 9.12 compares other relative advantages and disadvantages of these
last two modes of breathing.

Another interesting thing can occur during forced expiration. In normal
breathing the pressure in the airways always exceeds the intrapleural pres-
sure during inspiration and expiration (as is seen in Fig. 9.23 during normal
inspiration). However, during forced expiration the intrapleural and alveoli
pressure both increase by the same amount (38 cmH2O) and so they are both
positive relative to the atmosphere (+30 and +38 cmH2O in the figure). There
is now a large pressure drop from the alveoli to the lips and nostrils. At some
point along this route the pressure in the airway will be lower than 30 cmH2O
and this will compress the airways (shown where the pressure is +19 cmH2O
in this figure) and increase the airway resistance.

9.7 Summary

The macroscopic basis of lung function and breathing can be understood
by analyzing the volume, pressure, and air flow during breathing, by using
models of fluid flow and lung expansion. The physical nature of the individual
operating units in the lungs, i.e., the alveoli, can also be understood this way.
These models can also be used to understand the physical consequences of a
diseased lung. The energy needed to operate the lungs can also be modeled.

Problems

Lungs

9.1. Calculate the effective lung volumes and breathing rates for a man
(70 kg), woman (50 kg), and an infant (5 kg) using the allometric relation
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parameters in Table 1.13. How do the breathing rates compare with those
given above?

9.2. If there are 3 × 108 alveoli in a lung with a functional residual capacity
(FRC) of 2.5 L, calculate the average volume and radius of an alveolus.

9.3. Use Table 9.1 to show that the air travels a total distance of 273 mm
from the trachea to the alveoli.

9.4. What is the total volume of the lungs described in Table 9.1? Where is
most of the volume?

9.5. Is continuity of flow obeyed by the data for the lungs in Table 9.1? Check
this using the data for bronchial generations 0, 1, 2, 3, 4, 5, 10, 16, 20, and
23.

9.6. Calculate the Reynolds number for the bronchial generations listed in
Problem 9.5. Is the flow laminar or turbulent in the respiratory system?

9.7. Calculate the pressure drop across pulmonary arterial orders 1, 4, 10, 13,
16, and 17, assuming a total blood flow of 5 L/min.

9.8. The CO2 level in the atmosphere was ∼280 ppm (parts per million) in
preindustrial times and is ∼380 ppm now. Express these levels in terms of
mmHg. Would this change be expected to affect the exchange of CO2 in the
lungs in any significant manner?

Alveoli and Surface Tension

9.9. Derive (9.8) from (9.7).

9.10. Estimate the force the adult diaphragm would need to exert if there
were no lung surfactant.

Breathing

9.11. Use Fig. 9.13b to explain how a spirometer works. How much should
the water in the spirometer rise and fall during breathing cycles? (Assume
reasonable dimensions for the instrument.)

9.12. During breathing, the pulmonary ventilation, Vp (in L/min) (the rate
at which air enters the trachea), equals the respiratory rate, R (in units of per
min), times the tidal volume, Vt (in L). Because of the anatomical dead space
volume Vd, only Vt − Vd enters the alveoli (and is thus of use). Therefore, a
more meaningful ventilation rate is the alveolar ventilation Va = R(Vt − Vd):
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Table 9.3. Examples of breathing cycles

activity R Vt

(per min) (L)

(i) at rest, quiet breathing 12 0.5
(ii) at rest, with rapid, shallow breathing 24 0.25
(iii) at rest, with very rapid, very shallow breathing 40 0.15
(iv) at rest, with slow, deep breathing 6 1.0
(v) exercising, with rapid, shallow breathing 24 0.5
(vi) exercising, with slow, deep breathing 12 1.0

(a) Find Vp and Va for the conditions in Table 9.3, assuming Vd = 0.15 L.
(b) Compare the pulmonary ventilation for the four breathing patterns in
this table for the person at rest. (Patterns (ii)–(iv) require more metabolic
power than does (i), because of increased work due to resistance to flow and
resistance in the tissues for (ii) and (iii), and increased work due to compliance
(elastic) forces of the lung and chest in (iv)) Which of the four are clearly
inadvisable because of poor alveolar ventilation?
(c) During exercise, both the respiratory rate and tidal volume increase. Based
on the results in part (a) for (i)–(iv) and for (v)–(vi), do you gain more by
breathing faster or deeper for a given pulmonary ventilation?

9.13. What are the maximum and average air flows for each breathing cycle in
Problem 9.12, assuming the inhalation and exhalation periods are the same?

9.14. (a) When you take in a deep breath of say 1 L, how much does your
mass (in kg) and weight (in N and lb) increase?
(b) Does your average density increase, decrease, or stay the same? If there is
a change, estimate it.

9.15. (a) What does Fig. 8.27 say about the amount of oxygen that can be
consumed per amount of cardiac output?
(b) What does it say about how much oxygen is needed to do work? Is this
consistent with what is presented in the text?
(c) How is work output defined in this figure?

9.16. Estimate the resistance of the trachea using Poiseuille’s Law, assuming
it has a radius of 9 mm and a length of 110 mm. How does this compare to
the total resistance?

9.17. Estimate the resistance of the vocal tract using Poiseuille’s Law, assum-
ing it can be modeled as three tubes in series with respective lengths 6, 3, and
6 cm and cross-sectional areas 5, 1, and 5 cm2. (Also sketch this model.)

9.18. Estimate the resistance of the nasal passage using Poiseuille’s Law, as-
suming it has a radius of 4 mm and a length of 3 cm. How does this compare
to the total resistance and is it a limiting factor in the resistance to flow?
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9.19. If you model the breathing airway as a series of sequential passages, the
nasal or mouth passage, the pharynx, larynx, and then trachea, each with a
resistance to air flow, what is the total resistance to air flow in terms of these
individual resistances?

9.20. In both inspiration and expiration, a pressure difference of 0.4 cmH2O
causes a flow of 0.15 L/s in the nose. Determine the flow resistance in it.

9.21. Consider the lung bifurcation generations 1–19 in Table 9.1:
(a) In which generation is the flow resistance largest? What is its value?
(b) Do your results agree with those in Fig. 9.14a?
(c) In which generation is the pressure drop greatest, and generally in what
range of bifurcations is most of the pressure drop?

9.22. The total airway resistance is the sum of those in each generation. Do
the resistances in Fig. 9.14a add to give you a total resistance consistent with
that in Fig. 9.14b?

9.23. Calculate the resistance for generation 4 using Poiseuille’s Law and
compare it to the values given in the chapter.

9.24. (a) Use Fig. 9.15 to determine the compliance of the lungs (Cflow,lung)
and chest walls (Cflow,chest wall) at 0, 20, 40, 60, and 80% of vital capacity.
(b) Determine the compliance of the combined lung/chest wall system
(Cflow,lung/chest wall) at these volumes, and compare these values with those
from part (a) by using 1/Cflow,lung/chest wall = 1/Cflow,lung + 1/Cflow,lung/chest wall.

9.25. (a) Use Fig. 9.18 to determine the compliance of the lungs for each
condition (within the lowest 5 cmH2O pressure range shown for each).
(b) How does the compliance vary for each over the pressure range shown?

9.26. Compare the specific lung compliances of a 65 kg man and 20 g mouse,
with respective compliances of 0.2 L/cm-H2O and 0.0001 L/cm-H2O.

9.27. Show that the forced expiratory flow (FEF) rates for the normal, ob-
structive, and restrictive flows in Fig. 9.21 are 3.5, 1.4, and 3.7 L/s, respec-
tively. Do this by determining the slopes of the three curves in this figure.
(Use a straight-line fit between points that have decreased by 25% and 75%
on the way to the FVC.)

9.28. Determine the air flow resistance from the flow rate and alveoli pressure
in Fig. 9.17.

9.29. Consider only the compliance in the work of breathing and assume that
the compliance Cflow for normal lungs is 0.1 cm5/dyne:
(a) In fibrosis of the lungs the compliance of the lungs decreases. For a given
tidal volume, how does the rate of work of breathing change if the compliance
decreases by x%?
(b) Compare the rate of work done in breathing (J/day) and the associated
rate of metabolism (kcal/day) (if the muscles associated with breathing are
5% efficient) for cases (i) and (iv) in Problem 9.12 for normal lungs.
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9.30. (advanced problem) Write down the equation of motion for the mechan-
ical model in Figure 9.16b and solve it for inspiration.

9.31. (advanced problem) Show that the solution in Problem 9.30 qualita-
tively agrees with the trends seen in Fig. 9.20: with decreased compliance, the
time constant decreases and the volume breathed during a cycle decreases,
while with increased airway resistance, the time constant increases and the
volume breathed during a cycle decreases.

9.32. Estimate the rate of energy consumed by the lungs during exercise with
a breathing rate of 40/min and tidal volume of 1,000 cm3.

9.33. Use a blood circulation rate of 5 L/min and the known change in the
partial pressures of O2 and CO2 in the systemic capillaries to find the number
of liters of O2 consumed and CO2 exhaled each day. How do your results
change if you instead use the change in the partial pressures of O2 and CO2

in the pulmonary capillaries? Explain why.

9.34. If your chest wall and parietal pleura of a lung are punctured, the in-
trapleural pressure will increase to atmospheric pressure and that lung will
collapse. Explain why. Also draw a diagram explaining this.

Breathing at High Elevation

9.35. (a) Show that the gravitational acceleration constant g varies with
height z above sea level as g(z) = g (REarth/(REarth + z))2, where the ra-
dius of the earth is REarth = 6, 378 km.
(b) Show that this variation does not affect the analysis of oxygen deprivation
at high elevations, described in the text.

9.36. What is the atmospheric pressure in the “mile-high” city of Denver?
What is the partial pressure of oxygen there?

9.37. Commercial jets typically cruise at an altitude of ∼10,700 m (∼35,000 ft).
What are the total pressure and partial pressure of oxygen at that height?
Why are jets pressurized? Why are oxygen masks made available just in case
the cabin is depressurized?

9.38. Why do some athletes train at high elevations?

9.39. Apply (9.16) to the variation of the partial pressure of nitrogen, us-
ing m = 28 g/mol. Let us say here that the ratio of oxygen to nitrogen is
20.9%/78.1% = 0.268 at sea level. What is this ratio at the critical height for
hypoxia?

9.40. The temperature of the troposphere (the atmosphere up to roughly
11 km) decreases with height, by a bit less than 1 K per 100 m of elevation. In
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Table 9.4. Total and partial pressures at different elevations. (Using data
from [445])

altitude sea level at 2,500 m

atmospheric pressure (total) 760 560
atmospheric pressure (O2) 159 117
in alveoli (O2) 105 77
in arterial blood (O2) 100 72
in venous blood (O2) 40 40

the standard atmosphere T (z) = Tsea level + αz, with Tsea level = 288.19 K and
α = −0.00649 K/km. (For a dry atmosphere, α = −0.0098 K/km.):
(a) Use this temperature variation in (9.15) to show that

P (h) = Psea level (Tsea level/(Tsea level + αh))gm/Rα
. (9.21)

(b) Show that hypoxia occurs at a lower elevation, 7.21 km.

9.41. Table 9.4 compares the partial pressure of oxygen (in mmHg) in the air
and in the body at sea level and at an elevation of 2,500 m:
(a) Justify the values given for total pressure and O2 partial pressure at
2,500 m.
(b) Justify the O2 partial pressure in the alveoli at 2,500 m by using the pres-
sure at sea level.
(c) At sea level your blood flows at a rate of 5 L/min. How fast would it have
to flow at an elevation of 2,500 m to provide the same flow of oxygen to the
tissues? (Assume no change in the red blood cell and hemoglobin concentra-
tions in the blood. These increase as part of adapting to higher elevations.)
(d) How much faster would you have to breathe at this elevation (in liters of
air per min) to maintain the same rate of oxygen delivery? How could this
translate into changes in the breathing rate and tidal volume?
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Sound, Speech, and Hearing

In this chapter we will ask: How do we speak? How do we hear? To answer
these questions we will have to probe into the physics of sound waves, which is
called acoustics, because speaking is creating sound and hearing is detecting
sound. We will first review the basic physics of sound waves and will then
examine the physics of speaking and hearing by humans in more detail.

Sound is also important in medical diagnostics. Physicians use stetho-
scopes to listen to sounds in the body (auscultation; see the end of this
chapter) and they tap on parts of the body, as one would a drum, as a per-
cussive diagnostic. Another important medical diagnostic using sound is ul-
trasonic mapping or ultrasonography. It is a nondestructive imaging method
that makes use of sound at frequencies (∼1–10 MHz), way above our hearing
range (20 Hz–20 kHz), that provides images with the very useful spatial res-
olution of ∼1 mm [489, 506]. Waves are sent to an object and reflected, with
the delay time between the transmission of the probe beam and the arrival of
the reflected acoustic pulses at the detector giving the relative location of the
object. For example, in analyzing the heart the use of a scanned single beam
gives valuable, yet limited information, such as the wall thickness and chamber
diameters (M-mode echocardiography), while the use of multiple beams trans-
mitted through a wide arc provides two-dimensional images of the heart (2-D
echocardiography). The shifting of the acoustic frequency when the ultrasound
reflects from a moving target (the Doppler effect) is the basis for measuring
blood flow direction, turbulence, and speed (Doppler ultrasonography). (See
Problems 10.22 and 10.23, and Fig. 10.56.)

10.1 The Physics of Sound Waves

Sound is a compressional wave in a gas, liquid, or solid. A wave is a periodic
disturbance that travels in space, say in the z direction. It is periodic in space,
which means that at any given time t, the disturbance is periodic with z, as
in Fig. 10.1. It is periodic in time, which means that at any given position z,



556 10 Sound, Speech, and Hearing

Fig. 10.1. Waves at (a) one time, (b) one place, and (c) two different times, showing
wave propagation

the disturbance is periodic with time t. The disturbance travels with a speed
v, the speed of sound, so from time t1 to time t2 the disturbance travels a
distance δz = z2 − z1 = v(t2 − t1). The quantity z − vt does not change for
the disturbance as it “travels” with the wave.

So far we have described the propagation of a disturbance by a generic
type of wave, but have not specified what is being disturbed. In sound waves,
these disturbances are local changes in pressure, δP = P (z, t) − Pambient,
mass density, δρ (or molecular density, δn), and displacement, δz, from their
ambient values. Sound waves are compressional in that these changes occur in
the same direction as the wave propagates, here in the z direction. If you pluck
a string, the wave propagates along the string, but the actual disturbance of
the string is perpendicular to it, making it a transverse wave. Figure 10.2
shows the longitudinal motion of the molecules during a sound wave. These
pressure and density variations are in phase with each other, meaning that
they both increase (compression) or decrease (rarefraction) from the ambient
values together. (The equations of state of materials, such as P = nRT for
ideal gases, usually show that density increases with pressure.) In contrast,
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Fig. 10.2. Sound waves are compressional waves

the displacement of molecules is out of phase with density and pressure; the
displacement spatially varies as a cosine wave if the density and pressure
vary as sine waves. Where the density and pressure are at a maximum, the
displacement is zero, but the displacement is positive just to the left and
negative just to the right – which maximizes the density and pressure. Where
the density and pressure are at a minimum, the displacement is also zero, but
the displacement is negative just to the left and positive just to the right. This
is seen in Fig. 10.2.

We have chosen to examine the simplest waves, for which the periodic dis-
turbance varies as a sine function (or equivalently a cosine function). While
sound waves from speaking are complex sums of such waves at different fre-
quencies, to a very good approximation we can examine the physics of each
frequency by itself and sum the effects. (This is called linearity or linear su-
perposition.)

10.1.1 The Speed and Properties of Sound Waves

Sound waves move at a speed vs that is determined by the properties of the
medium. In general the sound speed is

vs =

√
C

ρ
, (10.1)

where C is a constant describing the stiffness of the material (when there is
no heat flow, which are “adiabatic” conditions) and ρ is the mass density.
In solids, this stiffness constant can depend on the direction the sound wave
propagates. It equals Young’s modulus Y for the propagation of compressional
waves down a rod that is much longer than it is wide. For steel, vs = 5,960 m/s.
In fluids (liquids and gases), C is the (adiabatic) bulk modulus B, which
describes how much pressure is needed to achieve a given fractional decrease
in volume. In gases, B = γP , where γ is the ratio of the specific heats at
constant pressure (cp) and volume (cv). (The ratio cp/cv ranges from 1, for
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very large molecules, to 5/3, for an ideal monatomic gas, and is 1.4 for air,
which is composed of diatomic gases.) Consequently, the speed of sound in
gases is

vs =

√
γP

ρ
=

√
γRT

m
, (10.2)

where R is the constant in the ideal gas law (7.2) (R = 8.31 J/mol-K), and m
is the molecular mass. The speed of sound in air is 343 m/s (at 20◦C), which
is 15× slower than that in steel, while in water it is 1,482 m/s (see Problems
10.4 and 10.5).

Waves are periodic in space (at one t), which means they repeat with a
spatial periodicity called the wavelength λ (Fig. 10.1). They are also periodic
in time (at one z) with a temporal periodicity called the period T , which
corresponds to a frequency f with f = 1/T (Fig. 10.1). Mathematically, a
disturbance moving to the right (larger z) can be expressed as g(z− vst) – for
any wave of functional form g, because z − vst remains constant as the wave
moves to the right at speed vs. One example of this is cos(z − vst). Similarly,
a disturbance moving to the left (smaller z) can be expressed as g(z + vst),
because z + vst remains constant as the wave moves to the left.

Frequency has units of cycles per second (cps) = Hertz (Hz). (Sometimes
we will use the radial frequency ω, which has units of rad/s or just 1/s, and
which is related to the frequency by ω = 2πf .) The wavelength, frequency,
and speed of a wave are interrelated by

vs = λf. (10.3)

So, low-frequency waves have long wavelengths, while high frequency waves
have short wavelengths. Using the speed of sound in air, f = 1, 000 Hz sound
waves in air have a wavelength of 0.34 m �1 ft. For some types of waves, vs

depends on f , and so vs = vs(f), but it does not for sound in air. When sound
waves travel from one medium to another, the frequency stays the same, but
the wavelength changes with the change in sound speed (10.3). Note that for
acoustic waves it is the disturbance that is propagating; the actual molecules
move very little (and do not physically travel with the disturbance).

10.1.2 Intensity of Sound Waves

The intensity I of a sound wave is the energy carried by the wave per unit
area and per unit time (in units of J/m2-s or W/m2). At a distance R from
an isotropic source of average acoustic power Ppower, the intensity is

I =
Ppower

4πR2
. (10.4)
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Table 10.1. Mass density, sound speed, and acoustic impedance. (Using data from
[467, 489])

material ρ vs Z (= ρvs)
(kg/m3) (m/s) (kg/m2-s)

air (20◦C) 1.20 343 413
water 1.00 × 103 1,480 1.48 × 106

fat 0.92 × 103 1,450 1.33 × 106

muscle 1.04 × 103 1,580 1.64 × 106

bone 2.23 × 103 3,500 7.80 × 106

blood 1.03 × 103 1,570 1.61 × 106

soft tissue (avg.)a 1.06 × 103 1,540 1.63 × 106

lung 286 630 1.80 × 105

aThe soft tissue value is representative of the skin, kidney, liver, and the brain.

The acoustic intensity is also equal to the kinetic energy of the wave per unit
volume, ρu2

max/2, times the wave speed, vs, or

I =
1
2
ρu2

maxvs, (10.5)

where umax = (δzmax)ω is the maximum speed of the molecules for a maximum
displacement δzmax during the disturbance. Therefore, we see that

I =
1
2
ρvs[(δzmax)ω]2. (10.6)

The acoustic impedance of a medium Z is given by the product of the mass
density and sound speed for that medium, so

Z = ρvs. (10.7)

Table 10.1 lists the mass density, sound speed, and acoustic impedance for air,
water, fat, muscle, and several other body materials. The acoustic impedance
for water, fat, and muscle are ∼3,500× that for air. We will see later that
this mismatch is responsible for the reflection of sound between air and these
other media.

For simplicity, we will relabel the gauge pressure δP (= P −Patmosphere) as
P for the rest of this chapter and call it the sound pressure. Moreover, P will
actually denote the maximum pressure in the cycle, Pmax. The magnitude of
the maximum pressure variation in the sound wave is related to this maximum
(out of phase) displacement by

|P | = (ρvs)ω|δzmax| = Zω|δzmax|. (10.8)

We can understand this because pressure is the force per unit area and force
is the change of linear momentum with time, and so pressure is the change
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in linear momentum per unit area per unit time. Using (10.8), the acoustic
intensity is

I =
1
2
Z(δzmax)2ω2 =

P 2

2Z
. (10.9)

We can present the sound intensity I in units of W/m2 or any other equiva-
lent units. It is also very common to characterize the sound intensity in a more
physiologically-based manner, in which I is referenced to Iref = 10−12 W/m2;
Iref is a sound intensity that is barely audible at 3,000 Hz. Because sound in-
tensities in our everyday experience can be many orders of magnitude larger
than this reference intensity, we usually use a logarithmic scale – referenced to
base 10 – to characterize I. In units of bels, named after Alexander Graham
Bell, I(in bels) = log10(I/Iref). It is, in fact, standard to use a finer scale in
tenths of bels, called decibels or dB, with

I(in dB) = 10 log10

I

Iref
. (10.10)

For example, for I = 10−8 W/m2 = 104Iref we see that I(in dB) =
10 log10(104) = 10 × 4 = 40, or 40 dB.

The dB scale is also used to denote the relative magnitude of intensities,
such as that of I2 relative to I1. With

I1(in dB) = 10 log10

I1

Iref
and I2(in dB) = 10 log10

I2

Iref
(10.11)

we see that

I2(in dB) − I1(in dB) = 10 log10

I2

Iref
− 10 log10

I1

Iref
= 10 log10

I2

I1
. (10.12)

So, a 20 dB increase in sound intensity indicates a factor of 102 = 100 increase
in I. Because the dB scale is also used to indicate relative magnitudes, this
absolute acoustic unit in (10.10) is often denoted as dB SPL (sound pressure
level). Table 10.2 shows the acoustic intensities of common sounds. Normal
background noise is 50–60 dB SPL. Normal conversation is 60–70 dB SPL.
Speech is around 70–80 dB SPL at 1 m. The threshold of pain is about 120 dB
SPL. Windows break at about 163 dB SPL. Shock waves and sonic booms
cause levels of about 200 dB SPL at a distance of 330 m.

Apollo astronauts were exposed to very loud sounds during liftoff, over
85 dB SPL for about 80 s after liftoff – with maximum levels below 100 Hz
[468, 480]. About 60 s after launch the sound in the crew area was about
123 dB over a wide frequency range, but astronauts heard much less intense
sounds (because they wore helmets and suits), from 119 dB at 63 Hz to 89 dB
at 2,000 Hz. On the gantry, 10 m above ground, the maximum levels were 158–
168 dB SPL from 2–2,000 Hz and then down to 152 dB at 8,000 Hz [480, 482].
The levels were 12–31 dB lower 400 m from the gantry.
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Table 10.2. Typical sound intensities

intensity intensity level
(W/m2) (dB SPL)

sound barely perceptible, human with good ears 10−12 0
human breathing at 3 m 10−11 10
whisper at 1 m, rustling of leaves, ticking watch 10−10 20
quiet residential community at night, refrigerator hum 10−8 40
quiet restaurant, rainfall 10−7 50
normal conversation at 1m, office, restaurant 10−6 60
busy traffic 10−5 70
loud music, heavy traffic, vacuum cleaner at 1 m 10−4 80
loud factory 10−3 90
fast train, pneumatic hammer at 2 m, disco, blow dryer 10−2 100
accelerating motorcycle at 5m, chainsaw at 1m 10−1 110
rock concert, jet aircraft taking off at 100 m 1 = 100 120
jackhammer 101 130
shotgun blast, firecracker 102 140
jet engine at 30 m 103 150
rocket engine at 30 m 106 180

Equation (10.9) relates the sound intensity and sound pressure by I =
P 2/2Z. For the reference intensity Iref = P 2

ref/2Z, and with Iref = 10−12 W/m2

and Z = 413 kg/m2-s for air, we see that the reference pressure Pref =
2.9 × 10−5 N/m2 (Pa). Dividing these two relations for intensity and pres-
sure gives

I

Iref
=

P 2

P 2
ref

(10.13)

and using (10.10) gives

I(in dB SPL) = 20 log10

P

Pref
. (10.14)

Sometimes a distinction is made between the expression for the intensity,
(10.10), which gives the intensity level (IL) in units of dB IL, and that from
(10.14) for pressure, which gives the sound pressure level in dB SPL, but we
will not make such a distinction here and the units will be called dB SPL.
Generalizing (10.12) gives

I2(in dB SPL) − I1(in dB SPL) = 10 log10

I2

I1
= 20 log10

P2

P1
. (10.15)

When the sound intensity increases by 60 dB, I increases by 106 and P in-
creases by 103.

There is an analog to (10.9) in electronics with power Pelect = V 2
elect/2Relect,

where Velect is the voltage drop and Relect is the resistance. (The factor of 2
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in the denominator is present for sinusoidal voltages and absent for DC volt-
ages.) As in acoustics, the dB scale is commonly used in electronics analogous
to (10.10), (10.12), and (10.15).

Absorption of Sound

Within a given medium the sound wave can be attenuated by absorption and
scattering. In scattering, part of the propagating beam is redirected into many
directions, without being absorbed. The amplitude of the acoustic wave (A =
magnitude of the pressure δPmax or displacement δzmax) decreases exponen-
tially with the distance the wave propagates, z. This can be written as

A(z) = A(z = 0) exp(−γsoundFz), (10.16)

where γsound is the absorption coefficient and F is the frequency dependence.
For pure liquids, F = f2 in Hz2 and for soft tissues, F ∼ f in Hz. Typical
values of γsound are given in Table 10.3 for body tissues and in Table 10.4 for
other materials. Using (10.13), the acoustic power or intensity varies as

I(z) = I(z = 0) exp(−2γsoundFz). (10.17)

This variation also applies to the absorption of light in media and is called
Beer’s Law. In Beer’s Law jargon the intensity absorption coefficient 2γsoundF
in (10.17) is called αsound, and so, for instance, αsound = 2γsoundf for tissue.

Table 10.3. Amplitude absorption coefficient γsound for tissues. (Using data from
[467])

tissue γsound (s/m)

aqueous humor 1.1 × 10−6

vitreous humor 1.2 × 10−6

blood 2.1 × 10−6

brain (infant) 3.4 × 10−6

abdomen 5.9 × 10−6

fat 7.0 × 10−6

soft tissue (average) 8.3 × 10−6

liver 1.0 × 10−5

nerves 1.0 × 10−5

brain (adult) 1.1 × 10−5

kidney 1.2 × 10−5

muscle 2.3 × 10−5

crystalline eye lens 2.6 × 10−5

bone 1.6 × 10−4

lung 4.7 × 10−4

It is multiplied by the frequency f (in Hz) to obtain the amplitude absorption
coefficient per unit length.
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Table 10.4. Amplitude absorption coefficient γsound for fluids. (Using data from
[467])

fluids γsound (s2/m)

water 2.5 × 10−14

castor oil 1.2 × 10−11

air (STP) 1.4 × 10−10

It is multiplied by f2, where f is the frequency (in Hz), to obtain the amplitude
absorption coefficient per unit length. STP is standard temperature and pressure.

Beer’s Law for light is usually expressed as:

I(z) = I(z = 0) exp(−αlightz). (10.18)

In analyzing the measured fraction of the intensity of sound or light trans-
mitted through a medium, all of the loss mechanisms must be considered:
the reflection from interfaces (see later), absorption, and scattering. Because
the wavelengths of sound waves are of the same order of magnitude as every-
day objects, such as windows, pipes, heads, and so on, the diffraction and
interference of sound waves is very common.

Components of Impedance (Advanced Topic)

The concept of impedance is more generally used to assess the characteristics
of a medium that “opposes” energy flow in a system. It is also used to char-
acterize electrical components and circuits, where the electrical resistance is
the real part of the impedance and the capacitance and inductance of a sys-
tem correspond to the imaginary part of the electrical impedance. Analogous
concepts are used in optics to characterize the transmission of light in media.
In acoustics (and other areas), the reciprocal of the impedance Z, is called the
admittance Y = 1/Z, which describes the ease of energy flow. Immittance is
refers to either the impedance or admittance, and is used as a general term
to describe how well energy flows in a medium.

The impedance is generally a complex parameter. The real part of Z is
the resistance R. Out of phase to the resistance by 90◦ (or π/2 rad) are the
mass (positive) reactance (Xm), which is proportional to frequency f , and
the stiffness (or negative) reactance Xs, which is inversely proportional to f ;
Xm and Xs are 180◦ (or π rad) out of phase to each other. Overall, Z =
R + i(Xm − Xs). The net reactance is Xnet =| Xm − Xs |. The magnitude of
the impedance is related to these component parts by

| Z | =
√

R2 + X2
net . (10.19)

Similarly, the admittance Y = G + i(Bm − Bs). The real part G is the
conductance, and the imaginary parts Bm and Bs are the mass susceptance
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and stiffness (compliant) susceptance, respectively. (When the impedance has
only a resistive term, the conductance is G = 1/R.) The net susceptance is
Bnet = | Bm − Bs |. The components of the admittance are related to the
impedance terms by G = R/(R2 + X2

net), Bm = −Xm/(R2 + X2
net), and

Bs = −Xs/(R2 + X2
net). The magnitude of the admittance is related to these

component parts by

| Y | =
√

G2 + B2
net . (10.20)

Problems 10.26–10.29 address these and other relations involving impedances.
This discussion can apply to the impedance in acoustics, electronics, or flow

(Appendix D). For example, this terminology can be applied to the analog in
mechanics of a mass attached to a spring that slides on a rough surface. The
friction due to sliding on the rough surface is the resistance. The inertia due
to the mass is the mass reactance and the resistance to movement due to the
spring is the stiffness reactance. When used in audiology and other aspects of
sound, these parameters are also characterized by the term “acoustic,” such as
acoustic impedance, acoustic admittance, acoustic resistance, mass (positive)
acoustic reactance, and so on. To avoid confusion we could use subscripts,
such as Racoust for acoustic resistance, and so on.

The units of impedance Z is ohms (Ω), just as in electronics. The units of
admittance Y is the 1/ohm = 1 mho. R, Xm, and Xs all have units of ohms,
and G, Bm, and Bs all have units of mhos. In audiology the admittance values
are small and the more useful unit is the millimho or mmho.

The Impedance in a Harmonically Driven System (Advanced Topic)

We now examine the concept of impedance and derive (10.19) by considering
the motion of a body of mass m attached to a spring of force constant k. It is
subject to a viscous, frictional force, characterized by η, and a driving term,
FA exp(iωt). This motion is described by

m
d2x

dt2
+ η

dx

dt
+ kx = FA exp(iωt). (10.21)

The driving term has a real part FA cos(ωt), because exp(iωt) = cos(ωt) +
i sin(ωt). This model is similar to the Voigt model in Chap. 4 with F =
η dx/dt+kx (from (4.57)). (It can be represented by the model presented later
in Fig. 10.13, with the force driving term acting laterally on the
mass.)

Substituting a potential solution x = x0 exp(iωt) in this equation, gives
the (“particular” or steady state) solution

x =
FA

−mω2 + iηω + k
exp(iωt). (10.22)
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(See Appendix C.) Differentiating this, the speed of the body is

dx

dt
=

iωFA

−mω2 + iηω + k
exp(iωt) (10.23)

=
FA

η + imω + k/iω
exp(iωt). (10.24)

The ratio of the driving force, FA exp(iωt), to the speed, dx/dt, is the me-
chanical impedance Z

FA exp(iωt)
dx/dt

= η + imω + k/iω = Z. (10.25)

This impedance is sometimes expressed as

Z = R + iωM + S/iω = R + i(ωM − S/ω). (10.26)

Here, R = η provides the resistance, M = m is the inertial term (or inertance),
and S = k is the stiffness. In terms of the mass (positive) reactance (Xm),
which is proportional to frequency f , and the stiffness (or negative) reactance
Xs, which is inversely proportional to f , we can say

Z = R + iXm + Xs/i = R + i(Xm − Xs), (10.27)

with Xm = ωM = 2πfM and Xs = S/ω = S/2πf . Equation (10.19) follows
from the magnitude of a complex number.

10.1.3 What Happens when Sound Travels from
One Medium to Another?

Sound transmission from one medium to another is very important in hearing,
because sound is transmitted from the air in the auricle and ear canal into
the middle ear and then into the inner ear. This can be understood by seeing
what happens to a sound wave incident on the planar interface between two
different semi-infinite media, such as media 1 and 2 in Fig. 10.3.

This sound wave travels in medium 1 with intensity Ii and pressure Pi

incident on the interface. The part that is reflected back into the same medium
has intensity Ir and pressure Pr, and the part that is transmitted into medium
2 has intensity It and pressure Pt. These pressures are related by “matching
the boundary conditions” at the interface, as we will see very soon. As stated
earlier, the frequency is the same in both media, but the wavelength changes
with the change in sound speed by (10.3), so λ1 = v1/f and λ2 = v2/f .
These frequencies need to be the same because the sinusoidal oscillations of
pressure and matter movement on both sides of the interface must always
match. The magnitudes of the pressures must match so there is no net force
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Fig. 10.3. Schematic of acoustic wave transmission and reflection

on the interface. This gives

Pi + Pr = Pt. (10.28)

The motion at the interface caused by all three waves must match. The
speed of this lateral displacement is |ω(δz)| and for a wave initially moving to
the right it is positive for the incident and transmitted waves and negative for
the reflected wave. Using (10.8), δz ∼ P/(Zω), we know that |ω(δz)| ∼ P/Z,
and so matching displacement gives

Pi

Z1
− Pr

Z1
=

Pt

Z2
. (10.29)

Solving these two equations gives

Pr

Pi
=

Z2 − Z1

Z1 + Z2
(10.30)

Pt

Pi
=

2Z2

Z1 + Z2
. (10.31)

Using (10.9) and (10.30), the fraction of intensity that is reflected is

Rrefl =
Ir

Ii
=

P 2
r /2Z1

P 2
i /2Z1

=
P 2

r

P 2
i

(10.32)

=
(

Z2 − Z1

Z1 + Z2

)2

=
(

1 − Z2/Z1

1 + Z2/Z1

)2

. (10.33)

Using (10.31), the fraction of intensity that is transmitted is

Ttrans =
It

Ii
=

P 2
t /2Z2

P 2
i /2Z1

=
Z1

Z2

P 2
t

P 2
i

(10.34)

=
Z1

Z2

(
2Z2

Z1 + Z2

)2

=
4Z2/Z1

(1 + Z2/Z1)2
. (10.35)
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Table 10.5. Representative fractions of reflected and transmitted acoustic energy
at tissue interfaces. (Using data from [467, 489, 508])

tissue interface reflected
fraction (in %)

transmitted
fraction (in %)

water/soft tissue 0.23 99.77
fat/muscle 1.08 98.92
bone/muscle 41.23 58.77
soft tissue/bone 43.50 56.50
bone/fat 48.91 51.09
soft tissue/lung 63.64 36.36
air/muscle 98.01 1.99
air/water 99.89 0.11
air/soft tissue 99.90 0.10

We see that Ii = Ir + It and Rrefl + Ttrans = 1, which means that sound
energy (and intensity) is conserved. Also, the reflected fraction is large (and
approximately equal to 1) when Z2/Z1 is either much larger or smaller than
1, i.e., when there is a very large acoustic impedance mismatch. We will see
this means the large mismatch of acoustic impedances between air and any
solid or liquid medium (Table 10.1) has important consequences in the design
of the ear. The term “to match impedance” means to minimize Rrefl, and this
is accomplished by making Z1 and Z2 approximately equal (10.33). Examples
of this mismatch in the body are given in Table 10.5. Most sound incident
on the body is reflected. Little sound is reflected between soft tissues (brain,
skin, kidney, liver, and so on) and between soft tissues and blood. There is
significant reflection at interfaces of soft tissues with the lungs and with bones.

10.1.4 Resonant Cavities

Many properties of sound waves depend on the medium the wave propagates
in and on the characteristics of the enclosure. This is important in the produc-
tion of sound – as in human speaking, musical instruments, megaphones, and
sounds produced in echo chambers – and in the collection of sound waves –
as in human hearing in the outer ear. One way to analyze these properties
is to consider the properties of sound waves in resonant cavities; more gener-
ally, these properties of resonant cavities can be applied to any waves in any
resonant structure.

What is a resonant structure? Let us consider a wave on a string of length
L. The string can be plucked so a localized wave can propagate along the
length of the string. Alternatively, one can pluck the string so a (transverse
wave) oscillates everywhere periodically. If the string is rigidly fixed at both
ends, the lowest order periodic motion (or mode – for which the transverse
displacement at any point along the string varies as cosωt) is one with a
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Fig. 10.4. Lowest three modes on a string of length L, each shown at times with
maximum and zero excursions. (Based on [471])

half wave between the two ends (Fig. 10.4). Here λ/2 = L, so the wavelength
λ = 2L. The “boundary conditions” for this motion are zero-transverse motion
at each end; these places with no motion are called nodes. Higher order modes
with higher integral numbers of half wavelengths are possible. In general,
for n half wavelengths, the wavelength is n(λn/2) = L, and so the resonant
wavelengths are

λn =
2L

n
with n = 1, 2, 3, . . . . (10.36)

Since vs = λf , the resonant or mode frequencies are

fn =
vs

λn
= n

vs

2L
, (10.37)

which is vs/2L, 2(vs/2L), 3(vs/2L), . . . for n = 1, 2, 3, . . .; these are also called
the fundamental frequency, the first harmonic, the second harmonic, etc. The
mode frequencies are equally spaced by vs/2L.

If one of the two ends of the massless string is not fixed, but is free to move
(only transverse to string axis), this different boundary condition leads to a
different set of resonant wavelengths and frequencies. At the fixed end, the
transverse displacement is still zero, which is a node. At the free end, the trans-
verse displacement now has maximum magnitude (and zero slope) – and this
is called an antinode, as in Fig. 10.5. The lowest order mode now has a quar-
ter wavelength between the two ends separated by the string length, and so
λ/4 = L and the wavelength λ = 4L. The next lowest order mode has an
extra half wavelength cycle with 3λ/4 = L, so the wavelength λ = 4L/3, etc.
Now the resonant condition is (m/2 + 1/4)λm = L, so the resonant waveleng-
ths are

λm =
2L

m + 1/2
with m = 0, 1, 2, 3, . . . . (10.38)
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Fig. 10.5. Wave modes in a tube, for tubes (a) open on both ends, (b) closed on
both ends, and (c) open on the left side and closed on the right side. The mode
displacements of air are shown on the left for the first overtone or fundamental
mode and for the next two overtones, and the corresponding changes in pressure
and density for these modes are shown on the right. (Based on [471])

The mode frequencies are

fm =
vs

λm
=

(
m +

1
2

)
vs

2L
, (10.39)

which is vs/4L, 3vs/4L, 5vs/4L, . . . for m = 0, 1, 2, . . .. Although the
mode frequencies are different from the previous case, they are still equally
spaced by vs/2L. The lowest frequency is now vs/4L and only odd harmon-
ics are present. Figure 10.6 shows the mode frequencies for both boundary
conditions.

Hollow tubes are good first-order models for the tubes in the body
where longitudinal sound waves propagate (similar to pipes in a pipe organ)
(Fig. 10.6). If the tube of length L is open at both ends, the pressure is fixed
at the ambient pressure at each end and P = 0 at the ends. This is formally
equivalent to the string with fixed ends, so the resonant wavelengths and fre-
quencies are given by (10.36) and (10.37). The density oscillation is also zero
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Fig. 10.6. Mode frequencies for a tube closed on both ends, open on both ends, or
closed on one end and open on the other

at each end (nodes) and the molecular displacement is of maximum magni-
tude at each end (antinodes). If the tube is open at one end and closed at the
other, P is still zero at the open end (a node). At the closed end, the lateral
displacement is fixed at zero (a node), while the pressure and density changes
have maximum magnitude (an antinode). This is formally equivalent to the
string fixed at one end and free at the order, so the resonant wavelengths and
frequencies are given by (10.38) and (10.39). (The resonant wavelengths and
frequencies for a tube closed at both ends are the same as for one that is open
at both ends, but the identifications of nodes and antinodes are interchanged.)
This is the reason why the tube length and boundary conditions are important
in determining these resonances, and why these resonances can be changed by
varying the tube conditions (length, varying cross-sectional area and shape) –
as can happen in the region between the vocal cords and the mouth opening.
For details about acoustic resonances see [491, 492].

The mathematics of resonant excitation of an acoustic medium are the
same as those used in Chap. 8 to analyze (8.52) and (8.54), and are due
to acoustic losses. This damping leads to the finite widths of the reso-
nances for acoustic energy, which are ∼γ/2π, in Hz, between the points
with half the maximum response. Figure 10.7 compares the unrealistically
narrow resonances to the more realistic, broader, damped resonances. The
number of cycles that an excitation lasts during its decay (to 1/e of the
initial energy) is Q/2π, where the quality factor Q = ω/γ = 2πf/γ,
where ω and f are the resonant frequencies. (See Appendix D for more
details.)
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Fig. 10.7. (a) Loss-free (infinite Q), (b) moderate loss (moderate Q), and (c) very
lossy (very low Q) transmission resonances for a tube. (Based on [504])

10.2 Speech Production

10.2.1 Types of Sounds

Human speech is made by air from the lungs as it passes through the tra-
chea (windpipe), larynx (which houses the vocal folds or cords), and pharynx
(throat), through the mouth and nasal cavities, and then out of the mouth
and nose (Fig. 9.1). For general sources about speech see [450, 451, 460, 461,
466, 472, 474, 501, 504, 510].

The vocal folds (or vocal cords) are folds of ligament extending on either
side of the larynx, with the space in between them called the glottis. The
structure above the larynx is called the vocal tract. In adult females, the
average length of the pharynx is 6.3 cm and that of the oral cavity is 7.8 cm,
for a total vocal tract length of 14.1 cm. In adult males, the average length
of the pharynx is 8.9 cm and that of the oral cavity is 8.1 cm, for a total
vocal tract length of 16.9 cm.

The shape of the vocal tract can be varied by moving the soft palate,
tongue, lips, and jaw, and these are the articulators. Adjusting the vocal tract
to produce speech sounds is called articulation. The basic elements of speech
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are classified as the (1) phonemes (the basic sounds), (2) phonetic features
(how the sounds are made), and (3) the acoustic signal (the acoustic nature of
the sounds). We will first discuss the phonemes and the acoustic signal, and
then describe how we make sound.

Phonemes are the shortest segments of speech, which in General Ameri-
can English are the 14 vowel sounds and 24 consonant sounds. Each phoneme
is produced by distinctive movements of the vocal tract, which are the pho-
netic features of speech. Vowels are produced with the vocal tract relatively
open, with different shapes of the opening. Consonants are produced by a
constriction or closing of the vocal tract. The production of phonemes is char-
acterized by three phonetic features (a) voicing, (b) place of articulation, and
(c) manner of articulation.

Sounds produced as air rushes though the vibrating vocal folds in the
larynx (Fig. 9.1) are called voiced sounds. All vowels are voiced sounds. (Touch
the middle of your throat as you speak them.) Many consonants are also
voiced, such as the “d,” “m,” “w,” and “v” sounds. (We will not use the
formal notation for phonemes [450, 461, 504].) Sound produced without the
vocal folds vibrating and only involving air flow through constrictions or past
edges produced by the tongue, teeth, lips, and palate are called unvoiced
sounds, such as for the “t” and “f” sounds.

The obstructions needed to produce consonants are formed in different
places of articulation, including (in order from the front to the back of the
mouth) bilabial (both lips, or labial) for the “p,” “b,” “m,” and “w” sounds,
labiodental (the bottom lip and upper front teeth) for the “f” and “v” sounds,
dental or interdental (teeth) for both “th” sounds (as in “thin” and “them”),
the alveolar ridge or alveolar (upper gums near the teeth) for the “d,” “t,”
“s,” “z,” “n,” “r,” and “l” sounds, palatal or alveopalatal (hard palate, which
is behind the upper gums) for the “sh,” “zh” (as in “vision”), “ch,” “j,” and
“y” sounds, velar (soft palate, which is behind the hard palate) for the “k,”
“g,” “ng,” and “w” sounds, and glottal for the “h” sound.

The mechanical means by which consonants are formed, including the way
air is pushed through the opening, is the manner of articulation. Plosive or
stop sounds such as “d,” “b,” “p,” “g,” “t,” and “k” have a staccato nature
because they are formed by blocking air flow and then letting a slight rush of
air. Fricative sounds such as the voiceless “f,” “th” (as in “thin”), “s,” and
“sh,” and the voiced “v,” “th” (as in “them”), “z,” and “zh” (each set in order
from the front to the back of the mouth) have a hissing nature because air
flow is constricted at the place of articulation, making the air flow turbulent.
The “m” sound is nasal because the soft palate is lowered to couple the
nasal cavities to the pharynx and air is suddenly released to flow through the
nose. Some unvoiced sounds have a combination of initially plosive and then
fricative character (and are affricative), such the “ch” and “j” sounds and
other gutterals. The approximants are produced by moving one articulator
to another without creating a closed constriction, such as for the “w,” “y,”
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Fig. 10.8. Sound spectrogram of a female speaker saying “She had her dark suit
in . . . ” in (a), with the corresponding time-domain waveform signal in (b). (From
[449])

“r,” and “l” sounds. The “w” sound is also said to be formed in a semivowel
manner.

The acoustic signal is the set of acoustic frequencies and intensities as a
function of time. For example, Fig. 10.8a shows a sound spectrogram – a plot
of the frequency components of sound vs. time – for the expression “She had
her dark suit in . . . ” Distinctively different signals are seen for the different
vowels and consonants. This spectrogram clearly has more useful information
than the time-domain waveform for the same expression in Fig. 10.8b (even
though they have the same information content).

These different contributions of vowels and consonants are more clearly
seen in Fig. 10.9 [449]. In part (a) the “sh” and “ch” consonant spectra are
seen to be different and have different durations; also there is an interval of
silence before the “ch.” They are both very different from the “s” spectrum.
Each vowel has characteristic bands. For example, the long a in “say” in (a)
has three frequency bands, near 500, 1,700, and 2,500 Hz. These can be, re-
spectively, labeled as F1, F2, and F3. Such multiple bands are characteristic
of vowels and are called formants, the first-formant (F1), the second-formant
(F2), and so on. These formant frequencies differ for the different vowels, as
is seen for this long a, the “ah” in “father” and “pot” in part (a) and /ba/
in part (c), and the long i in “mite” in part (b). As we will see later, these
formants define the vowels and the characteristic feature in the perception of
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Fig. 10.9. Sound spectrograms of (a) “say shop” and “say chop,” (b) “a mite,” “a
bite,” and “a white,” and (c) /ba/, /da/, and /ga/ as in “father” and “pot.” The
F1, F2, and F3 formant frequencies for the vowel in ‘shop” are denoted in part (a).
(From [462])

vowels. For all three syllables in part (c), the lowest part of the first spec-
trum of the consonant increases into the F1 of the vowel. However, this vari-
ation is different for the second and third formants and this helps define
these different sounds. For /ba/, F2 and F3 rise into the vowel; for /da/,
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Fig. 10.10. The three neuromuscular systems in voice production. (Based on [460])

F2 and F3 fall into the vowel; and for /ga/, F2 falls, while F3 rises into the
vowel.

10.2.2 Systems in Speech Production

There are three sequential neuromuscular systems involved in speech produc-
tion (Fig. 10.10). (a) The lungs are the airstream mechanism in which muscle
force is used to produce a stream of compressed air. (b) The larynx is the
phonation mechanism, which takes the compressed air and turns it into an
acoustic buzz, hiss, or explosion. (c) The vocal tube track is the articulation
mechanism, which takes the larynx sounds and turns them into speech sounds.
These three systems, respectively, function as a power supply of compressed
air, a buzzer, and a filter resonating system. We have described the proper-
ties of the lungs in Chap. 9. We will examine the phonation and articulation
mechanisms now.

The Acoustic Buzzer

The separation of the vocal folds (vocal cords, glottis opening) varies with our
state of speaking (Fig. 10.11). The open glottis is V-shaped because the vocal
folds are held together in the front of the larynx and move apart in the back.
When we are voiceless, the vocal folds are totally open for normal breathing.
During whispering the folds are closer together. Air moves through the glottal
constriction (picks up speed) and rotates in turbulent eddies to give it its
distinctive sound. As detailed later, our voice during the normal speaking of
voiced sounds is created by the folds periodically opening and closing, to give
periodic bursts of air. No air flows when there is a glottal stop.

During speaking, air rushing through vocal folds in the larynx from the
trachea to the pharynx causes the vocal folds to vibrate, which in turn leads to
a modulation of the air flowing into the trachea (Fig. 10.12). Initially the folds
are apart and the pressure in the trachea and pharynx are equal, and both are
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Fig. 10.11. A series of video frames of vocal-fold movement during a normal glottal
cycle. Note that the opening is asymmetric, with the glottis more widely open at
the bottom than at the top. During whispering, the glottis is even more open than
during normal speaking (rightmost in top row), and it is even more open during
forced inhalation. (From [504], photo by Debra K. Klein. The University of Iowa
Hospitals and Clinics. Used with permission)

equal to atmospheric pressure. Because of the separation, the pressure is the
same before and after the folds, even with air flowing from the lungs. Muscle
contractions cause the folds to move to the midline of the tube. Because of this
constricted air flow, the pressure before the glottis (subglottis pressure) then
exceeds the oral pressure. This pressure difference forces the folds to separate
rapidly, leading to a rapid burst of air. This produces an overpressure above
the glottis and an acoustic shockwave that moves up the vocal tract. The
folds then rebound back to their initial positions because of their elastic recoil
properties and the pressure gradient. This pressure gradient arises from the
combination of Bernoulli’s equation in the Venturi limit and the equation
describing continuity of flow, as in (7.18):

Pglottis − Psubglottis =
1
2
ρv2

subglottis

[
1 −

(
Asubglottis

Aglottis

)2
]

< 0. (10.40)

Because the open flow area in the glottis (between the folds) is much smaller
than that below it, the flow speed in this air burst is faster and the pressure
in the glottis is smaller than that beneath it. The folds return to their initial
positions – with the air flow continuing. The cycle repeats and the modulated
flow of air results in a buzzing sound. Figure 10.11 shows photographs of
the glottis during different stages of this vibration. The motion of the glottis
can be modeled with springs and other mechanical components, as shown in
Fig. 10.13.
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Fig. 10.12. The sequential stages of glottal vibration. (Based on [460])

The frequency of this buzzing sound depends on the mass of the vocal
folds and their tension. The fundamental frequency ffund (or tone or pitch) of
this buzzing is typically ∼125 Hz in men and ∼250 Hz in women. The lowest
fundamental frequency (bass singer) is ∼64 Hz (which is a low C), while the
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Fig. 10.13. A one-mass mechanical model of glottal vibration, with pressure against
the tissue wall. (Based on [504])

highest fundamental frequency (soprano) is ∼2, 048 Hz (five octaves above
low C). (An octave extends from any given frequency to one twice that.) The
acoustic buzz contains this fundamental frequency along with many harmonics
(integral multiples of the fundamental).

Each vocal fold can be modeled as a two-dimensional ribbon-like object,
with vibrations along the length of the fold and in a perpendicular direction
across the height of the fold. To first-order, each of these vibrations can be
treated with our one-dimensional models of vibration.

Using (10.37), the fundamental frequency of a string rigidly fixed at both
ends, of mass density ρ, length L, and radius r under tensile force F , is vs/2L,
where vs is speed of waves along the string. For such a string, we know that
vs =

√
F/μ, where μ is the mass density per unit length. Using μ = πr2ρ and

vs =
√

F/(πr2ρ) =
√

[F/(πr2)]/ρ =
√

σ/ρ – where the stress σ = F/(πr2) –
the fundamental frequency is

ffund =
1

2L

√
σ

ρ
. (10.41)

Most of the length of the vocal fold consists of membranous material. This
length is about 16 mm for adult males and 10 mm for adult females. Figure
10.14 shows that the variation of the fundamental frequency of vocal-fold
oscillation with this membranous length has approximately the 1/L depen-
dence predicted by (10.41). (Also see Problem 10.37.) Note this length is longer
in men than women and grows with age during childhood, so the fundamental
frequency is lower in men than women and decreases into adulthood. The
typical stress–strain curves for human vocal-fold tissues given in Fig. 10.15
provide elastic constant information for this model (Problem 10.38). Muscu-
lar control of the folds must also be included in such models, because the
oscillation is not really free.

What does the airstream leaving the glottis look like? Say that air flows
into the lungs of a male during inspiration at a rate of 100 cm3/s. This is also
the average flow of air leaving the lungs and passing through the glottis. If the
glottis vibrates at 125 Hz, a volume of (100 cm3/s)/125 Hz = 0.8 cm3 leaves in
each air puff in a cycle. These air puffs last for 3 ms (within the 8 ms cycle
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Fig. 10.14. Vocal-fold frequency as a function of length, with age as an implicit
variable. (Based on [504])

for 125 Hz), so the peak volumetric flow rate of air is (0.8 cm3/3) × 10−3 s =
270 cm3/s. Because the glottis opening is typically ∼0.3 cm wide and it is
∼2 cm high, this air flows through an area of ∼0.6 cm2. Using (7.13), the max-
imum speed of air leaving the glottis is (270 cm3/s)/(0.6 cm2) = 450 cm/s =
4.5 m/s.

Voice-Filtering Theory (Advanced Topic)

The glottal wave (i.e., the sequence of vocal-fold pulses) from the larynx is
schematically shown in the time domain in Fig. 10.16. This could represent
the acoustic intensity or pressure. Let us say that it is the intensity I(t). This

Fig. 10.15. Hypothetical stress–strain curves for tissues in human vocal folds.
(Based on [504])
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Fig. 10.16. Modification of the glottal wave by the vocal tract in the voice-filtering
theory of speaking. The signals plotted vs. time (in the time domain) are in the upper
row, while those plotted vs. frequency (in the frequency domain) are in the lower
row. The source spectrum from the larynx (shown as vocal-fold pulses in the time
domain) is Iin(f), where f is frequency. The formation of the first two formants is
seen in the vocal transmission (T (f)) and the radiated vowel (Iout(f)). The radiated
vowel is shown as a radiated wave in the time domain. It is precisely our inability to
conjure up a time-domain analog of the frequency-domain vocal transmission box
that makes this type of frequency analysis so important. (Adapted from [464]. Used
with permission)

description is in the time domain. Alternatively, we could characterize this
same intensity wave using a different approach, in the frequency domain by
looking at the frequencies of the sine (or cosine) waves that can be added
to give the same pattern in time. The frequency components of this cyclic-
glottal pattern in time can be determined by a method called Fourier analysis,
to determine the strength of the fundamental I1 (at ffund) and each harmonic
In (at nffund for n = 2, 3, 4, . . .)

I(t) =
∑

n=1 to ∞
In sin(2πnffundt) (10.42)

= I1 sin(2πffundt) + I2 sin(4πffundt) + I3 sin(6πffundt) + · · · . (10.43)

(More generally, all functions of time can be Fourier analyzed in this man-
ner.) This frequency spectrum associated with the glottal wave is shown in the
frequency domain in Fig. 10.16, with the intensity components In expressed
in dB SPL. (The differences in the intensity components would be more pro-
nounced in a linear plot.) For comparison, Fig. 10.17 shows that a sine wave
(or cosine wave) has a single frequency component – which is precisely the
frequency of the wave, a square wave – with the same period as the sine wave –
is composed of the same frequency component plus odd harmonics of it, and
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Fig. 10.17. Three waveforms on the left with their variations with time (the time
domain), a sine (or cosine) wave, a square wave, and a more random pattern, with
their respective frequency components (as Fourier analyzed and in the frequency
domain). (From [507]. Reprinted with permission of Wiley)

a more random, aperiodic waveform in time is composed of a wide range of
frequency components.

Within the voice-filtering theory of articulation, this glottal wave (Fig.
10.16) is the input to the pharynx, and the pharynx, oral, and nasal cavities
act as resonant cavities that transmit some frequencies (that eventually leave
our mouths and noses) better than other frequencies. We examine the fre-
quency components of the glottal wave because it is easier to understand how
this sound wave gets modified in the vocal tract by tracking each frequency
component (with the transmission factor in Fig. 10.16) than by tracking the
response as a function of time. The reason for this should be clear from our
discussion of the simple resonant cavities formed by open and close-ended
tubes.

In the idealized cavity of a tube, say a tube that is open on both sides,
part of the sound entering one end propagates through and leaves the other
end. Only those frequency components of the entering sound wave that co-
incide with the various resonant frequencies of the tube (the fundamental
and its harmonics) will propagate through the tube and leave; more precisely,
they lead to large pressures in the tube, which are then emitted by the tube.
The other frequencies will be dissipated. This modification in the frequency
components of the sound wave leads to a corresponding change in the sound
wave in the time domain. The frequency components at each frequency f are
multiplied by the transmission factors at that frequency T (f)

Iout(f) = T (f)Iin(f). (10.44)
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Fig. 10.18. Resonance frequencies for vocal tracts with different lengths and con-
strictions, relative to the unconstricted vocal track in (g). The vowels are (a) [i] as
in “sit,” (b) [u] as in “put,” and (c) [a] (or “ah”) as in “father” and “pot.” (Based
on [460])

In reality, transmission does not occur only at precisely the resonant fre-
quencies but in a frequency region centered about the resonant frequencies.
The width of range is sometimes expressed as the frequency f divided by the
Q of the cavity. These widths are relatively small in a high Q cavity. This is
shown schematically in Figure 10.7 for a generic tube. Moderate Q resonances
are shown in Fig. 10.18 for several types of open-ended tubes.

The vocal tract is not a tube with these equally separated resonances,
so its transmission curve is different from that of a constant diameter tube
(Fig. 10.18g). The Q is quite low and so the resonances are quite broad, be-
cause of (1) the irregular shape of the vocal cavity, (2) the soft irregular nature
of the walls, and (3) acoustic losses due to (a) transmission through the mouth
and back through the glottis to the lungs, (b) the viscoelastic nature of the
vibrating soft tissues, and (c) the viscosity of air. Because we are capable of
changing the shape of the vocal tract, we routinely change this transmission
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curve during speech. For a given transmission curve Iout,n = T (nffund)Iin,n

with

Iin(t) =
∑

n=1 to ∞
Iin,n sin(2πnffundt) (10.45)

Iout(t) =
∑

n=1 to ∞
T (nffund)Iin,n sin(2πnffundt). (10.46)

Figure 10.16 shows schematically the corresponding representations of the
buzz in the time to frequency domains, the multiplication of the frequency
components by the transmission factor, and the output sound signals in the
frequency and time domains.

The output sound wave has the same frequency components as the in-
put wave, including the same fundamental frequency. However, the relative
strengths of each frequency component are very different. In the input wave,
Iin,n decreases monotonically with n (the higher the frequency the smaller the
intensity). This is usually no longer true in the output wave. In fact, Iout,n

peaks at several harmonics, which are called formants. The lowest frequency
peak is the first formant, the second is the second formant, and so on, as is
seen in Fig. 10.16.

What makes an “a” sound as in “say” different from an “e” as in “see”?
They have different formants, as is illustrated for several vowels in Fig. 10.9.
The actual frequencies of these formants depend on the type of sound, and
they profoundly change the time variations of the sound intensity.

Figure 10.19 plots the frequency of the second formant F2 vs. that of
the first formant F1 for several vowel sounds. For each sound there is an
oval showing the range of these formant frequencies for different people. For
example, for the “ah” sound in “father” and “pot,” the range in F1 is 600–
1,300 Hz, spanning the range from adult males to children, while for F2 this
range is 800–1,700 Hz. Even with these variations, the loci of frequencies for
each sound are very different from each other (i.e., they do not overlap) –
which makes it possible for us to differentiate one vowel from another spoken
by anybody, even with these natural variations.

Figure 10.20 shows the acoustic spectra for soprano, alto, tenor, and bass
human voices saying the vowel sound “ah” sound in “father” and “pot.” In
each, the fundamental and harmonics are seen to have different intensities
because of the vowel formation. Evidence of the clustering of the peaks near
formant frequencies is seen.

It is essential to differentiate between the different roles of the vocal-fold
oscillation frequency and the vocal tract formant resonances. Figure 10.21
shows the acoustic signal in time and its frequency spectrum for the same
uttered vowel with two different vocal fold fundamental frequencies. With a
finer range of frequency components the short-time behavior in the time do-
main is smoother, but the envelope of both are similar. In contrast, Fig. 10.22
shows them for two different vowels with the same vocal fold fundamental
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Fig. 10.19. Second-formant frequencies vs. first-formant frequencies for 10 Amer-
ican English vowels, as spoken by a wide range of 76 people: men, women, and
children. The enclosures include 90% of the sounds spoken. (From [447] as adapted
from [493], and used with permission)

frequency. The time domain profiles have the same short-term structure, but
different envelopes. (The peaks of the envelopes are the formant frequencies.)

Figure 10.23 shows the spectral pattern of a man and woman saying the
same message. The oscillation pattern for the man is more rapid than that for
the woman, because the pattern consists of the harmonics of the fundamental
buzzing frequency, which is lower in the man than the woman. However, the
spectral envelope is the same for both, and this envelope carries the most
important information for understanding speech.

Consider a vowel spoken by someone with a fundamental frequency of
128 Hz. If the vowel has a first formant at 512 Hz, then it is at the third har-
monic of the fundamental at 128 Hz. In the time domain, this 512 Hz compo-
nent is seen in the time domain signal as a fine ripple every 2.0 ms (1/(512 Hz))
superimposed on the slower repeated cycle every 7.8 ms (= 1/(128 Hz)).

In the simplest model of vowel formation in the vocal tract, the region from
the vocal folds to the mouth is a cylinder of constant diameter and length L
that is open on one end (mouth) and closed on the other (vocal folds). (This
ignores the 90◦ bend in the vocal tract from the pharynx to the mouth.)
Using (10.39), the resonant frequencies would be: fm = (m+ 1

2 )(vs/2L) which
is vs/4L, 3vs/4L, 5vs/4L, . . . for m = 0, 1, 2, . . . . The formant frequencies
of sound transmitted through this cavity would have ratios 1:3:5 and so on.
Figure 10.24 shows that the vocal tract has very different shapes for the three
depicted vowels, and consequently these vowels have very different formant
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Fig. 10.20. The acoustic spectra for four voices, with the given fundamental fre-
quencies, producing the vowel “ah” as in “father” and “pot.” (Based on [492])

frequencies. It also shows that this one-tube model gives F1 = 500 Hz and
F2 = 1, 500 Hz for these vowels. Calling fr = vs/4L, these correspond to fr

and 3fr. However, the real formant frequencies are clearly shifted from these
values.

Two-Tube Model (Advanced Topic)

How can we improve the one-tube model? A better model for the “ah” as
in “father” and “pot,” is the two-tube approximation in which the tract is
modeled as a smaller diameter pharynx tube, which is closed on one end,
connected to an equally long larger diameter mouth tube (Fig. 10.25a). This
makes it look a bit more like the actual vocal tract in Fig. 10.24c.
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Fig. 10.21. Wave shapes (a,c) and corresponding spectra (b,d) for the same vowel
“aw” as in “bought” and “awe,” but with two different vocal fold frequencies of
(a,b) 90 Hz and (c,d) 150Hz. (Based on [461])

Before determining the mode frequencies for this two-tube model, we need
to analyze how the pressure changes when an acoustic wave travels from a
tube of one diameter with cross-sectional area A1 to one of another diameter
and cross-sectional area A2, as in Fig. 10.25a,b. This can be treated as a
generalization of the earlier analysis of the transmitted and reflected acoustic
beams at an interface between two semi-infinite media with different acoustic
impedances. Continuity of pressure, Pi + Pr = Pt, at the interface between
the two tubes – as in (10.28) – is still needed; however, (10.29) needs to be
modified. The motion of the media is still described by P/Z, but this quantity
must be multiplied by the area A, so continuity of motion of the media requires

A1
Pi

Z1
− A1

Pr

Z1
= A2

Pt

Z2
. (10.47)

Fig. 10.22. Wave shapes (a,c) and corresponding spectra (b,d) for different vowels
(a,b) “aw” as in “bought” and “awe” and (c,d) “uh” as in “but” and “about,” but
with the same vocal fold fundamental frequency of 90 Hz. (Based on [461])
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Fig. 10.23. The short-time spectra of the same linguistic pattern by a male and
female speaker, with the spectral envelope shown. (From [449])

This gives

Pr

Pi
=

Z2/A2 − Z1/A1

Z1/A1 + Z2/A2
(10.48)

and

Pt

Pi
=

2Z2/A2

Z1/A1 + Z2/A2
. (10.49)

Here the impedance is the same in both tubes, so

Pr

Pi
=

A1 − A2

A1 + A2
(10.50)

and

Pt

Pi
=

2A1

A1 + A2
. (10.51)

This means the pressure in the transmitted wave is smaller than that
in the incident wave when the second tube is wider (expansion, A2 > A1)
(Fig. 10.25a) and it is greater than it when the second tube is narrower (con-
traction, A2 < A1) (Fig. 10.25b).
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Fig. 10.24. Vocal tract shapes and spectra for three vowels: (a) “ee” as in “see,”
(b) “oo” as in “too,” and (c) “ah” as in “father” and “pot.” The difference of the
first two formants are shown here relative to those for a tube with constant cross-
section. These are similar to Fig. 10.18a–c, except for the more realistic vocal tract
depicted here and the mouth is on the right of the larynx here. (Based on [504])

The upward shift in F1 and downward shift in F2 for “ah” as in “father”
and “pot” relative to that of a cylinder of uniform diameter and length L, can
be viewed from two perspectives. (1) The lowest two modes for a cylinder of
length L change because the pressure in the wider mouth is lower than that
in the narrower pharynx. This perturbs the mode structure from that of a
uniform cylinder. For the lowest mode, the pressure in the mouth region is
relatively less than indicated by this mode, so the opening effectively occurs
(earlier in the air stream and) in the mouth, making L effectively shorter
and the F1 higher than fr. For the next lowest mode, the node (zero gauge
pressure) in the pharynx is effectively shifted to the right (toward the mouth)
because the pressure should be larger in the pharynx. The length of this half
wave is longer, making L effectively longer and F2 lower than 3fr. This view-
point is depicted in Fig. 10.25c,e. (2) Alternatively, we can treat the pharynx
and mouth as two separate cylinders of length L/2 that couple weakly and
therefore perturb each other. The pharynx is closed at the vocal fold end
and almost open on the mouth side. Using (10.39), the lowest mode is at
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Fig. 10.25. Two-tube models of (left side; a,c,e) “ah” as in “father” and “pot,”
and (right side; b,d,f) “ee” as in “see,” each showing the two-tube model with noted
cross-sectional area in the equal length tubes in (a,b), modification of the mode for
the one-tube model (dashed lines) to the mode in the two-tube model (solid lines,
with changes in effective length denoted by the dotted lines) for the first (c,d) and
second (e,f) formants. (Based on [504])

vs/(4(L/2)) = vs/2L = 2fr, but since the mouth end is not totally open and
there is pressure leakage to the mouth, the effective length is a bit longer, so
this mode is at a somewhat lower frequency than 2fr, such as the F1 formant
in this case. Furthermore, the mouth is open on the tooth end and almost
closed on the pharynx end (because the pharynx is narrower). Again the low-
est mode would be at 2fr if the pharynx side were totally closed. Because it
is not and the pressure is higher on the pharynx side, this left node is pushed
into the mouth cavity and L is effectively shorter and the lowest mode is a bit
higher than 2fr, such as the F2 formant for this vowel. A different two-tube
model seems to work for other vowels (Fig. 10.25b,d,f, Fig. 10.24a, Problem
10.45 for the “ee” sound as in “see”). For more on voice-filtering models, see
[460, 464, 504].

10.2.3 Parameters of the Human Voice

Each physiological feature that helps create the voice modulates a particular
feature of the vocal sound waves, and each of these acoustic features is linked
to a specific type of perception. The tension in the vocal folds affects the
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fundamental frequency of the vocal folds – and of their harmonics, and this
frequency is perceived as the pitch of the voice. The medial compression of the
vocal folds and the pressure from the lungs affect the intensity of phonation,
which leads to perceived loudness of the voice. The vocal-fold adduction or
abduction creates an acoustic spectral difference, and this is perceived as the
quality or timbre of the voice.

Vocal frequency. The greater the tension in the vocal folds, the greater the
elastic recoil force and the thinner the folds; both effects contribute to higher
oscillation frequencies. This glottal buzz rate is the fundamental frequency of
the human voice. The modal vocal-fold frequencies, f , are those glottal buzz
rates that we are most comfortable with and use most often, as in normal
conversation. They typically can be varied by a factor of 2.5, with fhighest =
2.5flowest, by changing the vocal-fold tension; this means that people typically
have a modal frequency range of 2.5 octaves. (The scale “do-re-mi-fa-so-la-
ti-do” corresponds to one octave.) Even though this acoustic buzz frequency
can be changed, with a concomitant change in perceived pitch, the formant
frequencies do not change. (That they do not change by this factor of 2.5
should be clear from Fig. 10.19.) The modal frequency is in the lower 1/4–1/3
of the speaker’s vocal range, so people typically phonate near the lower end
of possible frequencies.

The average modal frequency for men is 128 Hz and that for women is
260 Hz, but there is a wide distribution about these means for men and women.
Female voices are higher in pitch than male voices, because women on the
average have smaller larynxes and shorter, thinner, and less massive vocal
folds. The average speaking model frequencies for different voice classifications
are: bass: 98 Hz, baritone: 123 Hz, tenor: 165 Hz, contralto: 175 Hz, mezzo-
soprano: 196 Hz, and soprano: 247 Hz. Figure 10.20 plots the acoustic spectra
for human voices in several of these categories.

Vocal intensity. The greater the medial compression of the vocal folds, the
greater the subglottal pressure the closed folds can sustain before they open,
and therefore the greater the loudness. Each doubling of the (gauge) pressure
from the lungs increases the voice intensity by 8–12 dB, so the vocal intensity
I varies roughly as the cube of the lung pressure Plung, I ∝ P 3

lung. Soft speech
corresponds to 2–3 cmH2O, loud speech to 15–20 cmH2O, and shouting to 40–
60 cmH2O. At a distance of 1 m, conventional speech corresponds to a sound
intensity of about 60 dB SPL and shouting to 108 dB SPL. (Also see Fig. 10.30
later.)

Phonation type. The vocal folds are totally open during forced inhalation
and are still very open during normal breathing. They are closer together,
but are still far apart during whispering and are much closer together during
normal speaking – and form an obstruction to the airway. The degree that
the vocal folds are open (abduction) or closed (adduction) affects the spectral
distribution of the voice and therefore its quality, such as it being perceived
as “noisy,” “breathy” (noisy and buzzy), or “creaky” (irregularly spaced low-
frequency air bursts).
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10.2.4 The Energetics of Speaking

What fraction of the total energy in the air flow from the lungs during speak-
ing is converted into the oscillatory acoustic waves that are radiated from the
mouth? Say the entire vital capacity (about 5 L = 0.005 m3) were expelled
in 1 s with a lung pressure of 2 kPa (about 20 cmH2O). This “aerodynamic”
power would be 0.005 m3×2 kPa = 10 W during that 1 s. However, this volume
could be expelled only with the glottis fully open, so with the glottis mostly
closed during speaking the flow rate would be much lower than 0.005 m3/s, and
perhaps 0.0001–0.0005 m3/s. With the same pressure differences, the “aero-
dynamic” power would not exceed 1 W. Therefore, continuous speaking would
add only about 1% to our metabolic rate (ignoring the efficiency of forming
this air flow). Conversational speech is about 60 dB SPL at 1 m, which cor-
responds to 10−6 W/m2, and so using (10.4) the power is about ∼10−5 W.
Defining the glottal efficiency as the ratio of this acoustic power to the aero-
dynamic power, the efficiency is ∼10−5 = 0.001%. Over a range of conditions,
this efficiency is often given as ranging from 0.0001–1%.

10.3 Hearing

The ear consists of the outer, middle, and inner ears (Figs. 10.26 and 10.27).
The outer ear is the external auricle (or pinna), which “funnels” sound
into the auditory canal or ear canal tube (or external canal or meatus –
mee-ay’-tus – or external auditory meatus). The middle ear, also known as

Fig. 10.26. Diagram of the outer, middle, and inner ear. (From [497])
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Fig. 10.27. Middle ear in detail and visualization of partial and total uncoiling of
the cochlea. The cut in the partially uncoiled cochlea shows the cross-section of the
tubes, which is seen in more detail in Fig. 10.32. (From [497])

the tympanic cavity, begins with the tympanic membrane (eardrum), and
continues with the three connected small bones or ossicles, the ossicular
chain: the hammer (malleus), anvil (incus), and stirrup (stapes). On one
side the tympanic membrane interfaces with the ear canal tube and on the
other side it is in contact with the hammer. The inner ear consists of the
cochlea and the auditory nerve that travels from the cochlea to the brain.
The stirrup is in contact with the oval window of the cochlea. The cochlea
begins medially with the vestibule, continues with the anterior snail-shaped
region and then in the posterior, three semicircular canals. Sound is brought
into the ear by the outer ear and the actual processing of the sound be-
gins in the inner ear. The outer and middle ear are collectively called the
conductive system, which conducts the sound to the inner ear. We will see
that the middle ear “improves” the transmission of sound from the outer
ear to the inner ear. The cochlea and the eighth cranial nerve – which in-
cludes the auditory nerve as well as the vestibular nerve – are called the
sensorineural system, which senses the sound and then creates an electri-
cal signal and sends it to the brain. For general sources about hearing see
[456, 460, 463, 465, 466, 469, 470, 472, 473, 474, 478, 479, 496, 509, 510].

There are four steps in the hearing process within the ear. (1) The
sound wave enters the outer ear. (2) The movement of the tympanic mem-
brane is transferred by conduction through the ossicles to the oval window
of the cochlea. (3) The movement of the oval window generates a com-
pressional (sound) wave in the fluid of the cochlea. (4) This wave moves
the basilar membrane upon which the primary auditory receptors (the hair
cells) are located, and the electrical signals generated by the hair cells are
sent to the brain. This conversion of sound into electrical signals is called
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Fig. 10.28. Mechanical analogs of the outer, middle, and inner ear. (Based on [473])

mechanoelectrical transduction. Mechanical model analogs of the ear are de-
picted in Fig. 10.28.

10.3.1 Auditory Sensitivity

The normal-human auditory system is sensitive from about 20 Hz to 20 kHz,
with maximum sensitivity in a broad region near 3,000 Hz, as is seen in the
audiogram of pure tone thresholds in Fig. 10.29. Between 100 and 10,000 Hz

Fig. 10.29. Absolute auditory threshold for typical US residents. The curves show
the percentage of people who could hear sounds below the level of the curve; the
top curve shows the threshold for “feeling” in the ear. (Based on [461])
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Fig. 10.30. The boundaries for normal hearing, in terms of limits of acoustic in-
tensity and frequency, compared to the frequency and volume ranges of speech and
orchestral music. (Based on [454, 491])

the normal threshold varies from about 0 to 20 dB SPL. The threshold for
uncomfortable loudness is about 100 dB SPL. From 120 to 140 dB SPL, the
threshold for “feeling,” “prickling,” and “tickling” in the ear is reached.

Related to this is the issue of how sensitive our hearing needs to be. Our
ears must be sensitive to hear our voices, and of course our voices need to
be loud enough to be heard. Figure 10.30 plots the ranges of normal hearing
sensitivity vs. frequency, along with the ranges of intensity and frequency of
speech and music, more specifically orchestral music.

Outer Ear

In spite of its funnel-like appearance, the auricle or pinna provides negligible
sound collection and amplification capability. It does provide hints as to sound
source localization. (Cats orient their pinnae toward a sound source to help
determine its direction.) This localization depends on the asymmetrical and
irregular shape of the pinna. One important feature of the pinna is that it
attenuates the high-frequency components of sounds that come from the rear
relative to those from the front.

The external canal in the outer ear is about 9 mm high, 6.5 mm wide,
and about 2.5–3.5 cm long. It is open on one side (the outside) and ter-
minated on the other side by the eardrum. Even though it is curved, we
will model it as a straight tube, a tube open on one side and closed on the
other (Fig. 10.28). With L = 2.5 cm, the fundamental mode has wavelength =
4L = 10 cm. The fundamental frequency f = vs/4L ((10.39) with m = 0),
and with vs = 343 m/s for air, we see that f = (330 m/s)/10 cm= 3, 430 Hz.
This is very close to the peak auditory sensitivity of humans, which is near
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3,000 Hz (Fig. 10.29). This makes sense because sounds near 3,400 Hz are more
efficiently transported from the outer ear to the inner ear. This canal has a
low Q and a rather broad resonance for several reasons, including that it is
not perfectly closed.

A model of the admittance of the ear canal is described later.

Middle Ear

Why is there a middle ear? Perhaps, it is better to ask a related question that
is easier to answer: Why does hearing become poor if the middle ear is dam-
aged? Without the tympanic membrane and conduction through the ossicles,
sound from the external canal would be directly incident on the oval window
of the cochlea and hearing sensitivity would decrease by almost 30 dB, because
the oval window has a much smaller area than the tympanic membrane. This
is enough of a loss to make a medium loud voice barely perceptible.

The eardrum is tilted at an angle of about 55◦ to the ear canal. It has an
average thickness of about 0.074 mm, and is a bit taller (≈9–10 mm) than it is
wide (≈8–9 mm). The malleus is ≈8–9 mm long and has a mass of 25 mg. The
handle (manubrium) of this hammer is embedded in the eardrum by fibrous
and mucous membrane layers, and is nearly upward – at 1 o’clock in the right
ear and 11 o’clock in the left ear (Fig. 10.27). The incus is ≈7 mm long and
has a mass of 30 mg, and looks more like a tooth with a body and two roots
than an anvil. The head of the malleus connects to the body of the incus
through the fairly rigid incudomallear articulation, which is a double-saddle
joint. The longer root (or process) of the incus ends in a rounded module that
forms the ball in the connection to the head of the stapes (the incudostapedial
joint). The stapes looks like a stirrup, is ≈3.5 mm long, has a mass of 3–4 mg,
and has a footplate of ∼3.2 mm2 area that attaches to the oval window by the
annular ligament.

In direct conduction most of the incident sound would be reflected, and
very little would be transmitted for analysis by the cochlea. Acoustically,
the oval window and the cochlear fluid can be approximated as being the
same as water. (This is an oversimplified model. Nonetheless, cochlear fluid
gives the dominant contribution to the impedance of the cochlea above 1 kHz
[486].) With Z1 = Zair = 413 kg/m2-s and Z2 = Zwater = 1.48 × 106 kg/m2-s
(Table 10.1), Z2/Z1 = 3,580 and the fraction of sound intensity transmitted
into the cochlea is ((10.34) and (10.35))

T =
4Z2/Z1

(1 + Z2/Z1)2
=

4 × 3,580
(1 + 3,580)2

= 1.1 × 10−3 = 0.11%. (10.52)

This is a very large loss. Expressed in decibels it is a |10 log10(Icoupled/Iin)| =
|10 log10 0.012| = 10 × 2.95 = 29.5 dB, or about a 30 dB loss – which is very
big indeed.

How does the middle ear improve this? Using jargon common in elec-
tronics, it is often claimed that the middle ear reduces the impedance
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mismatch by “impedance matching.” This is not true. Even with the mid-
dle ear, most of the sound incident from the air on the higher impedance
eardrum/ossicles/cochlear window/cochlear fluid is lost by reflection. The
middle ear does improve hearing by increasing the pressure incident on
the cochlear oval window via “funneling” the sound incident on the larger
eardrum to the smaller cochlear window. There are several physical argu-
ments for this (which we will present soon).

The importance of the middle ear in improving hearing is seen by the large
hearing loss (∼30 dB) that results when the hammer, anvil, and stirrup are
not in contact with each other in series. The acoustic reflex is a mechanism
that intentionally (and temporarily) reduces this transmission through the
ossicular system to limit the pressure on the oval window to protect the cochlea
from very loud sounds. The stapedius and tensor tympani muscles respond in
40–80 ms as a reflex action to such loud sounds. The stapedius muscle pulls
the stapes outward and the tensor tympani muscle pulls the handle of the
malleus inward [476]. This mechanism also reduces low frequency sounds that
often constitute background noise in a loud environment, so that information-
bearing high-frequency sounds can be detected. The importance of the middle
ear is also seen by one mode of permanent hearing loss, of ∼30 dB, that occurs
when these bones are permanently not in contact to the adjacent ossicle(s).

One mechanism of middle ear conduction is the transmission of the force
on the large area eardrum (of total area ∼85 mm2, of which only 2/3 of the
area vibrates, so its effective area is Ae ∼ 55 mm2) to the stapes, which has
a smaller area (As ∼ 3.2 mm2) in contact with the oval window. The force on
the eardrum is Fe = PeAe, where Pe is the sound pressure on it (Fig. 10.28).
If this force is directly transmitted to the stapes then

Fe = PeAe = Fs = PsAs (10.53)

or

Ps =
Ae

As
Pe =

55 mm2

3.2 mm2
Pe = 17Pe. (10.54)

With the area of the stapes on the oval window being approximately the area
of the oval window, the eardrum is seen to be a much bigger sound-collection
device than the smaller oval window.

This force-funneling mechanism could occur with only one ossicle connect-
ing the eardrum and oval window. A second mechanism relies on the geometry
afforded by having more than one bone in the ossicular chain. This geometry
is such that the chain acts as a lever, in which torques – and not forces – are
actually transmitted to the oval window. With the first lever arm being L1

and the second L2, torque balance gives FeL1 = FsL2 and PeAeL1 = PsAsL2

or

Ps =
Ae

As

L1

L2
Pe = (17)(1.3)Pe = 22Pe, (10.55)
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Fig. 10.31. Curved membrane buckling principle for the eardrum, with the position
of the manubrium of the malleus shown. The membrane is shown without a force
(unbroken lines) and with a (downward) force (dashed lines). (Based on [470, 505])

using L1/L2 = 1.3. Improved hearing due to this lever mechanism seems to
be one reason why nature has developed an ossicular chain of bones.

These two mechanisms in the middle ear improve conduction of sound by
20 log10(Ps/Pe) = 20 log10 22 = 27 dB. This is roughly equal to the 30 dB loss
that is incurred by reflection losses from air to the cochlea; this near-equality
may just be a coincidence of nature.

Other reasons for the improvement of hearing by the middle ear are some-
times cited, such as the curvature of the tympanic membrane, which leads to
the curved membrane buckling mechanism (Fig. 10.31). The manubrium of the
malleus is attached to the center of the curved eardrum, and as a consequence
of this placement it moves back and forth less than (and about half as much
as) the average back and forth displacement of the eardrum. The argument
continues that the force on the manubrium is double that of the membrane
because the same torque is transmitted from the eardrum to the malleus and
the manubrium is moving half as much as the membrane. Some think the
curved membrane buckling effect doubles the overall middle ear mechanical
advantage from 22 to about 44; if it does, this leads to a total increase of
33 dB due to the middle ear.

We will now analyze the vibration of an eardrum under tension, which is
a vibration that is normal to a 2D surface, by modeling it as the vibration
of a string under tension, which is a vibration normal to a 1D object. Using
(10.41), the fundamental frequency of a string under tensile stress σ that is
rigidly fixed at both ends is (1/2L)

√
σ/ρ, for mass density ρ and length L. For

a circular membrane of radius a, we substitute 2a for L, to get (1/4a)
√

σ/ρ.
The fundamental frequency of transverse vibration of a circular membrane of
radius a, thickness d, and mass density ρ under tension T is actually

ffund =
2.405
2πa

√
σ

ρ
, (10.56)

where the stress σ = T/d. (The derivation of this exact result is beyond
our scope.) The agreement with the simple string model is surprisingly good.
Consider an eardrum with a diameter of 8 mm, a thickness of 20 μm, and
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mass density ρ = 1, 000 kg/m3. For it to have a fundamental resonance at
1,000 Hz, the stress must be 1.1×105 N/m2 and the tension must be 2.2 N/m.
One would expect the eardrum to have a resonant frequency roughly near the
3,000 Hz peak auditory sensitivity and the resonance of the ear canal.

Inner Ear

The vibration transmitted to the stapes is transmitted to the fluid in the
cochlea by the stapes being in contact with the oval window. The vibration
in the cochlear fluid induces motion which produces an electrical signal that
causes the release of a chemical transmitter (Chap. 12). This transmitter ex-
cites nerve cells that are connected to the brain. Models of the cochlea are
described in [448, 456, 459, 499]. (Much ground-breaking work on the cochlea
was performed by Georg von Békésy, who was awarded the Nobel Prize in
Physiology or Medicine in 1961 for his discoveries of the physical mechanism
of stimulation within the cochlea.)

Cochlear Tube Vibrations

The cochlea can be viewed as a tube rolled into 2 3/4 turns. Uncoiled, as shown
in Fig. 10.27, it would be a cylinder ∼2 mm in diameter and 35 mm long. It has
an “upper half” tube, the scala vestibuli, and a “lower half” tube, the scala
tympani, that contain a fluid called perilymph and are separated by a cochlear
partition consisting of the scala media and the organ of Corti, which contain
a fluid called endolymph (Fig. 10.32). The scala vestibuli and scala tympani
flow into each other at the helicotrema, which is at the end of the tube at the
apex. The organ of Corti contains the hair cells and abuts the scala tympani.
Sound is transmitted by the stapes into the scala tympani through the oval

Fig. 10.32. Cochlea cross-section. (The cochlear nerve combines with nerves from
the semicircular canals to form the auditory nerve.) (From [497])
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Fig. 10.33. Scanning electron micrograph of a single outer hair cell bundle from a
mammalian cochlea. (From [477]. Used with permission)

window and the coupling between the scala tympani and scala vestibuli sets
the basilar membrane (between the scala tympani and the hair cells) mov-
ing transverse to the membrane, thereby exciting the hair cells (Fig. 10.33).
This motion is like the traveling wave set in motion by the snapping of
a rope.

There are 3,500 flask-shaped inner hair cells and 12,000 tube-like outer
hair cells, which physically differ in how the hair in the cells protrude [465].
The inner hair cells relay information about the sounds transmitted to the
cochlea to the brain. The outer hair cells increase the amplitude and frequency
selectivity of the vibration of the basilar membrane for low-level sounds. About
95% of the auditory nerve cells receive their signals from the (relatively fewer)
inner hair cells because each inner hair cell connects to about 8–30 auditory
nerve fibers, while several outer hair cells connect to the same nerve fiber
(Fig. 10.34). When the hair bends in one direction it depolarizes and in the
opposing direction it hyperpolarizes, and this alternation causes the hair cell to
release the neurotransmitter. (See Chap. 12 for a description of polarization.)
Motions as small as 10−10 m can generate a response in a hair cell.

Fig. 10.34. Inner and outer hair cells in Organ of Corti. (From [497])
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Fig. 10.35. The uncoiled cochlea gets narrower from the base at the stapes to the
apex, as the basilar membrane gets wider. (Based on [472, 498])

The basilar membrane becomes 3–4× wider and a hundred-fold less stiff
along the “uncoiled” cochlea from its beginning near the stapes (the base)
to its end (the apex) (Fig. 10.35). Both of these characteristics help resolve
the frequency components of the sound wave in such as way that the higher
frequency components have larger amplitude vibrations nearer the stapes and
the base, while the lower frequency components have larger amplitude vibra-
tions nearer the apex (Figs. 10.36 and 10.37). This spatial separation of the

Fig. 10.36. Envelope of basilar membrane vibration vs. frequency. (Based on [453,
472])
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Fig. 10.37. Tonotopic map of cochlear sensitivity to audio frequencies (shown in
kHz). (From [497], and based on [457, 465, 472])

frequency components means that the hair-cell-excited neurons progressively
farther down the cochlea are selectively excited by progressively lower fre-
quency components, and these frequency analyzed signals are sent as such to
the brain. This frequency analysis is improved further by the changing char-
acteristics of the hair cells along the cochlea, because the resonant frequencies
of the hair cells are tuned to match the changing optimized local frequency.
This is called a place code for frequency. There is also a time code: the higher
the acoustic frequency, the higher the neural firing rate. (Because the maxi-
mum firing rate of these neurons, 500 Hz, is too slow for a single neuron to fire
at most moderate to high acoustic frequencies, several neurons cooperatively
fire. For instance, for a 3,000 Hz wave, this volley principle suggests that six
neurons could fire successively, with say neuron #1 firing at cycles 1, 7, 13, . . .,
neuron #2 firing at cycles 2, 8, 14, . . . and so on.)

The higher the acoustic intensity, the faster, in general, the rate auditory
neurons fire. However the dynamic range of response is only about 40 dB, and
most fibers reach saturation above 40–50 dB SPL and do not fire at faster
rates at higher intensities. Higher intensities are recognized as such (possibly)
because some neurons do not begin to fire until the mid-intensity range or
some neurons are located in places where they do not fire much until the
intensity is high.

We could try to calculate the resonance modes of the basilar membrane
by analyzing the waves in a structure that looks like an uncoiled cochlea. One
simplified model is a tapered circular-sector membrane of uniform stiffness, as
is shown in Fig. 10.38. Obtaining the analytical solution for the vibrations of
this structure is beyond the level of this text; it is plotted in this figure. (Also
see [491, 492].) The waves in this model semiquantitatively agree with the data
in Fig. 10.36, the lower the frequency of the wave, the closer its maximum is to
the apex. Inclusion of the stiffness variation in the model, requires a numerical
solution, and this is expected to accentuate the spatial separation even more.

The outer hair cells respond to vibration much as the inner hair cells, but
contribute little to the signals sent to the brain. These cells become shorter
when they are depolarized and longer when they are hyperpolarized, by as
much as 4% when they are isolated. This cochlear amplifier mechanism may
help magnify the basilar membrane motion and improve the frequency selec-
tivity of the auditory detection process, as is illustrated in Fig. 10.39.
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Fig. 10.38. Mechanical vibration model of the uncoiled cochlea in Fig. 10.35 mod-
eled as a tapered membrane with uniform stiffness in (a), with predictions of the
first few modes in (b). The principal maxima (at the positions of the arrows) of the
modes move to the base with increasing frequency, which agrees with the trend in
Fig. 10.36. For an untapered membrane, the modes would look the same except each
antinode (maximum and minimum) in the mode would have the same magnitude.
(Based on [466])

Fig. 10.39. The excitation threshold for nerve hair cells or auditory nerve fibers
with three different resonant or characteristic frequencies. Without outer hair cells,
the sound threshold is much higher and the frequency selectivity is much poorer, as
is illustrated for the fiber with the highest of the three resonant frequencies. (Based
on [465])
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Hair Cell Vibrations

We will first try to model the transverse vibrations of hair fibers of length L
(in hair cells) as the acoustic longitudinal vibrations of a tube that is closed
at one end (into the body of the cell) and open on the other (to sense the
vibrating fluid). (This is also analogous to the transverse vibration of a string
that is fixed on one end and free on the other.) Using (10.38) and (10.39),
the resonant wavelengths are 4L, 4L/3, 4L/5, . . . and the frequencies are
vs/4L, 3vs/4L, 5vs/4L, . . .. With vs =

√
Y/ρ the lowest frequency is vs/4L =

(
√

Y/ρ)/4L. However, this is really the resonant frequency for longitudinal
vibrations across a wide bar of length L, with one face fixed and the other
free.

Transverse oscillations of a bar are quite different [491, 492]. For a cylinder
of length L and radius a, the lowest resonant transverse frequency is

ffund =
πaβ2

4L2

√
Y

ρ
, (10.57)

where β = 0.597. (The derivation of this is beyond our scope.) This assumes
the bar is attached to a base with no compliance. As the base becomes more
compliant, the value of β decreases, down to ∼0.35 for equally compliant bases
and rods, down to ∼0.2 for bases that are 10-fold more compliant than the
rod, and so on. Assuming hair is composed of keratin with Y = 2 × 109 Pa
and density ρ = 1,000 kg/m3, the lowest resonant frequency of a hair of length
2 mm and diameter 20 μm that is firmly mounted in an incompliant base is
1.0 kHz. (The cell is likely a bit compliant, so its resonant frequency is likely
a bit lower.)

Admittedly, this model is perhaps too simplified. Several features should be
added to it, including the viscosity of the cochlear fluid and physical connec-
tions between the hair cells. Moreover, it is not clear if there is a connection
between hair cell vibration frequencies and auditory frequency selection in
mammals.

The Immittance of the Human Ear (Advanced Topic)

We have analyzed the mechanical behavior of several components of the outer,
middle, and inner ears. How do these and other components combine to deter-
mine the acoustic immittance (impedance, Z, or admittance, Y = 1/Z) of the
ear? The stiffness (the stiffness (or negative) reactance, Xs or, equivalently,
the stiffness (compliant) susceptance, Bs) comes from the air in the middle
and outer ear spaces, the eardrum, and the tendons and ligaments in the ossic-
ular chain. The inertial mass terms (the mass (positive) reactance, Xm, or the
mass susceptance, Bm) come from the ossicles, the pars flaccida part of the
eardrum, and the fluid in the scala vestibuli and scala tympani in the cochlea –
the perilymph. The resistive, frictional component (the resistance, R, or the
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conductance, G) is produced by the perilymph, the mucous membrane linings
of the middle ear, the narrow passages between the middle ear and mastoid
air cavities, the eardrum, and the tendons and ligaments in the middle ear,
and is mainly due to the absorption of the energy of the traveling wave by the
cochlea.

It is easier to work with admittances here than with impedances because
they are additive. (Why?) The admittance is measured with a probe that
sends a 85 dB SPL signal, usually at 226 or 220 Hz, into the outer ear, and
monitors the reflected signal with a microphone [470, 488]. This is all per-
formed as a function of air pressure in the ear canal, with this (gauge) static
(and not sound) pressure varied in time from about +200 daPa to −300 daPa.
(The unit dekapascals (daPa) is common in audiology, with 1 daPa = 10 Pa =
0.075 mmHg = 1.02 mmH2O.) Middle ear pathologies and middle ear muscle
contraction (the acoustic reflex) can be analyzed with these tympanograms.
The middle ear admittance, Ymiddle ear, is determined by measuring the total
admittance of the outer and middle ears at ambient pressure (the eardrum is
relatively acoustically transparent then) to get Ytotal = Youter ear + Ymiddle ear,
and subtracting from that the admittance of the outer ear only. Youter ear is
measured by pressurizing the outer ear, because the pressurized eardrum is
acoustically opaque to the middle ear. From Fig. 10.40, Youter ear = 1.0 mmho
(its value at 200 daPa) and Ytotal = 1.75 mmho at 0 daPa, and we find
Ymiddle ear = 0.75 mmho. (At −300 daPa the admittance is actually lower
than at 200 daPa, and it may provide a better value of Youter ear than at 200
daPa.)

The ear canal volume expressed in cm3 is the same number as the outer
ear admittance expressed in mmho, when it is measured at 226 Hz. This

Fig. 10.40. Typical admittance tympanogram at 226 Hz, showing the different con-
tributions to the acoustic admittance. Note that the outer ear admittance deter-
mined at −300 and −400 daPa is lower than that determined at +200 daPa, so the
middle ear admittance determined at −300 and −400 daPa would be larger than
that at +200 daPa. (Based on [470])
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means that Youter ear = 1.0 mmho, which indicates that the ear canal vol-
ume is 1.0 cm3 (= 1.0 mL). Is this a coincidence or something that is deep?
We will now see that this is in part a coincidence of the natural units and in
part caused by choosing f = 226 Hz.

A Model of Air Vibrating in the Ear Canal (Advanced Topic)

How can we determine the admittance of the outer ear Youterear? Let us model
the ear canal as a closed tube of volume V = AL, where A is its (constant)
cross-section and L is its length [475, 491, 492]. Initially, the internal and
external pressures are the same, P . If this tube is squeezed, the pressure inside
increases by an amount ΔP and this will lead to a restoring force (ΔP )A, like
the restoring force of any spring-like material.

The ideal gas law (7.2) is P = nRT , where P is the pressure, n is the
density (= N/V , where N is the total number of molecules in the volume V ),
R is the gas constant, and T is the temperature. If the volume were distorted
to V +ΔV , with the number of molecules kept constant and the temperature
also constant (which is called an isothermal condition), the pressure would
change to P +ΔP with PV and (P +ΔP )(V +ΔV ) both equal to NRT and
to each other. So

PV = (P + ΔP )(V + ΔV ) � PV + (ΔP )V + P (ΔV ), (10.58)

where the term (ΔP )(ΔV ) is small and has been neglected. This gives

ΔP = −P (ΔV )
V

= −P (ΔL)
L

= −nRT (ΔL)
L

(10.59)

using the change in volume, ΔV = A(ΔL), assuming area A is constant in
the distortion and P = nRT .

It is conventional to normalize all terms by A2, including the driving force
(ΔP )A, so

(ΔP )A
A2

=
ΔP

A
= −nRT

V
(ΔL) = −nRT

V
x = −P

V
x, (10.60)

where now ΔL is called x. The coefficient nRT/V = P/V is the spring con-
stant k in (10.21), which was also called S in the earlier analysis.

We have assumed that the temperature does not change during the squeez-
ing. If we instead assumed the more realistic condition that heat flow across
the tube walls can be neglected during the squeezing and response (which is
called an adiabatic condition), then

k =
γnRT

V
=

γP

V
, (10.61)
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where γ is the parameter in (10.2). (This is shown in Problem 10.59.) With
k = S and Xs = S/ω = S/2πf

Xs =
γP

ωV
=

γP

2πfV
. (10.62)

When this is the main term in the magnitude of the impedance, then
| Z | = Xs and the magnitude of the admittance is then | Y | = Bs = 1/Xs,
giving

| Y | = Bs =
2πf

γP
V. (10.63)

An ambient pressure P of 1 atm. = 0.1 N/mm2 = 1 × 106 g/cm-s2. For
air γ = 1.4 and so at 226 Hz we find that 2πf/γP = (2π)(226 Hz)/(1.4
(1 × 106 g/cm-s2)) = 1.0 × 10−3 cm-s/g. Because 1 mho = 1.0 cm4-s/g and
1 mmho = 1.0 × 10−3 cm4-s/g, we see that a volume V = 1.0 cm3 has an
admittance of 1.0 mmho. Using the scaling arguments developed in Chap. 8
(8.11), the admittance of the outer ear expressed in mmho gives the volume
of the ear canal expressed in cm3.

Hearing Loss

Sound levels above 85 dB SPL are considered harmful, those above the pain
threshold of 120 dB SPL are unsafe, and those above 150 dB SPL cause physi-
cal damage to the human body. To avoid hearing damage, safety organizations
recommend exposure to no more than 85–90 dB SPL for 8 h a day, 100 dB SPL
for 2 h a day, or 110 dB SPL for 30 min a day. Eardrums rupture at 190 dB
SPL to 198 dB SPL and sound levels of around 200 dB SPL can cause death
to humans. Such levels are generated near bomb explosions, such as 3 m away
from the detonation of 23 kg of TNT. Other potential causes of hearing loss
are suggested in the cartoon in Fig. 10.41.

The main way hearing loss is evaluated is by determining the threshold
for hearing pure tones from about 125 Hz to 8,000 Hz. The hearing level is
usually expressed as the threshold value of hearing expressed in dB HL vs.
audio frequency, with the clinical plot showing increasing threshold intensities
toward lower ordinate values (Fig. 10.42b), rather than toward higher ordinate
values, as in Figs. 10.29 or 10.42a. HL stands for “hearing level.” At each
frequency, the threshold expressed in dB HL is that in dB SPL minus the
reference normal value in dB SPL. This accounts for the variation in threshold
intensity with frequency that is seen in Figs. 10.29 and 10.42a. These reference
values are about 7.5 dB SPL from 750 to 1,500 Hz. At lower frequencies they
increase to �13 dB at 500 Hz, 26 dB SPL at 250 Hz, and 47 dB SPL at 125 Hz.
At higher frequencies they increase to �10.5 dB SPL from 2,000 to 4,000 Hz
and 13.5 dB SPL from 6,000 to 8,000 Hz.

Normal hearing is therefore defined as 0 dB HL at all “audible” frequen-
cies (top, flat curve in Fig. 10.42b), but people with an average frequency
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Fig. 10.41. Potential sources of hearing loss. (For sure, the current reader of this
book does not share the complaint of the “dude” on the right. Still, we should
interpret the interaction between the dude on the right and his mother from a
physics perspective. His mother wants him to decrease the entropy (or disorder) of
his room. He has (unstated) concerns about this because he will need to use energy
to decrease the room entropy and he knows that the overall entropy of the universe
would increase as a result of any effort on his part to clean up his room.) (From
Beattie; Daytona Beach News-Journal, Copley News Service, NJ-CENTER.com,
copyright 1999. Reprinted with permission)

response ≤15 dB HL are still said to have “normal hearing.” Hearing loss is
defined as slight (average value of 16–25 dB HL), mild (26–40 dB HL), moder-
ate (41–55 dB HL), moderately severe (56–70 dB HL), severe (71–90 dB HL),
and profound (>90 dB HL). An example of a real audiogram for a person
with normal hearing is shown in Fig. 10.43. Figure 10.44 shows how hearing
sensitivity decreases with age, which is called presbycusis. One such example
is plotted in dB HL in Fig. 10.45.

Modes of hearing loss can be caused by problems in the middle ear or
the inner ear. The regular route of receiving sound from the outer ear to the
inner ear is called air-conduction. Sound can also be conducted to the inner
ear by bone-conduction, in which sound is transmitted by vibrations of the
bones of the skull. Both induce the same cochlear activity. In clinical audiol-
ogy, air-conduction is tested by using earphones or loudspeakers, while bone-
conduction is tested by a vibrator placed on the front of the skull. The modes
of skull vibration change with vibrator frequency, as is seen in Fig. 10.46. At
200 Hz the skull vibrates in unison with the same phase in the forward and
backward directions. When the frequency is increased to 800 Hz, the front and
the back of the skull are out of phase with each other, and at 1,600 Hz there are



Fig. 10.42. Audiograms in (a) dB SPL and (b) dB HL units for a normal person
(circles) and one with high-frequency hearing loss (triangles). (Based on [469, 470])

Fig. 10.43. Example of a real audiogram for a person with normal hearing. Au-
diogram key: right air-conduction (open circles), left air-conduction (cross symbols),
right bone-conduction (left angular brackets), and left bone-conduction (right angu-
lar brackets), all unmasked. (Based on [470])
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Fig. 10.44. Hearing levels vs. age for (a) males and (b) females. (Based on [470,
483, 500]. Also see [495] for more data)

forward–backward and right–left vibrations. Above ∼1, 000 Hz, skull vibra-
tions lead to important hearing response by excitations of the outer, middle,
and inner ear; at lower frequencies the middle and outer ear mechanisms are
most important.

If someone has poor hearing due to a problem in the middle ear (or ex-
cessive wax in the ear canal), sound can still propagate through the bones in
the head to the inner ear. Thresholds for conduction to the ear by air and by
direct transmission to bone can be tested to distinguish between conductive
and sensorineural system loss. If the threshold is the same for air-conduction
and bone-conduction tests, thresholds above 0 dB HL can be attributed to a

Fig. 10.45. Audiogram of a patient with bilateral hearing loss (i.e., loss in both
ears) from (essentially symmetrical bilateral sloping) sensorineural hearing loss as-
sociated with presbycusis. Audiogram key: right air-conduction (open circles), left
air-conduction (cross symbols), right bone-conduction (left angular brackets), and
left bone-conduction (right angular brackets), all unmasked. (Based on [470])
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Fig. 10.46. Skull vibration patterns induced by (a) a bone vibrator positioned
on the forehead, vibrating at different applied frequencies (b) 200 Hz, (c) 800 Hz,
(d) 1,600 Hz. In (b)–(d) the vibrating skull (dashed lines) is shown relative to the
still skull (unbroken lines) for a particular phase in the vibration. The small arrows
depict the displacement, a displacement that is greatly exaggerated to illustrate it.
In the opposing phase, the motion is reversed, with all arrows reversed (just as for
a sine wave). (Based on [452, 470])

problem in the sensorineural part of the ear. If the thresholds are different,
the difference can be attributed to a problem in the conductive system (mid-
dle ear). There can also be problems in both systems. Figure 10.47a shows
the hearing response for someone with normal hearing in the left ear, and

Fig. 10.47. Audiograms of patients with (a) unilateral conductive hearing loss in the
right ear, with a normal left ear, and (b) unilateral sensorineural hearing loss in the
left ear, with a normal right ear. Audiogram key: right air-conduction (open circles),
left air-conduction (cross symbols), right bone-conduction (left angular brackets),
and left bone-conduction (right angular brackets), all unmasked; left air-conduction
(open squares), right bone-conduction (left square brackets), left bone-conduction
(right square brackets), no response (arrows), all masked. (In masking the nontest
ear is presented a constant noise signal to prevent it from detecting the signal in the
test ear, so that only the test ear can respond.) (Based on [470])
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Fig. 10.48. Audiograms of patients with (a) bilateral sensorineural hearing loss
associated with noise exposure and (b) Meniere’s disease exhibiting low-frequency
sensorineural hearing loss in the right ear. Audiogram key: right air-conduction
(open circles), left air-conduction (cross symbols), right bone-conduction (left angu-
lar brackets), and left bone-conduction (right angular brackets), all unmasked; right
bone conduction (left square brackets), masked. (Based on [470])

(unilateral, meaning in one ear) hearing loss in the right ear attributed to a
problem in the right-conductive system. The sensorial system is normal, as is
seen by the bone-conduction tests. Figure 10.47b shows another audiogram
that indicates significant hearing loss only in one ear, the left ear, and this
time it is due to hearing loss in the left sensorineural system. Here, hearing
loss is seen in the left ear even with bone conduction. Note the sensorial hear-
ing loss has a more striking dependence on frequency than the conductive
hearing loss. The audiogram of a patient with hearing loss from high noise
exposure (such as from too much loud rock – or classical – music) is shown
in Fig. 10.48a. The loss is bilateral (in both ears) and is due to sensorineural
malfunction. In contrast to these other examples, people with Meniere’s dis-
ease (an inner ear disease) show sensorineural hearing loss at low frequencies
(Fig. 10.48b).

Tinnitus, which is also known as “ringing in the ears,” is not uncommon.
Those with severe cases can perceive a tone in one or both ears of 90 dB or
louder, which is louder than the 60–70 dB of normal conversation.

10.3.2 Connections to Hearing Perception

In psychophysics (or psychoacoustics), there are four main perception at-
tributes of basic sounds: loudness, pitch, timbre, and localization [472, 510].
Each attribute is nonlinearly related to the physical characteristics of sound,
such as acoustic intensity, frequency, and distribution of frequencies:
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1. Loudness is related to the sound intensity in a nonlinear manner. As
characterized by Stevens’ Law((1.6), Table 1.15) the perception of loud-
ness is very sublinear with stimulus. The lowest curve in Fig. 10.29 is the
audibility curve, which denotes the threshold of hearing; this is the low-
est intensity “equal loudness curve.” This and the other “louder” “equal
loudness curves” provide the dB SPL levels of acoustic intensity at each
frequency (for pure tones, i.e., for single frequencies) needed to achieve
the same level of perceived loudness. The degree of loudness of a sound
is expressed as the dB SPL level at 1,000 Hz that has the same loudness.
If this acoustic intensity at 1,000 Hz with the same loudness is called I,
then the loudness in phons is

Lp(in phons) = 10 log
I

Iref,p
, (10.64)

where Iref,p = 1 × 10−12 W/m2. (This equation is clearly very similar to
(10.10).) As seen in Fig. 10.49, above ∼80 phons, approximately the same
acoustic intensity is needed in low, mid, and high frequencies to perceive
the same loudness in each region. Below ∼80 phons, higher intensity is
needed at low and high frequencies to achieve the same perceived loudness
as in mid frequencies. This explains why one needs to increase the bass
and treble in stereo tuners (such as by pushing the “loudness” button) at

Fig. 10.49. Loudness and phon curves vs. frequency with phon (loudness level)
labels. (Based on [470, 481, 494])
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Fig. 10.50. Perceived loudness (in sones) vs. loudness level of stimulus (in phons)
for a 1,000-Hz tone from [502, 510], shown as the solid line, along with the predictions
of the approximate 0.3 power law shown as the dashed line, which is the basis for
the national and international sone scale. (From [478])

lower intensity to perceive the same, except quieter, music. Figures 10.44
and 10.45 show that older people typically have less sensitivity at high
frequencies (presbycusis). Several disorders, such as Meniere’s disease, also
deteriorate hearing (Fig. 10.48b).
The phon scale gives no indication of relative loudness. This is provided by
the unit called sones, which is related to phons in Fig. 10.50. A loudness
sensation of 1 sone is provided by 40 dB of 1,000 Hz pure tone. A sound
of 10 sones is perceived as being twice as loud as one of 5 sones. A nearly
exact formulation of loudness in sones Ls is

Ls(in sones) =
(

I

Iref,s

)0.3

, (10.65)

where Iref,s = 1 × 10−8 W/m2 and again I is the acoustic intensity at
1,000 Hz with the same loudness [478]. (This is a little different from the
near square-root scaling of perceived loudness with the acoustic intensity
indicated in Table 1.15.) Another measure of loudness is the just noticeable
difference (JND) or difference limen (DL), which denotes how much more
intense a sound needs must be to be perceived as being louder. For a
1,000 Hz tone, the DL for a 5 dB SPL sound is 5 dB SPL, but for 100 dB
SPL it is much smaller fraction, 6 dB SPL.

2. Pitch denotes if a tone sounds high or low. A pressure wave that is purely
sinusoidal is a pure tone; it is perceived as being low for low frequen-
cies and high for high frequencies. The perception of pitch is expressed in
units of mels, with the pitch of 1,000 Hz at 40 dB SPL defined to have a
pitch of 1,000 mels. There is a very nonlinear relationship between mels
and frequency for a pure tone (Fig. 10.51). A tone of 2,000 mels (corre-
sponding to about 3,500–4,000 Hz) sounds like it is twice the pitch of a
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Fig. 10.51. Perceived pitch (in mels) vs. frequency [503] is shown as the heavy line
(extending from 20Hz to almost 20 kHz), along with the thin line plotting pitch
equal to frequency and the dashed line showing pitch proportional to the octave
number. (From [478])

tone of 1,000 mels, which itself sounds twice as high as a tone of 500 mels
(corresponding to 400 Hz).
There is a minimum detectable frequency change for pure tones, of about
2–3 Hz for tones below 1,000 Hz and about 1/3% fractional change for
higher frequency tones. At a constant loudness of 40 phons, one can per-
ceive 1,400 different frequencies. Also, at a constant frequency of 1,000 Hz
one can perceive about 280 different levels of loudness. Consequently, peo-
ple can perceive almost 1,400×280 = 400,000 different variations of pitch
and loudness.
The frequency increases by a factor of two progressing from one musical
note to the same note in the next octave, such as in going from A, B, C, D,
E, F, G, and back to A; this continual increase in frequency with successive
notes is recognized as an increase in tone height. In going from one octave
to another, such as A5 on a piano with a fundamental frequency at 440 Hz,
to A6 at 880 Hz, to A7 at 1,760 Hz, and so on, there is a repetition of notes
that is perceptually similar, i.e., they exhibit the same properties of tone
chroma (here specifically here that of the note A), but with different
tone heights. These notes can be graphically represented as a vertical
spiral with successive notes marked: each complete octave is a loop in the
spiral, and all notes with the same tone chroma (all A’s, all B’s, etc.) are
immediately above one another in successive loops.
Most musical notes have a range of frequencies, and consist of a funda-
mental frequency and its harmonics. Such complex tones are perceived
to be at the fundamental frequency, so a 400 Hz tone and its harmonics
at 800, 1,200, 1,600 Hz, and so on is perceived to have a pitch of 400 Hz.
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Moreover, other complex series of frequencies are perceived to be at the
minimum common difference frequency, so a complex tone with 800, 1,200,
1,600, and 2,000 Hz is perceived to have a pitch of 400 Hz, as is a complex
tone with frequencies 2,000 and 2,400 Hz. These concepts are known as
periodicity pitch or the effect of the missing fundamental.
Tones heard at the same time can also mask one other. Tones tend to
mask nearby frequencies the best. Also, low-frequency tones mask high
frequency tones very well, but high frequency tones do not mask low
frequency tones well.

3. Complex tones containing many frequencies can be perceived as having
the same loudness and pitch, but still be perceived as being different. This
is characterized as being a difference in quality or timbre. One reason for
this is that different complex tones with the same fundamental frequency
consist of harmonics with different relative intensities. These different dis-
tributions are seen in Fig. 10.52 for a 196 Hz tone from a guitar, bassoon,
and alto saxophone; this explains why these different instruments sound
different when the same note (fundamental frequency) is played. In fact,
when musical tones of the same frequency can be played in different ways
on the same instrument they sound differently, such as the 440 Hz tone

Fig. 10.52. Fourier spectra for a guitar, bassoon, and an alto saxophone playing at
a fundamental frequency of 196 Hz. (Based on [492])
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Fig. 10.53. Fourier spectra for a violin playing at a fundamental frequency of 440 Hz
using the A and D strings. (Based on [492])

played on the A and D strings of a violin, as is seen in Fig. 10.53. Moreover,
perception is not only based on these distinctive harmonic structures, but
also on the distinctively different buildup and decay times for the various
harmonics played on a given instrument.

4. Sound is perceived as coming from a given spatial location, which is called
localization. Binaural hearing helps people localize the origin of a sound
within about 10◦. The brain localizes the source on the basis of information
from both ears, using the difference in arrival times – with a longer prop-
agation time to the farther ear – and intensity – with a weaker acoustic
intensity arriving at the farther ear. This is examined further in Problem
10.79.
Perception of more complex acoustic stimuli, as in speech, is much more
involved. The basic elements relate to the signal processing of the fre-
quency components.

10.4 Other Vibrations in the Body

10.4.1 Cardiac and Other Sources of Sounds

The body can be the source of many sounds, other than from speaking, such as
from chewing, stomach growls, walking and running, hand clapping, hiccups,
heart murmurs, body contact with anything, flapping eyelids, using towels,
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Table 10.6. Estimated acoustic parameters from sources in the body. (From [467])

source maximum pressure typical frequency
change (atm.) (Hz)

shouting 0.05 1,000
talking 0.005 1,000
whispering 0.0005 1, 000
running 2.0 4
walking 0.4 1
clapping hands, vigorously 0.2 2
chewing crunchy food 0.0001 1,000
respiratory airflow turbulence 0.00004 1,000
arterial pulse 0.02 1

clicking knees and finger joints, vomiting, coughing, flatus, nose blowing, hum-
ming, whistling, sneezing, normal breathing, wheezing, and laughing. Some of
these are listed in Table 10.6. The loudest of these acoustic vibrations can
be sensed by the body. Some are heard and some are felt by the mechanical
receptors in the body (Chap. 2). Heart sounds are described in [484] and lung
sounds in [485]. Vibrations can also cause pain to be sensed in the body, as
illustrated in Fig. 10.54.

Auscultation is the listening to sounds made by internal organs for medical
diagnosis. Modern stethoscopes have two chest pieces for such diagnostics: a
“bell” chest piece applied lightly to the skin to pick up low frequency sounds
and a “diaphragm” chest piece pressed firmly to the skin to minimize low
frequency sound and therefore accentuate hearing high-frequency sounds.

Fig. 10.54. Pain symptoms from vibrations from 1 to 20 Hz. (Based on [455, 487])
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Fig. 10.55. Idealized phonocardiograms (sound traces) for normal and abnormal
hearts, with left heart valve stenosis (partial blockage) or regurgitation (backflow)
or with patent ductus arteriosus. (Patent ductus arteriosus is the condition when the
ductus arteriosus (arterial shunt of pulmonary arterial blood flow from pulmonary
artery to the aorta in a fetus) does not close after birth.) The times of the first (S1),
second (S2), third (S3), and fourth or atrial (S4) heart sounds are shown. Also see
the phonocardiogram in Fig. 8.5. (Based on [476])

Normally-functioning hearts make sounds that are easily heard with a
stethoscope (Fig. 10.55) [484]. These are due to the opening and closing of
heart valves and the flow of blood. The first heart sound (S1) is a high-
frequency sound heard in early systole due to the closing of the mitral and
tricuspid atrioventricular valves, which occurs when the ventricular pressure
exceeds the atrial pressure. The mitral valve closes about 10 ms before the
tricuspid valve due to the earlier electrical excitation and contraction of the
left ventricle. These different closing times are audible only when there is
a disorder, such a right bundle branch block, which delays the closure of the
tricuspid valve. The intensity of the S1 sound can be accentuated or diminished
by several heart disorders.

The second sound (S2) is heard at the end of ventricular ejection and sys-
tole when the pulmonary and aortic valves close. The aortic component (A2)
precedes the pulmonary component (P2) because the pressure gradient be-
tween the aorta and left ventricle is larger than that between the pulmonary
artery and right ventricle. These two components are normally fused into
one during expiration but are normally audibly split during inspiration due
to the decrease in intrathoracic pressure that further delays P2 and advances
A2. The decrease in intrathoracic pressure causes a larger pressure drop from
inside to outside the pulmonary arteries and veins, and these compliance ves-
sels increase in volume at the same internal pressure. This delay in P2 is caused
by the longer time needed to fill up the pulmonary artery. The advancing of A2

is due to the smaller blood flow from the even-more blood-laden pulmonary
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veins to the left atrium and then the left ventricle, and the resulting smaller
stroke volume and the smaller time needed for the left ventricle to become
empty. The time of systole is approximately that between S1 to S2 and that
of diastole from S2 to S1 in the next cycle. These main heart sounds, S1 and
S2, are high-frequency sounds best heard with the stethoscope diaphragm.

The third heart sound (S3) is a dull, low-pitch sound best heard with the
bell of the stethoscope, heard after opening of the atrioventricular valves dur-
ing ventricular filling; it is normal in children and young adults and abnormal
in middle-aged and older adults. The fourth heart sound (S4), which usually
indicates cardiac disease, is generated by an atrium contracting against a stiff-
ened ventricle late in diastole. Heart murmurs are generated by the presence
of turbulent blood flow rather than laminar flow, and may indicate flow across
a partial obstruction, such as a stenosis (narrowing) of the aorta, increased
flow rate, blood ejection into a dilated chamber, regurgitant flow (backflow)
in a defective heart valve, or abnormal shunting of blood from higher-pressure
to lower-pressure chambers through a membrane divider (septum) [484]. (Re-
member from Chap. 8 that flow in the aorta is sometimes turbulent and can be
heard.) As seen in Fig. 8.5, the loudest heart sounds have frequencies mostly
below 30 Hz and are therefore inaudible. The pulsatile turbulent flow heard
during the measurement of blood pressure was described in Chap. 8.

10.5 Summary

The physics of sound, i.e., acoustics, describes the properties of sound waves –
including how sound intensity is expressed in the units of dB – and how sound
waves propagate between different media and in cavities. Acoustic models can
be used to understand how sound is produced in speech, which is partly ex-
plained by the voice filtering theory, and how to characterize the human voice.
They can also be used to understand sound propagation in the outer and mid-
dle ears, how nerve signals are generated in the inner ear, and modes of hearing
loss. Vibrations are important elsewhere in the body and in medical diagnos-
tics, such as in the interpretation of heart sounds and the use of ultrasound
for imaging.

Problems

Sound Waves

10.1. Find the distance molecules in air move for 20 dB SPL and 120 dB SPL
sound levels, both at 500 and 5,000 Hz.

10.2. A musician with perfect pitch can identify a 1 kHz pure tone in 4 ms.
How many periods of the sound wave is this?



620 10 Sound, Speech, and Hearing

10.3. Use (10.6) and the mass density of air of 1.3 × 10−3 g/cm3 to calculate
the characteristic displacement of air for 0 dB SPL and 120 dB SPL for 4 kHz.

10.4. (a) Show that the speed of sound in air vair ∝
√

T and the mass density
varies as ρair ∝ 1/T , and so the acoustic impedance of air varies as Zair ∝
1/
√

T , where T is in K.
(b) Find each of these parameters at 0, 20, and 25◦C.
(c) Does this variation of Zair with T significantly affect the reflection and
transmission of sound from air to the body components? Why or why not?

10.5. Find the speed of sound in water using the bulk modulus of water of
2.26 GPa. Is this the expected result?

Sound Intensity

10.6. The scale for acoustic intensity in Fig. 10.30 ranges from −20 to 140 dB
SPL. What pressure range does this correspond to in dyne/cm2?

10.7. Sound with intensity 60 dB SPL in air is incident on water. How much
of it is transmitted into the water (in dB SPL and W/m2)?

10.8. Hammering on a steel plate produces sounds that two feet away reach
a maximum of 115 dB SPL. If this acoustic intensity is isotropic, what is the
total power of this acoustic wave in W?

10.9. What is the change in dB if the intensity of a sound wave is:
(a) halved
(b) doubled
(c) tripled
(d) quadrupled?

10.10. Why there is a 6 dB SPL decrease in sound level for each doubling of
distance from a small isotropic source?

10.11. The acoustic intensity is 60 dB SPL at a given distance from an
isotropic source. What would the intensity be if this same level source were
to radiate into only 1/10 of all space?

10.12. Which sound is more intense 20 m from its isotropic source: a 10 Hz
sound that is 80 dB SPL a distance 4 m from its source or a 4,000 Hz sound
that is 60 dB SPL a distance 3 m from its source?

Sound Intensity for Threshold Hearing Sensitivity

10.13. (a) At what distance from an isotropic 10 μW acoustic source is the
sound at the audibility threshold for a human?
(b) The hearing threshold for dogs is 1 × 10−15 W/m2. At what distance can
a dog hear this source?
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10.14. (a) Express music’s triple forte (very loud, 1× 10−2 W/m2) and triple
piano (very soft, 1 × 10−8 W/m2) sound levels in dB SPL.
(b) At an outdoor concert with no sound amplification, the audience sitting
4 m from the orchestra hears triple forte and triple piano sounds. What are the
respective acoustic intensities (in dB SPL) for those in the audience sitting
60 m away? Treat the orchestra as a point source.

10.15. (a) Show that 1 W from an isotropic acoustic power radiator produces
an intensity of 115 dB SPL a distance 0.5 m from the source.
(b) Find this acoustic intensity 1 m from the source.
(c) How far can you be from the source and still barely hear it (for a 1,000 Hz
source)?

10.16. Determine Pref and the pressure (changes) at 100 dB SPL in mmHg.

Sound Transmission, Reflection, and Ultrasound

10.17. Table 10.3 gives the absorption coefficient α for bone as 1.6 × 10−4

s/m. Other sources give it as 14 dB/cm at 1 MHz frequency. Are these two
values consistent? Why?

10.18. Can you talk through a person? (In other words, are people good
acoustic shielding?) Estimate the dB loss for 3,000 Hz sound transmitted
through your chest to help answer this question.

10.19. For each tissue in Table 10.3, determine the thickness of tissue needed
to decrease the intensity of a 5 MHz ultrasound wave by half. (Assume losses
are due only to absorption, and not due to reflection at interfaces.)

10.20. Often in ultrasound measurement the ultrasound transducer and de-
tector are on the same probe, so reflected sound waves are detected. Determine
the fraction of initial sound intensity that is detected for the following cases
by tracking the beam that is transmitted through material X in the body,
reflected at normal incidence from the interface of X with Y, and then again
transmitted through material X. (Assume that all the sound from the trans-
ducer enters X and all leaving X after reflection from Y enters the detector.
Consider attenuation in the medium, as well as reflection at the X–Y inter-
face.):
(a) X is 1 cm of muscle and Y is bone, for 1 MHz sound
(b) X is 1 cm of muscle and Y is bone, for 10 MHz sound
(c) X is 5 cm of fat and Y is muscle, for 1 MHz sound
(d) X is 2 cm of blood and Y is muscle, for 5 MHz sound
(e) X is 1 cm of bone and Y is muscle, for 1 MHz sound.

10.21. Calculate the relative delay times between sound reflecting at the be-
ginning of the X medium and that reflecting at the X–Y interface, for each
case in Problem 10.20.
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Fig. 10.56. Doppler examination of blood flow in a vessel at a speed u, with scanning
shown. (Reprinted from [489]. Used with permission of Elsevier)

10.22. Estimate the relative delay times for 1 MHz sound reflecting normally
from the first outer surface of the aorta, the first inner surface of the aorta,
the second inner surface of the aorta, and second outer surface of the aorta.

10.23. When an ambulance siren blaring at a frequency f approaches you at
speed v, you hear the frequency upshifted to f ′ = f(1 + v/vs), while when
it is distancing itself from you, you hear the frequency downshifted to f ′ =
f(1 − v/vs). This is the Doppler effect.
(a) Show that this is consistent with f ′ = f(1 − (v/vs) cos θ), where θ is the
angle between the velocity vector of the moving object and the position vector
from you to it.
(b) Show that Doppler ultrasonography echocardiography (Fig. 10.56) can be
used to determine the blood flow speed v to be

v =
(δf)vs

2f cos θ
, (10.66)

where δf is the measured Doppler shift (f ′ − f) and vs is the speed of sound
in body tissue.
(c) Calculate the maximum Doppler shift for blood flowing in the aorta, using
1 MHz ultrasound.

10.24. A generous dab of gel is put on the ultrasound probe head before it is
placed on the skin (Fig. 10.56):
(a) Why?
(b) What must be the desired acoustic properties of this gel?

10.25. Express the unit of acoustic admittance, the mmho, in SI units.

10.26. (advanced problem) With Z = R + iXm + Xs/i, derive (10.19).
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10.27. (advanced problem) With Z = R + i(Xm − Xs) and Y = G +
i(Bm − Bs), derive:
(a) Equation (10.20)
(b) G, Bm, and Bs in terms of R, Xm, and Xs

(c) R, Xm, and Xs in terms of G, Bm, and Bs.

10.28. (advanced problem) With Z = R + iωM + S/iω, where ω is the radial
frequency in rad/s and ω = 2πf where f is the frequency in Hz or cycles per
second, show that

| Z | =
√

R2 + (2πfM + S/2πf)2. (10.67)

In electronics problems, R is the resistance, M corresponds to the inductance
L, and S corresponds to the reciprocal of the capacitance C (S = 1/C).

10.29. (advanced problem) Use (10.24) to show that the resistive term of the
speed varies as a cosine wave and the inertial and stiffness terms both vary
as sine waves, but with opposite signs.

10.30. The speeds of sound in the brain and skull bone are 1,550 and
4,090 m/s, respectively. What fraction of sound is lost in reflection from air
to the skull bone and then from the skull bone to the brain? Assume the
densities of the brain and skull bone are 1 g/cm3.

10.31. We are usually concerned with light entering the eye, but what happens
when sound enters the eye? Calculate the reflection coefficient at each interface
between the air/cornea/aqueous humor/eye lens/vitreous humor. The speeds
of sound in the aqueous humor, eye lens (crystalline lens), and vitreous humor
are 1,510, 1,630, and 1,540 m/s, respectively. Assume that the density of each
medium in the eye is 1 g/cm3 and that the cornea and eye lens have the same
properties.

10.32. The speed of sound in collagen is 3,640 m/s along the fiber axis and
2,940 m/s across this axis. What is the reflection coefficient between blood
and collagen, for sound traveling in both directions in the collagen?

Speaking

10.33. The oral cavity of a child is 8 cm long, as measured from her lips
to vocal folds. What is the fundamental oscillation frequency of this cavity?
(Treat the oral cavity as a cylinder open at one end and closed on the other.)
Does this make sense in light of the differences of the voices of children and
adults?

10.34. Plot on the same set of axes all of the resonant frequencies below 5 kHz
for an 18-cm long cylinder that is open on both ends and a 16-cm long cylinder
that is open on one end and closed on the other.
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10.35. Smokers may have vocal folds that are slightly swollen and inflamed,
and therefore, perhaps have folds that are more massive than those of non-
smokers. How would this affect the vibration frequency of their vocal folds?
Would the voices of smokers be relatively deeper or higher pitched?

10.36. Explain why people speak in a high pitch after taking a breath of
helium. The speed of sound in helium is about 970 m/s. (Show this, given
γ = cp/cv is 5/3 for helium.)

10.37. In the text, the inverse relationship between the vocal-fold frequency
and vocal-fold length was explained by considering the resonant frequencies of
an oscillating string. Use (4.4) to show that this relationship is also expected if
the vocal folds are modeled as a free, spring like object oscillating length-wise.

10.38. Estimate the vibration frequency of the vocal folds, by assuming they
are a spring-like object oscillating length-wise that is 1 cm long, 0.3 cm wide,
and 0.3 cm thick, with a Young’s modulus of 100 kPa, and a mass density of
1 g/cm3 [446]. (See (4.4).)

10.39. We can describe the production of the “m” sound as being voiced
bilabial nasal. In what way does the production of the “n” sound differ?

10.40. Compared to men, do women use higher or lower harmonics of their
fundamental buzzing frequency to produce the same vowel formant? Why?

10.41. Use the vowel formant plot (Fig. 10.19) to sketch the transmission
curve of the vocal tract for three vowels.

10.42. Describe the frequency spectra of the vowels and consonants in
Fig. 10.9. Point out their similarities and differences.

10.43. Plot the first- and second-formant frequencies for each vowel in
Fig. 10.9 on the same set of axes.

10.44. Plot the first- and second-formant frequencies for the vowel in
Fig. 10.20 on the same set of axes.

10.45. (advanced problem) Explain why the two-tube model in Fig. 10.25b,d,f,
explains the mode shifts for the “ee” sound as in “see,” which are shifted from
the predictions of the one-tube model in Fig. 10.24a.

Hearing Mechanism

10.46. What is the resonant frequency of the 1.3-cm long ear canal of a baby?
How does it compare to that of an adult?

10.47. The amplitude of motion of the eardrum is 0.03 μm when measured
at 100 dB SPL for 3,000 Hz. Assuming the amplitude is linear with the total
force on the eardrum (which is a good assumption for pressures below 130 dB
SPL), find the amplitude of eardrum motion at 0 dB SPL in m.
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10.48. Model the motion of the eardrum as a flat membrane that is fixed
at its ends, with a displacement that increases linearly from the edge to the
center of the eardrum. (The motion is really more closely sinusoidal than this
triangular mode shape.) If this maximum displacement at the center is 0.03
μm, as in Problem 10.47, find the full change of angle the eardrum makes
during its motion (in radians and degrees).

10.49. Compare the potential energy of motion of the eardrum at 3,000 Hz to
that at 1 Hz for the same amplitude of motion. (Assume the motion can be
modeled as a simple harmonic oscillator.)

10.50. Is modeling the eardrum as a freely vibrating object reasonable, given
that the stapes touches it? Why?

10.51. Do people have good auditory sensitivity at the fundamental frequen-
cies of their voices? Is this important? Why?

10.52. What is the gain in dB due to the middle ear if only the force enhance-
ment in the middle ear (and not the entire torque enhancement) is considered?

10.53. Sketch the hair cell responses in Fig. 10.39 on a linear–linear plot of
acoustic intensity vs. frequency.

10.54. How are the three sharp hair cell responses in Fig. 10.39 related to the
responses for a oscillator as shown in Figs. 10.7 and D.3?

10.55. Design hair cells composed of keratin with resonant frequencies ranging
from 20 Hz to 20 kHz with:
(a) A fixed length of 2 mm
(b) A fixed diameter of 20 μm or
(c) Dimensions of 2 mm length and 20 μm diameter for the hair resonant at
1 kHz, with variations in these two parameters that cause equal changes in
frequency for different hair cells.

10.56. Calculate the fundamental frequency for lateral vibrations of a rod of
solid bone of length 10 mm and diameter 1 mm (Y = 1× 1011 Pa and density
ρ = 3,000 kg/m3) fixed at one end to an incompliant base.

10.57. (a) Show that 1 mmH2O = 0.98 daPa.
(b) Express the tympanogram range of +200 daPa to −300 daPa in mmH2O.

10.58. Show that the impedance relationship equivalent to the admittance
relationship for tympanograms: Ymiddle ear = Ytotal −Youter ear, is Zmiddle ear =
Zouter earZtotal/(Zouter ear − Ztotal).

10.59. (advanced problem) For adiabatic conditions (no heat flow) PV γ is a
constant. Show that (10.59) becomes ΔP = −γP (ΔV )/V and that this leads
to (10.61).
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Hearing Levels and Perception

10.60. A student in a class wants to set the tone of his cell phone ringer so
that he could hear it, but his instructor, who is a bit older than he is, cannot.
Would a suitable fundamental frequency be 250, 1,000, 17,000, or 30,000 Hz?
Why?

10.61. The acoustic power incident on the eardrum at threshold (0 dB SPL) is
equivalent to how many optical photons [490]? (Hint: Use the known threshold
intensity and the dimensions of the eardrum.)

10.62. Compare the intensity of the crack of a bat hitting a baseball as heard
by the catcher and by a fan in the bleachers.

10.63. A noisy elevated train (in the open air) in Brooklyn in New York City
causes acoustic discomfort to those 5 ft away from it. How many city blocks
away can it be heard? (Treat the train as a point source, even though this is
clearly an approximation. There are 20 canonical city blocks in a mile. Also,
remember that background noises in the city could mask the sound of the
train, so the threshold intensity for hearing is much above the threshold of
hearing pure tones in a quiet room.)

10.64. The explosion of 23 kg of TNT creates a sound level of 200 dB SPL
a distance 3 m away from the detonation. Assume the total acoustic energy
produced in such explosions is proportional to the mass of the TNT:
(a) How far away must you be to avoid the threshold of pain from a blast
from 100 kg of TNT?
(b) What fraction of the energy released from the detonation is in the form
of acoustic energy over the hemispherical release region? Assume the blast is
50 ms long and a ton of TNT releases 4.18 × 109 J.
(c) It has been reported that 1 ton of TNT produces 120 dB SPL at 15 km.
Is this consistent with the data given in this problem?

10.65. A static pressure of 8 × 103 Pa across the eardrum can cause it to
rupture [455]. How does this compare to the sound pressure from a 160-dB
SPL sound that can also cause the eardrum to rupture?

10.66. According to Fig. 10.30, what range of frequencies is needed to hear
speech and over what overall volume range in dB SPL is this required?

10.67. According to Fig. 10.30, what range of frequencies is needed to hear
orchestral music and over what overall volume range in dB SPL is this re-
quired?

10.68. Resketch the normal hearing range in Fig. 10.30 along with the music
range for rock and roll music (which had not been developed in 1934 when
this curve was made).
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10.69. Show that (10.65) is referenced to a loudness corresponding to 40 phons.

10.70. Show that the loudness in phons, Lp, and sones, Ls, are related by:
Lp = 33.3 log Ls + 40, by using (10.64) and (10.65).

10.71. Which is loudest and which is the most quiet for these three sounds:
one at 7,000 Hz with loudness of 60 phons, one at 4,000 Hz with a loudness of
8 sones, or one at 1,000 Hz with intensity 50 dB SPL? (As part of this problem,
express each of the three sets of data into phon and sone loudness units.)

10.72. Which 1,000 Hz sound is louder 50 ft from its isotropic source: one with
an intensity 80 dB SPL a distance 5 ft from the source or one that is 65 dB
SPL a distance 25 ft from the source? (In both cases, calculate the intensity
in dB SPL at 50 ft.)

10.73. Approximately 80 dB SPL is needed to achieve a loudness of 80 phons
at 100 and 1,000 Hz. To achieve 40 phons, 40 dB SPL is needed at 1,000 Hz.
How much more acoustic intensity is needed to attain this loudness at 100 Hz?
Express your answer in dB and by the factor increase in intensity needed at
100 Hz relative to 1,000 Hz.

10.74. You have a radio with inexpensive speakers that produce sound only in
the 250–5,000 Hz frequency range. Will you be able to hear notes with 100 Hz
fundamental frequencies, and if so, why?

10.75. Does the relative loudness scale given by sones agree with the power
law dependence described in Table 1.14?

10.76. You want to design an organ with a 55 Hz tone:
(a) Show that you need to use a 3-m long length of pipe (open at both ends)
to produce this resonance frequency.
(b) Say this 3-m long pipe is too long to use in the organ, but you still want
to perceive a 55-Hz note tone. Explain why you can play notes from pipes
that are 1.0 and 1.5 m long at the same time and hear a 55-Hz tone.

10.77. The musical scale of “Just Intonation” consists of tones that sound
pleasing when sounded together or immediately after one another. Such pleas-
ing combinations occur when the notes are harmonics of each other or have
frequencies that are related by fractions with relative small integral numera-
tors and denominators [492]. The frequencies of the notes in one octave in the
Tonic C in the major scale of Just Intonation are f for a C tone, 9f/8 for D,
5f/4 for E, 4f/3 for F, 3f/2 for G, 5f/3 for A, 15f/8 for B, and 2f for C:
(a) Find the frequencies in this scale if the A tone has a frequency of 440 Hz.
(b) Calculate the lengths of pipes with fundamental frequencies at the fre-
quencies of each of these notes (with the tubes open on both ends).

10.78. In the text, the difference limen for a 1,000 Hz tone was cited to be
5 dB SPL for a 5 dB SPL sound and a much smaller fraction, 6 dB SPL, for the
much louder 100 dB SPL sound. Determine and then compare the absolute
increase in acoustic intensity (in W/m2) in both cases.
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10.79. A person, 2 m from your left ear, speaks to you, and his voice reaches
your left ear with an intensity 60 dB SPL:
(a) If your right ear receives his voice delayed by 0.05 ms, where is this speaker
located relative to you? (Say a person directly in front of you is at 0◦ and im-
mediately to your right is at 90◦. Assume your ears are separated by 20 cm.)
(b) If the intensity of the voice decreases inversely as the square of the prop-
agation distance, how much lower (in dB) is the sound arriving in the right
ear?
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Light, Eyes, and Vision

Our eyes image a source onto light-sensitive retinas. Cells in the retina convert
the imaged light into electrical signals. This information is carried to the brain
by neurons via the optic nerve. The visual cortex in the brain processes this
information, and we somehow perceive a visual image. Each of these four
steps in the vision process is important and contains interesting physics. The
physics of the first step is the optics of imaging the source onto the retina and
the second is the quantum physics of the absorption of light by the retina. The
physics of the conduction of electrical signals in nerves is step three and we will
discuss this in Chap. 12. Physical processes and processing are also important
in the fourth step, within the brain [530, 531, 532, 560, 562]. (By the way,
David H. Hubel and Torsten N. Wiesel shared the Nobel Prize in Physiology
or Medicine in 1981 for their discoveries concerning information processing in
the visual system.) In this chapter, we will focus on the physics of imaging and
briefly consider the absorption of light by retinal cells. Feedback and control
(Chap. 13) are also important in vision. For example, the body controls the
focal length of the eye lens (accommodation) to enable the imaging of both
near and far objects and changes the diameter of the pupil to adjust the
amount of light entering the eye.

For general references on vision see [513, 516, 520, 523, 527, 537, 542, 549,
550, 552, 560]. For general references on optics and the optics of vision see
[511, 513, 516, 518, 529, 534, 535, 543, 544, 553, 555].

11.1 Structure of the Eye

Figure 11.1 shows the structure of the human eye. Light enters the cornea
and passes through the aqueous humor in the anterior chamber, the pupil in
the iris, the lens (commonly called the crystalline lens although it is not a
crystal), and the vitreous humor, and images on the retina, which contains
rod and cone photoreceptor cells. The three pairs of muscles that control eye
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Fig. 11.1. Structure of the eye: (a) sagittal section, (b) three-dimensional perspec-
tive. (From [558])

motion were described in Fig. 1.14 and Tables 1.3 and 1.4. The eye has an
average radius of 12 mm.

The adult cornea is 0.52 mm thick in the center and 0.65 mm thick in
the periphery, and is about 12.6 mm in diameter horizontally and 11.7 mm
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vertically. It is composed of several layers, from anterior to posterior: the
outer epithelium, the basement membrane, anterior limiting lamina (or the
Bowman’s layer), corneal stroma, posterior limiting lamina (or the Descemet’s
membrane), and the epithelium. The corneal stroma constitutes 90% of the
corneal thickness and is composed of 50 layers, each with similarly oriented
collagen fibers, with the fibers always parallel to the cornea surface. The cornea
is transparent because it is uniform in structure, avascular (i.e., it has no
blood vessels) except in the extreme periphery, and relatively dehydrated. It is
covered by a 7–10 μm thick layer of tears, which, among other things, smoothes
over optical irregularities on the anterior surface of the cornea and supplies the
cornea with oxygen. The average radius of curvature of the anterior surface
of the cornea is about 7.8 mm in the central region, with a variation among
people of about ±0.4 mm, and is flatter in the periphery.

The aqueous humor fills the anterior chamber (with a volume of 0.3 cm3)
bounded by the cornea, iris, and the anterior surface of the crystalline lens,
and the posterior chamber (0.2 cm3) on the periphery of the lens. It has many
fewer proteins (0.1 g/L) than blood plasma (60–70 g/L). The pupil in the iris is
usually slightly nasal and inferior to the center of the iris, and can vary roughly
from 1.5 to 10 mm in diameter. The diameter of the pupil is controlled by an
opposing pair of smooth muscles: the sphincter pupillae (which is a ring of
muscles that encircle the pupil) contracts it and the dilator pupillae (which
has the form of a thin disc) widens it.

The crystalline lens is suspended from the ciliary body by zonular fibers
and rests on the posterior surface of the iris. It is composed of about 66%
water and 33% protein. This crystalline lens is about 4 mm thick and 9 mm
in diameter. It continues to grow during life, with new layers growing on
older layers, forming a layered structure like an onion (Fig. 11.1). At 30 years
of age, the lens has a mass of 170 mg, which increases by about 1.2 mg per
year; similarly the lens width is about 4 mm and increases by about 0.02 mm
per year. The crystalline lens is avascular and almost completely transparent.
Still, it is slightly birefractive (i.e., it has slightly different refractive indices
for different polarizations of light), becomes more yellow with age, and can
become opaque (and this forms a cataract). Aphakia describes the condition
when the crystalline lens is absent. The vitreous humor is about 99% water,
with the remaining 1% composed of collagen (0.5 g/L proteins) and hyaluronic
acid; the latter gives it its gelatinous, viscous physical characteristics. This
humor accounts for about 5 cm3 of the 7–8 cm3 volume of the eye.

As we will see below, the formation of an image on the retina is deter-
mined by the indices of refraction of each eye component that the light passes
through and by the shapes of the surfaces of these elements. The cornea and
crystalline lens are the actual focusing elements in the eye. The cornea per-
forms about two-thirds of the focusing and the crystalline lens the remaining
one-third. The shape and consequently the focal length of the crystalline lens
are adjustable and do the fine-tuning of imaging for accommodation. The
measured refractive index of the tears and the vitreous humor is about 1.336
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and that of the aqueous humor is a bit higher, 1.3374. The refractive indices
of the cornea, about 1.3771, and the crystalline lens are higher. At the center
of the crystalline lens (which is called the nuclear region), the index is about
1.40–1.41 and it decreases to 1.385–1.388 in the direction towards the “poles”
and to 1.375 in the direction toward the “equator”; it is 1.360 in the capsule,
which is the elastic membrane that encloses the crystalline lens. There is still
some uncertainty in these values; optical models of the eye use values close to
these cited numbers.

Only about 50% of visible light (400–700 nm) incident on the eye actually
reaches the retina as direct light. Then light must pass through the (transpar-
ent) ganglion and other retinal neurons before reaching and forming an image
on the backward-facing photoreceptors on the retina (Fig. 11.2). The fovea or
fovea centralis is the central region of the retina, and the region of sharpest
vision because it has the highest density of cone cells on the retina (Fig. 11.3).
The optic nerve leaves the eyeball at a blind spot (optic disk), a region with
no rods or cones (Fig. 11.3); it is 13–18◦ away from the fovea in the “nasal”
direction.

We are usually not aware of the blind spot when we use both eyes because
the part of the image that forms on the blind spot in one eye is located in

Fig. 11.2. Schematic of the retina in the eye, with the arrangement of rods and
cones and other neurons, along with electrical excitation by the shown light stimulus.
(From [551])



11.1 Structure of the Eye 633

Fig. 11.3. Distribution of rods and cones on the retina, and the location of the
blind spot. (Based on [523] and [560])

a functional region in the other eye and the brain fuses the images of the
two eyes. It is easy to prove the existence of the blind spot. Close your right
eye and use your left eye to look at the dot in Fig. 11.4. When you move the
book about 10 cm from your left eye, you will find one position where the x
disappears because of the blind spot in your right eye.

Fig. 11.4. Fixate on the x using your left eye, with your right eye closed. Keep the
book about 10 cm from your left eye, and then move it back and forth until you do
not see the central spot. This spot is then on the blind spot. The spots above and
below it are still visible, but fuzzy because of the lower visual acuity outside the
fovea. (Based on [560])
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Fig. 11.5. Scanning electron micrograph of rod and cone outer segments, with the
cone seen (with its tapered end) in the center and the end and beginning of two
rods (which are longer than the cones) seen beneath and to the left of it. (Reprinted
from [536]. Used with permission of Elsevier)

There are about 120 million rod cells per retina (Fig. 11.5). They have
high sensitivity, low spatial acuity, and are relatively more numerous in the
periphery of the retina. The sensitivity of rods peaks near 500 nm (Fig. 11.6).
Vision using only rods results in various shades of gray. Night vision and
peripheral vision are mostly due to rods. Rods are about 2 μm in diameter.
Far from the fovea the rods become more widely spaced and many (in some
cases several hundred) rods are connected to the same nerve fiber. Both factors
decrease visual acuity in the outer portions of the retina.

There are about 6.5 million cone cells per retina. They have low sensitiv-
ity – about 1,000× lower than rods, high spatial acuity, and are concentrated
in the fovea. There are three types of cone cells, with spectral sensitivities
peaking near 445 nm (blue or S cones – S for short wavelength peak sensi-
tivity), 535 nm (green or M cones – M for middle wavelengths), and 570 nm

Fig. 11.6. Relative spectral sensitivity of rods and cones. The absolute sensitivity
of rods is 1,000× larger those of the cones. (Based on [515], [526], and [540])
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(red or L cones – L for long wavelengths) (Fig. 11.6). The overall spectral
sensitivity due to the rods and cones of humans closely matches the spectrum
of solar light reaching land. Sharp vision and color vision are due to cones,
and consequently damage to the fovea leads to visual images that are fuzzy.
Cones are about 1.0–1.5 μm in diameter and are about 2.0–2.5 μm apart in
the fovea. There are only about 1 million nerve fibers in the eye, so there are
some cones (as well as rods) connected to the same nerve cells. We will not
delve into the cellular structure of the rods and cones, but will focus on two
physical aspects of these sensors: the absorption of light and acuity of vision.

The absorption of light by the rods and cones is a fundamental quantum-
mechanical process in which one photon (or quantum) of light is absorbed
by the pigment rhodopsin. Quantum mechanics is the physics of small-scale
objects, and has features that are distinct from the physics of larger-scale
objects, which is the classical physics we have been using throughout this
book. One feature of quantum physics is the quantization of energy levels
in molecules, which means that a molecule can have only distinct energies.
Consequently, a molecule can absorb light only at those specific energies (or
frequencies) corresponding to the differences of its energy levels. Moreover, in
quantum mechanics, light acts like light packets, called photons. The energy
of a photon is

E = hν =
hc

λ
, (11.1)

where h is Planck’s constant (6.626 × 10−34 J-s, as in (6.37)), ν (or f) is
the frequency of the light, c is the speed of light (3.0 × 108 m/s), and λ is
the wavelength of light. The last two parts of this equation reflect the re-
lationship between frequency, wavelength, and propagation speed for these
electromagnetic waves,

c = λν, (11.2)

as in (10.3). Absorption occurs when the photons have energy in ranges that
can be absorbed by the photosensitive molecules in these cells.

Rhodopsin consists of a chromophore (i.e., the part of the molecule respon-
sible for its color) covalently attached to the protein opsin. The chromophore
is retinal, which is a derivative of vitamin A, and the absorption of a sin-
gle photon of light isomerizes it (i.e., changes its molecular conformation)
from 11-cis retinal to all-trans retinal. This isomerization triggers a change in
the conformation of rhodopsin that starts a sequence of sensory transduction
processes (Fig. 11.7). Proteins themselves have absorption bands in the ultra-
violet, and cannot absorb in the visible. The absorption of free 11-cis retinal
is in the near ultraviolet, 360–380 nm; however, the binding of the retinal to
the protein red shifts the absorption by about 200 nm to the visible. Differ-
ences in the opsin proteins in the rods and the three cones cause the different
wavelength responses for these four types of photoreceptor cells. (By the way,
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Fig. 11.7. The chromophore 11-cis retinal is photoisomerized by light to all-trans
retinal (11-trans retinal)

Ragnar Granit, Haldan Keffer Hartline, and George Wald were awarded the
Nobel Prize in Physiology or Medicine in 1967 for their discoveries concerning
the primary physiological and chemical visual processes in the eye.)

The pressure in the eyeball maintains its shape. It is normally about
15 mmHg (ranging from 10 to 20 mmHg), and is determined by the rates of
formation of the aqueous humor (about 1% of the total volume is produced per
minute) and drainage of the aqueous humor through the canal of Schlemm.
If the exit of the aqueous humor is impaired, the eyeball pressure increases,
leading to glaucoma and possible blindness (as is addressed below). Intraoc-
ular pressure (IOP) is measured by the amount of force needed to flatten to
a given area (or the area flattened by a given force) by using a tonometer.
(This is explored in Problem 11.47.)

11.2 Focusing and Imaging with Lenses

11.2.1 Image Formation

Figure 11.8 shows how an object or source is imaged by a convex (converging or
positive) lens. By convention in optics the object is placed a positive distance
d1 to the left of the lens and optical rays propagate from the left to the right.
The object has a size (or height) y1. For a convex lens the focal length f is
positive, hence the name positive lens. The central axis (the z-axis) is known

Fig. 11.8. Imaging by a thin, positive lens
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as the optic axis. All rays passing through the lens form an image a positive
distance d2 to the right of the lens, where d2 is given by the lens equation

1
d1

+
1
d2

=
1
f

. (11.3)

A real image forms at d2 when d1 > f , which means that you will see the image
at d2 if you place a screen, such as a piece of paper, there. The image is inverted
and its size y2 is magnified by M = d2/d1 (the transverse magnification).
This can be seen from the triangles in Fig. 11.8 that give y1/d1 = y2/d2, so
the magnification is

M =
d2

d1
=

y2

y1
. (11.4)

(Actually, it is magnified when d2/d1 > 1 and reduced in size (minified) when
d2/d1 < 1.) When d1 = ∞, parallel rays are incident on the lens and an image
forms at d2 = f (Fig. 11.9a). When the object is at the focus and so d1 = f ,
the image is at ∞ (Fig. 11.9b). When the object is closer to the lens than the

Fig. 11.9. Special cases of imaging with positive lenses (a–c), and imaging with
negative lenses (d)
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focal point and so d1 < f , then d2 < 0 and the image is to the left of the lens
(Fig. 11.9c). This is a virtual image. Placing a screen there will give no image.
However, if the light rays to the right of the lens are traced backward to the
left of the lens, they will seem to emanate from this virtual image.

This same lens equation (11.3) can be used to determine the location of
the image for a concave (diverging or negative) lens, which has a negative
focal length f . Concave lenses produce virtual images (Fig. 11.9d).

The cornea and crystalline lens in the eye are positive lenses, because they
need to form a real image on the retina. Corrective lenses (eyeglass lenses and
contact lenses) can have positive or negative focal lengths, depending on the
necessary correction. We will explore this later in this chapter. Focal lengths
are expressed as distances, in cm or m. We will see that in discussing the
eye and corrective lenses it is very common to discuss 1/f and use units of
diopters (D), with 1 D = 1/m.

In a very simple model of the eye imaging system, the eye is treated as a
thin lens with a 17 mm focal length in air (Standard eye model). For an image
at d1 � f , (11.3) shows that d2 � f . We will see that two points are resolvable
by at best Δy2 = 2 μm on the fovea. So for a source that is 10 m away,
two points are resolvable when separated by at least Δy1 = (d1/d2)Δy2 =
(10 m/17 mm)(2 μm) = 1.2 mm; this corresponds to an angle of 1.2 mm/10 m =
0.12 mrad = 25 s of arc. The ∼300 μm foveal diameter corresponds to a lateral
separation of ∼(10 m/17 mm)(300 μm) = 18 cm at 10 m or ∼18 cm/10 m = 18
mrad ∼1◦ of arc.

We have assumed geometric optics, which ignores the wave-like features
of light due to optical diffraction; this is a good approximation for very short
wavelengths and for much of the imaging in the eye. Our analysis also assumes
only paraxial rays, i.e., all rays are near the optic axis and make small angles
to it. (Rays that are farther away from the optic axis – nearer where the max-
imum amount of light is transmitted – are called zonal rays, and those at the
margin of the lens are marginal rays. We will evaluate below the importance
of diffraction and of these zonal and marginal rays.)

11.2.2 Scientific Basis for Imaging

We will trace rays by following how they propagate in straight lines in uniform
media and how they refract at interfaces by using Snell’s Law. Snell’s Law of
refraction shows that light from medium 1 with index of refraction n1 imping-
ing at an angle θ1 (relative to the normal) on a flat interface with medium 2
with refractive index n2, is refracted to an angle θ2 given by (Fig. 11.10)

n1 sin θ1 = n2 sin θ2 (11.5)

and for small angles (θ1, θ2 � 1)

n1θ1 = n2θ2. (11.6)
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Fig. 11.10. Snell’s law

Some important indices of refraction are 1.0 for air, 1.33 for water, 1.5–1.6
for different types of glass, and 1.44–1.50 for plastics. Refractive indices ac-
tually vary some with wavelength and temperature, but we will ignore those
variations at present.

Imaging can occur when the interfaces are curved. Let us consider the
refraction of paraxial rays at the interface in Fig. 11.11 from medium 1 to
medium 2, which has a spherical radius of curvature R12. (This region can
be formed by slicing off a section from a sphere with radius R12, composed
of material 2.) As shown here, this radius is defined to be positive (see the
Fig. 11.11 inset). Equation (11.5) still applies, but the angle of incidence for
a light ray parallel to the optic axis varies with the distance y the ray is
displaced from this axis. We see that θ1 = y/R12. For y � R12 (so θ1 � 1),
(11.6) gives

θ2 =
n1

n2
θ1 =

n1

n2

y

R12
. (11.7)

This refracted ray makes an angle θ1 − θ2 = (1 − n1/n2)(y/R12) = [(n2 −
n1)/n2](y/R12) with the horizontal (Fig. 11.11). Geometry shows that it hits
the optic axis a distance F (y) = y/(θ1 − θ2) after the interface. This distance

Fig. 11.11. Refraction at a curved interface. The inset shows the convention for
the radius of curvature. In this figure, R12 > 0 and n2 > n1, and θ1 � 1 so R12 � y
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is independent of y, and so all parallel rays impinging on the curved surface
hit the optic axis at this same distance, which is called the focal length f (or
f12 for this interface)

f12 =
y

[(n2 − n1)/n2](y/R12)
= n2

R12

n2 − n1
=

n2

P12
. (11.8)

The last expression has been written in terms of the refractive power (or
sometimes called the convergence) of the interface

P12 =
n2 − n1

R12
. (11.9)

The focal length is defined in terms of the refractive power of the interface
and the refractive index of the medium the ray enters. The ratio of the indices
of refraction of the two media is important and not their individual values.
(For n2 = 1, we see that f12 = 1/P12.) The units of the refractive power are
diopters (1 D = 1/m).

We see that this derivation giving the focal length in (11.8) is similar to
that for (11.3), except that the object and image are in regions with different
refractive indices here. If n1 and n2 were interchanged, the sign of the focal
length would change and its magnitude would change to | n1/P12 |. The analog
of (11.3) at this refractive interface is

n1

d1
− n2

d2
= −n2 − n1

R12
. (11.10)

For P12 > 0, when d1 = ∞, a real image occurs at d2 = f12 > 0 (for rays
traveling from left to right, as is the convention). For rays traveling from right
to left and d2 = ∞, a virtual image occurs at d1 = −f21 < 0. So in general
we see that

P12 =
n2 − n1

R12
=

n2

f12
=

n1

f21
. (11.11)

(For P12 > 0, this gives f12 > 0 and f21 > 0. Another popular convention
is to define f21 as the negative of our definition, so the last term in (11.11)
would be −n1/f21, and rays traveling from right to left would form a virtual
image at d1 = f21, which would still be < 0.)

In clinical optics, L1 = n1/d1 is often called the object vergence (which
signifies ray convergence or divergence). (Sometimes it is also known as the
object proximity.) L2 = n2/d2 is called the image vergence (or image proxim-
ity). In both cases d1 and d2 are expressed in meters. Then (11.10) can be
written as

L2 = L1 + P12, (11.12)

where all quantities are in diopters. This means that the propagation of light
from an object to the image increases the vergence by an amount equal to the
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Fig. 11.12. Refraction at two spherical interfaces. As drawn here, the radii of
curvature R12 > 0 and R23 < 0

power of that interface (or more generally, that of the optical system). The
magnification, M , is modified from (11.4) to give

M =
d2/n2

d1/n1
=

y2

y1
=

L1

L2
=

L1

L1 + P12
, (11.13)

using (11.12).
What happens when there are two refracting interfaces in succession

(Fig. 11.12)? If they are separated by a distance D that is “very small,”
the same reasoning gives an overall focal length f for this lens

f =
n3

P12 + P23
, (11.14)

where P12 is given by (11.9) and

P23 =
n3 − n2

R23
. (11.15)

This is called the thin lens approximation. Equation (11.14) can be expressed
as f = n3/Ptotal, where

Ptotal = P12 + P23, (11.16)

so the refractive powers add in this approximation.
For a thin lens of refractive index n2 = n in air or vacuum (with refractive

index n1 = n3 = 1, so f13 = f31), (11.14) reduces to

1
f

= (n − 1)
(

1
R12

− 1
R23

)
, (11.17)

which is known as the Lensmaker’s equation. This focal length can also be
expressed as

f =
1

P12 + P23
, (11.18)

with P12 = (n − 1)/R12 and P23 = −(n − 1)/R23.
Lenses can have a range of shapes even for the same focal length (Fig. 11.13).

For positive focal lengths, they can be either biconvex (R12 > 0 and R23 < 0),
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Fig. 11.13. Types of positive and negative lenses

planoconvex (one side flat), or positive meniscus (R12, R23 > 0). For negative
focal lengths, they can be either biconcave (R12 < 0 and R23 > 0), planocon-
cave (one side flat), or negative meniscus (R12, R23 < 0). The cornea is a
positive meniscus lens and the crystalline lens is an asymmetric biconvex lens.

The length of the eyeball is approximately 24 mm, so the distances from
the cornea/crystalline lens to the retina and the focal length of optical rays
focused by the cornea/crystalline lens propagating in the vitreous humor and
imaging on the retina, are also about 24 mm. The refractive index of the
vitreous humor is approximately 1.33. Equation (11.14) shows that a system
with the same refractive power has a focal length that is proportional to this
refractive index, so in air the focal length would be smaller by a factor of 1.33,
or 24 mm/1.33 = 17 mm. That is why a model eyeball can be treated as if the
cornea/crystalline lens system had an effective focal length of 17 mm, with
the effective lens separated by 17 mm of air from the retina; we will call this
the Standard eye model. (This differs from the eye models in Table 11.1.)

Moving Lenses

How does the imaging effectivity (i.e., effectiveness) of a lens change when
you move it and why is this important to us? The corrective prescriptions for
eyeglasses and contact lenses are different because eyeglasses are placed about
1.5 cm anterior to the cornea, while contact lenses sit right on the cornea. Let
us consider parallel rays hitting a converging lens with power P in a medium
with refractive index n. They form an image a distance n/P after the lens.
If we move the same lens a distance D to the left and want the rays to focus
in the same place, we now need them to focus a distance n/P + D after the
lens and so the lens will need to have a power P ′ such that n/P ′ = n/P + D.
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Therefore we see that

P ′ =
P

1 + D
n P

. (11.19)

This is known as the effectivity formula. (This equation is sometimes displayed
with a negative sign in the denominator because the lens is being moved a
distance D to the right.)

11.2.3 Combinations of Lenses or Refractive Surfaces

The eye itself is a combination of four distinct curved imaging interfaces. When
imaging on the retina is not perfect, corrective lenses (with two additional
interfaces) are chosen so the combined effect of these supplemental lenses and
the eye imaging system produces a more perfect image on the retina. To first
order we can apply (11.18), including all of the curved interfaces (for the eye
or eye + corrective lens), with the ray finally entering a medium j with index
of refraction nj . We see that the focal length is

f =
nj∑

i=1 to j−1 Pi,i+1
. (11.20)

Merely using (11.20) to determine the imaging properties of these complex
systems of curved surfaces or lenses is not sufficient, because its thin lens
approximation ignores the propagation of rays from one refracting surface to
the next. Because the refractive interfaces are displaced from one another,
this usually needs to be corrected.

Two Thin Lenses

Before we explain how to include the separation of the curved interfaces in
a very general way, let us consider the imaging by two separated thin lenses.
This approach is rigorous but it is cumbersome when extended to more than
two lenses. It can be applied, for example, to the two refractive surfaces of
the cornea or the crystalline lens. We will use it to learn how to correct vision
by considering the combined effect of eyeglasses or contact lenses and the eye,
with both modeled as simple thin lenses.

Let us consider two thin lenses with focal lengths f1 and f2 that are sep-
arated by a distance D (Fig. 11.14). An object is placed at a distance da to
the left of the first lens and the final image is formed at a distance db to the
right of the second lens. In the forward propagation approach, we consider
propagation from the left to the right in Fig. 11.14a. The first lens forms an
image at a distance di to the right of this lens, where

1
da

+
1
di

=
1
f1

. (11.21)
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Fig. 11.14. Imaging by two lenses using (a) forward and (b) backward propagation

This intermediate image is at a distance D − di to the left of the second lens,
and serves as the object for this second lens. Therefore, the second lens forms
an image at a distance db to its right, where

1
D − di

+
1
db

=
1
f2

. (11.22)

This distance db is determined by inserting di from (11.21) into (11.22)

D =
daf1

da − f1
+

dbf2

db − f2
. (11.23)

This interrelates all five parameters (D, da, db, f1, f2) and can be used to
determine the fifth parameter, such as db, when the other four are known.

Sometimes it is simpler to work backward from the final image to the initial
source, especially when the location of the final image is fixed (Fig. 11.14b).
For example, consider using this backward propagation approach when correc-
tive lenses (lens 1) are needed to correct the images of the effective eye lens
(lens 2) on the retina. Let us say we know that the eye lens images perfectly
on the retina when an object is at a distance z1 away (to the left of the effec-
tive eye lens), but we would like to have clear images of objects at a distance
z2 away. The eye by itself cannot accomplish this, as we will soon see, due
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to insufficient accommodation or to myopia or hyperopia. The distance from
the corrective lens to the eye lens is fixed, D ∼ 1.5 cm for eyeglass lenses and
D ∼ 0 cm for contact lenses. Therefore this distance z1 to the left of lens 2 is
at a known distance z1 −D to the left of lens 1. The focal length of corrective
lens 1, f1, is chosen so that it takes an object da = z2 −D to the left of it and
forms an image di = D − z1 to the right of it. (The eye can then image this
intermediate object quite well by itself.) Using (11.3), this condition becomes

1
z2 − D

+
1

D − z1
=

1
f1

, (11.24)

and so the focal length of the necessary corrective lens is fcorrective = f1. One
or both of the terms on the left-hand side of this equation can be negative.
We will use this approach below to prescribe corrective lenses.

Complex Optical Systems (Advanced Topic)

We will now see that any system with several refracting surfaces, such as the
eye, can be reduced to a simple effective optical system that is similar to a thin
lens (Fig. 11.15). The effective thin lens system is analyzed by tracing optical
rays with the help of six reference points on the optic axis called cardinal
points. There are two principal points (P, P′), two focal points (F, F′), and
two nodal points (N, N′).

Rays traveling parallel to the optic axis (from left to right) in the first
medium (with refractive index n where the object is located) refract in the
optical system and travel as straight rays that converge at the second (or

Fig. 11.15. Optical planes and imaging in a thick lens (or any multielement optical
system) for rays that are parallel to the axis. The second (or first) focal length is
the distance from the second (or first) principal point to the second (or first) focal
point. If the source and image media refractive indices, n and n′ are the same, both
are called the effective focal length (EFL). The back (or front) focal length (BFL or
FFL) is measured from the last (first) vertex of the last (first) optical element
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Fig. 11.16. Image formation using cardinal points. The location and size of the
image (in a medium with refractive index n′) can be determined by tracing rays
from the object (in a medium with refractive index n): the object ray parallel to
the optic axis and either the ray going through principal point P at angle u1 and
emerging from P′ at angle u′

1 = (n/n′)u1 or that going through nodal point N at
angle u2 and emerging from N′ at the same angle u′

2 = u2. This example is similar
to that of Schematic eye 2 depicted in the top half of Fig. 11.20, with n′ > n

image) principal focus at point F′ (after the last interface in the last medium
with refractive index n′) (Fig. 11.15). When these rays are backtracked, they
each intersect the initial parallel rays at a surface called the second (or image)
principal plane P′. Similarly, rays traveling from right to left in this last
medium intersect in the first medium at the first (or object) principal focus
at point F, and when these rays are backtracked, they each intersect the initial
parallel rays at a surface called the first (or object) principal plane P. (These
“planes” are really curved surfaces that are approximately planar near the
optic axis.) The first and second (or object and image) principal points P
and P′ are the intersections of these planes with the optic axis. There are
also nodal points N and N′ on the optic axis, which help in analyzing image
formation (Fig. 11.16).

We will adopt a sign convention that is convenient for biconvex, positive
lenses, so that all focal lengths will be defined to be positive for such lenses.
(This is consistent with (11.11), but is not universal notation.) The first prin-
cipal focus F is a distance f to the left of P when f > 0 and the second
principal focus at F′ is a distance f ′ to the right of P′ when f ′ > 0. We
will call distances along the optic axis, say between P and another point A –
which is PA, positive when A is to the right of P and negative when it is to
the left of it; therefore, AP = −PA. There is symmetry in the positions of
the six cardinal points, with the separations PP′ = NN′ and FP = N′F′, as is
depicted in Fig. 11.16.

Rays traveling from left to right emanate from the same object point Q and
intersect to form an image at Q′. Any ray from Q hits plane P and emerges
from plane P′ as if it were refracted by a thin lens using (11.3), with a “no
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man’s land” between the two principal planes. So, with d1 = QP (which is
the distance along the optic axis) and d2 = P′Q′, the distance from object to
image is really

QQ′ = QP + PP′ + P′Q′ = d1 + d2 + PP′. (11.25)

Rays that hit point P, at an angle u, act as if they “emerge” from P′ at
an angle u′ (Fig. 11.16), where

n′u′ = nu. (11.26)

This can be viewed as Snell’s Law in this paraxial limit. Nodal points are
also defined in a way that rays on course to hit the first nodal point N, act
as if they “emerge” from the second nodal point N′ with no change in angle.
Again, these two sets of rays emanating from the same point Q intersect to
form an image at Q′, as is seen in Fig. 11.16. The principal and nodal points
coincide when the media to the left and right have the same refractive index;
this is not the case for imaging by the eye. (For a thin lens in air, P, P′, N,
and N′ merge into one point (inside the lens for a biconvex lens), and f ′ = f .)

Two Arbitrary Optical Refractive Systems (Advanced Topic)

Let us now consider two arbitrary optical systems [535] (Fig. 11.17). The first
has principal points Pa and P′

a, object and image refractive indices na and n′
a,

and refracting power Pa. It is followed by the second with principal points Pb

Fig. 11.17. Analyzing the combination of two optical systems, represented here
by two “lenses.” The notation for the planes and points of the combined systems
is underlined. The solid line ray refracts at the principal planes of the individual
systems, while the dashed ray refracts at the principal planes of the overall system
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and P′
b, with object and image refractive indices nb and n′

b, and refracting
power Pb. The reduced distance between the second principal point of the
first system and the first principal point of the second system is defined as

δ =
t

n′
a

=
t

nb
=

t

n2
, (11.27)

with t = P′
aPb. We will now call na = n1, n′

a = nb = n2, and n′
b = n3.

Optical analysis that is beyond our scope gives general expressions for
combining these two optical systems. The effective refractive power of the
entire system can be shown to be

Peff = Pa + Pb − δPaPb (11.28)

or

Peff = Pa + Pb − t

n2
PaPb =

n3

f ′ =
n1

f
. (11.29)

(This is consistent with (11.11). Using some other sign conventions for focal
lengths, this last term is expressed as −n1/f .)

Where are the principal points of the combined system? The position of the
second principal point of the overall system P′ relative to the second principal
point of the second system is

P′
bP′

n3
= − t

n2

Pa

Peff
, (11.30)

which means that P′ is to the left of P′
b in Fig. 11.17 when Pa/Peff > 0 (such

as for a biconvex lens).
Similarly, the position of the first principal point of the overall system P

relative to the first principal point of the first system is

PaP
n1

= +
t

n2

Pb

Peff
, (11.31)

which means that P is to the right of Pa in Fig. 11.17 when Pb/Peff > 0 (such
as for a biconvex lens).

What are the new focal lengths? The second principal focus of the combined
system F′ is a distance

P′F′ = f ′ (11.32)

to the right of new second principal point P′. The new first principal focus F
is a distance

FP = f (11.33)

to the left of new first principal point P. The focal lengths are given by (11.29).
If n = n′, these focal lengths are the same (and are the effective focal length
(EFL), as seen in Fig. 11.15).
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Where are these foci relative to the principal points of the original two
systems? Using (11.29) and combining (11.30)–(11.33) gives the position of
the second focal point relative to the second principal plane of the second
system P′

bF′ = P′
bP′ + P′F′:

P′
bF′ = f ′

(
1 − t

n2
Pa

)
= f ′∗ (11.34)

and the position of the first focal point relative to the first principal plane of
the first system FPa = FP + PPa:

FPa = f

(
1 − t

n2
Pb

)
= f∗. (11.35)

The parameters f∗ and f ′∗ are sometimes called the front and back (vertex)
focal lengths (FFL and BFL in Fig. 11.15) because for a thick lens these are the
distances from the front and back surfaces. In analogy with (11.29), sometimes
the front and back vertex powers are defined as

P ∗ =
n1

f∗ (11.36)

and

P ′∗ =
n3

f ′∗ . (11.37)

Combining these with (11.29), and using (11.34) and (11.35) shows that

P ∗ =
Pb

1 − δPb
+ Pa (11.38)

and

P ′∗ =
Pa

1 − δPa
+ Pb, (11.39)

with δ = t/n2. This is an equivalent way of determining the location of the
focal points of the combined optical system.

Equations (11.38) and (11.39) look very similar to the effectivity formula,
(11.19), and for good reason: they are very closely related. Let us consider the
effectivity formula for a thin lens “a” with refractive power Pa that is moved
a distance t = n2δ to the right, so it would be coincident with thin lens “b”
with refractive power Pb. If its effectivity were not to change, its power must
change from Pa to P ′

a = Pa/[1 − (t/n)Pa], as given by the effectivity formula
with D = −t. (Remember that D corresponds to a leftward displacement.)
The new refractive power at the second lens is then P ′

a + Pb. This gives
(11.39). (Of course, now everything is referred to the principal planes of the
optical systems rather than the location of the thin lenses.) Equation (11.38)
is similarly obtained.
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Because P′P′
b, F′P′, PaP, and FP are known, the nodal points F and F′

can be found using PP′ = NN′ and FP = N′F′, with F′ following F.
This approach can be used to evaluate complex optical systems. For ex-

ample, for the eye it can be applied first to the cornea as a lens (see below),
then to the crystalline lens, and then to combine these two optical elements to
describe the paraxial optics of the entire eye. If the subject wears corrective
lenses, the combined effect of these lenses and the eye can then be evaluated.

Thick Lenses. The focal length of a thick lens of thickness t follows from
(11.29) and substituting Pa = (n2 − n1)/R12 and Pb = (n3 − n2)/R23 from
(11.9)

n3

feff
=

n2 − n1

R12
+

n3 − n2

R23
− (n2 − n1)(n3 − n2)t

n2R12R23
(11.40)

and the back focal length is

fbfl = feff − feff(n2 − n1)t
n2R12

. (11.41)

The front focal length can similarly be determined.
For a single lens of refractive index n in air, the distance rays propagate

between refractive surfaces affects the focal length. With the refractive sur-
faces separated by a distance t, the Lensmaker’s equation, (11.17), for thin
lenses can now be generalized to the thick lens equation

1
feff

= (n − 1)
(

1
R12

− 1
R23

+
(n − 1)t
nR12R23

)
. (11.42)

This effective focal length is the distance from the second principal point. The
distance from the second surface to the focus is the (back) focal length fbfl

fbfl = feff − feff(n − 1)t
nR12

, (11.43)

so for incident parallel rays the image forms a distance fbfl past the second
surface of the lens.

11.3 Imaging and Detection by the Eye

11.3.1 Transmission of Light in the Eye

Figure 11.18 shows the percentage of incident light that reaches the aqueous
humor, the crystalline lens, the vitreous humor, and the retina. Perhaps it
is surprising that only about 50% of visible light (400–700 nm) incident on
the eye actually reaches the retina to form an image. These losses are due to
reflection of light at the interfaces between the different ocular media, and the
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Fig. 11.18. Transmission of near-ultraviolet, visible, and near-infrared light through
the eye up to the labeled part of the eye. In (a) only transmission losses due to ab-
sorption are included, while in (b) all transmission losses are accounted for, including
those due to absorption and scattering. (Based on [514] and [527])

absorption and scattering in these ocular media. Much of this loss is due to
scattering in the eye. This scattered light does not contribute to the desired
image even if it hits the retina.

The expression for the fraction of light that reflects from a planar interface
between two semi-infinite media with refractive indices n1 and n2 is actually
the same as that for the reflection of acoustic waves between the interface
of media. In Fig. 10.3 and (10.33) the acoustic impedances Z1 and Z2 are
replaced by the respective refractive indices n1 and n2 to give

R =
(

n2 − n1

n2 + n1

)2

. (11.44)
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The reflected fraction at the air/cornea interface [(1.337−1)2/(1.337+1)2] ∼
2% is much larger than that at any other interface in the eye because of the
very large difference in refractive indices between air and the cornea. The
actual reflected fraction is really a bit larger because the reflected fraction
increases for other angles of incidence (and all light rays do not enter the
eye at normal incidence) and the ocular interfaces are curved. Still, reflection
accounts for little of the transmission losses.

When a penlight is shined into an eye, four images, called Purkinje images,
are formed from the reflection off the anterior and posterior surfaces of the
cornea and crystalline lens. Purkinje image I from the anterior cornea surface
is the strongest, as was just shown; it is a virtual, erect image 3.85 mm from
the corneal apex. Purkinje image II from the posterior cornea surface is the
next strongest; it is a virtual, erect image 3.77 mm from the corneal apex.
Purkinje images III and IV from the anterior and posterior crystalline lens
surfaces are the weakest; image III is a virtual, erect image 10.50 mm from the
corneal apex and image IV is a real, inverted image 3.96 mm from the corneal
apex.

Figure 11.18 shows that most of the light from 300 to 400 nm is absorbed
by the crystalline lens, mostly by the yellow macular pigment xanthophyll.
There are no important sources of absorption in the visible (which is one
reason why this light is “visible”). Most of the transmission losses in the visible
are due to scattering within the eye components due to inhomogeneities in the
index of refraction, such as those caused by cells and submicroscopic particles.
The efficiency of scattering attributed by changes in the refractive index over
distances �λ, is called Rayleigh scattering. Scattering by a concentration N of
nonabsorbing particles of diameter D and refractive index np in an ambient
medium of refractive index na (such as that of the crystalline lens, cornea,
or the humors) decreases the transmission of light intensity (I in W/m2)
according to Beer’s Law (10.18)

I(z) = I(z = 0) exp(−αlight scatteringz), (11.45)

where I is the incident intensity (say in W/m2). For a light of wavelength λ
(as measured in vacuum or air)

αlight scattering =
8π4

3
ND4

λ4

(
np

2 − n2
a

np
2 + 2n2

a

)2

. (11.46)

(The derivation of this is beyond the current scope.) The important point here
is that the efficiency of scattering varies as 1/λ4 or, using (11.2), as ν4. So
blue light scatters more efficiently than red light, and this explains the greater
loss in transmission at shorter visible wavelengths in Fig. 11.18b. (This is also
one of the reasons why the sky is blue; blue light scatters more efficiently.)
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Table 11.1. Dimensions for Schematic (Schem.) and Reduced (Red.) eyes. (Using
data from [513], [525], and [535])

Schem. Schem. Schem. Schem. Schem. Red.
exact eye eye 1 eye 2 eye 2′ eye 3 eye

radii of surfaces
anterior cornea 7.70 7.80 7.80 7.80 7.80 5.55
posterior cornea 6.80 6.50 – – – –
anterior lens 10.00 10.20 10.00 5.00 11.00 –
first internal lens 7.911 – – – – –
second internal lens −5.76 – – – – –
posterior lens −6.00 −6.00 −6.00 −5.00 −6.476 –

distance from anterior cornea
posterior cornea 0.50 0.55 – – – –
anterior lens 3.60 3.60 3.60 3.20 3.60 –
first internal lens 4.146
second internal lens 6.565
posterior lens 7.20 7.60 7.20 7.20 7.30 –
retina 23.9 24.20 23.89 23.89 24.09 –
first principal point P 1.348 1.59 1.55 1.78 1.51 0
second principal point P′ 1.602 1.91 1.85 2.13 1.82 0
first nodal point N 7.078 7.20 7.06 6.56 7.11 5.55
second nodal point N′ 7.332 7.51 7.36 6.91 7.42 5.55
first focal point F −15.707 −15.09 −14.98 −12.56 −15.16 −16.67
second focal point F′ 24.387 24.20 23.89 21.25 24.09 22.22a

refractive indices
cornea 1.376 1.3771 – – – 4/3
aqueous humor 1.336 1.3374 1.3333 1.3333 1.336 4/3
crystalline lens – anterior 1.386 1.4200 1.4160 1.4160 1.422 4/3
crystalline lens – nucleus 1.406
crystalline lens – posterior 1.386
vitreous humor 1.336 1.3360 1.3333 1.3333 1.336 4/3

All eyes are accommodated for distant vision (unaccommodated), except Schematic
eye 2′, which accounts for accommodation in Schematic eye 2 for near vision
(accommodated). Distances are in mm.
aFor the Reduced eye, the second focal point is 1.67 mm + 22.22 mm = 23.9 mm
after the real anterior surface of the cornea.

11.3.2 The Eye as a Compound Lens

Parameters for several progressively simpler schematic models for the imaging
of paraxial rays in the eye are given in Table 11.1 [513, 516, 518, 519, 525, 535].
In each case the eye is assumed to be fully relaxed (or unaccommodated),
with the exception of Schematic eye 2′, which accounts for accommodating
Schematic eye 2 from imaging distant objects to imaging near objects. The
most complete model is the Gullstrand exact eye (Schematic exact eye), which
has six refractive surfaces: at the anterior and posterior surfaces of both the
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Fig. 11.19. Schematic eye 1

cornea and crystalline lens and two within the crystalline lens, so the vari-
ation of the refractive index within the lens is included (in a mathematical,
but not a totally accurate physical, manner). (By the way, Allvar Gullstrand
was the recipient of the 1911 Nobel Prize for Physiology or Medicine for his
work in this area, the dioptrics of the eye. Dioptrics is the branch of geomet-
rical optics dealing with the formation of images by refraction, especially by
lenses.)

We will call the next simplest model Schematic eye 1 (the classic Emsley
model), for which the refractive index within the crystalline lens is uni-
form, so there are only four refractive surfaces: at the anterior and pos-
terior surfaces of both the cornea and crystalline lens. Figure 11.19 is a
diagram of this model, showing the radii or curvature and locations of
the four interfaces and the refractive indices of the five media. The given
refractive index of the crystalline lens, 1.4200, is an averaged value; it
ranges from about 1.406 near the center to about 1.386 far away from the
center.

The cornea and aqueous humor are treated as one region in the simplified
schematic eyes (Schematic eyes 2, 2′, and 3) so it has three refractive surfaces:
at the cornea and at the two surfaces of the crystalline lens. Schematic eyes
2 and 2′ are the Gullstrand–Emsley models of relaxed and accommodated
eyes and Schematic eye 3 is the revised relaxed eye model by Bennett and
Rabbetts. The top part of Fig. 11.20 shows the location of the cardinal points
for Schematic eye 2.

The simplest model is the Reduced eye (Fig. 11.21), which has only one
refractive interface: at the “cornea” – which is actually 1.67 mm after the real
cornea. This is seen along with the cardinal points for this Reduced eye in the
bottom part of Fig. 11.20. For this eye all distances are relative to the single
refractive interface (1.67 mm after the real anterior surface of the cornea), so
the second focal point is 1.67 mm + 22.22 mm = 23.9 mm after this corneal
surface.
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Fig. 11.20. Comparison of the cardinal points of the three-surface, relaxed
Gullstrand–Emsley Schematic eye 2 in the top half and the Reduced eye in the
bottom half. Distances are in mm. (Based on [513])

Thin Lens Approximation of the Schematic Eye

Consider Schematic eye 1 with four interfaces (Table 11.1). The refractive
power of each interface is

Pi,i+1 =
ni+1 − ni

Ri,i+1
. (11.47)

We will initially ignore the distance the rays propagate between the re-
fractive interfaces. For the air/anterior cornea interface:

P12 =
1.3771 − 1.0

0.0078m
= 48.35D. (11.48)

Fig. 11.21. Reduced eye. (Based on [513])
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For the posterior cornea/aqueous humor interface:

P23 =
1.3374 − 1.3771

0.0065m
= −6.11D. (11.49)

For the aqueous humor/anterior crystalline lens interface:

P34 =
1.4200 − 1.3374

0.0102m
= 8.10D. (11.50)

For the posterior crystalline lens/vitreous humor interface:

P45 =
1.3360 − 1.4200

−0.0060m
= 14.00D. (11.51)

The refractive power of the cornea, ignoring its thickness, is (11.16)

Pcornea = P12 + P23 = 48.35D − 6.11D = 42.24D. (11.52)

The refractive power of the crystalline lens, again ignoring its thickness, is

Plens = P34 + P45 = 8.10D + 14.00D = 22.10D. (11.53)

This shows that two-thirds of the refractive power is due to the cornea and
one-third is due to the lens.

The total refractive power of the eye is

Peye = Pcornea + Plens = 42.24D + 22.10D = 64.34D. (11.54)

The focal length is (11.20)

f =
nj∑

i=1 to j−1 Pi,i+1
=

1.336
64.34D

= 0.0208m = 20.8mm. (11.55)

The image from this compound lens falls on the retina, which is 24.20 mm
from the anterior surface of the cornea and so this calculated focal length
is not exactly correct. The compound lens is 7.6 mm long (anterior surface
of the cornea to the posterior surface of the crystalline lens), so we would
expect that the focal length is really measured for this type of compound
lens from somewhere between the cornea and crystalline lens. We will esti-
mate that it is from the middle (at the position 3.8 mm), so we would expect
the image to fall 3.8 mm + 20.8 mm = 24.6 mm from the anterior surface of
the cornea, compared to 24.20 mm. This agreement is surprisingly good. (Be-
cause the refractive power of the cornea and crystalline lens are not equal,
the “starting point” is not exactly in the center, but this is a reasonable first
guess.) We have ignored the propagation of light between the curved, refrac-
tive interfaces, which is not insignificant here, and will address it in the next
section.
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What happens when you swim in water? The refractive power of the first
(air/anterior cornea) interface changes to

P12 =
1.3771 − 1.331

0.0078m
= 5.91D, (11.56)

which is a loss of 42.44 D of refractive power. The refractive power of the cornea
is 5.91 D + (−6.11 D) = −0.2 D, which means the cornea has essentially no
refractive power under water. The total refractive power of the eye is only
−0.2 D + 22.10 D = 21.90 D, and the eye sees very blurred images because
the focused image would be beyond the retina. (Why can we see much better
in water when wearing ordinary goggles?) The images in water are made even
blurrier when the water is not perfectly still, because the movement of water
causes local variations in the index of refraction.

More Exact Analysis of the Schematic Eye (Advanced Topic)

How important is the finite separation of the refractive elements in the eye,
as represented by Schematic eye 1 (Fig. 11.19)?

Using (11.29), (11.48), and (11.49), the effective power of the cornea is

Pcornea = P12 + P23 −
tcornea

ncornea
P12P23 (11.57)

= 48.35D − 6.11D −
(

0.00055m
1.3771

)
(48.35D)(−6.11D) = 42.36D

(11.58)

for a cornea thickness tcornea = 0.55 mm = 0.00055 m and refractive index
ncornea = 1.3771. (Remember, 1 D = 1/m.) This +0.12 D correction to P12 +
P23 = 42.24 D from (11.52) is very small because the cornea is very thin. Using
(11.30) and (11.31), the principal points of the cornea Pcornea and P′

cornea are
−0.058 mm and −0.060 mm to the right of the anterior surface of the cornea,
meaning they are 0.058 mm and 0.060 mm to the left of this surface.

Using (11.29), (11.50), and (11.51), the effective power of the crystalline
lens is

Plens = P34 + P45 −
tlens

nlens
P34P45 (11.59)

= 8.10D + 14.00D −
(

0.0040m
1.420

)
(8.10D)(14.00D) = 21.78D (11.60)

for a crystalline lens thickness tlens = 4.0 mm = 0.0040 m and refractive index
nlens = 1.420. This includes a −0.32 D correction to P34 +P45 = 22.10 D from
(11.53). Using (11.30) and (11.31), the principal points of the crystalline lens
Plens and P′

lens are 2.42 mm and 2.60 mm to the right of the anterior surface of
the lens (meaning they are inside the lens) and they are 6.02 mm and 6.20 mm
to the right of the anterior surface of the cornea.
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Combining these two lenses using (11.29), the effective power of this
Schematic eye 1 is

Peye = Pcornea + Plens −
taqueous humor

naqueous humor
PcorneaPlens (11.61)

= 42.36D + 21.78D −
(

0.00608m
1.3374

)
(42.36D)(21.78 D) = 59.95D.

(11.62)

Referencing the six cardinal points to the anterior surface of the cornea (a
positive number means the point is to the right of it and a negative number
means it is to the left of it), the principal points P and P′ are at 1.59 mm and
1.91 mm. The first and second principal foci F and F′ are at −15.09 mm and
24.20 mm, which means they are respectively f = 16.68 mm to the left of P
and f ′ = 22.29 mm to the right of P′. Using PP′ = NN′ and FP = N′F′, the
nodal points N and N′ are at 7.20 mm and 7.52 mm, respectively. (Except for
round-off error, these are the same as the values listed in Table 11.1.)

11.3.3 Accommodation

The controllability in the focal length of the eye crystalline lens, and the corre-
sponding changes in overall eye focal length, is called accommodation. The eye
crystalline lens is suspended by ligaments and the tension in these ligaments
controls the curvature of the crystalline lens surfaces and consequently its fo-
cal length. These ligaments are attached to the ciliary muscles and the state
of these muscles determines the tension in these ligaments (Fig. 11.22). When
the ciliary muscles are relaxed (Fig. 11.22b), the tension in the suspensory
ligaments is at a maximum, the crystalline lens flattens and the focal length
is at a maximum. The lens equation shows that this flatter lens will produce
clear images of distant objects. When the ciliary muscles are contracted, the
ligaments are relaxed (Fig. 11.22a) and the crystalline lens assumes its more
normal spherical shape. The larger curvature of the crystalline lens surfaces
produces a shorter focal length, which produces clear images of nearby ob-
jects. Schematic eye model 2′ for near vision (accommodated) in Table 11.1
differs from Schematic eye models 2 for distant vision (unaccommodated) by
a large change in the curvature of the anterior surface of the lens and a smaller
change in the curvature of the posterior surface. In some people the change in
the posterior surface may be very small and there may be a change in the ef-
fective refractive index of the crystalline lens in accommodation. (Analysis of
accommodation is addressed further in Problems 4.5, 11.13, 11.15, and 11.43.)

Such tunability in eye focal length should allow people to see objects clearly
both far and near. The maximum distance from the eye where objects form
sharp images is called the far point (FP) – and we would like our FP to be
∞. The nearest distance where objects are clear is the near point (NP) – and
we would like our NP to be 25 cm (= 10 in) for convenient reading and such.

How much accommodation do we need? First we need to find what the
focal length of the eye feye – due to the combined focusing of the cornea
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Fig. 11.22. Schematic of the physiological mechanism for accommodation by chang-
ing the crystalline lens focal length. (a) For imaging nearby objects, the ciliary mus-
cles contract, which reduces the tension on the suspensory ligaments. This allows
the lens to be rounder (its natural shape), which decreases the eye focal length and
enables the eye to focus on nearer objects. (b) For imaging distant objects, the cil-
iary muscles relax, which increases the tension on the suspensory ligaments. This
makes the lens flatter, which increases the eye focal length and enables the eye to
focus on more distant objects. The ciliary muscle and suspensory ligaments encircle
the eye, and are not as depicted here

and crystalline lens – needs to be to achieve far and near point vision
(Fig. 11.22). In both cases the eye lensing system must image the object
on the retina. In the Standard eye model, the effective eye lens acts as
if it were in air a distance Leye = 17 mm = 0.017 m before the retina.
At the far point, FP = d1 = ∞ and d2 = Leye = 0.017 m, so (11.3)
shows that feye = d2 = 0.017 m or 1/feye,FP = 1/0.017 m = 58.8/m =
58.8 D. At the near point, NP = d1 = 25 cm = 0.025 m and d2 = Leye =
0.017 m, so feye = 15.9 mm = 0.0159 m or 1/feye,NP = 1/0.0159 m =
62.8/m = 62.8 D. The necessary accommodation is

1
feye,NP

(= 62.8D) − 1
feye,FP

(= 58.8D) = 4.0D. (11.63)

Table 11.2 shows that people 45 years old and older tend to have less than
this amount of accommodation, and therefore need to wear corrective lens to
be able to see both near and far. If vision at the far point at infinity is clear
(as it often is), then 55 year olds need to wear convex corrective lenses with
(4.0 D−1.3 D =) 2.7 D correction to read a book held 25 cm from their eyes.
This lack of appropriate accommodation is called presbyopia (“old eyes” or
“old age vision”). Most of the loss of accommodation with age can be explained
by the increase in the Young’s moduli of the (asymmetric) crystalline lens,
a flattening of the lens, and a decrease in the Young’s modulus of the lens
capsule with increasing age [521]. Typical amounts of accommodation cannot
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Table 11.2. Mean accommodation vs. age. (Using data from [559])

age (years) mean accommodation (diopters, D)

8 13.8
25 9.9
35 7.3
40 5.8
45 3.6
50 1.9
55 1.3

correct the loss of refractive power for seeing in water, even for very young
people.

11.3.4 Field of View and Binocular Vision

Our field of view of vision is quite amazingly large and our vision is quite
good over this range, given the imaging distortions described later. For each
eye the field of vision is approximately an ellipse that is about 150◦ high
and 210◦ wide. The binocular field of vision, seen by both eyes together, is
approximately a circle that is 130◦ in diameter. It is difficult to achieve this
large field of view in optical systems unless the imaging surface is curved, and
not flat as in film, film plates, or charge-coupled device (CCD) arrays. This is
related to the curvature of field aberration. A large field of view with minimal
distortion is achieved in our eyes because of the spherical surface of the retina.
Of course, we form sharp images only in the region we fixate on because that
region images on the fovea. In humans, the ocular muscles can rotate the field
of view by 90◦ in each eye.

In most people, the brain fuses the different retinal images from both
eyes to give a single perceptual image. This binocular vision provides depth
perception beyond that from the monocular vision clues from the sizes of
objects, the occlusion of a farther object by a nearer one, perspective (such
as parallel lines appearing to converge far away), and motion parallax (that
nearby objects tend to move more than objects that are farther away as the
viewer moves). Such fusion does not occur in people with diplopia, who instead
perceive two separate images. In people with strabismus the motion of the two
eyes is not coordinated well and they cannot fixate in a binocular manner on
objects. (Some of their ocular muscles are surgically shortened to help trick
the brain to maintain binocular vision.) From now on we will address only
each individual eye.

11.3.5 Adjustments of Light Levels

So far we have focused on forming a sharp image on the retinal detector. For
proper vision it is equally important that this image is neither too dim nor
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too bright – but exactly what does too dim or too bright mean? Conventional
photographic emulsion film has a dynamic range over which it can detect
signals. If the incident light is too weak, no image is observable, and if it is too
strong, everything is bleached (all is white). It is similar in the charge-coupled
detector (CCD) elements in digital cameras. The retinal rods and cones also
have a dynamic range over which they can lead to high-quality perceived
images. In a still camera, the light level incident on the detector needs to be
adjusted by changing the aperture diameter, altering the length of exposure
time, and possibly by using a flash. In a motion camera, it needs to be adjusted
by changing the aperture diameter and possibly by using external lighting.
Humans adjust the level of light needed for vision in several conscious ways
(changing ambient light levels) and subconscious ways (adjusting apertures
and the bleaching and recovering of detector elements).

While we do not have flashes, we frequently consciously adjust light levels,
increasing them by turning on more room lights or by using flashlights and
decreasing them outside by putting on sunglasses. Our brains try to do the
rest subconsciously.

Decreasing pupil size decreases light transmission to the retina. A change
from the maximum to minimum pupil diameter, from roughly 8 to 2mm,
corresponds to a 16-fold change in area and a 16-fold decrease in the amount
of light incident on the retina. In one typical example, the pupil diameter
decreases from 7 to 4 to 3 to 2 mm as the luminance increases from 10−3 to
10 to 102 to 104 cd/m2. (The units of luminance are described later in this
chapter; see Fig. 11.50 and Table 11.4.) Even with the change in pupil size, the
amount of light entering the eye and imaging on the retina is much larger at
high light levels. In the cited range the luminance × the pupil area increases,
from (π/4)(7 mm)2(10−3 cd/m2) = 4×10−8 cd to (π/4)(2 mm)2(104 cd/m2) =
3 × 10−2 cd; this is a range of a million. Either the dynamic range of light
levels over which our photoreceptors are sensitive is extraordinarily large or
the sensitivity of these retinal detector elements, the rods and cones, must
also decrease with increasing light intensity.

Rods are primarily important in dark-adapted (scotopic) vision, and cones
for light-adapted (photopic) vision. The most important factor in our abil-
ity to see under a very wide range of light intensities is the combination of
the bleaching of rhodopsin and its subsequent recovery by the processes in
Fig. 11.23, and changes in retinal networking; changes in pupil diameter have
a much smaller effect. After bright light exposure, all-trans retinal is released
from the photopigment and is converted to all-trans retinol, which is trans-
ported to an adjacent cell layer. The all-trans retinol is converted to 11-cis
retinal, which returns to the photoreceptor and combines with opsin to re-
form rhodopsin. For bright normal lighting, much of the rhodopsin in rods is
“bleached” and that in cones is relatively “unbleached.” The recovery time for
rod rhodopsin is about 20–30 min, and because vision is most sensitive when
the supply of rhodopsin in rods is maximum, the adaptation of eyes to night
vision takes up to 30 min (see Fig. 11.51).
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Fig. 11.23. After retinal exposure to light, rhodopsin in the rods reforms slowly by
these chemical processes, with the time scales shown. (Based on [526])

The variation of the fraction of available photopigment p with time is
described by

dp(t)
dt

= −I(t)p(t)
Q

+
1 − p(t)

τ
, (11.64)

where I(t) is the level of illumination on the retina, Q is the energy in a flash
required to reduce the fraction of unbleached photopigment to 1/e, and τ
is the regeneration time constant. There are separate relations for rods and
cones, with different Q and τ ; τ is approximately 2 min for cones and 6 min
for rods. For steady-state illumination at level Iss (with the left-hand side of
(11.64) set equal to zero)

p(Iss) =
I0

I0 + Iss
, (11.65)

where I0 = Q/τ . When the light is turned off at t = 0 and so I(t) = 0, p
recovers from its initial value, say pi, to its unbleached value pmax as

p(t) = pi + (pmax − pi)(1 − exp(−t/τ)). (11.66)

In addition to this regeneration of rhodopsin during recovery that reverses
bleaching, there are reversible changes in retinal networking that control the
summation of retinal signals. This is discussed a bit further in Sect. 11.5.

We could express the current signal strength of the image going to the
brain, S (at time tnow), as a function f of the light intensity I that is currently
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incident on the eye, the current pupil diameter d, and the intensity entering
the eye in the previous 30 or so min: S(tnow) = f [I(tnow), d(tnow), I(tnow −
30 min < t < tnow)]. Clearly, this is a fairly complex function. It is used by
the brain for conscious and subconscious feedback and control of vision, such
as to control the pupil diameter d(tnow) (Chap. 13).

11.3.6 Limitations to Visual Acuity

There are several fundamental factors that limit visual acuity even in those
with the best of vision. Under the best of circumstances the imaging process
is limited by optical diffraction. There are additional limitations in the im-
age formation process, called aberrations (just as in cameras, microscopes,
and related imaging systems). Diffraction is the limiting factor for pupil
diameters smaller than �3 mm, whereas aberrations limit acuity for larger
diameters. Moreover, the transfer of the image to the brain is limited in prin-
ciple by the discrete and finite nature of the rod and cone photodetectors
(pixel size) and by whether their outputs are interconnected to the same
neurons.

Diffraction and Pixel Size

When water waves, say with a linear wave front and of wavelength λ impinge
on a slit with width D, the transmitted wave spreads out in angle; this is
diffraction (Fig. 11.24). The smaller the slit, the wider the diffraction angle.
At a screen placed a distance z downstream there is a sinusoidal-like pattern of

Fig. 11.24. Diffraction of water waves in (a) applied to light in (b)
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waves, whose magnitude gets progressively smaller away from the center of the
pattern. The width of the central region is d = z(2λ/D), where 2λ/D is called
the diffraction angle. We can run the experiment in reverse and somehow take
these water waves with a linear wave front and send them through a “water
lens” that focuses them to an angle 2λ/D. After traveling a distance z the
wave will converge to a minimum width D given by this same equation, with
D = z(2λ/d) = 2(z/d)λ. This distance z is then the focal length f of the lens,
so D = 2(f/d)λ.

This wave picture also describes the propagation of light. A lens of diame-
ter d and focal length f can focus a light beam of wavelength λ to a diameter
no smaller than a diameter D, given by

D � 2.44
f

d
λ. (11.67)

This is known as the diffraction-limited spot size, because the diffraction of
light waves is the fundamental process that limits how small this focus can
be even with a “perfect” lens. (d actually refers to the smaller of the lens
diameter and the diameter of the aperture (pupil) that may be before or after
it. The numerical factor in this equation is instead 1.22 when d is replaced by
the appropriate radius.) The quantity f/d is also known as the f-number or
f# of the lens or imaging system. Equation (11.67) can also be expressed as
D � f(2.44λ/d), where 2.44λ/d is the (full) diffraction angle. This is closely
related to the Rayleigh criterion for distinguishing between the diffraction-
limited images of nearby points or angular regions; this is discussed further
in Problem 11.27. Our earlier tracing of rays was within the geometric optics
limit, which becomes more and more valid as λ decreases and approaches 0,
which causes D to decrease toward 0.

For an eye crystalline lens of diameter of ≈8 mm and f ≈ 17 mm (Standard
eye model), this limit is ≈2.5 μm for 500 nm light. Because the crystalline lens
is not perfect, this image diameter is measured to be larger, ∼11 μm. However,
because this image is not uniform in brightness – it is brightest in the center
and shades off nearer the edges – the resolution is a bit better than 11 μm.
In the fovea the average diameter of cones is ≈1.5 μm, so images separated
by ∼2 μm on the fovea can sometimes be barely resolved. We saw earlier that
this corresponds to the normal visual acuity in discriminating between point
light sources separated by 25 s of arc (corresponding to barely distinguishing
two spots that are 1.5–2.0 mm apart and 10 m away). (See the discussion of
measuring visual acuity below.)

Because the fovea is ∼300 μm in diameter, this high acuity occurs only for
1◦ of the visual field, corresponding to a width of 20 cm a distance 10 m away.
Just outside the fovea, the visual acuity of the retina is worse by a factor of 5–
10, and becomes progressively even worse toward the periphery (Fig. 11.25).
This occurs because many rods and cones are connected to the same optic
nerve fiber outside the fovea [526].
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Fig. 11.25. The variation of visual acuity with retinal position relative to the fovea.
(From [555]. Reprinted with permission of McGraw-Hill)

Aberrations in Image Formation

The imaging elements in the eye are quite good, but they have imperfections.
Two of the more important sources are spherical and chromatic aberration.

In the paraxial limit all rays from the same point image at the same place.
Rays making larger angles to the optic axis, image at different places. Such
monochromatic aberrations depend on the details of the imaging surface and
are present even with one color of light. Spherical aberration (SA) is due to the
inherently imperfect imaging by a spherical surface. Only paraxial rays near
the optic axis image according to (11.8) at the nominal focal length f . Horizon-
tal light rays farther from the optic axis (a larger distance y – or half aperture
height – away, corresponding to zonal and marginal rays) are refracted by
a spherical convex lens more than is predicted by (11.7) and therefore cross
the optic axis before the rays nearer the axis cross it (Fig. 11.26). With this
definition, SA is positive for spherical convex lenses and negative for spherical

Fig. 11.26. Ray tracing and imaging with spherical aberration present
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concave lenses. The distance along the optic axis between the places where
these zonal and marginal rays and the paraxial rays hit the optic axis is the
longitudinal (or axial) spherical aberration L·SA. The height above or below
the optic axis a ray hits a screen placed at this focal length is the transverse
(or lateral) spherical aberration T·SA. (Longitudinal and transverse spherical
aberration become larger rapidly with semiaperture size y, as ∝y2 and ∝y3,
respectively.) The image is sharpest somewhere between f and f − L·SA,
where the image is called the circle of least confusion.

Spherical aberration can be limited by using compound lenses (multiple
lenses in which the net effect of the aberration is negated), lenses with as-
pherical surfaces, or simple lenses preceded by apertures that transmit light
only near the optic axis. (However, smaller apertures also limit the amount
of transmitted light.) Notably, spherical and other aberrations can be greatly
affected by the lens shape. From (11.17) it is clear that you can make a lens
with a certain focal length, by using infinite sets of pairs of R12 and R23.
Figure 11.27 shows that for parallel rays incident on a positive lens, spheri-
cal aberration is minimized for a convex anterior surface and nearly planar
posterior surface (so the rays make nearly equal angles to both surfaces).
The eye crystalline lens is biconvex (R12 > 0 and R23 < 0 as in Fig. 11.11),
but the posterior surface is much flatter than the anterior surface, and this

Fig. 11.27. Spherical aberration and coma as a function of lens shape for a 100-mm
focal length lens (with a stop at the f/10 lens, covering a ±17◦ field). The radius
of curvature of the left interface in mm is labeled as R1 – which is given in the
text as R12, and its reciprocal is shown as C1 = 1/R1. (From [555]. Reprinted with
permission of McGraw-Hill)
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decreases the usual positive spherical aberration. Man-made lenses usually
have a uniform index of refraction. Nature has decreased spherical aberration
in the human crystalline lens even further by decreasing the index of refrac-
tion from its center in all three directions and decreasing the magnitude of
the radius of curvature towards the margin of the lens. Both variations re-
duce the surface refracting power at the lens margins to decrease SA. In fact,
they overcorrect for the SA to compensate for the undercorrected SA at the
anterior surface of the cornea. Spherical aberration in the eye decreases with
accommodation for more distant vision.

There are several other monochromatic aberrations. Off-axis object points
image to a comet-shaped image because the peripheral rays focus closer to
the optic axis than the central rays. This is called coma. Coma is also present
for objects points on the optic axis when the optical elements are not centered
and are, in fact, tilted relative to each other, and this occurs in the eye. Points
in the object plane that are far from the axis are farther from the lens than
those near the optic axis, so they image at shorter distances after the lens.
The surface of the image is not planar but curved (Petzval surface), even for
rays passing through the center of the lens for this curvature of field aberra-
tion. A square grid images to the distorted grid shapes with barrel distortion
or pincushion distortion, generally for negative and positive spherical lenses,
respectively, because the lateral magnification of the lens varies from its center
to periphery.

Moreover, simple, single component lenses have different focal lengths at
different wavelengths, because the index of refraction of the lens material dif-
fers at different wavelengths. This is known as dispersion. Therefore the image
can be sharp at one wavelength but a bit blurred at another because of this
chromatic aberration (CA) (Fig. 11.28). This is common in glass lenses because
blue light has a larger refractive index than red light in glass, and consequently
glass lenses have a shorter focal length in the blue (Problem 11.32). The dis-
tance between where rays at two wavelengths (such as in the red and blue)
hit the optic axis is the longitudinal (or axial) chromatic aberration L·CA
[512]. The vertical distance between the images of the two colors on a screen
placed at the focal length is the transverse (or lateral) chromatic aberration

Fig. 11.28. Ray tracing and imaging with chromatic aberration present
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Table 11.3. Refractive indices (n) in the ultraviolet (380 nm), visible, and near
infrared (780 nm), and, in the last row, the dispersion for ocular media. (Using data
from [513])

wavelength (nm) (spectral line) humors crystalline lens

380 1.3450 1.4334
480.0 (F′) 1.3378 1.4221
587.6 (d) 1.3333 1.4160
643.8 (C′) 1.3315 1.4138
780 1.3285 1.4101
dispersion constant 52.9 50.1

T·CA or lateral color. In camera and microscope lenses this is corrected by
using compound lenses composed of lenses made from different types of glass –
with different dispersion. The human aqueous and vitreous humors and the
crystalline lens have small, yet significant, dispersion, as seen in Table 11.3.
In the crystalline lens this chromatic aberration contributes ∼2D change in
optical power across the visible, as described by

D(λ) = p − q

λ − c
(11.68)

for the defocus in D, with wavelength λ (in μm), p = 1.7312, q = 0.63346, and
c = 0.21410, relative to that at 578 nm [557]. The overall change in the re-
fractive power of the schematic eye is plotted in Fig. 11.29. The dispersion

Fig. 11.29. Chromatic aberration of the human eye lens as quantified by the optical
power that must be added to the human eye lens to bring the eye in the same focus
as 587 nm, depicted as the curve given by (11.68). (Based on [560])
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constant, defined as [n(λ = 587.6 nm) − 1]/[n(λ = 480.0 nm) − n(λ =
643.8 nm)], and related matters are discussed in Problems 11.32–11.35.

Quantitative Evaluation of Image Acuity

Because of optical diffraction and these other imaging imperfections, a point
really images to a blur with diameter wB. Optical diffraction contributes
∼2.44(f/d)λ. Spherical aberration contributes ∼2T ·SA (suitably averaged
from the axis to y above it) to wB and chromatic aberration contributes
∼2T ·CA (suitably averaged over the wavelength spread) to it. A more quan-
titative evaluation of image distortion is often needed than this poorly defined
blur diameter. This is provided by measuring the image from a very thin line
source, to obtain the line spread function (Fig. 11.30), or a point source, to
obtain the point spread function. These functions provide the relative image
intensity vs. distance or visual angle in one or two dimensions, respectively,
and have the same full width ∼wB. Alternatively, we can image a source with
an intensity that periodically varies laterally (in the y direction) with spatial
frequency k, such as by (1 + sin ky)/2 or the square wave variation shown
in Fig. 11.31b, and see how much of the modulation remains in the image.
For k � 1/wB there is much modulation (11.31d), while for k � 1/wB there
is very little modulation (Fig. 11.31e). Figures 11.30 and 11.31 track these
changes as a function of position. They could also be tracked in terms of the
spatial frequency k. This modulation variation vs. k is the optical transfer
function or, for symmetric systems – as we will assume here, the modulation
transfer function; they have widths ∼1/wB. Figure 11.32 shows this function
for the eye with the line spread function of Fig. 11.30. This inverse relationship
between the spread in real space (spread functions) and in spatial frequency

Fig. 11.30. The human line spread function for an eye with 3.0 mm pupil diameter,
using a model in [561] (see Problem 11.30) that is based on experiment. (Based on
[560] and [561])
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Fig. 11.31. (a) The horizontal letter E on it side, and (b) the light level in the
direction of the arrow in (a) showing a periodic square wave object. This leads to
potential images on the retina for (c) ideal imaging, (d) imaging with a small blur
spot, and (e) imaging with a large blur spot

space (transfer functions) is similar to that in the Chap. 10 analysis of the
voice intensity in time vs. frequency. In both cases the inverse functions (time
vs. frequency there or space vs. spatial frequency here) are related by Fourier
analysis as in (10.42) and (10.43) (where t would be replaced by x, 2πf by k,
and the summation by an integral).

Fig. 11.32. Modulation transfer function of the human eye, as measured in [563]
(dashed curve drawn through data points (which are not shown), as drawn in [560])
and compared to the predictions using the human line spread model shown in
Fig. 11.30 (solid curve). The abscissa axis is in units of cycles per degree (cpd).
(Based on [560])
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Fig. 11.33. Line spread function for the human eye for different pupil diameters.
The solid curves are the total functions. The dashed curves are the line spread
functions for those apertures assuming diffraction-limited conditions. (Based on [517]
and [560])

Effects of Changing Pupil Size, Including Depth of Field

The human pupil can change from �8 to �2 mm in diameter. Decreasing the
pupil size affects vision in several ways.

1. Decreasing pupil size decreases light transmission to the retina, as de-
scribed earlier.

2. The size of the diffraction-limited spot varies inversely with aperture di-
ameter (11.67). With the pupil closed all the way to a 2 mm diameter,
this diffraction-limited spot diameter is ≈10 μm. Figure 11.33 shows that
the contribution to the line spread function by diffraction increases with
decreasing pupil size as expected, and that it becomes the dominant con-
tribution to the blur at small pupil sizes.

3. Decreasing pupil size lessens the effect of lens aberrations. Transverse
spherical aberration varies as the square or cube of the distance of rays
from the optic axis. Figure 11.33 shows that contributions to the line
spread function other than diffraction, i.e., due to these and related aber-
rations, increase remarkably with pupil diameter and become the domi-
nant contribution to the blur at large pupil sizes.

4. The range in object (or source) distances over which good images are
formed is called the depth of field. This depth increases by decreasing the
size of the aperture (pupil) before the crystalline lens. (Conjugate to this is
the range of image distances over which the images over the depth of field
form, and this is called the depth of focus.) Figure 11.34 shows that the
blur on the retina due to the different image locations with different source
distances decreases with pupil diameter – and this is one manifestation of
the depth of focus. Closely related to this is the change in image distance
with source distance, as plotted in Fig. 11.35; the depth of focus is related
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Fig. 11.34. Schematic showing the image blur for two object distances, that alter-
nately image (A) before or (B) after the retina, for a relatively (a) large pupil and
(b) small pupil. This provides an assessment of the depth of field vs. pupil diameter
because the blur increases with pupil diameter

to the slope of the curves, so it is large for distant sources and small for
nearby objects (and this is not ideal). This can also be easily understood
using simple image formation using (11.3).

The pupil loses its ability to dilate with age. The maximum pupil diameter
decreases from, ∼10 mm at 1 yr, to 6 mm at 20 yr, to 3 mm at 50 yr, and to
1 mm at 80 yr.

Fig. 11.35. Image distance vs. source distance for different lens, which provides
information on the depth of field of the human eye. An extra horizontal line is
shown for a distance of �17 mm, which is the focal length of the Standard eye in
air. (Based on [560])
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Fig. 11.36. The Snellen eye chart used to test visual acuity. The label of the line
with the smallest letters you can read at 20 ft is your vision for that eye, with lines
1–11, respectively, corresponding to 20/200, 20/100, 20/70, 20/50, 20/40, 20/30.
20/25, 20/20, 20/15, 20/13, and 20/10. (From [545])

11.3.7 Imperfect Human Vision

Visual acuity (VA) in human vision is frequently tested by reading black letters
(that have 4% reflectance) on a white background (84% reflectance) from a
Snellen chart placed 20 ft (or 6 m) away under good light illumination (480 lux
is a standard, and some say 800–1,000 lux) (Fig. 11.36). (These units will be
explained later in this chapter.) For each eye, the vision is said to be 20/z if
the smallest letters you can read at 20 ft are what people with “perfect” 20/20
vision (or 6/6 vision in the metric system) in that eye can read z feet away.
This is a test designed to assess near-sightedness (or more precisely, lack of
far-sightedness); the optical object infinity is considered to be 20 ft. Visual
acuity is defined as the reciprocal of the angular size (in minutes of arc at
20 ft) of one of the elements of the letters on the chart. The letter E has three
horizontal solid bars and two horizontal open bars (Figs. 11.31a and 11.36).
In the 20/20 line, each of these is an element that subtends 1 min of arc and
the whole letter subtends 5 min of arc at the eye, at a distance of 20 ft. Each
bar in the E is about 1.7 mm wide and the E is 8.8 mm high in the 20/20 line.
Someone with 20/40 vision would be able to resolve elements of no less than
2 min of arc and letters of 10 min of arc from the eye. Clearly, this is closely
related to the ability to view square wave patterns, as in Fig. 11.31. Normal
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Fig. 11.37. Visual acuity (in 1/min) and pupil diameter (circles) as a function of ob-
ject brightness. The dashed and dotted acuity lines are, respectively, for increased and
decreased surround brightness of 1 milliLambert. (See Table 11.4: 1 milliLambert =
3.183 nit = 3.183 cd/m2). (From [555]. Reprinted with permission of McGraw-Hill)

VA is 1.0 under normal indoor lighting conditions and decreases with poorer
lighting (Fig. 11.37). Someone with 20/40 vision has a VA of 0.5. Under ideal
conditions, some people have a VA of 2 or 3. Figure 11.25 illustrates that
visual acuity is worse in the periphery than in the fovea. (Can you use the
results from the test in this figure to estimate the dimensions of the fovea?)
The analogous test for far-sightedness (i.e., lack of near-sightedness) is the
Jaeger test, in which one reads lines of various font sizes at normal reading
distance.

Emmetropes have perfect imaging (VA � 1), meaning their eyes need a
correction less than a stated small amount, such as 0.5 or 1.0 D. They have
a FP at infinity and a NP at 25 cm, with at least 4 D of accommodation
(Fig. 11.38a). All other people are ametropes, and need corrective lenses to
see clearly.

People with myopia are “near-sighted,” meaning that their vision 25 cm
away (their NP) is fine, but it needs correction for objects near infinity (VA
< 1); the smallest Snellen eye chart line they can read is above the 20/20
line. They have good vision for objects from 25 cm to their far point, which
is <∞. Distant objects (d1 = ∞) form images in the eyeball “before” the
retina (Fig. 11.38) and negative lenses are needed to project the image on the
retina. If the person has 4 D or more of accommodation, the image at 25 cm
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Fig. 11.38. Imaging in emmetropic, myopic, and hyperopic eyes. For the latter two
both possible reasons for the conditions are illustrated: a long eyeball and short focal
length for myopia and a short eyeball and long focal length for hyperopia

will also be fine with these lenses. Myopia occurs because the eyeball is too
long (axial myopia, which is the most common reason) or the cornea is too
curved and there is too much refractive power (refractive myopia). One poten-
tial contributing factor for myopia is the mechanical stress (Chap. 4) on the
posterior sclera due to the muscles that control the eye motion – particularly
the oblique muscles – and high vitreous pressure [524]. With possibly lessened
tension in the sclera (perhaps due to weakening by the muscles) or higher
pressure, the local radius of curvature of the posterior eyeball decreases in
equilibrium according to the Law of Laplace (7.9), and this bulging leads to
myopia.

People with hyperopia are “far-sighted,” meaning that their vision at in-
finity (their FP) is fine, but it needs correction with objects that are near.
They have good vision for objects from their near point, which is >25 cm, to
their far point at ∞. Near objects (d1 = 25 cm) form images “beyond” the
retina (Fig. 11.38) and positive lenses are needed to project the image on the
retina. If the person has 4 D or more of accommodation, the image at ∞ will
also be fine with these lenses. Hyperopia occurs because the eyeball is too
short (axial hyperopia, which is the most common reason) or the cornea is
too flat and there is too little refractive power (refractive hyperopia).

With the optic axis (horizontal line in each part of Fig. 11.38) called the
z-axis, the lateral extents of the object, lens, and image are described by
the x and y axes. In everything we have said so far the x and y axes are
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perfectly interchangeable, and they still would be interchangeable after being
rotated by any arbitrary angle about the z-axis. This is no longer true for
people with astigmatism. Astigmatism is caused by ocular optics that lack
rotational symmetry – often because their corneas have unequal curvatures in
the x and y axes (a toric cornea – a toric lens is also possible) or because an
optical element is tilted or displaced from the optic (symmetry) axis. There is
a plane (or meridian) containing the optic axis in which there is a maximum
optical power and a plane normal to that with minimum optical power, for
regular astigmatism. There is a tendency, but not certainty, for these merid-
ians to be rotated near the transverse and sagittal planes. The power of the
vertical (sagittal) meridian is greater for with-the-rule astigmatism and that
along the transverse meridian is greater for against-the-rule astigmatism. In
oblique astigmatism the highest power meridian is neither vertical nor hori-
zontal. Rarer is irregular astigmatism, for which the principal meridians are
not normal to each other; this condition is caused by trauma, surgery, or dis-
ease. Only regular astigmatism can be corrected by spherocylindrical lenses
(see below).

Keratoconus is a condition in which the cornea thins near the center to
form a cone and can be locally wavy because of corneal scarring (Fig. 11.39).

Visual efficiency (VE) is sometimes calculated for legal and industrial pur-
poses by using the results of visual acuity, visual field, and ocular motil-
ity (diplopia field, binocular field) measurements for corrected eyes. Each of
these three measurements is described by a factor ranging from 0 to 1, with

Fig. 11.39. Eye of one with severe keratoconus (pre-1973), showing a very conical
cornea that protrudes out much (in a pointed, nonspherical manner) and that ex-
hibits some drooping. The conical anterior surface of the cornea forms a very poor
image. Nowadays, patients usually have a corneal transplant before keratoconus
reaches this stage. (From [528]. Used with the permission of Jack Hartstein, M. D.;
also see [556])
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1 representing no loss of vision. They are multiplied together to give VE for
an eye. VE for two eyes is a weighted sum of that for each eye, weighting
the better eye (higher VE) by 3 and the poorer eye by 1. The visual loss is
1−VE. The VA (visual acuity) factor is an average from the Snellen (far) and
Jaeger (near) vision tests. For example, the factors from the Snellen test are
1.0 for 20/20 vision, 0.75 (for 25% loss) for 20/50, 0.50 for 20/100, and 0.10 for
20/400. The visual field factor is the fraction of remaining visual field. The oc-
ular motility factor is the fraction of remaining coordinated ocular movement
(which is the ability to see one object as one and not two).

Absence of the photopigment in the three cone cells causes various types
of color blindness, which affects about 10% of men and 1% of women. Dichro-
mats are missing one cone photopigment. Protanopes, deuteranopes, and (the
rarer) tritanopes are absent the long-, medium-, and short-wavelength pho-
topigments, respectively. Monochromats lack two or all three of these cone
photopigments and have no color vision. Color blindness is tested using
pseudoisochromatic plates (for example, see [552]).

11.3.8 Correction of Vision by Eyeglasses, Contact Lenses,
and Other Means

We will now analyze how eyeglasses, soft contact lenses, and hard/gas-
permeable contact lenses can be used to correct vision [528, 538, 539, 541,
543, 556]. The aim is to achieve perfect vision, using a compound lens consist-
ing of the eye (Standard eye model) and the corrective lens, with the far point
at FP = ∞ (f ∼ 17.0 mm) and the near point at NP = 25 cm (f ∼ 15.9 mm).

In eyeglasses (or spectacles), the distance between the back (ocular) sur-
face of the lens and the cornea is 12–15 mm; if they were closer the lenses
would be brushed by eyelashes during blinking. The topography of the lens
surfaces is chosen so the eye encounters the same prescription for any direc-
tion the eye gazes through the spectacles. The front surface is usually spher-
ical and the back surface toric. Glass lenses for eyeglasses are usually made
of ophthalmic crown glass, which has a refractive index 1.523. Higher index
material is sometimes used to reduce the thickness and weight of high power
eyeglasses, such as with high index glass with indices >1.70. Because impact
resistant eyeglasses require thicker glass, lighter plastic lenses are commonly
used for safety glasses. CR39 plastic, with a refractive index of 1.498, is of-
ten used; polycarbonate, with a high index 1.586, is highly impact resistant,
although it is soft and has large chromatic aberration.

Soft contact lenses adjust to the shape of the cornea, while hard/gas per-
meable contacts do not. These soft lenses are composed of hydrogel, a gel-like
material that is soft and flexible when it is hydrated, and this material often
includes 2-hydroxyethyl methacrylate (HEMA). The inner surface of a soft
contact lens molds to the outer surface of the cornea, so the corneal topog-
raphy and the controllable lens thickness (from the lens center) determine
the radius of curvature of the outer lens surface, and therefore the imaging
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correction. The eye tolerates a soft lens, �13.0–14.5 mm in diameter, which is
larger than the cornea (and which extends to the sclera); this larger size opti-
mizes lens centering and stability. The center thickness of soft contact lenses
start from �0.03 mm. Most of the oxygen needed by the cornea is supplied
by oxygen diffusion through these very thin lenses. Because of this large size,
there is very little motion of oxygen-rich tears to the cornea during blinking,
and this motion supplies only ∼4–6% of the total oxygen to the cornea.

Rigid or hard lenses are much less pleasant to wear, but are necessary for
irregular corneas – as for those with keratoconus (Fig. 11.39) or high levels
of astigmatism. Rigid or hard lenses have traditionally been composed of
poly(methyl methacrylate) (PMMA). Unfortunately, the oxygen needed by
the surface of the cornea cannot penetrate the lens and can be supplied only
by tears that slip to the cornea as the lens moves on the cornea during blinking.
Because this level of oxygen is lower than needed, the corneas become irritated
and such rigid lenses cannot be worn for long continuous stretches of time.

Gas permeable contacts are rigid lenses composed of materials such as
silicone acrylate – a combination of silicone and PMMA – or fluorocarbon-
ate silcone acrylate, that let oxygen diffuse to the cornea. This increases the
amount of oxygen reaching the cornea to about 10× that by tears alone.
Because such lenses can be worn only for most of the waking hours, ∼10–
12 h, without excessive discomfort, gas permeable contact lenses are replacing
PMMA hard contacts in most cases. These gas permeable lenses are 8–10 mm
in diameter and only 0.15 mm thick (with thickness starting at 0.10 mm), and
(should) remain over the cornea, over most of the iris. The radius of curvature
of the posterior surfaces of a rigid contact lens is chosen to best fit the ante-
rior surface of the cornea. The anterior surface is chosen to produce a perfect
image on the retina. (If the topography of the posterior surface of the hard
contact lens is different than that of the cornea anterior surface, in some cases
it will shape this surface and change the refractive power in this way too.
However, when there is a poor fit – especially when fitting to the nonspher-
ical corneas in keratoconus as seen in Fig. 11.39, dust particles can be swept
by tears to the region between the contact lens and cornea and this is very
painful.) Figure 11.40 shows a three-point fit, which is ideal for keratoconus
and similar eye disorders.

Fig. 11.40. Three point fit of contact lens – apical (apex) touch to the cone plus pe-
ripheral touch – for an eye with keratoconus. (Reprinted from [556]. With permission
of Elsevier)
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Fig. 11.41. Optical paths in a keratometer. (Reprinted from [556]. Used with per-
mission of Elsevier)

In keratometry (which means “cornea measurement”) the curvature of the
anterior surface of the cornea is determined by looking at the reflection giving
Purkinje image I (Fig. 11.41) (Problem 11.63). This curvature is used to deter-
mine the posterior surface (base curve) of the contact lens, and consequently
to “fit” it. It is often converted to a K reading or number (in D); this is the
refractive power of a curved interface with this measured radius, between air
and a material with the refractive index of tears (and not the refractive index
of the cornea) (11.9).

Why do not contact lenses fall off your eye? When you look down with
open eyes, your contact lenses do not fall off because the force due to the
surface tension between the contact lens and tears exceeds the downward
force of gravity on the lens (Problem 11.66). Why do contact lenses remain
centered on the pupil when your head is upright and it does not slide off to the
sclera (the white portion)? This is particularly important for small lenses that
cover most of the iris but do not extend to the sclera. Figure 11.42 shows some
of the relevant forces. Gravity pushes the lenses down. Blinking of the eye lid
pushes the lens downward and then upward in the blinking cycle. Viscosity
of the tear volume between the cornea and contact lens resists downward
motion. Slipping of the lens to a region of different curvature (i.e., the sclera,
for the smaller gas-permeable lenses) is resisted by friction and changes in
surface tension. Surface tension depends on tear viscosity, the topography of
the cornea, and how well it is matched by the contact lens fit.
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Fig. 11.42. Forces affecting contact lens position. (Based on [543])

Permanent changes in the optical power of the eye can be made by chang-
ing the curvature of the anterior surface of the cornea by (1) making four or
eights radial slit incisions in it with a scalpel to flatten it (which is called radial
keratotomy or RK ), which will decrease its optical power and can help correct
myopia only or (2) sculpting its surface with an excimer laser by either (a)
photorefractive keratectomy (PRK ) or (b) laser assisted in situ keratomileusis
(LASIK ), which can either decrease (for myopia) or increase (for hyperopia)
its curvature. In both PRK and LASIK, the middle layer of the cornea, the
stroma, is exposed before it is sculpted by the laser via vaporization. In PRK,
the epithelium (the top layer of the cornea) is scraped away by laser vapor-
ization before the laser sculpts the stroma, while in LASIK a flap of the top
20% of the cornea is cut using a knife called a microkeratome and this flap
is then folded to one side. The exposed cornea is sculpted with the laser to
change the radius of curvature of the anterior surface of the cornea and the
flap is flapped back to its original position after surgery (Fig. 11.43). Such

Fig. 11.43. In LASIK surgery the central cornea is made (a) more flat to correct
for myopia and (b) more curved to correct for hyperopia. (From [553]. Reprinted
with permission of McGraw-Hill)
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Fig. 11.44. (a) The problem in myopia and (b) the goal of choosing corrective
lenses to correct it. The effective eye lens is that from the Standard eye model

cornea surgery cannot correct for the decreasing accommodation with age, so
some sort of corrective lenses are eventually necessary.

Myopia

A person with myopia has an adequate near point (at 25 cm), but a far point
that is too near. Say the FP = 530 cm from the eye, when the eye has accom-
modated as well as it can for infinite distances. The eye can image an object
that is 530 cm away, but needs a corrective lens so with this accommodation it
can see a farther distance, ∞ away (Fig. 11.44). The corrective lens is D to the
left of the eye, with D ∼ 1.5 cm for eyeglass lenses and D ∼ 0 cm for contact
lenses. We want this lens to take an object D = ∞ to the left of it and image
it a distance D − 530 cm to the right of it. Using this backward propagation
approach and (11.24), with f1 replaced by fcorrective, this condition is

1
∞ +

1
D − FP

=
1

fcorrective
= Pcorrective. (11.69)

So we find

fcorrective = D − FP (11.70)

and fcorrective = D − 530 cm here. For eyeglasses, we see that fcorrective =
−528.5 cm = −5.285 m and the corrective power is Pcorrective = 1/fcorrective =
−0.1892 D � −0.19 D. For contact lenses, we find that fcorrective = −530 cm =
−5.3 m and Pcorrective = 1/fcorrective = −0.1887 D � −0.19 D. These are neg-
ative lenses, with similar prescriptions for the eyeglass and contact lenses for
this particular example.
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Fig. 11.45. (a) The problem in hyperopia and (b) the goal of choosing corrective
lenses to correct it. The effective eye lens is that from the Standard eye model

Hyperopia

A person with hyperopia has an adequate far point (at ∞), but a near point
that is too far away. Say NP = 190 cm from the eye, when the eye has accom-
modated as well as it can for near distances. The eye can image at x = 190 cm
away, but needs a corrective lens so with this accommodation it can see a
nearer distance, 25 cm away (Fig. 11.45). We want the corrective lens to take
an object 25 cm − D to the left of it and image it a distance D − 190 cm to
the right of it. Using (11.3), this condition is

1
25 cm − D

+
1

D − NP
=

1
fcorrective

. (11.71)

For eyeglasses, we see that fcorrective = +26.8 cm = 0.268 m and 1/fcorrective =
+3.72 D. For contact lenses, we find that fcorrective = +28.8 cm = 0.288 m
and 1/fcorrective = +3.47 D. These are positive lenses, with quite different
prescriptions for the eyeglass and contact lenses for this particular example.

Differences in Prescriptions for Contact Lenses and Eyeglasses

Correcting the same eye by contact lenses and eyeglasses requires different
prescriptions because the eyeglasses are usually worn about 1.5 cm anterior
to the contact lenses. This can be included in correcting vision by using D
in (11.70) and (11.71). Also, using the effectivity formula, (11.19), with D =
1.5 cm and n = 1, we see that

Peyeglasses =
Pcontact lens

1 + (1.5 cm)Pcontact lens
. (11.72)

A contact lens prescription of −5.00 D for a myopic eye becomes a stronger
prescription of −5.00 D/[1 + (0.015 m)(−5.00 D)] = −5.41 for eyeglasses.
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A contact lens prescription of +5.00 D for a hyperopic eye becomes a weaker
prescription of +5.00 D/[1 + (0.015 m)(+5.00 D)] = +4.65 D for eyeglasses.

Examples of eyeglass and contact lens prescriptions are provided below.

Analysis Using Vergences

Let us examine corrections for the Reduced eye in Table 11.1 by using the
notation of vergences [553]. (We will ignore the 1.67 mm distance between the
cornea and the refractive surface in this model.) From (11.9), the refractive
power is P12 = (1.333 − 1.00)/0.00555 m = 60.00 D. For an object at infinity
(d1 = ∞), the object vergence L1 = n1/d1 = 0, so the image vergence, from
(11.12), is L2 = L1 + P12 = 0 D + 60.00 D = 60.00 D. Because L2 = n2/d2

and n2 = 1.333, the image will be at d2 = n2/L2 = 1.333/60.00 D = 22.22 mm
(using 1/1 D = 1 m). For an emmetrope, the retina is at 22.22 mm.

For an eye with myopia with the same refractive power but with the
retina 23.22 mm away, an object at infinity will still image 22.22 mm after
the interface, or 1.00 mm anterior to the retina. Now we want L2 = n2/d2 =
1.333/23.22 mm = 57.41 D, so the image will fall on the retina and vision
will be corrected if you place a contact lens with refractive power 57.41 D −
60.00 D = −2.59 D at the interface.

For an eye with hyperopia with the same refractive power but with the
retina 21.22 mm away, an object at infinity will again image 22.22 mm after the
interface, which is now 1.00 mm posterior to the retina. Now L2 = n2/d2 =
1.333/21.22 mm = 62.82 D, so the image will fall on the retina and vision
will be corrected if you place a contact lens with refractive power 62.82 D −
60.00 D = 2.82 D at the interface.

Astigmatism, Keratoconus, Presbyopia, and Prescriptions

For people with astigmatism, corrective lenses composed of spherical lenses
can provide sharp imaging in one direction in the xy plane but not in any
other direction. Vision can be corrected with lenses having unequal radii of
curvature in the x and y axes, as defined by a suitable rotation about the z-axis
(optic axis). Cylindrical lenses are curved in one direction and flat in the other
(Fig. 11.46). The corrective lenses for those with astigmatism have a certain

Fig. 11.46. A cylindrical lens
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base level of curvature (like that of a spherical lens) plus added curvature
in one direction (like that of an added cylindrical lens, rotated the correct
way), and as such are called spherocylindrical lenses. Because of the need for
this specific correction axis, correction for astigmatism has been possible with
eyeglasses or hard/gas permeable contact lenses, but not with soft contact
lenses. However, astigmatism can be corrected with new toric soft contact
lenses that are oriented on the eye in a stabilized manner. One way to achieve
this is by the action of the lids during blinking on the superior-to-inferior
position thickness gradient.

A possible eyeglasses prescription for a nearsighted person with astigma-
tism is

O.D. −3.00 + 2.25 × 175 + 1.25
O.S. −2.50 + 1.75 × 160 + 1.25,

where O.D. (oculus dexter) stands for the patient’s right eye and O.S. (oculus
sinister) for the left eye. The first number for each is the refractive power of
the spherical lens corrections, −3.00 D for the right eye and −2.50 D for the
left. The second term for each is the refractive power of the cylindrical lens
correction (and so the lens is a spherocylindrical lens when this term is not
zero) and orientation for astigmatism for each eye. For the right eye, 2.25 D
is added with the cylindrical axis at an angle 175◦ from the horizontal in the
manner shown in Fig. 11.47. As seen in this figure, along one axis (the cylin-
drical axis – which has no added cylindrical refractive power), the refractive
power is that of the spherical lens, −3.00 D. Along the perpendicular axis,
the refractive power is −3.00 D +2.25 D = −0.75 D. For the left eye, 1.75 D
is added with the cylindrical axis at an angle 160◦ from the horizontal. As
presented, this is a prescription for bifocals. The added 1.25 D for each lens
is in the lower, bifocal region, to compensate for insufficient accommodation
for reading, and is needed because of presbyopia. When corrections for astig-
matism and/or presbyopia are not needed, they are not designated on the
prescription.

One major stimulus to the development of (initially hard) contact lenses
was the need to correct the blurs in those with keratoconus (Fig. 11.39). For
people with keratoconus, eyeglasses and soft contact lenses can correct for the
average optical deviation of the cornea, but cannot produce sharp images on
the retina. Blurred or double images would still form on each retina with either

Fig. 11.47. Angles used in prescription for corrective lenses for astigmatism
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Fig. 11.48. Gas permeable (semirigid) contact lenses for correcting conditions
with nonspherical corneas, such as keratoconus, with tears performing refractive
index matching

correction, so sharp vision is possible only with hard/gas permeable contact
lenses. Again, the inner radius of curvature is chosen to optimize the fit to the
cornea, which is often not perfect (Fig. 11.40). Tears fill the gaps between the
wavy cornea and the rigid inner lens surface (Fig. 11.48). Figure 11.48 shows
how a gas permeable (semirigid) contact lens made of fluorosilane acrylate
or silicon acrylate with spherical anterior and posterior surfaces can correct
for the unequal radii of curvature in the cornea in astigmatism and myopia or
hyperopia, and the waviness in the cornea in keratoconus. The tears (refractive
index n ≈ 1.33) very nearly index match the gap between the contact lens (n ≈
1.4) and the cornea (n ≈ 1.37). Equation (11.15) shows that the refractive
powers of the posterior surface of the contact lens/tears and tears/anterior
surface of the cornea are very small because of the nearly matching indices of
refraction, so the effects of the imperfections in the cornea are minimized.

Prescriptions for contact lenses provide optical information similar to those
for eyeglasses – after correction for their different placement relative to the
cornea, plus information needed to fit the lens well. One example is

O.D. 8.6/14.0/ − 1.00
O.S. 8.6/14.0/ − 1.50

which indicates base curves of 8.6 mm and lens diameters of 14.0 mm for both
eyes, and optical powers of −1.00 D for the right eye and −1.50 D for the left
eye. Given the large diameter of this lens, it is clearly a soft contact lens.
Astigmatism could be corrected with a rigid contact lens.

We have already described how people with presbyopia do not have suffi-
cient accommodation (see Table 11.2). For those with good far vision, correc-
tive lenses correct the near point for reading (“reading glasses”). Bifocals are
commonly used by those who also need correction at infinity, where the main
lenses are useful for far vision and the small “bifocal” parts are for reading (as
in the above eyeglasses prescription). In a trifocal, there is also correction for
intermediate distances. Eyeglasses are also available with a more continuous
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change in optical power from the upper region (for long-range vision) to the
lower region (for reading), using progressive lenses, which do not have the
bifocal discontinuity. There are several ways a contact lens wearer can adapt
to insufficient accommodation. One is to use reading glasses over the con-
tact lens. Rigid contact lenses shaped to be bifocals, called alternating vision
lenses, can be put into place by the lower eyelid when the wearer looks down;
however, these are difficult to fit well. Corrections for near and far vision are
built everywhere with simultaneous vision rigid or soft lenses, so the wearer
sees sharp and blurred images of near and far images. In monovision, one
contact lens is corrected for distance and the other is corrected for reading, so
that one eye always sees a sharp image and the other a blurred image. Many
people adapt to this well.

Magnification by Corrective Lens

A magnifying glass is a lens with positive focal length that you try to place in
an optimal position between the source and your eye. Similarly, the positive
focal length eyeglass lenses used to correct hyperopia produce a larger, mag-
nified image on the retina and the negative focal length lenses used to correct
form myopia produce a smaller, minified image on the retina. Contact lenses
neither magnify nor minify the image because they are placed on your cornea.

11.4 Types of Vision Impairment

One type of vision impairment is due to imperfect imaging on the retina. We
have already discussed its origin and how to correct it. Imperfect transmission
of the optical components of the eye, retinal damage, and optic nerve damage
are three other sources of vision problems.

The optical properties of each component of the healthy eye are fairly
uniform, so a high-quality image is transmitted with relatively little scattering.
Scarring of the cornea due to corneal injury or disease and clouding of the
crystalline lens due to cataracts lessen image quality and the amount of light
imaged on the retina. Scar tissue on the cornea makes any transmitted light
appear to have a halo. The only solution to this problem is to remove the
damaged area, usually a disk with 6–8 mm diameter, and to transplant a
section from another cornea. The treatment for cataracts is removal of the
cloudy crystalline lens, with replacement by a plastic lens.

There are four major modes of retinal damage. (1) Almost a half of diabet-
ics suffer from diabetic retinopathy, in which retinal capillaries swell and leak
a bit. This sometimes progresses to neovascularization, in which abnormal
blood vessels form that do not supply the retina with enough oxygen, and are
fragile and bleed into the vitreous humor, thereby hindering the transmission
of light to the retina. Neovascularization can also scar and detach the retina.
Argon ion lasers are sometimes used to photocoagulate these thin fragile ves-
sels periodically. (2) The macula is the central region of the retina, ∼5mm in
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diameter including the fovea, where the central region of the object you are
viewing is imaged. Macular degeneration is most prevalent in older people,
with the thinning of the cone cells and sometimes the formation of small new
blood vessels; this is similar to neovascularization and can be treated as such.
(3) In a detached retina, the retina physically detaches from the underlying
pigment epithelium, and sometimes tears. Because it has moved from the op-
timized imaging surface, the image formed on the detached part of the retina
is poor. Furthermore, the regeneration of the visual pigments in the detached
part of the retina cannot occur because it is not in contact with the pigment
epithelium – and this can lead to blindness. The detached retina can be reat-
tached by applying a cooling or heating probe to the outside of the eyeball
in the region of the detachment. (4) Retinitis pigmentosa is a hereditary dis-
ease that first attacks rods (hurting night vision) and later cones, thereby
leading to blindness.

Optic nerve damage can result from the increase in the aqueous humor
pressure in glaucoma. The overall increase in intraocular pressure in a person
with glaucoma compresses the blood vessels that nourish the retina and also
increases the pressure on the head of the optic nerve. Both effects cause the
optic nerve fibers to degenerate and can result in blindness. The risk of glau-
coma increases exponentially with intraocular pressure (IOP), with it being
40× greater for a person with an IOP of 40 mmHg than one with a relatively
normal value of 15 mmHg.

High intensities of light entering the eye can affect various ocular elements
causing temporary or permanent impairment of vision [554]. Photokeratitis is
a painful but usually transient 1–2 day irritation of the cornea, due to photo-
chemical changes caused by ultraviolet light (λ = 180− 400 nm). For obvious
reasons, it is also known as welder flash or snow blindness. (Remembering the
discussion about the seemingly formidable nature of medical terminology in
Chap. 1, photokeratitis merely means light (photo) + cornea (kerat) + inflam-
mation (itis), or cornea inflammation caused by light. Similarly, keratoconus
merely means conical cornea.) Cataracts can also be caused by photochemical
injury of the crystalline lens by chronic exposure to ultraviolet light, from 295
to 325 nm and perhaps to 400 nm. The retina can be damaged by photochem-
ical injuries by blue light, 400–500 nm, photoretinitis, as can occur by looking
briefly at the sun (solar retinitis). The retina can also be damaged by thermal
injuries from high intensity – and often pulsed – lasers, from 400 to 1,400 nm.
The high coherence of lasers leads to very small foci on the retina, near the
diffraction limit given by (11.67). This high intensity leads to damage by
highly localized absorption and subsequent localized heating. Consequences
are particularly severe when the person looks at the laser – which can occur
automatically when the eye tracks to the bright source – because then the
laser focuses on the fovea, which can become permanently damaged. If this
occurs, the person has no sharp vision in the affected eye, but only fuzzy pe-
ripheral vision. Near infrared light, ∼800–3,000 nm, can thermally damage the
crystalline lens. Also, the corneas of glassblowers and steelworkers were once
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prone to thermal injuries (burns) due to long-term exposure of high intensities
of longer wavelength electromagnetic radiation, ∼1,300 nm–1 mm.

11.5 Connections to Visual Perception

Consider the image formed on the retina as the input data for vision. The
first factor that affects how this image is processed is the spatial variation of
rods and cone detectors across the retina (Fig. 11.3) and whether these cells
are connected individually or in an interconnected manner to ganglion cells.
Much information processing occurs in the brain [530, 531, 532, 560, 562].
For example, an upright object forms an inverted image on the retina, but is
perceived to be upright by the brain. If you wear prismatic eyeglasses that
invert the object, you will first perceive an inverted image, but then after a
week or so you will again perceive the object as being upright (until you take
the glasses off).

The perception of brightness is another example of how the image on the
retina is processed: brightness increases only sublinearly with the intensity of
the light source. This is an important example of the more general Steven’s
Law, (1.6) P = K(S−S0)n that describes how the perceived strength P varies
with the intensity of a stimulus S for a given sensation above a threshold S0.
Experiments show that n = 0.33 − 0.5 for brightness (Table 1.15).

Another factor in brightness perception is color. Human sensitivity to
different wavelengths is described by the standard luminosity curve L(λ)
(Fig. 11.49), with L(λ = 555 nm) = 1 describing the highest sensitivity and

Fig. 11.49. Absolute spectral luminous efficiency of the eye for photopic vision (for
normal levels of illumination, also known as the “luminosity curve”) and scotopic
vision (for dark conditions). The higher the number the more the eye is sensitive
to a given light power or intensity at this wavelength. In some presentations each
curve is given with its peak normalized to 1. The rectangles associated with each
curve are approximations to the real curves. (From [548]. Reprinted with permission
of McGraw-Hill)
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L < 1 for all other wavelengths. Light with a power of 1 W (W being a radio-
metric unit, see next paragraph) at the peak psychological sensation, 555 nm,
corresponds to 683 lumens (lumens being a photometric unit). A power of
1 W produces a response of 683L(λ) lumens, which is <683 W away from the
peak response wavelength 555 nm. This response curve is for normal levels
of illumination (photopic or diurnal vision) and is representative for vision
dominated by the cones. Figure 11.49 shows the absolute (non-normalized)
photopic luminosity curve. Under dark (scotopic or twilight) conditions, there
is a blue shift in this curve to about 507 nm, at which 1 W gives a sensation
of 1,700 lumens (Fig. 11.49). (This peak response is much larger than that at
the peak of the photopic curve, but, of course, light levels are much lower for
scotopic conditions.) This blue shift, the Purkinje shift, reflects the spectral
sensitivity of rods.

There are two different sets of units used in studies of vision to denote
the strength of the light beams (Fig. 11.50) [516, 546, 548, 549, 552]. Optical
studies involving physical systems use MKS-SI units, which are also called
radiometric units. In contrast, photometric units are scaled to account for the
level of human response under normal, photopic conditions. Each set describes
the same physical parameters, such as power from a source (either total or
that per unit solid angle) or power incident onto a surface (either that incident

Fig. 11.50. Terms and units in photometry (in common units column) and radiom-
etry. (Based on [552])
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per unit solid angle per unit area or per unit area). (All of the different terms
can make understanding this a bit confusing.)

The units for the following radiometric parameters are:

Energy or radiant flux, or radiant power : for emitted energy/time, in W
Energy or radiant intensity : for emitted power/unit solid angle, in W/sr
Energy or radiant emittance: for emitted power/unit area, in W/m2

Radiance: for incident power/unit solid angle-unit area, in W/m2-sr
Irradiance: for incident power/unit area, in W/m2

where sr stands for steradian. (All of angular space is covered by 4π steradi-
ans.) When working with lasers, variations with solid angle are usually not
important and the relevant parameters are simply power for energy/time (W)
and intensity for power/unit area (W/m2).

Photometric units are normalized by the standard (photopic) luminosity
curves, with L being 1 at 555 nm and smaller at other wavelengths. Photo-
metric terms often involve the adjective luminance, which corresponds to the
term radiance sometimes used in radiometric units. They are based on the
luminous intensity unit, the candela (cd), which is light emitted at 555 nm
with an energy intensity of 1/683 W/sr. The luminous flux is emitted light in
units of the lumen (lm), which is 1 cd-sr (and so it corresponds to 1/683 W
for 555-nm light). Incident light has units of nit = cd/m2 = lm/m2-sr for
luminance and lux (lx) = lm/m2 for illuminance.

The units for the following photometric parameters are:

Luminous flux or power : for emitted energy/time, in lumen (lm)
Luminous intensity : for emitted power/unit solid angle, in candela (cd) =
lm/sr
Luminance: for incident power/unit solid angle–unit area, in nit = cd/m2 =
lm/m2-sr
Illuminance, illumination (brightness) or luminous flux density: for incident
power/unit area, in lux (lx) = lm/m2

For a more complete set of units see Table 11.4.
The luminous flux density of the sun at noon at the equator is about

105 lux, while that from a full moon is about 0.2 lux. This luminous flux
density in daylight is 104 lux, on an overcast day 103 lux, on a very dark
day 102 lux, during starlight 10−3 lux, and on a moonless overcast night
10−4 lux. The crossover from photopic to scotopic vision occurs near 1 lux.
Artificial illumination is usually about 100–2,000 lux. Light bulbs are rated
by the input electrical power in W and by their light output in lumens. A
100 W incandescent light bulb produces about 1,600 lumens. This is about
2.4 W of visible light power, which shows that such light bulbs are only
about 1–3% efficient. The illuminance a meter away from this light bulb is
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Table 11.4. Equivalent photometric units for luminance and illuminance

luminance
1 nit = 1 cd/m2

1 stilb (sb) = 1 cd/cm2 = 104 nit
1 apostilb (asb) = 1/π cd/m2 = 1/π nit = 0.3183 nit
1 lambert (L) = 1/π cd/cm2 = 104/π nit = 3,183 nit = 1,000 mL (milliLambert)
1 footlambert (fL) = 1/π cd/ft2 = 10.764/π nit = 3.426 nit
1 candela/ft2 (cd/ft2) = 10.764 nit
1 equivalent phot = 1 lambert (L)
1 equivalent lux = 1 blondel = 1 apostilb (asb)
1 equivalent footcandle = 1 footlambert

illuminance
1 lux (lx) = 1 lm/m2

1 phot (ph) = 1 lm/cm2 = 104 lx
1 milliphot (mph) = 10−3 lm/cm2 = 10 lx
1 footcandle (fcd, fc, or ft-cd) = 1 lm/ft2 = 10.764 lx

1,600 lumens divided by the total surface area of a sphere with 1 m radius, so it
is 1,000 lumens/(4π×1 m2) = 127 lux. For simple orientation and visual tasks
30–100 lux are needed, for common visual tasks 300–1,000 lux are needed, and
for special visual tasks 3,000–10,000 lux are needed [549]. Table 11.5 shows
recommended lighting levels for specific tasks.

A well-lit room has 200–500 lux (or 20–50 footcandles), and we usually need
about 50 lux for reading. A dark-adapted human eye can see about 10−9 lux.
If the pupil has a radius r of 2 mm, then the luminous flux through the
pupil is π(2 × 10−3 m)2(10−9 lm/m2) = 10−14 lm. This corresponds to about
1.5× 10−17 W of light. Using (11.1), a visible photon with 600 nm wavelength
has an energy of ≈3 × 10−19 J. This means that a dark-adapted eye can see
∼30 photons/s.

Table 11.5. Recommended lighting levels. (Using data from [543] and [549])

task or location level (lux)

dance hall, residence entrance 50
auditorium, church/synagogue 150
cafeteria, chemical laboratory, eye examining room 500
court room, reading, classroom 700
close work laboratory 1,000
office, kitchen 1,500
autopsy table 10,000
operating table 25,000

The illuminance levels are given in lux; values in footcandles are ≈0.1× these values,
so 1,000 lux ∼ 100 footcandles.
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Fig. 11.51. Representative dark adaption curve, showing contribution from rods
only (dotted line), cones only (dashed line), and from rods and cones (solid line).
Typically, the subject is pre-exposed for several minutes to wide-angle white light
at 1,500 mL. Typical vertical scales for threshold flux are in the pL–μL range, for
various ranges of narrow-angle illumination. (Based on [516] and [552])

The eye has excellent vision over a billion-fold change in intensity. Adap-
tation to the dark can take up to 30 min (Fig. 11.51). In the first 5–10 min
sensitivity improves by about a factor of 50 during adaptation in the cone-
dominated photopic regime. In the next 20 or so minutes, sensitivity improves
by about a factor of 1,000 during adaptation in the rod-dominated scotopic
regime. These are determined by the regeneration of rhodopsin and changes
in retinal networking that control the summation of retinal signals. The eye
adjusts to higher fluxes of light within 3–5 min, with a decrease in the gain
achieved in retinal networking at lower light levels.

The color content of light entering our eyes depends on the illumination
and reflectance of objects (Figs. 11.52 and 11.53) and the absorption by each
cone. Figure 11.54 shows the degree of stimulation of each cone for differ-
ent monochromatic lights. The visual perception of color is a fairly com-
plex function of its spectral components. Different mixtures of three different
colors of lights can produce the same visual sensation of color and bright-
ness (metameric matches) if they produce the same excitations of the three
cones.

The perception of color by using different types of light was once de-
scribed by the R,G,B system, which uses varying mixtures of real primaries:
red (645 nm), green (526 nm), and blue (444 nm) to match colors. Because the
amounts of each (called the tristimulus values) needed for matching (color
matching functions) are negative in some cases, this system has been sup-
planted by the CIE Color Specification System, with “imaginary” primaries
X, Y, Z (Fig. 11.55) [522, 533, 547, 564]. (CIE stands for Commission Inter-
nationale de L’Éclairage.) The amount of each primary needed to make a
monochromatic color (spectral or monochromatic hue) is given by the x (for
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Fig. 11.52. The relative excitation of the cones – “Cone absorptions” – depends
on the spectral distribution of light entering the eye – “Color signal” – and “Cone
sensitivities,” while the “Color signal” is the product of spectral power distribution
of the light source – “Illumination” – and the “Reflectance” of the surface. (From
[560]. Used with permission)

the amount of X) and y (for Y) on the arc perimeter of the chromaticity di-
agram in Fig. 11.56, with z (for Z) given by 1 − x − y. (Also, see Fig. 11.57.)
Non-monochromatic colors are shown inside the diagram. (The X,Y,Z “pri-
maries” are outside of this curve because they are not real. While this sys-
tem is mathematically consistent and correct, it is physically unappealing.)
Figure 11.58 shows an example of using the chromaticity curve. Mixing mono-
chromatic colors, 490 and 557 nm here, forms a mixture that has a color with a
dominant perceived wavelength (or hue), which is 550 nm here, as described in
the figure.

Fig. 11.53. Reflectance curves of common foods. (Based on [523])
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Fig. 11.54. Degree of stimulation of each cone for monochromatic blue, green,
yellow, and orange light. (Based on [526])

Another factor in visual perception is response time. The critical flicker
fusion frequency (CFFF or CFF) is the fastest rate of light pulses a person
perceives with no fluctuation in light intensity (and so there is no flickering).
It never exceeds 60 Hz even at very high light intensities, and is usually much

Fig. 11.55. Color matching functions for the imaginary primaries X, Y, and Z.
They were arbitrarily chosen for the 1931 CIE scale, and are similar to the spectral
responses of the cones – but with obvious differences, such as the short-wavelength
second lobe of the X curve. (From [522])
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Fig. 11.56. CIE chromaticity curve (outer perimeter), with color labels and regions
added inside. This is the version from 1931, which is still widely in use. (From [522])

lower <20–40 Hz. The CFF in the fovea is about 50 Hz, as limited by the
response recovery of cones. It is about 20 Hz about 20◦ outside the fovea. At
low light levels it decreases to about 10 Hz. Every other horizontal line in
a television is refreshed every 1/60 s (one cycle in 60 Hz), so a new picture
appears every 1/30 s. If our response were faster under normal conditions of
watching television, the refresh rate would have to be faster to avoid perceived
flickering. People with particularly fast visual responses sometimes see – and
are bothered by – the flickering from fluorescent lights.

11.6 Vision in Other Animals

One can appreciate better the optical design features of the human eye
by comparing it to that of other animals. Primitive eyes, as in planaria,
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Fig. 11.57. CIE chromaticity curve from 1975. It is less biased to the green shades
than the 1931 version is, so the change in color hue between any two points in this
diagram is now roughly equal to the distance between the two points in the diagram.
Nevertheless, the 1931 CIE is still predominantly used. (From [522])

consist of a series of photoreceptor cells in pits of pigmented cells known
as eye spots. In more complex eyes, light is collected and imaged onto an
array of photoreceptor cells. In camera or simple eyes, there is one imaging el-
ement, either a pinhole (as in a pinhole camera discussed in Problem 11.71) –
such as found in the nautilus – or a combination of the cornea and a crys-
talline lens – as is found in all vertebrates. In compound eyes, there are
a series of lenses that image those local regions onto photosensitive detec-
tion cells. Vertebrates have only camera eyes, while invertebrates can have
camera and/or compound eyes. Different features are optimized in different
animals.

1. Night vs. day: The eyes of diurnal (active during the day) animals such
as lizards and chipmunks are optimized for visual acuity. They have cone-
dominated retinas (because cones are smaller than rods) with very little
interconnection of neurons leaving the eye (i.e., few convergences), and
large eyes. The eyes of nocturnal (active during the night) animals have
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Fig. 11.58. CIE chromaticity curve (1931 version) illustrates several things about
a particular color in the diagram, represented by point A. The line through A and
the point representing white (White Point) intersects the CIE boundary at point
B, showing that its hue (apparent color) is 550 nm. The saturation of this color
(which denotes how close it is to being the pure monochromatic hue) is the ratio
of the distance from the white point to the color (at A) to that to the hue (at B).
This is b/(a + b), where a, b, c, and d are the four line segment distances shown.
The color complementary to A is the color on this line on the other side of the
white point, which has the same relative distances to the CIE boundary as A, so
c/(c + d) = b/(a + b). This figure also shows how colors mix. When you mix 490 nm
light (point C) with 557 nm light (point D), you end up with light perceived to be a
color that is a point on the CD dashed line, and the location of the point on the line
depends on how much light of each is used. If the relative intensities are f/(e + f)
and e/(e+f), for the line segment distances e and f as shown, the color is A, which
is seen to have a hue of 550 nm (point B). (In this example, when ∼20% of 490 nm
is mixed with ∼80% of 557 nm, you see 550 nm). (From [522])

large corneas and crystalline lenses (to gather much light) and only rods
(because they are more sensitive than cones). In some animals, such as
cats, there is a mirror-like layer behind the retina (the tapetum) that
reflects transmitted light back through the retinal cells, to increase retinal
sensitivity; this produces eye-shine (bright eyes in the dark). They have
pupils that close to slits, which can protect their retinas from the bright
daylight sun much better than do round pupils (which cannot close as
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much). (Some truly nocturnal animals, such as owls, function well with
round pupils because they do not come out during the day.)

2. Air vs. water: Humans cannot see well under water (aside from turbulence
and waves in the water), because we have only about 1/3 of our imaging
power under water, and that is mostly the power due to the crystalline
lens. The reason for this is the different refractive indices of air and water,
as we saw earlier. Vision can be much better if we wear corrective goggles.
Fish and other animals living in the water have more spherical crystalline
lenses than humans to provide the extra optical power needed to image
in water. In species that live in water the crystalline lens is the main
source of refractive power. In fish the crystalline lens is indeed spherical.
Spherical aberration is minimized by a decrease in refractive index from
the crystalline lens center to the periphery (i.e., away from the optic axis).
Some animals can see well both in air and water. The “four-eyed” fish
Anableps swims along the surface with the upper half of their eyes in air
and the lower half in water. This fish has an elliptically shaped crystalline
lens (when viewed from the side). Light transmitted through the upper
(air) pupil impinges on the flattened surfaces of the crystalline lens (and
so has less refractive power), while that transmitted through the lower
(water) pupil impinges on the more curved surfaces of the crystalline lens
(and so has more refractive optical power).

3. Accommodation occurs in fish, as well as in snakes and adult amphibians,
by translating the crystalline lens forward and backward. In many birds
and reptiles the ciliary muscles compress the crystalline lens at its equator,
moving the anterior surface forward and increasing its curvature. The
front of the crystalline lens can actually touch the iris, which is made
rigid by sphincter muscles, and this can also increase the curvature of the
crystalline lens. In this way diving birds can increase the refractive power
of their eyes by 70–80 D, so they can see well in both air and water.

4. Eye placement: In some animals the placement of the two eyes is frontal
(including cats and humans), while in others it is lateral – i.e., on the sides
of their heads (such as in rabbits, birds, lizards, rodents, etc.). Frontal
eyes have overlapping views, which provide good depth perception, while
lateral eyes give a better panoramic view – sometimes with independent
motion of each eye.

11.7 Summary

Geometric optics, using Snell’s Law, can explain much of how the cornea and
crystalline lens image light on the retina. This includes developing models
of multiple lens systems and optical models of the eye. Image acuity can be
lessened by lens aberrations and the effects of diffraction. Imperfect vision
can be corrected by using corrective lenses designed by optics models. Models
of image formation and the properties of the eye can be linked to vision and
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visual perception, including the physics of the perception of color. Molecular
processes in the rod and cone cells in the retina, which detect the light and send
electrical signals to the brain, can be characterized and modeled to further
the understanding of vision.

Problems

The Eye and Basic Imaging

11.1. Let us explore our blind spot a bit further.
(a) Why does the experiment demonstrating the blind spot in your left eye
(using Fig. 11.4) prove it is “nasal?”
(b) Assume the eye acts as a lens in air with a 17 mm focal length (Standard
eye model) and determine how far your blind spot is from your fovea (in mm
and degrees)? Do you confirm the blind spot is 13–18◦ away from the fovea?
(c) Repeat the experiment described in Fig. 11.4 using your right eye, with
your left eye closed. How do you explain your findings? How can you modify
the experiment so you can determine the blind spot in that eye? Does this
prove that the blind spot in your right eye is also nasal and located 13–18◦

away from the fovea. Why?

11.2. (a) Derive Newton’s relation for a thin lens in air that forms a real
image, xx′ = f2, where x = d1 − f (the distance the source is in front of the
focal point to the left of the lens) and x′ = d2 − f (the distance the image is
after the focal point). (Hint: Draw a diagram from a source with a ray that
is parallel to the optic axis before the lens and one that is parallel to it after
the lens, and consider similar triangles.)
(b) If a source is 20 cm in front of (to the left of) the primary focal point
and the image is 5 cm to the right of the secondary focal point, find the focal
length and power of the lens and also confirm that (11.3) is satisfied.

11.3. Snell’s Law, n1 sin θ1 = n2 sin θ2 (11.5), predicts that rays will undergo
total internal reflection (and not be transmitted) when n1 > n2 for incident
angles θ1 > arcsin(n2/n1) (at the local planar interface). Show that light rays
inside the eye that hit the cornea at angles exceeding 49◦ cannot leave the
eye (assuming the medium in the eye has refractive index 1.33) (Fig. 11.59a).
(This total internal reflection can affect the visual inspection of eyes requiring
these large angles, except if a goniolens is used (Fig. 11.59b). These large-
angle rays are transmitted through the eye into a saline/contact lens assem-
bly in this goniolens and then they are reflected to more shallow angles for
inspection.)

11.4. A thin lens in air is composed of material with an index of refraction of
1.062. For each posterior radius of curvature R23 given in (a)–(c), find the an-
terior radius of curvature R12 needed so this lens has a focal length of 50 mm.
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Fig. 11.59. (a) Total internal reflection in the eye and a (b) diagram describing
how a goniolens works to inspect the eye, overcoming such total internal reflection.
(From [553]. Reprinted with permission of McGraw-Hill.) For Problem 11.3

Also, for each case sketch the shape of the lens and describe it as being either
biconvex, planoconvex, or positive meniscus.
(a) −0.0060 m
(b) ∞
(c) +0.0060 m.
(The parameters in this problem are equivalent to those for the eye crys-
talline lens, with the ratio of refractive indices of the lens to the humors being
1.42/1.337 = 1.062.)

11.5. Show the equations for a thick lens in air, (11.42) and (11.43), reduce to
the Lensmaker equation for a thin lens, (11.17), under appropriate conditions.

11.6. A glass lens in air has n = 1.5, R12 = 200 cm, and R23 = −200 cm.
(a) Assume it is a thin lens and find its focal length.
(b) Now assume that the lens has a thickness t = 5 mm. Find its effective and
back focal lengths.
(c) Will the rays cross the axis first, i.e., focus first, for the lens described in
(a) or (b)? (Compare the focal length for the lens in (a) to the distances in
the lens in (b) that incident parallel rays focus beyond the (i) back surface,
(ii) middle plane, and (iii) front surface of the lens.)

11.7. (a) Estimate the loss of light at each of the four ocular interfaces. As-
sume that each interface is flat and that light hits each at normal incidence.
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(Use the optical data presented in Table 11.1 for Schematic eye 1.)
(b) Does this change significantly with wavelength?

11.8. Show that the thick lens equations for arbitrary media, (11.40) and
(11.41), reduce to results for a thick lens in air, (11.42) and (11.43), when
n1 = n3 = 1 and n2 = n.

11.9. Use the parameters in the text for Schematic eye 1 to determine how far
past the anterior surface of an optical element incident parallel rays converge
to the optic axis to form a focus when the element is assumed to have a finite
thickness and compare this to that assuming the thin lens approximation. Do
this for the:
(a) Cornea.
(b) Crystalline lens.
(c) Does this suggest that the correction for a thick lens is significant?

11.10. Model the tears on the cornea as a 7 μm thick layer with refractive
index 1.33, with anterior and posterior radii of curvature the same as that of
the anterior surface of the cornea for Schematic eye 1.
(a) What is the optical power of this tear layer?
(b) What does it correspond to in D?
(c) Do tears affect imaging significantly?

11.11. Thomas Young, famous for seminal experiments and interpretations in
optics almost 200 years ago, showed that ocular accommodation was due to
the crystalline lens and not the cornea because he could not focus on nearby
objects when he immersed his eye in water. We know that his conclusion was
right, but was his reasoning faulty? Use (11.48) and (11.56), and what you
(should) know about accommodation.

11.12. Equation 11.63 shows that we need 4 D of accommodation for our
eyes to image at all distances ≥25 cm. Can the similar expression, 1/feye,NP−
1/feye,FP, which uses the focal lengths of a person’s own near and far points, be
used to determine that person’s own accommodation? (Hint: Consider a very
young person. Also, consider a person with more than 4 D accommodation
who still needs corrective lenses and perhaps also bifocals.)

11.13. Estimate the change in the radii of curvature of the crystalline lens
surfaces needed to achieve 4 D of accommodation (so a person viewing a source
at her far point can then view a source at her near point). Use (11.50) and
(11.51) and alternately assume (a) that the curvatures of the anterior and
posterior surfaces change by the same percentage or (b) that only the ante-
rior surface changes. (Because accommodation is usually cited for an effective
imaging element in air, the amount of accommodation required within the
eye is larger by the refractive index of the humors, so �4 D × 1.34 = 5.5 D is
needed.)
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11.14. In a model of the crystalline lens, the lens has a refractive index of
1.42 and the humors before and after it have a refractive index of 1.337, and
the magnitudes of the radii of curvature of the two lens surfaces are the same
(but they have different signs). Find the radii of curvatures of the anterior
and posterior surfaces if the total refractive power of the crystalline lens is
the same as in (11.53) (ignoring the thickness of the lens).

11.15. A crystalline lens is modeled here as in Fig. 11.19, except it is biconvex
with radii of curvature that always have equal magnitudes. This magnitude is
7.54 mm when a person views a source at her far point. (The crystalline lens
still has an overall refractive power of 22.10 D, ignoring the thickness of the
lens.) Find the radius of curvature magnitude when the lens adapts to give
4 D of accommodation (to then allow the person to see her near point), which
is equivalent to 5.5 D in the eye (as is explained in Problem 11.13).

11.16. The argument is made that extremely little ultraviolet light with wave-
lengths from 300 to 400 nm reaches the retina, so it does not cause retinal
damage and consequently this light does not damage eyes. Discuss the merits
of this argument. Also, where is this light absorbed in the eye?

11.17. The light from a red laser pointer has a wavelength near 650 nm. Where
in the eye is most of this wavelength absorbed?

11.18. How well is the transmission spectrum of the eye matched to the spec-
tral responses of rods and cones?

11.19. How well are the spectral responses of the rods and cones matched to
the spectrum of solar light? How well are they matched to the spectrum of
solar light that actually reaches sea level?

11.20. A nanowatt of light, equally spread across the wavelengths 400–
700 nm, is incident on your eye. Approximately what power impinges on your
retina?

11.21. Which can cause more retinal damage, light that is highly spatially
coherent that can focus according to (11.67) or light that is less coherent that
cannot be focused as well. Why?

11.22. A laser enters your eye. Is more damage done if you turn your eye
to look at the laser source (which is a reflex) or if you do not stare into the
beam? Why?

Visual Acuity and Aberrations

11.23. In a Snellen chart a letter is 8.8 mm high in the 20/20 line. How high
is it in the 20/200 line?
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11.24. In the text it was said that a 8.8 mm letter in the 20/20 line of the
Snellen chart subtended a 5 min arc at the eye of a person standing 20 ft
from the chart. This 20/20 (i.e., 20 ft/20 ft) line is also known as the 6/6 (i.e.,
6 m/6 m) line. Does this 5 min arc angle more nearly refer to a person standing
20 ft or 6 m from the chart?

11.25. (a) The letters in the 20/20 line of the Snellen chart are 8.8 mm high
and wide. Show that this letter is about 25 μm high and wide on the retina.
(b) Explain why this is considered excellent vision.

11.26. If you use an illuminance much greater than 480 lux in conducting a
Snellen eye test, your pupil diameter begins to decrease. Discuss how this
could affect the visual acuity you are trying to measure in this test, given
the effect of pupil diameter on diffraction and lens aberrations. (Most people
think you see better in bright light.)

11.27. (a) Show that the 8.8 mm high letters in the 20/20 (or 6/6) line of the
Snellen chart subtend an angle of 1.47 mrad when you are 6 m away (where
1 mrad = 1 milliradian = 1 × 10−3 rad).
(b) The Rayleigh criterion for barely resolving objects separated by an angle θ
is that θ needs to be at least θR = 1.22λ/d, where d is the diameter of the lens
(or that of the aperture limiting the lens). Show how this criterion is related
to the Airy diameter (11.67).
(c) This Rayleigh criterion is a strict limit imposed by diffraction. Show that
for 500 nm light, this angle is 0.122 mrad for an aperture diameter of 0.5 cm.
How many times the Rayleigh criterion limit is the arc angle needed for 20/20
vision?
(d) The resolution limit for most people is 0.5 mrad, and for the most acute
vision under optimum conditions it is 0.2 mrad. How many times the Rayleigh
criterion limit are these?

11.28. How small would the pupil diameter need to be to affect the ultimate
diffraction limit of the eye lensing system? Given the sizes of cones, would
this change make a practical difference?

11.29. (a) Assume for the moment that the rods and cones are 0.1 μm in
diameter, that they are tightly packed (with no space between them), and
that each is individually connected to the brain by a single neuron. Ignoring
optical aberrations, would you see images sharper in the blue or the red?
Why?
(b) Ignore the assumptions in part (a), returning to the normal conditions,
and address the same questions again.

11.30. (a) Reference [561] (as cited in [560]) used experimental data measured
using a human eye with 3.0 mm pupil diameter to obtain an analytic fit to
the line spread function: I(i) = 0.47 exp(−3.3i2) + 0.53 exp(−0.93|i|). The
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distance on the retina from the fovea is i, in arc min. Show that Fig. 11.30
accurately plots this function.
(b) Plot on this same set of axes this same function after each point has been
broadened by 1 arc min, and compare them. (One relatively crude, way to
do this is divide the x-axis into bins that are 0.1 arc min wide, so you have
a set of rectangles that have heights I(i) and widths 0.1 arc min centered
at i = 0.0, ±0.1, ±0.2, ±0.3, . . . arc min. Replace these by rectangles with
widths of 1.0 arc min. Sum the contributions at each i and then normalize all
points by the value at i = 0. This can be made less crude by using a smaller
width or a broadening function that is smoother than a rectangle.)

11.31. In Schematic eye 1 and other models of the eye the radius of curvature
of the anterior surface of the (biconvex) crystalline lens is larger in magnitude
than that of the posterior surface. Use Fig. 11.27 to explain qualitatively why
this asymmetry helps lessen spherical aberration in the eye.

11.32. Dispersion in glass is usually presented by the refractive index at the
center of the yellow line doublet (D) from a sodium lamp at 589.3 nm, n(D),
and the dispersion constant (or Abbe number or V-number or constringence)
V = (n(D)− 1)/Δn, where Δn = n(F )−n(C) is the difference in the indices
in the blue (F , 486.1 nm) and red (C, 656.3 nm) lines from a hydrogen lamp.
The refractive index is assumed to vary linearly between the red and the blue.
For borosilicate crown glass BSC-2: n(D) = 1.517 and V = 64.5 and for dense
flint glass DF-2: n(D) = 1.617 and V = 36.6. (Chromatic aberration can be
minimized in a doublet lens (and achromat), with the two component lens
made of two glasses, such as these, with very different dispersion.)
(a) If the focal length of a simple single-component lens composed of either
type of glass is designed to be 17 mm in the yellow, what is its focal length in
the red and the blue?
(b) If the screen for the image is 17 mm away from the lens (as for the retina),
what is the size of the image size (blur) for each range of color? (Ignore the
limitations of diffraction. Assume the source is at infinity.)

11.33. The dispersion constants for ocular media in Table 11.3 use a revised
definition of dispersion that differs slightly from the earlier definition used in
Problem 11.32. Now V = (n(d) − 1)/Δn, where Δn = n(F ′) − n(C ′) is the
difference in the indices in the blue (F ′, 480.0 nm) and red (C, 643.8 nm) lines
from a cadmium lamp and n(d) is that at the center of the yellow line doublet
(d) from a sodium lamp at 587.6 nm. Find the refractive powers at each of
the four interfaces in the eye, and the sum of these refractive powers, at each
of these three wavelengths. (Assume the refractive index of the cornea is at
587.6 nm and that dispersion constant of the cornea is 51.5.)

11.34. Use (11.68) (describing chromatic aberration in the eye in diopters) to
estimate the change in index of refraction for the eye crystalline lens in the
red (630 nm) and blue (470 nm) relative to the yellow (578 nm). Compare this
to that of glass in Problem 11.33
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11.35. Spectral dispersion in water is characterized by n(D) = 1.333, V = 55
(see Problem 11.32 for definitions). Model the air/anterior cornea interface
instead as an air/water interface. Evaluate the chromatic aberration by de-
termining the change in focal length across the visible (in D). How does this
compare to the ∼2 D of chromatic aberration in the eye?

Schematic Eyes

11.36. Apply simple theory (and ignore the distance between refractive sur-
faces) to the schematic eyes to find the total refractive power for:
(a) Schematic eye 2
(b) Schematic eye 2′ (accommodated version of part (a)).
(c) Schematic eye 3.
(d) How much refractive power is added in the accommodated version of the
Schematic eye 2? Is this enough so these two models can accommodate for
near and far vision?

11.37. (advanced problem) Repeat Problem 11.36 using the more exact treat-
ment of the schematic models (i.e., account for the distances between refractive
surfaces).

11.38. Find the refractive power of the cornea, crystalline lens, and the entire
eye for the Schematic exact eye, ignoring the distances between refractive
surfaces. How do these compare to the values with more exact treatment,
43.05 D, 19.11 D, and 58.64 D, respectively?

11.39. (advanced problem) Show that the refractive powers of the cornea
and crystalline lens combine to give the overall refractive power of the eye for
the Schematic exact eye. The first and second principal points of the cornea
are at −0.0496 mm and −0.0506 mm, respectively, and those of the crystalline
lens are at 5.678 mm and 5.808 mm, respectively. Also use the data provided
in Problem 11.38 and Table 11.1. As part of this problem, show that the
positions of the principal points of the overall system agree with those given
in Table 11.1.

11.40. Show that PP′ = NN′ and FP = N′F′ for each model in Table 11.1.

11.41. Model an effective eye lens as a cornea thin lens with focal length
25 mm followed by a “crystalline lens” thin lens with focal length 50 mm,
with both reduced lenses in air:
(a) What is their combined effective focal length if their separation is zero?
(b) What is their combined effective focal length if their separation is 9 mm
(as in the eye)?
(c) What is this difference in diopters and is it significant?

11.42. Another published set of refractive indices for the eye components has
ncornea = 1.376, naqueous = 1.336, nlens = 1.40, nvitreous = 1.337, and the four
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Table 11.6. More data for simplified schematic eyes for unaccommodated (for dis-
tant vision) and accommodated (for near vision) conditions. (Using data from [535]).
For Problem 11.43

subject H subject H subject M subject M
unaccomm. accomm. unaccomm. accomm.

radii of surfaces (mm)
cornea 7.74 7.74 7.6 7.6
anterior lens 11.62 6.90 12.0 5.5
posterior lens −5.18 −5.05 −5.74 −4.87

distance from anterior cornea (mm)
anterior lens 3.68 3.34 3.33 3.06
posterior lens 7.34 7.58 7.17 7.26
first principal point P 1.61 1.96 1.42 1.69
second principal point P′ 1.88 2.33 1.70 2.01

refractive indices
humors 1.336 1.336 1.336 1.336
crystalline lens 1.413 1.432 1.413 1.415

power of the complete eye (D) 60.44 69.62 60.04 68.95

radii of curvature as (from anterior to posterior) 7.8 mm, 6.4 mm, 10.1 mm,
and −6.1 nm. How do the refractive power and focal length differ from those
calculated earlier, using (11.54)–(11.55).

11.43. Let us explore accommodation using the simplified schematic eye (such
as Schematic eye 2) for two people, subjects H and M, both having about 9 D
of accommodation, by using the data in Table 11.6 [535].
(a) Estimate the ages of the subjects.
(b) Qualitatively, how do the subjects differ in how their eyes accommodate?
(c) Find the refractive power of each interface in each case.
(d) Use simple theory (and ignore the distance between the refractive sur-
faces) to find the refractive power of the eye in each case and the amount of
accommodation in both subjects.
(e) (advanced problem) Accounting for the distance between the refractive
surfaces, confirm the total refractive powers and the principal point locations
of each eye, as listed in Table 11.6.

More Vision Models

11.44. Use simple theory (and ignore the distance between the refractive sur-
faces) to determine how the total refractive power of the eye would change
if the refractive index of only one of the following optical elements were in-
creased by 1%?
(a) cornea
(b) aqueous humor
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(c) Crystalline lens.
(d) Vitreous humor.
Start with the values for Schematic eye 1.

11.45. People from Planet X have eyes that are constructed much like ours.
They have the same components and the refractive indices of each medium
are the same as ours. One difference is that their eyeballs are twice as long as
ours. Assume geometric optics theory and ignore the distances between eye
components to explore in what other ways their eyes are different. Assume that
the radii of curvature of their four refractive interfaces (anterior and posterior
surfaces of the cornea and crystalline lens) are in the same proportion as
ours.

11.46. Ophthalmologists and optometrists treat 20 ft (or 6 m) as the “optical
infinity.” For the human eye, what is the difference in refractive power (in D)
needed to see at this optical infinity vs. the real infinity?

11.47. In a Goldmann tonometer, the force needed to make a circular region
of the cornea (with diameter 3.06 mm) flat is measured. The resulting pressure
needed to make it flat is equal to the intraocular pressure, and therefore this is
a good test for glaucoma. Show that for an intraocular pressure of 15 mmHg,
this applied force corresponds to the gravitational force of 1.5 g applied over
this area.

Correcting Vision

11.48. A person with myopia has a far point 60 cm from her eye. What correc-
tive eyeglasses and contact lenses should she wear? (Give your answer in D.)

11.49. A person with hyperopia has a near point 500 cm from his eye. What
corrective eyeglasses and contact lenses should he wear? (Give your answer in
D.)

11.50. Aside from corrections for aberrations, what are the potential advan-
tages of using eyeglasses with positive or negative meniscus lenses, rather than
biconvex/biconcave or planoconvex/planoconcave lenses?

11.51. Must contact lenses always be meniscus lenses?

11.52. Prove that you can make positive or negative focal length contact
lenses even though R23 (in Fig 11.12) is always >0.

11.53. For each case depicted in Fig. 11.60, describe the status of the patient’s
vision and how it could be corrected, if necessary.

11.54. Find the prescription in diopters (D) to correct the eyesight for:
(a) A myopic person with a far point of 2 m (using contact lenses).
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Fig. 11.60. Ranges of eye refractive powers for patients (a)–(f). The designated
NP and FP are the refractive powers that are required to have good vision at the
desired near and far points. For Problem 11.53

(b) A hyperopic person with a near point of 1 m who wants to read material
25 cm away and who has very good crystalline lens accommodation (using
eyeglasses).
(c) A person with perfect vision for far points who, because of poor accommo-
dation (presbyopia), has a near point of 1 m, and who wants to read material
25 cm away (using eyeglasses).
(d) How do the people in parts (b) and (c) differ? (Could they both use
their eyeglasses while attending a baseball game and working at a computer
terminal?)
(e) What is the accommodation of the person in part (c) (assuming a stan-
dard 17 mm long eyeball for the Standard eye model, with air replacing the
humors)?
(f) If the near point for the person in part (a) is 15 cm without contact lenses,
what is it when the prescribed contact lenses are worn?

11.55. An ophthalmologist estimates the prescription for a patient based on
the smallest lines she can read in the Snellen chart: for 20/20: 0 D to −0.25 D,
for 20/30: −0.50 D, for 20/40: −0.75 D, for 20/50: −1.00 D to −1.25 D, for
20/100: −1.75 D to −2.00 D, and for 20/200: −2.00 D to −2.50 D. Find the
far point for patients who are able to read each given Snellen chart line (and
no better without eyeglasses), using average prescriptions when ranges are
given. (Note that the optical infinity we are using in our analysis is not the
20 ft value assumed in the Snellen chart. See Problem 11.46.)

11.56. A myopic person has an eyeglass prescription for −3.00 D. What is the
appropriate prescription for contact lenses?

11.57. Explain the optical corrections in the following prescription for eye-
glasses.

O.D. −4.00 + 1.50 × 90 + 2.3
O.S. −3.00 + 2.3
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11.58. Approximately how old is the person needing the glasses in Prob-
lem 11.57?

11.59. A contact lens made of material with refractive index 1.47 has a pos-
terior radius of curvature set to match the anterior of the cornea (0.0078 m).
Find the needed anterior radius of curvature to correct the vision of a:
(a) Myopic person needing −2.00 D correction.
(b) Hyperopic person needing +2.00 D correction.

11.60. A person wears glasses that provide −3.00 D of correction for myopia
and wants to have eye surgery (by RK, PRK, or LASIK) to be able to see
perfectly without glasses. The person has a cornea with anterior radius of
curvature of 0.0078 m. What should the radius of curvature be after surgery?
(Remember that −3.00 D refers to the Standard eye in air.)

11.61. A person with astigmatism has corrective lenses with +2 D spherical
correction and +1 D cylindrical correction in what we will call the x direction.
How could we rephrase spherical and cylindrical corrections for this same
prescription if the cylindrical correction were that along the y direction (which
is perpendicular to the x direction)?

11.62. We know that a person needs 4 D of accommodation to be able to see
both near and far, but does that mean that someone with even more accom-
modation does not need corrective lenses? Consider as an example someone
with a 22-mm-long eyeball in the Reduced eye approximation. Let us say that
both persons A and B have 8 D of accommodation. The refractive power of
person A can change from 58 to 66 D, while that of person B can change from
52 to 60 D.

11.63. The keratometer (Fig. 11.41) determines the radius of curvature of the
anterior (outer) surface of the cornea by tracking the reflection from that
surface. Keratometers convert this radius into a K reading, which is the re-
fractive power of the air/cornea surface. However, keratometers sometimes
assume slightly different refractive indices for the cornea, often 1.3375, but
sometimes other values such as 1.336.
(a) Using n = 1.3375, determine the radius of curvature for K readings of 38,
42, 46, and 50.
(b) If the K reading is 44 and you are not sure which n was used, what is the
uncertainty in the cornea radius of curvature?

11.64. The stage of keratoconus is characterized by the K reading, as mea-
sured by a keratometer (Fig. 11.41). It is mild for K readings <45 D, moderate
up to 52 D, advanced up to 60 D, and severe above 60 D. What is the radius
of curvature in each case? (The keratometer measurement is sensitive to the
central region of the cornea and so these K readings are averaged over the
apical region of the cornea.)
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11.65. What happens if the contact lens base curve and the anterior surface
of the cornea do not match?

11.66. A contact lens has a density of 0.9 g/cm3. It has a thickness as given in
the chapter and a surface area that can be calculated from the lens diameters
given in the chapter. (In calculating this area, assume the lens is flat.) Assume
tears have the same surface tension as water.
(a) Estimate the forces needed to pry a typical soft and hard contacts lens
loose off your eye.
(b) When you tilt your head down so the contact lenses on your eyes face
down, they do not fall off. Why? (Give a numerical answer.)

Visual Perception and Vision in Animals

11.67. The normalized spectral luminous efficiency is 0.0040 at 420 nm, 0.060
at 460 nm, 0.323 at 500 nm, 1.00 at 555 nm, 0.6310 at 600 nm, 0.1070 at
650 nm, and 0.0041 at 700 nm. How many watts are needed to provide 1,000
lumens at each wavelength?

11.68. In a laboratory, a photometer measures 25 μW due to room lighting
over its 0.5 cm2 area. Find the illuminance in the room in lux. Assume a
spectrally-averaged luminous efficiency. Does this value make sense? Why?

11.69. A person with sensitive corneas is comfortable with normal room light-
ing but needs to wear fairly dark sunglasses – that transmit about 1/8 of the
incident light – under normal conditions outside. Less dark sunglasses are not
sufficient. Is this all consistent and does it make sense? Why?

11.70. (a) A filter that transmits a fraction T of incident light is said to have
an optical density OD = − lg(T ). Express T in terms of the OD.
(b) Find the optical density of the sunglasses in Problem 11.69.

11.71. Light entering a pinhole camera with a pinhole aperture of diameter
d forms an image on the back surface, a distance L2 away, as in Fig. 11.61:

Fig. 11.61. Pinhole camera model of a pinhole eye. Imaging of an extended source is
shown. For purposes of illustration a very large pinhole is shown. For Problem 11.71
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(a) By using geometrical arguments, show that a point source a distance L1

from the pinhole, forms an image of dimension Δ = [(L1 + L2)/L1]d, which
is �d for the usual case of L1 � L2.
(b) What is the improvement in the resolution of the human eye over a pinhole
eye with d = 1 mm?
(c) Let us say d was made small enough so the resolution of the human and
pinhole eye were the same. How much more light would be transmitted by the
human lensing system? (If the pinhole were really that small, the transmitted
light would diffract much and the imaging would, in fact, be very poor. Still,
this illustrates that the human lensing system improves both resolution and
light throughput over the pinhole analog.)

11.72. Let us model the eye as a lens with 17 mm focal length in air that forms
a sharp image on the retina when it is 17 mm away and the source is at infinity
(Standard eye model). In some animals accommodation occurs by changing
the separation of the crystalline lens and retina, rather than changing the
focal length of the crystalline lens. (Many fish can move their lenses using
intraocular muscles.) How far would the crystalline lens need to move to form
a sharp image on the retina when the object is only 30 cm away, and in which
direction would the crystalline lens need to be moved?
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Electrical and Magnetic Properties

Charge movement, electric fields, and voltages play essential roles in the body.
The driving forces that induce such charge motion are complicated chemical
and biological processes that are only partially understood. The interplay of
the resulting charges and fields is physical in nature and is well understood.

We have addressed the importance of electricity in the body only briefly
in previous chapters. In Chap. 3 we examined the electromyograms (EMGs)
of muscle activity (Fig. 3.12), in Chap. 5 we saw that muscles are activated by
electrical stimuli and the release of Ca2+ ions, and in Chap. 8 we learned that
the polarization and depolarization of cell membranes in the heart provide the
signals for electrocardiograms (EKGs, ECGs). We now discuss such electrical
interactions in more depth as we focus on the electrical properties of the body,
the propagation of electrical signals in the axons of nerves, and electrical
potentials in the body (Table 12.1).

It is impossible to overemphasize the importance of this human “bioelec-
tricity.” The function of every cell depends on it. Every neuron in the brain,
every neuron transmitting any information within the body, every neuron
enabling skeletal, cardiac, and smooth muscles is yet another vital example.
This chapter is largely a discussion of the physics of the motion of positive and
negative ions in the blood and cells. We will be concerned with the motion of
these ions across membrane boundaries, as in neurons, but not the underlying
biology that controls these ion channels. Electric voltages measured at differ-
ent places in the body describe electrical activity, as is seen in Table 12.1. We
will emphasize the propagation of electrical signals in nerves and monitoring
the EKG signals from the heart.

Electric and magnetic fields are closely coupled in many areas of physics;
for example, electromagnetic waves (visible light, radio waves, X-rays, and so
on) consist of electric and magnetic fields oscillating in phase. Magnetic fields
appear when current flows. Although current flow is important in the body,
the resulting magnetic fields appear to be relatively unimportant and we will
address magnetism in the body only briefly in this chapter. For more details on
the electrical and magnetic properties of the body see [566, 579, 581, 586, 594].
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Table 12.1. Typical amplitude of bioelectric signals. (Using data from [567, 580])

bioelectric signal typical amplitude

electrocardiogram (EKG/ECG, heart) 1 mV
electroencephalogram (EEG, brain waves) 10–100 μV
electromyogram (EMG, muscle) 300 μV
transmembrane potential 100 mV
electro-oculogram (EOG, eye) 500 μV

12.1 Review of Electrical Properties

We first review the various elements of electrostatics and current flow needed
to understand electricity in the body, including the flow of an electrical pulse
along an axon.

The electric field at a distance r caused by a point charge q is given by
Coulomb’s Law:

E =
kqr
r3

=
kqr

r2
, (12.1)

where the vector from the charge to the point is r = rr and r is a unit vector
from that charge to the point of interest, as illustrated in Fig. 12.1a,b. The
constant k = 8.99 × 109 N-m2/C2 for a charge in vacuum, where C stands
for coulombs, and can also be expressed as 1/4πε0. In a medium of dielectric
constant ε (where ε = 1 in vacuum), k = 1/4πε0ε.

The potential of that charge is

V =
kq

r
. (12.2)

and, as here, the potential is usually defined to be zero as r approaches infinity.
The potential difference (or voltage) between two points “b” and “a” caused
by a field is

ΔV = Vb − Va = −
∫ rb

ra

E · dr. (12.3)

This can also be expressed as

E = −∇V (12.4)

or in one-dimension as

E= −dV

dx
. (12.5)

If there are two charges q and −q in vacuum separated, say a distance d in
the d unit vector direction (so the vector between them is d), the electric field
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Fig. 12.1. The electric field vectors for (a) positive and (b) negative charges are
shown, along with those for (c) a dipole of two charges +q and −q, separated by
a distance d, so the magnitude of the dipole moment is P = qd. The direction of
the dipole moment is seen by the arrow within the dipole in (d). (d) also shows the
potential along the different radial directions shown for this dipole, and the 1/r2

decrease in each of these voltages

is the vector sum of the contributions from (12.1) and the electric potential
is still obtained using (12.3) (Fig. 12.1c,d). For r � d, the expression for the
potential can be simplified to give

V =
kP.r
r3

, (12.6)

where P = qd is the electric dipole moment vector, which has magnitude
P = qd and points in the d direction. If the angle between the dipole vector
P and distance vector r is θ, then this equation becomes

V =
kP cos θ

r2
. (12.7)

Similarly, we can calculate the dipole moment for many charges separated
by various distances. Evaluation of the fields caused by such electric dipoles
is of particular value when there is no net charge in the collection of charges,
as is true most everywhere in the body.
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Fig. 12.2. Kirchhoff’s 1st Law, showing that the algebraic sum of the current flows
to a point must be zero (if charge is not accumulating or being depleted at that
point). (Note that least one of the current flows must be negative, i.e., it must point
outward)

Now let us consider a moving particle with charge q (in coulombs, C), the
current, I = dq/dt, associated with such a charge or charges (which is the
change in charge per unit time), and the associated current density, J = I/A
(which is the current flowing per unit area A). Charge is conserved, meaning
that it is neither created nor lost. It also means that the vector sum of all
currents entering a volume or a small volume element (such as a node) is zero
in steady state (Fig. 12.2). This conservation of current (and charge) is known
as Kirchhoff’s 1st Law

∑

n

In = 0. (12.8)

(The direction of current flow is important here, even thought the current is
being expressed as a scalar.)

When a current flows along a material with resistance R (in ohms, Ω)
(which we called Relect in other chapters), there is a voltage drop V (in volts V)
(which we called Velect in other chapters) across the material given by Ohm’s
Law (Fig. 12.3a)

V = IR. (12.9)

Fig. 12.3. (a) Ohm’s Law and (b) evaluating resistance R from resistivity ρ
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The resistance is an extensive property that depends on the intensive property
resistivity ρ of the material, and the cross-sectional area A and length L of
the structure (Fig. 12.3b)

R =
ρL

A
. (12.10)

For a cylinder with radius a, we have A = πa2 and R = ρL/πa2. More
generally, for a structure with uniform cross-section, the resistance R is pro-
portional to length and we can define a resistance per unit length

r =
R

L
=

ρ

A
, (12.11)

which equals ρ/πa2 for conduction along a cylinder. The conductance G (units
S (siemens), 1 S = 1 mho = 1/ohm = 1/Ω) is 1/R, the conductivity is σ = 1/ρ,
and the conductance per unit area g = G/A = 1/RA = 1/ρL. In the body,
charged ions, such as Na+, K+, Ca2+, Cl−, and negatively-charged proteins,
are the important carriers of charge. Electrons are the charge carriers in most
man-made electronic circuits.

A voltage or potential difference V can also develop between two struc-
tures, one with a charge +q and the other with charge −q, because of the
electric fields that run from one to the other. This voltage is

V =
q

C
, (12.12)

where C is the capacitance (in farads, F) of the system (called Celect in other
chapters). The capacitance C depends on the geometry of these two structures.
For example, they could be two parallel plates or two concentric cylinders
(Fig. 12.4), which is similar to the axon of a neuron.

Fig. 12.4. Capacitance for (a) parallel plates and (b) cylindrical shells
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Fig. 12.5. Kirchhoff’s 2nd Law, showing that the algebraic sum of the potential
drops (voltages) along a closed loop is zero

For two parallel plates with area A separated a distance b by an insulator
with dielectric constant κ, we see

Cparallel plates =
κε0A

b
. (12.13)

The charge density on each plate is σ = q/A.
The algebraic sum of all voltages along a closed loop circuit equals zero

(Fig. 12.5). This is known as Kirchhoff’s 2nd Law
∑

n

Vn = 0. (12.14)

12.2 Electrical Properties of Body Tissues

12.2.1 Electrical Conduction through Blood and Tissues

When voltage is applied across a metal, a current flows because electrons
move under the influence of an electric field. When a voltage is applied across
a solution containing positive and negative ions, current flows because both
ions move under the influence of the electric field. The conductivity σ of
a solution is the sum of the contributions to the current flow for each ion.
For low concentrations of these ions, this contribution is proportional to the
concentration ni for that ion, with a proportionality constant Λ0,i, so

σ =
∑

i

niΛ0,i. (12.15)

Table 12.2 gives Λ0,i, the molar conductance at infinite dilution for several
common ions, while Table 12.3 gives typical concentrations of common ions
in the blood and in cells. The resistance of a path can be determined using
ρ = 1/σ and R = ρL/A (12.10).

As with many materials, body tissues have dielectric properties, but still
have some conductivity, and therefore can be considered as leaky dielectrics.
The resistivity of body tissues is shown in Table 12.4 and Fig. 12.6.
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Table 12.2. The molar conductance at infinite dilution Λ0,i for different ions. (Using
data from [596])

ion Λ0,i (1/ohm-m-M)

H+ 34.9
OH− 19.8
Na+ 5.0
Cl− 7.6

Table 12.3. Ionic concentrations in blood and cell cytoplasm of unbound ions.
(Using data from [597])

ion blood
concentration

cytoplasm
concentration

ratio

Na+ 145 mM 12mM 12:1
K+ 4 mM 140mM 1:35
H+ 40 nM 100 nM 1:2.5
Mg2+ 1.5 mM 0.8 mM 1.9:1
Ca2+ 1.8 mM 100 nM 18:1
Cl− 115 mM 4mM 29:1
HCO−

3 25 mM 10mM 2.5:1

Table 12.4. Low frequency resistivity of some body tissues, in ohm-m (Ω-m). (Using
data from [567, 573, 586])

tissue resistivity

cerebrospinal fluid 0.650
blood plasma 0.7
whole blood 1.6 (Hct = 45%)
skeletal muscle
– longitudinal 1.25–3.45
– transverse 6.75–18.0
liver 7
lung
– inspired 17.0
– expired 8.0
neural tissue (as in brain)
– gray matter 2.8
– white matter 6.8
fat 20
bone >40
skin
– wet 105

– dry 107
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Fig. 12.6. Cross-section of the thorax, with the electrical resistivity of six types of
tissues. (From [586]. Used with permission)

12.3 Nerve Conduction

Figure 12.7 shows the structure of nerve cells or neurons with a nucleus,
dendrites that receive information across synapses, an axon, and the axon
terminals and synapses for signal transmission to other neurons. There are

Fig. 12.7. Structure of a neuron. (From [592])
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Fig. 12.8. The successive wrapping of Schwann cells about the axon of a neuron to
form the myelin sheath of a myelinated nerve. (From [592])

many such neuron axons in a nerve. Unmyelinated axons have no sheath
surrounding them. Myelinated axons have myelin sheaths in some regions,
which are separated by nodes of Ranvier (ron-vee-ay’). These sheaths are
formed by Schwann cells that are wrapped around the axon (Fig. 12.8),
with successive wrapped cells separated at a node of Ranvier (Fig. 12.7).
We will concentrate on how an electrical impulse travels along such
axons.

Approximately 2/3 of the axon fibers in the body are unmyelinated. They
have radii of 0.05–0.6 μm and a conduction speed of u (in m/s) ≈ 1.8

√
a,

where a is the radius of the axon (in μm). Myelinated fibers have outer radii
of 0.5–10 μm and a conduction speed of u (in m/s) ≈ 12(a + b) ≈ 17a, where
b is the myelin sheath thickness (in μm) (and a + b is the total axon radius).
The spacing between the nodes of Ranvier is ≈280a.

Neurons whose axons travel from sensing areas to the spinal cord are called
afferent neurons or input or sensory neurons. (They are “affected” by condi-
tions that are sensed.) Neurons whose axons leave the ventral surface of the
brain stem and the spinal cord to convey signals away from the central ner-
vous system are efferent neurons or motor neurons, and these neurons exercise
motor control. (They “effect” a change.) There are approximately 10 million
afferent neurons, 100 billion neurons in the brain with 100 trillion synapses,
and a half a million efferent neurons, so there are roughly 20 sensory neurons
for every motor neuron and several thousand central processing neurons for
every input or output neuron for processing. Bundles of these neuron axons
are called nerves outside of the brain and tracts inside the brain. Details about
the nervous system are given in [588].

There are approximately 1 − 2 × 106 optical nerves from the 1 − 2 × 108

rods and cones in our eyes, 20,000 nerves from the 30,000 hair cells in our
ears, 2,000 nerves from the 107 smell cells in our noses, 2,000 nerves from the
108 taste sensing cells in our tongues, 10,000 nerves from the 500,000 touch-
sensitive cells throughout our body, and many (but an uncertain number of)
nerves from the 3 × 106 pain cells throughout our body.
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Fig. 12.9. Ion concentrations (in mmol/L) in a typical mammalian axon nerve
cell (ni) and in the extracellular fluid surrounding it (no), and their ratios (ni/no).
(Based on [581])

12.3.1 Cell Membranes and Ion Distributions

The cell membrane divides the intracellular and extracellular regions, in neu-
rons and other cells. There are Na+, K +, Cl −, negatively-charged proteins,
and other charged species both in the neurons (intracellular) and in the ex-
tracellular medium. The concentrations of these ions are such that there is
charge neutrality (i.e., an equal number of positive and negative charges) in
both the intracellular and extracellular fluids. However, there are negative
charges on the inside of the cell membrane and positive charges on the out-
side of this membrane that produce a resting potential of −70 mV (Fig. 12.9).
This means that the intracellular medium is at −70 mV, when the extracellu-
lar potential is arbitrarily defined to be 0 V, as is the custom. Only potential
differences are significant, so we are not limiting the analysis by fixing the
extracellular potential. This resting potential is the usual potential difference
when there is no unusual neural activity. This is known as the polarized state.
(The propagation of an electrical signal would constitute this type of unusual
activity.)

While there is charge neutrality both inside and outside the membrane, the
concentrations of each ion are not equal inside and outside the cell, as we will
see. The differences in ion concentrations inside and outside the cell membrane
are due to a dynamic balance. When there are changes in the permeability of
the cell membrane to different charged species, there are transient net charge
imbalances that change the potential across the cell membrane. An increase
in the membrane potential from −70 mV, such as to the −60 mV seen in
Fig. 12.10, is known as depolarization, while a decrease from −70 mV to say
−80 mV is called hyperpolarization. Depolarization is due to the net flow of
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Fig. 12.10. The membrane resting potential of −70 mV (inside the membrane rel-
ative to the always fixed 0 mV outside) – the polarized state, along with potential
disturbances showing depolarization (voltage increases from the resting potential
value), repolarization (returns to the resting potential), and hyperpolarization (de-
creases from the resting potential)

positive charges into the cell or negative charges to regions outside the cell.
Hyperpolarization is due to the net flow of negative charges into the cell or
positive charges to outside the cell. Such changes in ion permeability are often
termed as changes in the ion channel.

Figure 12.9 also shows the concentrations of some of the important charged
species inside and outside the cell under resting (i.e., polarized) conditions.
We see that there are many more Na+ outside (145 mmol/L) than inside
(15 mmol/L) the cell, but many more K+ inside (150 mmol/L) than out-
side (5 mmol/L). Including miscellaneous positive ions outside the cell, there
are 165 mmol/L of positive ions both inside and outside the cell. Similarly,
there are many more Cl− outside (125 mmol/L) than inside (9 mmol/L) the
cell, but many more miscellaneous negative ions (including proteins) inside
(156 mmol/L) than outside (30 mmol/L). There are also 165 mmol/L of neg-
ative ions both inside and outside the cell.

There are several driving forces that determine the ionic concentra-
tions, in general, and these intracellular and extracellular concentrations, in
particular:

1. There is the natural tendency for concentrations to be uniform every-
where, so when there are concentration gradients across the cell membrane
there are flows of these species from the regions of higher concentration
to regions of lower concentrations, to equalize the intracellular and extra-
cellular concentrations. This is described by Fick’s First Law of Diffusion
(7.51), Jdiff = −Ddiff dn/dx, where Jdiff is the flux of ions in the x direc-
tion (the number of ions flowing across a unit area in a unit time), Ddiff

is the diffusion constant, n is the local concentration of ions, and dn/dx
is the local concentration gradient.
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2. Because the potential is negative inside the cell, we would expect positive
ions to enter the cell and be more dominant in the intracellular fluid than
the extracellular fluid and for there to be such concentration gradients;
this is true for K+ but not for Na+. Similarly, we expect negative ions
to leave the cell because of the resting potential and be more dominant
outside the cell than inside – and again for there to be concentration
gradients; this is true for Cl− but not for the negatively-charged proteins,
which form the bulk of the miscellaneous negative ions.
When charged species are in an electric field, they get accelerated and
eventually attain a steady-state drift velocity, vdrift, because of collisions
that act as a drag force. As shown in Problem 12.7, the drift velocity of a
given ion is

vdrift = μE, (12.16)

where μ is called the mobility and E is the electric field. The flux of ions
due to this electric field is

Jelect = nvdrift = nμE. (12.17)

3. The cell membrane permeability and active processes cause the ion con-
centrations on either side of the membrane to deviate from the values
expected from diffusion and the motion of charges in electric fields. The
cell membranes are permeable to K+ and Cl−, which explains why they
behave as expected. Proteins are never permeable to the cell membrane,
which is why the concentration of negative-protein ions is unexpectedly
high inside. The chemical mechanism called the Na+ pump (or the Na+-
K+ pump) actively transports 3Na+ from inside to outside the cell for
every 2K+ it transports from outside to inside the cell; this keeps Na+

outside the cell and K+ inside.

The high Na+ concentration outside the cell is the result of the Na+ pump
fighting against the driving electrical forces and the tendency to equalize con-
centrations (Fig. 12.11). The high K+ concentration inside the cell is the result
of the electric forces and the Na+ pump fighting against the tendency to equal-
ize concentrations. The high Cl− concentration outside the cell is the result of
the electrical forces fighting against the tendency to equalize concentrations.
The concentration of negative protein ions is unexpectedly high inside because
they are large and not permeable to the cell membrane.

Figure 12.12 depicts the directions of motion for charged and neutral mole-
cules for either the random thermal motion in diffusion or the directed effect
of an electric field. Figure 12.13 shows how a concentrated band of charged
and neutral molecules changes due to either diffusion or an electric field.

Ionic Distributions (Advanced Topic)

What are the expected ionic distributions due to the membrane potential?
First, let us consider the expected distributions for several steady state
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Fig. 12.11. Mechanisms for ion flow across a polarized cell membrane that deter-
mine the resting membrane potential

Fig. 12.12. The direction of motion for charged and neutral molecules due to (a)
diffusion (at a given instant) and (b) an electric field

Fig. 12.13. An initial band of charged and neutral molecules (in (a)) changes very
differently by the uniform thermal spreading in diffusion (in (b)) and the separation
caused by an electric field (in (c))
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conditions for a given ion. In steady state, the net flow of ions into any region
is zero, so Jdiff + Jelect = 0 and using (7.51) and (12.17) we see that

Ddiff
dn

dx
= nμE. (12.18)

(In steady state n does not depend on time, so the partial derivative in (7.51)
is not needed here.)

The diffusion coefficient, Ddiff , and mobility, μ, are actually closely re-
lated. Consider a cylinder of cross-sectional area A and length dx along the
x direction than contains a density n of ions of charge q. When an electric
field E is applied along the x direction, the ions in the cylinder feel a force
(nq)(Adx)E, where nq is the total charge per unit volume and Adx is the vol-
ume. The mechanical force on this cylinder is due to the difference between
the pressure × area on one side wall, AP (x), and that on the other side wall,
AP (x + dx) = A[P (x) + (dP/dx)dx], or −A(dP/dx)dx. The sum of these
forces is zero in steady state, so dP/dx = nqE. Using the ideal gas law (7.2)
P = nkBT (which is an approximation here and where n is now the number of
molecules per unit volume because kB is used instead of the gas constant R),
we see that dP/dx = kBT (dn/dx) or kBT (dn/dx) = nqE. Comparing this to
(12.18), gives the Einstein equation

μ =
qDdiff

kBT
, (12.19)

a result we will use soon.
Now let us consider the charge current due to two ions, one of charge

q (which we will say is >0), with density n+ and mobility μ+, and the
other of charge −q, with density n− and mobility μ−. (We will now define
the mobilities as being positive, so for this negative ion vdrift = −μ−E.)
If these are the only two ions, charge neutrality gives n+ = n− = n. The
particle flux of each is determined by the concentration gradient of each
and the motion of each in an electric field. The jflux charge flux (or cur-
rent density) is the ion charge × the ion flux. For the positive ion: jflux,+ =
q(Jdiff,+ + Jelect,+) = −qDdiff,+(dn/dx) + qnμ+E and for the negative ion
it is: jflux,− = −q(Jdiff,− + Jelect,−) = qDdiff,−(dn/dx) + qnμ−E, so the total
current density is

jflux = −q(Ddiff,+ − Ddiff,−)
dn

dx
+ qn(μ+ + μ−)E, (12.20)

which is known as the Nernst-Planck equation. This can also be written as

jflux = qn(μ+ + μ−)
(

E − Ddiff,+ − Ddiff,−
μ+ + μ−

d lnn

dx

)
, (12.21)

where we have expressed (dn/dx)/n as d lnn/dx. The prefactor on the right-
hand side is the conductivity, σ = qn(μ+ + μ−). (Also, the factor Λ0,i in
(12.15) clearly equals qiμi.)
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When there is no net current flow, we see

E =
Ddiff,+ − Ddiff,−

μ+ + μ−

d ln n

dx
. (12.22)

So, the voltage between two points, such as from the inside (with subscript i)
of the membrane to the outside (with subscript o) is

ΔV = Vi − Vo = −
∫ inside

outside

E dx (12.23)

= −Ddiff,+ − Ddiff,−
μ+ + μ−

∫ inside

outside

d lnn

dx
dx (12.24)

= −Ddiff,+ − Ddiff,−
μ+ + μ−

ln(ni/no). (12.25)

Using the Einstein relation, (12.19), we know that Ddiff = μkBT/q, and so

ΔV = −kBT

q

μ+ − μ−
μ+ + μ−

ln(ni/no). (12.26)

This is the Nernst equation.
Let us apply this to a membrane that is impermeable to negative ions, so

μ− = 0 and

ΔV = −kBT

q
ln(ni/no). (12.27)

Calling the charge q = Ze, where e is the magnitude of an elementary charge
(electron or proton), we see that

ni

no
= exp (−Ze(Vi − Vo)/kBT ) . (12.28)

This ratio is known as the Donnan ratio and this is known as Donnan equi-
librium. The ion densities are considered constant within both the inside and
outside regions.

This expression can also be derived by using the Maxwell–Boltzmann dis-
tribution, which gives the probability of a state being occupied, P (E, T ), if
it has an energy E and is in thermal equilibrium with the environment at
temperature T

P (E, T ) = A exp(−E/kBT ). (12.29)

The potential energy of the charge is E = ZeV . If a given species were in
thermal equilibrium we would expect that its concentration n would be pro-
portional to exp(−ZeVlocal/kBT ), where Vlocal is the local potential, or more
exactly

n = n∞ exp(−ZeVlocal/kBT ), (12.30)
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where n∞ is the concentration very far away, where the potential is zero. In
particular, we would expect the ratio of the concentrations for each ion inside
and outside the cell gives (12.28).

This Donnan ratio includes the physics of the first two driving forces ex-
plained earlier, as well as the physics of thermal equilibration. For the resting
potential Vi − Vo = −70 mV at T = 310 K (core body temperature) and
Z = +1, we expect ni/no = 13.7 for this “Donnan” equilibrium; for Na+ this
ratio is 15/145 = 0.103 and for K+ it is 150/5 = 30. For Z = −1 we expect
ni/no = 1/13.7 = 0.073; for Cl− this ratio is 9/125 = 0.072 and for miscella-
neous singly negative charge ions it is 156/30 = 5.2. There is relatively good
agreement for K+ and Cl−, and great disagreement for Na+ and the Misc.−

for the reasons given earlier, such as the Na+ pump for Na+. (The agreement
is not perfect for K+ because the Na+ pump brings K+ into the cell.)

The theoretical Nernst potential VNernst is the potential that would lead
to the observed concentration ratios

(
ni

no

)

observed

= exp(−ZeVNernst/kBT ). (12.31)

For Na+ it is 61 mV, for K+ it is −91 mV, and for Cl− it is −70 mV.
When the Nernst equation (12.27) is generalized to include the effects

of many ions, such as Na+, K+, and Cl−, and membrane permeability, the
Goldman Voltage equation is obtained

ΔV = −kBT

q
ln

pNanNa,i + pKnK,i + pClnCl,i

pNanNa,o + pKnK,o + pClnCl,o
, (12.32)

with membrane permeabilities p (and with the subscripts i for inside and o for
outside). For neurons and sensory cells the permeability for Cl− is so small
that it can often be neglected, and we find:

ΔV = −kBT

q
ln

pNanNa,i + pKnK,i

pNanNa,o + pKnK,o
(12.33)

or

ΔV = −kBT

q
ln

αnNa,i + nK,i

αnNa,o + nK,o
, (12.34)

with α = pNa/pK. Using the earlier concentrations and α = 0.02, this resting
potential difference is −75 mV, which is closer to the real resting potential
than VNernst = −91 mV for K+.

Poisson–Boltzmann Equation (Advanced Topic)

So far we have determined the concentration ratios for a given potential. A
more general problem, and one that is a bit beyond our scope, is to determine
the potential V by using (12.1) and (12.3) and the densities of charges in



12.3 Nerve Conduction 729

the region. In other words, we also need to couple the potential with the
distributions of ions.

By integrating the field over a surface a, such as a sphere, around the
charge q, Coulomb’s Law (12.1) becomes Gauss’ Law

∫
E · da =

1
ε0ε

q. (12.35)

This can be converted into the differential form

∇ · E =
1

ε0ε
ρ, (12.36)

where ρ is the charge density

ρ =
∑

i

Zieni. (12.37)

In one-dimension, this form of Gauss’ Law becomes

dE

dx
=

1
ε0ε

ρ. (12.38)

Using the relation between electric field and potential (12.4) and (12.5) these
become Poisson’s equation

∇2V = − 1
ε0ε

ρ, (12.39)

which in one-dimension becomes:

d2V

dx2
= − 1

ε0ε
ρ. (12.40)

Combining this with the Maxwell–Boltzmann relation (12.30) and with (12.37)
gives the Poisson–Boltzmann equation:

∇2V = − 1
ε0ε

∑

i

Zieni,0 exp(−ZieV/kBT ). (12.41)

Without these free and mobile charges in solution, the potential from a
charge Ze, such as an ion in solution, is given by (12.2), V = Ze/4πε0εr. These
mobile charges partially screen or shield the potential due to this charge, as
is seen by solving the Poisson–Boltzmann equation. When ZieV/kBT � 1,
we can use exp(1 + x) � 1 + x for | x | � 1 to approximate the exponential
in (12.41) as 1 − ZieV/kBT . This gives

∇2V = − 1
ε0ε

∑

i

Zieni,0 +
1

ε0ε

∑

i

Z2
i e2ni,0V

kBT
. (12.42)
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In charge neutral regions the first term on the right-hand side sums to zero,
leaving

∇2V =
e2

ε0εkBT

(
∑

i

Z2
i ni,0

)
V (12.43)

or

∇2V = κ2V, (12.44)

where κ is the Debye–Huckel parameter given by

κ2 =
e2

ε0εkBT

∑

i

Z2
i ni,0 (12.45)

This is solved in three-dimensions (see Problem 12.8 and Appendix C) to
obtain the potential

V (r) =
Ze

4πε0εr
exp(−κr). (12.46)

This means the charge is shielded beyond the Debye–Huckel length given by
the radius 1/κ.

12.3.2 Types of Cell Membrane Excitations

There are two qualitatively different types of axon excitations: graded poten-
tials and action potentials.

Graded potentials (Fig. 12.14) are minor perturbations in the membrane
potential due to the binding of neurotransmitters, the stimulation of sensory

Fig. 12.14. The (subthreshold) graded potentials and (above threshold) action
potentials
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reception, or spontaneous ion leakage through the cell membrane. There is
no threshold needed to stimulate a graded potential. They last for 5 ms to
several min. Graded potentials can be either membrane depolarizations or
hyperpolarizations. Successive graded potentials can add to one another. They
propagate only short distances along the membrane before they decay.

Action potentials are qualitatively different from graded potentials in every
way (Fig. 12.14). They initially have relatively large depolarizations by ∼15–
20 mV above the resting value of −70 mV to a threshold of about ∼ −55 mV.
At this threshold potential the cell membrane opens up allowing Na+ trans-
port. The potential lasts for 1–5 ms, and it always involves depolarization of
the membrane. Each action potential opens the cell membrane, and they do
not add to one another. There is no decrease in potential along the entire
length of the neuron cell axon, as this action potential leads to propagation
of an electrical signal along the axon. We will analyze this quantitatively in
Sect. 12.3.3.

Figure 12.14 shows the time sequence of the action potential at one point
in the axon. After the threshold of ∼ −55 mV is reached, the voltage-gated
Na+ channels begin to open and Na+ rushes into the cell due to the nega-
tive potential. There is an overshoot of positive ions inside the cell and the
potential becomes positive, increasing to ∼20 mV. This causes positive ions,
such as K+, to leave the cell and the potential decreases below the threshold
potential to the resting potential (which is an overshoot). This electrical pulse
travels along the axon. Figure 12.15 shows the depolarization and repolariza-
tion and the flow of ions for cardiac muscle. The local motion of ions near the
membrane are shown in Fig. 12.16 during signal propagation.

12.3.3 Model of Electrical Conduction along an Axon

Neural axons can be treated as an electrical cable with passive parameters that
characterize it per unit length, with one striking exception. The resistance of
the fluids inside the axon, ri, outside the axon, ro, and of the axon membrane,
rm, can be characterized per unit length of the axon. The axon can also be
characterized by its capacitance per unit length, cm. The axon can then be
modeled by the electrical cable in Fig. 12.17 with repeating units. So far, this
description can explain only the decaying features of graded potentials. As
we will see, the propagation of action potentials along the axon requires the
additional current flow of ions across the axon membrane (see [569, 581, 582,
586]).

Properties of Neurons and Nerves

The parameters in Table 12.5 for unmyelinated and myelinated nerve axons
will help us understand the electrical properties of the axon as we would
any cable with a distributed resistance and capacitance. From Table 12.5, the
resistivity for an unmyelinated nerve is typically ρi = 0.5 ohm-m and the axon
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Fig. 12.15. The depolarization and repolarization of cardiac muscle, along with the
flows of Na+, Ca2+, and K+ ions. The inward flux of Na+ and Ca2+ increases the
potential and the outward flux of K+ decreases it. (Based on [585])

radius is a = 5×10−6 m, and so the resistivity inside the axon per unit length
along the axon is

ri =
ρi

πa2
=

0.5 ohm-m
π(5 × 10−6 m)2

= 6.4 × 109 ohm/m = 6.4 × 103 ohm/μm.

(12.47)

The resistivity of the membrane is ρm = 1.6 × 107 ohm-m, the membrane
thickness is b = 6 × 10−9 m, and the cross-sectional area of the membrane
normal to the axon axis is A = 2πab. Therefore, the membrane resistivity per
unit length along the axon is

rm =
ρm

2πab
=

1.6 × 107 ohm-m
2π(5 × 10−6 m)(6 × 10−9 m)

(12.48)

= 8 × 1019 ohm/m = 8 × 1013 ohm/μm, (12.49)

This resistivity is so high that for a given voltage drop along the axon,
the current flow along the membrane is negligible compared to that in the
fluid.
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Fig. 12.16. The flow of ions across the membrane during action potential propa-
gation (a) at a given time and (b) at a later time

Fig. 12.17. Distributed circuit model of an axon, with resistance inside the axon
ri, membrane resistance rm and capacitance cm, and resistance outside the axon ro,
each per unit length
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Table 12.5. Typical parameters for unmyelinated and myelinated nerves. (From
[570, 571, 581])

unmyelinated myelinated

axon inner radius (m) a 5 × 10−6 5 × 10−6

membrane/myelin thickness (m) b 6 × 10−9 2 × 10−6

axoplasm resistivity (ohm-m) ρi 1.1 1.1
membrane dielectric constant (s/ohm-m) κε0 6.20 × 10−11 6.20 × 10−11

membrane/myelin resistivity (ohm-m) ρm 107 107

resistance per unit length of fluida r 6.37 × 109 6.37 × 109

(ohm/m)
conductivity/length axon membrane gm 1.25 × 104 3 × 10−7

(mho/m)
capacitance/length axon (F/m) cm 3 × 10−7 8 × 10−10

aFluid both inside and outside the axon.

The transverse resistance across the membrane is (ρmb)Atransverse, so the
conductance per unit area is

gm =
1

ρmb
, (12.50)

where conductance is the reciprocal of the resistance.
Because the axon radius a of an unmyelinated axon is much greater than

the membrane thickness b, the cylindrical membrane can be unrolled along its
length (much as in Fig. 8.23) and modeled very successfully as a plane parallel
capacitor, with plate separation b and area A = aL, where L is the length of
the axon unit. The material in the axon membrane has dielectric constant κ =
7, so with ε0 = 8.85×10−12 s/ohm-m, we see that κε0 = 6.20×10−11 s/ohm-m.
From (12.13), the capacitance per unit length of an unmyelinated axon is

Cparallel plates,per length = Cparallel plates/L = κε0a/b (12.51)

= (6.20 × 10−11s/ohm-m)(5 × 10−6m)/6 × 10−9m
(12.52)

= 3 × 10−7 F/m (12.53)

and that per unit area is

cparallel plates = Cparallel plates/La = κε0/b (12.54)

= (6.20 × 10−11s/ohm-m)/6 × 10−9 m (12.55)

= 0.01 F/m2
. (12.56)

Using (12.12), q = CV and the charge density on the membrane walls is
σ = q/A = (C/A)/V . For a −70 mV voltage drop, we see that σ = (C/A)/V =
(0.01 F/m2)(70 mV) = 7 × 10−4 C/m2. Because an elementary charge is
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1.6×10−19 C, there are (7×10−4)(6.25×1018 elementary charges)/1012 μm2 =
4.4 × 103 elementary charges/μm2.

Does the flow of Na ions through the open ion channels appreciably affect
the total number of such ions in the axon? This open channel corresponds
to a voltage change from −70 to 30 mV or about 100 mV. Using the analysis
of the previous paragraph, this corresponds to a change in charge of 6 × 103

elementary charges/μm2. Consider a 1 μm long section of the axon. Its inner
area is 2π(5 μm)(1 μm) = 31 μm2, so 2 × 105 Na+ ions are transported
into this volume, because they each have one elementary charge. Before the
membrane opened there were 15 mmol/L of Na+ ions inside the membrane,
or [(15 × 6.02 × 1020)/1015 μm3][π(5 μm)2(1 μm)] = 7 × 108 Na+ ions in
this volume (and, similarly, 7 × 109 K+ ions inside this volume). This means
that this Na+ ion transport increases the density by only about 0.03%. (Large
changes in potentials are often caused by the transfer of very few charges!)

Model of Electrical Conduction in Axons (Advanced Topic)

Several things can happen when you apply a voltage to an axon of a neuron.
There can be current flow of charged ions associated with the resistance in
and about the axon; the voltage would drop with distance according to Ohm’s
Law and there would be dissipation of energy. There can be motion of charges
to and from axon membranes and changes in the electric field energy stored
between these charged surfaces, as characterized by their capacitance. There
can also be changes in the transport of charges through these axon membranes.

Consider a cylindrical “pillbox” as shown in Fig. 12.18 of radius a and
length δx, extending from x to x + δx along the axon and with the curved
cylinder surface within the cell membrane itself. The voltage at x is V (x) and
that at x + δx is V (x + δx). The current flowing (due to ions) within the
axoplasm – i.e., the medium inside the axon – into this volume is Ii(x) and
that leaving it is Ii(x + δx). There is a charge +q on the outer membrane of
the axon and a charge −q on the inner membrane wall. A physical model for
this is shown in Fig. 12.19.

Fig. 12.18. Longitudinal current in an axon, with a “pillbox” for examining current
flow, including the membrane current. (Based on [581])
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Fig. 12.19. A more physical model for the axon currents shown in Fig. 12.18. (From
[581])

We will apply Kirchhoff’s 1st Law (12.8) to this construct and sum all
currents entering this pillbox. There are current flows inside the axon Ii(x)
and −Ii(x + δx) entering the pillbox. There is also a current flow due to the
flow of ions across the cell membrane Im. We will say it is positive when
it leaves the axon (Fig. 12.18), so −Im enters it. The voltage across the cell
membrane V = q/Cm, where Cm is membrane capacitance. The time rate
of change of the voltage is related to another current Ic associated with the
change of charge on the cell membrane walls

dV

dt
=

dq/dt

Cm
=

Ic

Cm
(12.57)

or

Ic = Cm
dV

dt
. (12.58)

Ic flows to the outside, so −Ic = −Cm(dV/dt) flows into the axon. Kirchhoff’s
1st Law gives

Ii(x) − Ii(x + δx) − Im − Cm
dV

dt
= 0 (12.59)

or

Ii(x) − Ii(x + δx) − Im = Cm
dV

dt
. (12.60)

Using Ii(x + δx) � Ii(x) + (dIi/dx)δx, we see that Ii(x) − Ii(x + δx) �
−(dIi/dx)δx and this equation becomes

−dIi

dx
δx − Im = Cm

dV

dt
. (12.61)

Using Ohm’s Law, the voltage drop across the pillbox is

V (x) − V (x + δx) = Ii(x)ri(δx), (12.62)
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where the resistance is Ri = riδx. Because V (x + δx) � V (x) + (dV/dx)δx,
we see that V (x) − (V (x) + (dV/dx)δx) � Ii(x)ri(δx) or

Ii(x) = − 1
ri

dV

dx
. (12.63)

Taking the first derivative of both sides gives dIi/dx = −(1/ri)d2V/dx2, and
(12.61) becomes

1
ri

d2V

dx2
(δx) − Im = Cm

dV

dt
. (12.64)

Dividing both sides by the membrane surface area is (2πa)(δx) gives

1
2πari

d2V

dx2
− Im

(2πa)δx
=

Cm

2πa(δx)
dV

dt
. (12.65)

With the membrane current density (membrane current per unit area) defined
as Jm = Im/(2πa(δx)) and the membrane capacitance per unit area expressed
as cm = Cm/(2πa(δx)), this becomes

1
2πari

d2V

dx2
− Jm = cm

dV

dt
(12.66)

or

cm
∂V (x, t)

∂t
= −Jm +

1
2πari

∂2V (x, t)
∂x2

. (12.67)

This has now been expressed in terms of partial derivatives with respect to
t and x, which means that the derivatives are taken with respect to t and
x, respectively, treating x and t as constants. Also, the voltage is explicitly
written as a function of x and t.

How do we treat active charge transport across the membrane? We model
the membrane current as being gi(V −Vi) for each ion, with gi the conductance
per unit area and Vi a characteristic voltage being parameters for the specific
ion. The total membrane current is

Jm =
∑

i

gi(V − Vi) = gNa(V − VNa) + gK(V − VK) + gL(V − VL), (12.68)

where we have included conduction by Na+ and K+ ions and by other
ions (leakage, L). This Hodgkin-Huxley model is depicted in Fig. 12.20. So
we find

cm
∂V (x, t)

∂t
= −

∑

i

gi(V (x, t) − Vi) +
1

2πari

∂2V (x, t)
∂x2

(12.69)
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Fig. 12.20. Equivalent circuit of the Hodgkin-Huxley model of the membrane cur-
rent, with variable resistors gi and voltage sources Vi. (Based on [581])

or for only one ion

cm
∂V (x, t)

∂t
= −gi(V (x, t) − Vi) +

1
2πari

∂2V (x, t)
∂x2

. (12.70)

This last equation is known as the Cable or Telegrapher’s equation because
it also describes the propagation of electrical signals along long cables, such
as submarine cables, as well as the propagation of such signals along axons
in neurons. Remember that although the voltage disturbance propagates long
distances, the charges move very little and in fact they move essentially only
across the membrane wall, which is normal to the direction of wave propa-
gation. (By the way, John Carew Eccles, Alan Lloyd Hodgkin, and Andrew
Fielding Huxley shared the Nobel Prize in Physiology or Medicine in 1963 for
their discoveries concerning the ionic mechanisms involved in excitation and
inhibition in the peripheral and central portions of the nerve cell membrane,
which are part of this Hodgkin-Huxley model.)

When this wave propagates at a speed u it travels as a pulse (Fig. 12.21)
with unchanging shape that has constant x − ut. (See the discussion of
sound wave propagation in Chap. 10.) It can then be shown that ∂2V/∂t2 =
u2∂2V/∂x2 or ∂2V/∂x2 = (1/u2)∂2V/∂t2 and so (12.70) can be written in
terms of only derivatives with respect to time. Including the three ions, we
see that:

1
2πariu2

∂2V

∂t2
− cm

∂V

∂t
= gNa(V −VNa)+gK(V −VK)+gL(V −VL) (12.71)

with typical neuron properties given in Table 12.5. More details can be found
in [581, 586].

Propagation Speed for Action Potentials

These equations must be solved numerically. Still we can gain some insight
concerning the speed of these electrical signals along the axon by using an
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Fig. 12.21. A snapshot of the (a) voltage and (b) axon current of the pulse prop-
agating along an axon; (c) current densities corresponding to the two terms on the
right-hand side of (12.67); (d) current charging or discharging of the membrane.
They are all calculated using (12.67). (From [581])

analytical method. Using (12.47), (12.50), and (12.54), we can rearrange
(12.70) to give

λ2 ∂2V (x, t)
∂x2

− V (x, t) − τ
∂V (x, t)

∂t
= −Vi, (12.72)

where

λ =
√

1
2πarigi

=

√
abρm

2ρi
(12.73)
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and

τ =
cm

gi
= κε0ρm. (12.74)

We see that λ has units of distance and τ has units of time in (12.72), so it is
not unreasonable to think that the conduction speed u is approximately

u ∼ λ

τ
=

√
ab

2ρiρm

1
κε0

. (12.75)

For an unmyelinated axon b ≈ 6 nm and so using the parameters in Table
12.5, we find

uunmyelinated ∼ 0.27
√

a, (12.76)

where u is in m/s and a is in μm. This is about 7× slower than observed,
namely 1.8

√
a.

For a myelinated axon, b ≈ 0.4a, so λ = 1, 350a and

umyelinated ∼ 2.2a, (12.77)

which is again about 7× slower than observed, namely 17a. This conduction
model with Hodgkin-Huxley-type conduction across the membrane is not ex-
pected to be very accurate because, unlike that of the bare membrane, the
conduction of the myelin sheath is independent of the voltage. Therefore, prop-
agation occurs in the sheath region with this term and there is some decay
until the signal reaches the next node of Ranvier. The signal is regenerated
at this sheath-free membrane and then propagates until the next regenera-
tion stage. If we instead assumed in the model of conduction in myelinated
axons that the conduction speed is umyelinated ∼ D/τ , where D ≈ 280a is the
distance between Ranvier nodes, the model conduction speed would be

umyelinated ∼ 0.45a, (12.78)

which is about 40× slower than observations.
The speed of nerve conduction can be measured by applying a stimulating

voltage pulse at one place on the body and using electrodes to sense the
time delay in the propagated pulse at another place on the body, as seen in
Fig. 12.22 [568].

Passive Spreading

When voltages are below the threshold of ∼ −55 mV, the graded potential–
voltage disturbance decays along the axon and in time. We can use this model
to understand this. This is equivalent to the distributed circuit model in
Fig. 12.17.
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Fig. 12.22. Measuring the conduction speed along the lower arm and hand of (a)
a motor nerve and (b) a sensory nerve, along with associated EMG signals. The
conduction speed of the motor nerve in (a) is 62.5 m/s, and the conduction speed of
the sensory nerve in (b) is 58.1 m/s (see Problem 12.18). (Based on [568])

Special Case: Only Resistance, No Capacitance, Infinitely Long Cable. If
membrane capacitance is neglected in the model (cm = 0 and so τ = 0),
then (12.72) becomes

λ2 ∂2V (x)
∂x2

− V (x) = −Vi (12.79)

and V does not depend on time. If at, say, x = 0, the voltage is held at
V = Vi + V0, the solution is

V (x) = Vi + V0 exp(−x/λ) for x > 0 (12.80)
= Vi + V0 exp(+x/λ) for x < 0, (12.81)

which can be proved by substitution. This means the subthreshold disturbance
decays over a characteristic distance λ, as seen in Fig. 12.23.

Special Case: Only Resistance, No Capacitance, Cable of Finite Length. If
the cable is semi-infinite or of finite length, the solution to (12.79) needs to
be modified [589]. Such solutions are shown in Fig. 12.24 and are examined
further in Problem 12.24 (for Vi = 0). Of particular importance for a cable
of finite length is exactly how the axon is terminated at either end, i.e., the
boundary conditions. Usually these boundary conditions are specified by giv-
ing the voltage V or the current flow (which is proportional to dV/dx) at the
end of the axon cable.

Special Case: Only Resistance, No Capacitance, Infinitely Long Cable. If in-
stead the axoplasm resistance is set equal to zero (such as by placing a wire
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Fig. 12.23. With no axon membrane capacitance, a voltage disturbance decays over
a characteristic distance λ. (From [581])

axially in the axon), then λ2(∂2V (x, t)/∂x2) = 0 and (12.72) becomes

τ
∂V (x, t)

∂t
+ V (x, t) = Vi. (12.82)

(As in Fig. 12.17, transverse resistance is still possible.) If at, say, t = 0, the
voltage were constrained to V = Vi + V0 and the constraint were released,
then for any x

V (t) = Vi + V0 exp(−t/τ) for t > 0. (12.83)

Fig. 12.24. Steady-state solutions to (12.79) for a (a) semi-infinite cable and (b)–
(e) cables of finite length L with different boundary conditions at the end, with
characteristic distance λ and V = V0 at x = 0. For curves (b1)–(b3), V (L) = 0
(voltage clamped to zero), for L = 0.5λ, λ, and 2.0λ. For curves (c1)–(c3), dV/dx =
0 (current clamped to zero) at x = L, for L = 0.5λ, λ, and 2.0λ. For curves (d1)
and (d2), the voltage is clamped to 0.9V0 and 1.1V0 at x = L, for L = λ. Also see
Problem 12.24. (Based on [589])
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Again, this can be proved by substitution. This means the subthreshold dis-
turbance decays in a characteristic time τ .

General Case, Infinitely Long Cable. We can find a more general solution by
substituting a trial solution

V (x, t) = Vi + w(x, t) exp(−t/τ), (12.84)

into (12.72). This leads to:

λ2

τ

∂2w(x, t)
∂x2

=
∂w(x, t)

∂t
. (12.85)

This is the diffusion equation (Fick’s Second Law of Diffusion, see (7.53); also
see Appendix C). The disturbance w spreads in a gaussian-like manner over
a distance λ in a time τ , approximately as

w(x, t) ∝ exp(−x2/2Ddifft), (12.86)

where the diffusion constant Ddiff = λ2/τ . This assumes an initial voltage
spike at x = 0. Using (12.84), the real voltage disturbance spreads as:

V (x, t) − Vi ∝ exp(−x2/2Ddifft) exp(−t/τ), (12.87)

which has an additional overall exponential decay in time with characteristic
time τ .

12.4 Ion Channels, Hair Cells, Balance, Taste, and Smell

The previous section addressed the conduction of signals in an axon. Equally
important is the actual generation of signals that are then conducted along
an axon to the brain. We saw in the previous section that controlling the
flow of ions across the cell membrane – by changes in the permeability of
membranes to ions by the opening or closing of ion channels – is important in
this conduction. It is also important in the generation of signals, as in sensing.

One interesting example is the excitation of hair cells, which is important
in several parts of the body. Figure 12.25 shows that the “hair” in a hair cell
is a hair bundle composed of an asymmetric series of 20–300 microvilli, which
become successively larger in one direction. At the end of the bundle there
is often one large cilium, which is called a kinocilium. When the hair bundle
moves toward the kinocilium, the membrane potential depolarizes relative to
the resting potential and when it moves away from it, the membrane hyper-
polarizes, as is seen in Fig. 12.26. There is no change in membrane potential
when the bundles moves perpendicular to the direction of increasingly large
microvilli. One possible explanation for this depolarization is that Na+ posi-
tive ion channels open when the hair bundle is displaced toward the kinocil-
ium. The elastic response of the hair cell comes from the microvilli themselves,
the elastic elements (gating springs) that pull on the ion channels, and the
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Fig. 12.25. In one mechanism for hair cell response, the hair bundle moves to-
ward the kinocilium (hair with the bead) opening channels that are permeable to
Na+ (which is depolarization), as shown in (b). Resting activity is seen in (a) and
hyperpolarization in (c). (From [593])

channels themselves. The response of hair to forces was discussed in Chap. 10
(text and Problem 10.55).

These hair cells are important in the ear, contributing both to the gen-
eration of auditory signals in the cochlea that travel to the brain to enable
hearing and in the vestibular system in the ear that helps us maintain a sense

Fig. 12.26. Membrane potential vs. hair displacement (in position and angle).
Positive displacements are toward the kinocilium. (Based on [574, 583])
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Fig. 12.27. The sense of balance is seen by examining the pair of horizontal semicir-
cular canals, by looking at the head from above. When you turn your head clockwise
there is counterclockwise motion of the cochlear fluid that depolarizes the hair cells
in the semicircular canal in the right ear and hyperpolarizes them in the left ear.
(Based on [574])

of balance. Each ear has three semicircular canals that are approximately or-
thogonal to each other, which provide us with a sense of balance through a
sensing of the motion of fluid in them. Figure 12.27 shows how hair cells sense
one such motion, that of turning your head to the right. This is clockwise
looking from the top, as in the figure. The fluid in the two depicted horizontal
semicircular canals lags behind this motion (Newton’s First Law), and so it
moves counterclockwise relative to the hair cells. This causes a depolarization
of the hair cells in the right ear and a hyperpolarization of the hair cells in the
left ear. These semicircular canals contain hair cells that are bathed in a fluid,
the endolymph, which has high concentrations of K+ and low concentrations
of Na+ and Ca2+. Consequently, when the hair cells are stimulated, K+ enters
the cell through the channels during this depolarization. The hair cells in the
cochlea are also bathed by this endolymph fluid in the scala media so the con-
trol of K+ ion channels by the hair bundles is also important in hearing trans-
duction (where transduction is the conversion of one kind of signal or stimulus
into another by a cell, which in this case is the conversion of sound into an
electrical signal). (The perilymph fluid in the scala vestibuli and the scala
tympani is high in Na+ and low in K+, as are blood and cerebrospinal fluid.)

The importance of hair cells in the sense of touch (for hairy skin) was
discussed in Chap. 2. The sense of touch by Merkel receptors, Meissner cor-
puscles, Ruffini cylinders, and Pacinian corpuscles in both hair-free and hairy
skin arises from changes in the ion channels caused by applied pressure.

Taste bud sensors are found in clusters called taste buds on the tongue
and other places in the oral cavity. There are several mechanisms that activate
sensors of taste for sweet, sour, bitter, salty, and “umani,” all involving the
control of membrane ion channels. (Umani is the Japanese word for delicious.
In this context it describes the taste of monosodium glutamate and other
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amino acids.) The conceptually simplest is that for saltiness, which is detected
by a Na+ channel that depolarizes the detector cell.

The olfactory receptor region in the nose has an area of ∼1–2 cm2, with
∼12 million receptor cells. (There are ∼4 billion such cells in a German shep-
herd dog.) The sense of smell is activated by olfactory neurons, with the
opening of ion channels. In many such neurons, this allows Na+ to enter the
cell during depolarization, which induces an increase in the firing of action
potentials.

12.5 Electrical Properties of the Heart

The total charge of the heart is zero during the heart beat, but there are
dynamic separations between positive and negative charges. These create an
electric dipole that rotates as it becomes larger and then smaller in magnitude
during each cardiac cycle. The electric potential at different places on the skin
consequently changes with time during each cycle and this is what is sensed in
an electrocardiogram (EKG or ECG). These potential differences are typically
∼30–500 μV. Usually 12-lead scalar EKG measurements are made, which give
much information about the evolution of the cardiac dipole and sufficiently
valuable information concerning potential abnormalities in the heart. Vector
EKGs are taken less often; they can provide a more complete view of the
evolution of the heart dipole during a heart beat. A typical EKG is shown in
Fig. 12.28.

Fig. 12.28. A normal electrocardiogram (EKG/ECG), showing the P wave (atrial
depolarization), QRS complex (ventricular depolarization), and T wave (ventricular
repolarization) in a single cardiac cycle. Typically the scan proceeds with 25 mm/s
and the signal strength is plotted as 10 mm/mV. (Based on [586])
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From an electrical perspective, the heart can be described as an electric
dipole whose magnitude and direction varies in a cyclic manner, repeating
for each heart cycle. As for the axon described earlier in this chapter, the
positions of charges in the cardiac muscle cells change during cell depolariza-
tion in muscle contraction and repolarization. This constitutes a change in
the electric dipole moment of the individual cell. The electric fields due to all
such heart muscle cells add to produce voltage variations in the body that
are sensed by the EKG probes. The voltages vary with time indicating the
depolarization (contraction) of the right and left atria (called the P wave),
the depolarization (contraction) of the right and left ventricles during systole
(the QRS complex) – the repolarization of the atria is masked by this, and
the repolarization of the ventricles (the T wave). The time dependence can
indicate normal or abnormal firing of the heart muscle, and this could, in
principle, be determined from the voltage difference across two EKG probes.
Analysis of the voltages across several pairs of electrodes provides important
information that is used to spatially locate abnormalities in different parts of
the heart muscle, such as after a heart attack. The EKG probes measure the
electric potential (voltage) just below the skin. The resistance across the skin
is not significant because the EKG probes are connected to the skin with a
special contact jelly.

The difference in potential across the cell membrane of the cardiac muscle
cell changes during the depolarization and subsequent polarization of atrial
and ventricular heart muscles during each cycle, and this changes the electric
potential near the heart. Because the tissues and blood of the body contain
conductive ions, such changes in potential cause changes in currents and the
net results affect the electric potential very far from the heart. As such, the
cardiac muscle can be viewed as being placed in a volume conductor.

Why does this potential change with time, even for a single muscle cell?
Let us follow the motion of charges during a cycle. The field across the cell
membrane can be modeled locally as an electric dipole, with positive and
negative charges, of equal magnitude, separated by a distance (Fig. 12.1). The
electric field lines are shown for such a point dipole in Fig. 12.1.

A polarized cardiac muscle cell is a series of such dipoles as depicted in
Fig. 12.29a, with about −70 mV inside the cell relative to the outside, all
around the cell. No potential (which is really a baseline potential) is seen at
the electrode immediately to the right of the cell. As the depolarization wave
propagates from left to right, the potential on the right increases and reaches
a maximum when half the cell is depolarized, as in (c). As the depolarization
wave arrives at the right end, this voltage decreases to zero as in (e). This
is similar to the PQR wave in ventricular depolarization seen in the EKG
in Fig. 12.28. This is what would occur if the potential across the membrane
were zero after depolarization. Because it actually becomes slightly positive,
the potential in (e) should dip slightly negative, as seen for the PQR wave.
When the left side becomes repolarized, the potential becomes negative and
a negative pulse develops, as in (f)–(h). This is similar to the S ventricular
repolarization pulse in Fig. 12.28 except for its sign. Unlike that in Fig. 12.29h,
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Fig. 12.29. Potential to the right of a strip of myocardium immersed in a volume
conductor during (a)–(e) depolarization and (f)–(h) repolarization. The polarized
section is gray and the depolarized section is white. For real cardiac muscle, the
repolarization signal is positive, as is the depolarization signal (Fig. 12.28), because
in the human heart repolarization proceeds in the direction opposite from depolar-
ization, as shown on the bottom. (Based on [597])
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Fig. 12.30. Normal ventricular depolarization recorded by leads aVL and aVF,
showing the change in magnitude and counterclockwise rotation of the projection of
the cardiac dipole in the frontal plane. (Based on [584])

the second peak is positive because cardiac muscle repolarization proceeds in
the direction opposite from depolarization, as for the lowermost trace. Fur-
thermore, repolarization is a bit slower and more inhomogeneous than depo-
larization so the negative dip is broader (slower) and has a smaller magnitude
(wider) than the first peak.

Figure 12.29 also shows that the potential is qualitatively different at the
left and at the top of the cell during depolarization. This is why the EKG
electrodes placed at different positions sense different signals (and can pro-
vide different information). Furthermore, the electrode placed on the left in
Fig. 12.29 gives the negative of the signal of that placed on the right. (This
makes sense. Why?)

Each of the four cycles of atrial and ventricular depolarization and atrial
and ventricular repolarization does not occur simultaneously throughout the
heart, and each is sensed by an EKG and can be analyzed separately. The
evolution of the net cardiac electric dipole during ventricular depolarization
(QRS cycle) is shown for a normal heart in Fig. 12.30.

Clearly the magnitude and direction of the dipole change greatly during
each cycle. These are sensed by the exact placement of EKG electrodes, which
can provide important details about cardiac function and malfunction. The
location of the twelve leads for an EKG with a supine (lying down) person are
described in Table 12.6. Six are on the ribs, and six others are on the arms and
legs. Three of the latter have two leads (bipolar), one for monitoring and one
for reference, while the other nine are single leads (unipolar). Figures 12.31
and 12.32 show the nine locations in the table where the 12 EKG leads are
placed. Remember that voltage differences are being measured from one lead
to another.

The earlier discussion shows that the EKG voltage is positive when the
cardiac dipole points to the (positive side of the) EKG lead and negative when
it points away from it. This is clear from Fig. 12.1d. Figure 12.33 shows the
12 EKG signals from a normal heart. Figure 12.30 shows the relation between
the effective positioning of two of these bipolar leads, the evolution of the
cardiac dipole, and the signal recorded by these leads.
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Table 12.6. Position of electrodes in an EKG. See Figs. 12.31 and 12.32. (Using
information from [575])

lead electrode position

standard limb leads
(bipolar)

I right arm and left arm
II right arm and left leg
III left arm and left leg

augmented leads
(unipolar)

aVR right arm
aVL left arm
aVF left leg

chest leads
(unipolar)

V1 4th intercostal space, right side of sternum
V2 4th intercostal space, left side of sternum
V3 5th intercostal space, left side (between V2 and V4)
V4 5th intercostal space, left side (midclavicular line)
V5 5th intercostal space, left side (anterior axillary line)
V6 5th intercostal space, left side (midaxillary line)

Three of the EKG electrodes are placed on the right and left arms
and the left leg, and the voltages across the three pairs of these elec-
trodes are monitored (along with the signals from the other probes), and
are called I (VI = Vleft arm − Vright arm), II (VII = Vleft leg − Vright arm), and III

Fig. 12.31. Placement of the horizontal plane, precordial unipolar EKG electrodes.
Only 6 of the 12 leads in (b), V1–V6, are used in usual EKGs (solid circles, in the
region labeled by 5.ICR (5th intercostal space or region in the ribs) in (a)). The
additional dorsal leads V7–V9 are specifically used to detect a posterior myocardial
infarction. The additional right precordial leads, V3R–V6R (open circles, in the
region labeled by 4.ICR (4th intercostal space or region) in (a)), are specifically
used to detect a right ventricular myocardial infarction. (From [577])
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Fig. 12.32. Placement of the three unipolar and three bipolar front-plane limb
leads. Sometimes an electrode is positioned on the right leg (not shown) to serve as
an electrical ground. (From [577])

Fig. 12.33. Normal EKG patterns from the 12 electrodes. (From [577])
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Fig. 12.34. (a) The three leads I, II, and III are arranged as Einhoven’s triangle.
(b) The effective directions for the six frontal leads shown in (a) are translated
to form the triaxial reference system called Cabrera’s circle. The signed, vector
projection of the cardiac dipole onto these six directions gives the EKG signal for
these six frontal plane leads. (From [577])

(VIII = Vleft leg − Vleft arm), as in Table 12.6. These three electrodes act as if
they probe at the vertices of a triangle, which is usually called the Einhoven’s
triangle, as shown in Fig. 12.34a. Because the arms and legs do not have new
sources of electric fields and the tissue in each is a conductor, the probes on
the arms actually sense the same voltages as if they were instead placed on
the respective shoulders and the probe on the leg has the same voltage as if it
were placed on the bottom of the torso near the pubic area, and Einhoven’s
triangle is sometimes depicted for this smaller triangle. Using Kirchhoff’s 2nd
Law, (12.14), VI + VIII − VII = 0 (the minus sign in front of the last poten-
tial indicates a different sign convention around the circuit than for the first
two) or

VI + VIII = VII. (12.88)

Cabrera’s circle in Fig. 12.34b shows the effective positioning of the six frontal
plane leads, and this is used in Fig. 12.30.

Figure 12.34 shows how momentary cardiac dipoles in three-different di-
rections cause momentary potential differences in these three electrode pairs.
An appropriate sum of these three voltages, such as VI + VIII − VII, serves
as the electrical ground for measurements with each of the six chest probes.
Also, note that the difference in the signals from the aVL and aVF leads in
Fig. 12.30 should be similar to that from the III lead.

This EKG can provide important details about cardiac function and mal-
function, and the location of the malfunction. This includes (1) the heart rate,
(2) arrhythmia, (3) axis (giving the direction and magnitude of activity for
atrial and ventricular contractions), (4) hypertrophy (which is an increase in
the left or right ventricular muscle mass), (5) enlargement (which is an in-
crease in the volume of the left or right atria chambers), and (6) infarction.
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Fig. 12.35. Evolution of the cardiac dipole during ventricular depolarization
after a lateral wall cardiac infarction, along with the EKG from lead aVL.
The larger-than-normal Q wave occurs because the site of the infarction (black)
should be depolarizing and contributing a positive signal in (c). (Based on
[584])

In arrhythmias, there can be a variable rhythm, a rhythm that is either too
fast (tachycardia, >100 beats/min; but >250 beats/min – flutter or fibrilla-
tion – it can be life-threatening in the ventricles) or too slow (bradycardia,
<60 beats per min, except it can be lower in trained athletes), and devia-
tions from a 1:1 ratio of atrial and ventricular contractions, as described more
in Chap. 8.

During a myocardial infarction part of the cardiac muscle is damaged and
within a few hours these muscle cells usually die and then do not depolarize
and repolarize. The absence of electrical signals from a given part of the left
ventricle is seen in the EKG in Fig. 12.35. The dipole vector during depolariza-
tion points away from the black region of the infarction in step 3; if that black
region were active it would then depolarize and the dipole would be pointing
in the opposite direction. This is seen as an enhanced Q-wave. The formation
of scarring in this damaged region can still be seen after recovery (Fig. 12.36).

Fig. 12.36. EKG evolution during and after an acute Q-wave myocardial infarction.
(Based on [584])
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Fig. 12.37. EKG signals from the 12 leads (left) 2 h after an anteroseptal myocardial
infarction an (right) 4 h later, after thrombolysis. (From [577])

In general, large Q waves in the I and aVL traces indicate a lateral infarction,
in the V1, V2, V3, or V4 traces an anterior infarction, and in the II, III, and
aVF traces an inferior infarction. A large R wave in the V1 and V2 traces
indicates a posterior infarction.

Figure 12.37 shows all 12 EKG traces 2 h after an anteroseptal myocar-
dial infarction (i.e., one with features of both anterior and (interventricular)
septal myocardial infarctions) and 4 h after the infarction has been treated by
thrombolysis (treatment to break up blood clots); there is no pathological Q
wave in this case, but elevated ST waves at 2 h and a normal ST segment 4 h
later, but negative T in some traces. (Compare both to the normal traces in
Fig. 12.33.)

Information from these scalar measurements can be projected onto dif-
ferent body planes and provide information about the evolution of the car-
diac dipole vectors in a process called vectorcardiography. Figure 12.38 shows
the QRS vector evolution in a vectorcardiogram and its projections on the
frontal and horizontal planes. For more on EKGs and diagnosis using EKGs
see [572, 577, 584, 586, 587, 590, 591, 596, 597].
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Fig. 12.38. A ventricular vectorcardiogram, showing the evolution of the QRS vec-
tor along its loop, along with its projections on the frontal and horizontal planes.
The frontal projection gives the frontal plane EKG derived from the frontal plane
leads, which need little correction; whereas the horizontal projection must be cor-
rected to obtain the scalar EKG obtained directly from the precordial leads. (From
[577])

12.6 Electrical Signals in the Brain

Electrical signals are also important in other parts of the body, as shown
in Table 12.1, such as the electroencephalograms (EEGs) of brain waves in
Fig. 12.39. In contrast to the very regular EKG patterns, the EEG signal is
irregular, but it has identifiable rhythmic patterns: alpha waves (frequency of
8–13 Hz; awake, restful state), beta waves (14–25 Hz; alert wakefulness, extra

Fig. 12.39. Schematic of changes in brain waves during different stages of wakeful-
ness and sleep. (Based on [580, 593])
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Table 12.7. Effect of currents (in mA) on the human body (for about 1 s). (Using
data from [595])

effect DC AC
(60Hz)

slight sensation at contact point 0.6 0.3
perception threshold 3.5 0.7
shock
– not painful, no loss of muscular control 6 1.2
– painful, no loss of muscular control 41 6
– painful, let-go threshold 51 10.5
– painful, severe effects: muscular contractions, 60 15

breathing difficulty
– possible ventricular fibrillation (loss of normal 500 100

heart rhythm)

All values are approximate.

activation, tension), theta waves (4–7 Hz, mostly in children, also adults with
emotional stress and with many brain disorders), and delta waves (<3.5 Hz;
deep sleep) [586].

12.7 Effects of Electric Shock

External electrical currents running in the body can cause damage by inter-
fering with normal bodily function – such as by preventing your otherwise
operational skeletal and cardiac muscles from functioning normally – and by
destroying tissues by thermal heating (Table 12.7). Muscles are controlled by
a series of electrical impulses sent by the brain. External AC currents (60 Hz)
above 10 mA or so override these signals and prevent you from exercising
control over your muscles. You can barely control your muscles at 10 mA and
barely “let go” of an object. At higher currents your muscles are under external
control, possibly leading to breathing and circulatory difficulties. Ventricular
fibrillation occurs from 100 mA to 4 A and paralysis occurs, along with severe
burns (and death), over 4 A. For weak shocks, the sensation of shock varies as
the 3.5 power of the applied 60 Hz voltage (Stevens’ Law (1.6), Table 1.15),
so the perception of electric shock is very superlinear with stimulus.

The skin is a very important barrier to current flow (I). The resistance (R)
through dry skin is roughly 100,000–600,000 ohms and through wet skin it is
only about 1,000 ohms. If the skin barrier is overcome, the resistance drops (so
there is more current flow per unit voltage, as per Ohm’s Law). Figure 12.40
shows that the internal body resistance is low, approximately 400–600 ohms
from head to foot and 100 ohms from ear to ear. The amount of current that
can flow in the body induced by a voltage source (V ) is limited by two factors
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Fig. 12.40. Body segment resistance (in ohms), ignoring skin contribution. As
shown, 500 ohms is the contribution from one finger. (Based on [579])

(1) Ohm’s Law says the current will be I = V/R. (2) The current is sometimes
limited by the voltage source itself.

Let us assume the skin barrier has been broken so the effective body resis-
tance is about 500 ohms. (Please do not attempt this!!!) The 120 V AC from a
wall outlet will produce a current of 240 mA, which is over twice that needed
to cause death through ventricular fibrillation. Circuit breakers typically trip
at 15 A, so this flow through the body will be uninterrupted by the circuit
breaker. How about DC sources? The current induced by the often-used 9 V
battery is 18 mA, which can cause a shock. (You can easily draw this current
from such a battery.) The voltage across a car battery is 12 V with 400–600 A
(cranking amps), so it can shock you even worse (Problem 12.5).

12.8 Magnetic Properties

The magnetic fields in the body are due to electric currents and are extremely
weak. Typical magnetic fields in the body that can be measured are shown in
Table 12.8, and are all much weaker than the 5×10−5 T (0.5 Gauss) magnetic
field of the earth. (For comparison, the maximum human-made magnetic fields
approach 100 T.)

12.8.1 Magnetic Field from an Axon

The Biot-Savart Law determines the magnetic field from currents. Consider a
continuous current I flowing along the infinitely long z-axis. Using the Biot-
Savart Law, one can show that a distance R away the magnetic field B has a
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Table 12.8. Typical amplitude of biomagnetic signals. (Using data from [567])

biomagnetic signal typical amplitude (pT)

magnetocardiogram (MCG) 50
fetal MCG 1–10
magnetoencephalogram 1
evoked fields 0.1
magnetomyogram 10
magneto-oculogram 10
Earth’s field 50 × 106

magnitude

B =
μ0I

2πR
(12.89)

and is in the radial direction, according to the usual right hand rule.
This analysis does not exactly apply to signals along a neural axon. A

voltage pulse traveling along an axon is a pulse and not a continuous current.
It is in a medium that is fairly conductive. Also, there are several directions
of the current flow, along the axon, transverse to the membrane, etc. Still, let
us estimate the field strength just as the pulse passes by, and model it as a
continuous current. The current along the axon is the most important. Using
(12.63) Ii(x) = −(1/ri)dV/dx, we estimate the magnitude of this current to
be

I ∼ 1
ri

V

λ
. (12.90)

Therefore, the magnetic field magnitude 1 mm away from the axon is approx-
imately

B ∼ μ0V

2πRriλ
(12.91)

=
(4π × 10−7 T-m/A)(0.1 V)

2π(0.001 m)(6.4 × 109 ohm/m)(3.8 × 10−4 m)
= 8 pT, (12.92)

with λ = 3.8 × 10−4 m. This value is consistent with the low values in Table
12.8. (This estimate is reasonable even though some of the assumptions are
not perfect.)

12.8.2 Magnetic Sense

Humans (apparently) cannot sense magnetic fields, but magnetic fields do
help several animals sense direction (as with a compass) and/or location due
to the presence of 50-nm diameter magnetite (Fe3O4) particles in their bod-
ies. (These particles are sometimes arranged in chains.) For example, this
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magnetic sense is very strong in pigeons, who have 10–20 nT sensitivity, and
dolphins, who have <2 μT sensitivity [565]. The magnetic sense mechanism
may involve a torque that is induced on this particle system by the field and
this in turn may induce a torque on intracellular filaments; this movement
of the filaments triggers a sensory neuron. (Electric fields induce a torque on
an electric dipole, as is easily seen by examining the Coulomb forces on the
individual charges in the electric dipole. Similarly, magnetic fields induce a
torque on a magnetic moment. This analogy is valid even though there are no
magnetic charges.)

12.9 Electromagnetic Waves

Radio waves, microwaves, infrared radiation, visible light, ultraviolet light,
X-rays, and gamma rays are all electromagnetic waves. Each propagates at
the same speed of light c in vacuum. Each has a frequency of oscillation ν and
wavelength λ related by c = λν (11.2). For each, this oscillation consists of
electric and magnetic fields sinusoidally oscillating in phase in vacuum. They
differ only in their frequency (and consequently wavelength), which increases
(decreases) in going from one of these regimes to the next. We discussed visible
light at length in Chap. 11.

The penetration of electromagnetic radiation through the body is some-
times of interest. The attenuation factor for such radiation plotted in Fig. 12.41
is αlight from Beer’s Law, (10.18),

I(z) = I(z = 0) exp(−αlightz). (12.93)

Attenuation consists of losses from absorption and scattering, and is clearly
very dependent on frequency. This figure shows trends, but not all details.
For example, the attenuation factor in the microwave is due to nonresonant
processes. The body absorbs microwave radiation at 2.45 GHz used in mi-
crowave ovens much more strongly than indicated there because of the strong
resonant absorption by water at this frequency. (This is why this frequency is
used in microwave ovens.)

12.10 Summary

Electrical processes are essential to the operation of the body and have proved
to be very important in medical diagnostics. Electrical conduction is impor-
tant in most parts of the body. Models of the propagation of electrical sig-
nals in nerves can explain the physical basis of perhaps the most important
mechanism of regulation in the body. Electrical processes are integral to cell
operation, including to the physics of cell membranes. The electrical nature of
the heart has led to the use of EKGs as a diagnostic that can be interpreted
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Fig. 12.41. Attenuation of electromagnetic radiation in human tissue, due to ab-
sorption and scattering. (From [576]. Courtesy of Robert A. Freitas Jr., Nanomedi-
cine, Vol. 1 (1999), http://www.nanomedicine.com)

by using simple models of the dipole nature of the heart. Electrical signals
in other parts of the body are also used in diagnostics. Naturally occurring
magnetic signals are relatively less important in the body.

Problems

Conductance, Transmission, and Potentials

12.1. Use Table 12.4 to compare the conductivity in a cell and in blood.

12.2. Estimate the electrical resistance of the blood in a 50-cm long, 3-mm
diameter artery.

12.3. There are two common relations for the resistivity of blood as a func-
tion of the hematocrit Hct: ρ = 0.537 exp(0.025Hct) and ρ = 0.586(1 +
0.0125Hct)/(1 − 0.01Hct), which is called the Maxwell–Fricke equation [586].
How do they differ in the range of Hct from 10%–60%, and specifically at the
normal value of 45%?

12.4. During an accident, 120 V AC from a wall socket connects your body
to electrical ground, from hand to hand:



12.10 Summary 761

(a) If the resistance across the body is 500 ohms, what is the current flow?
(b) Is this dangerous?
(c) If the region from hand to hand can be modeled as a cylinder of constant
diameter (equal to the diameter of the upper arm) and length (from finger tip
to finger tip) of your own body, and all material is assumed to be uniform,
estimate the electrical resistivity of the body tissue.
(d) How much power is dissipated in this section? (Calculate both the total
power and the power per unit volume.) (Remember that the power dissipated
is P = IV and Ohm’s Law is V = IR. Assume here and below that the power
is the same as that for a DC voltage source.)
(d) What is the heat capacity of this cylindrical section? Assume the average
specific heat of the body.
(e) Ignoring heat flow, how much would the temperature of this section in-
crease per unit time?
(f) How long would it take to denature the proteins in this cylindrical section?
(See the information provided in Chap. 13.)

12.5. Compare the amount of current that could be drawn from a car battery
in an electrical shock to the maximum amount of current that could be drawn
from it. What does this mean? Why is the shock worse than that from a 9-V
battery?

12.6. What ranges of electromagnetic radiation can penetrate through your
(a) eyelid, (b) finger, and (c) chest?

12.7. An ion of mass m and charge q moves at a speed v under the influence
of an electric field E. It suffers a drag force that relaxes its speed with a
characteristic time τ :
(a) Show that force balance on the charge gives: mdv/dt = −mv/τ + qE.
(b) Show that in steady state, the ion moves at the drift velocity (which is
really the drift speed here), vdrift = qEτ/m = μE, where μ = qτ/m is called
the mobility.

12.8. (advanced problem) Show that the potential of a charge Ze shielded
by mobile charges is given by V (r) = (Ze/4πε0εr) exp(−κr), where κ =√

(e2/ε0εkBT )
∑

i Z2
i ni,0. Do this by substituting this solution for V (r) into

the Poisson–Boltzmann equation (12.41), which can be expressed in three-
dimensions as:

1
r

d2(rV )
dr2

= − 1
ε0ε

∑

i

Zieni,0 exp(−ZieV/kBT ) (12.94)

for this spherically symmetric potential. Assume the region is electrically neu-
tral and that ZieV/kBT � 1. (Hint: See Appendix C.)

12.9. (advanced problem) Repeat Problem (12.8), this time solving the
Poisson–Boltzmann equation under the stated conditions in one-dimension.
How does this solution differ from the spherically-symmetric three-dimensional
solution?
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12.10. In her famous 1973 rendition of the song “Killing Me Softly With
His Song,” Roberta Flack sang, “He sang as if he knew me in all my dark
despair. And then he looked right through me as if I wasn’t there.” [578] If
this were literally true, electromagnetic radiation would have to be able to be
transmitted through her body. Over what wavelength ranges would that be
possible? (Of course, there would also have to be a source of such radiation
and his eyes would have to be sensitive to those wavelengths.) (By the way,
this song was written by Norman Gimbel and Charles Fox for Lori Lieberman,
who sang it in 1971, and it was sung in the 2001 movie, “About a Boy.” A
modified version was also released by the Fugees in 1996, however without the
cited lyrics.)

Neuron Transmission and Membranes

12.11. Which of the four mechanisms involved in ion transport in an axon
membrane shown in Fig. 12.11 contribute to the negative charge inside the
cell and which to the positive charge?

12.12. The capacitance of a cylinder of length L, inner radius a, and outer ra-
dius a + b, with electrodes separated by material with dielectric constant κ, is
Ccylinder = 2πκε0L/ ln(1+b/a). Show that unfolding the cylinder and treating
it as a parallel plate capacitor is an excellent approximation for unmyelinated
axons, but not for myelinated axons.

12.13. (a) Estimate the effective dielectric constant κ of myelin, by suitably
weighting the averages of the dielectric constants of its components. These
water, lipid, and polar components have κ = 80, 2.2, and 50, respectively,
and have effective thicknesses t of 2.2, 4.2, and 10.8 nm, respectively, in the
repeated 17.1 nm bilipid layered structure in the myelin [581]. These can be
considered as capacitances in series, so

κeff =
ttotal

twater/κwater + tlipid/κlipid + tpolar/κpolar
. (12.95)

(b) How does this answer help explain why κ = 7 is reasonable for the axon
membrane?

12.14. (advanced problem) Derive the relation in Problem 12.13(a).

12.15. Compare the numerical values of the graded potential decay length λ
for typical unmyelinated and myelinated axons.

12.16. It is assumed that the spatial decay of the graded potential in myeli-
nated axons is slow enough that there is little decay before the signal reaches
the next node of Ranvier for regeneration. Is this assumption valid?
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12.17. Some pain receptors transmit signals on myelinated axons in neu-
rons with conduction speeds up to 30 m/s and others are transmitted on
very slow unmyelinated axons with speeds of 2 m/s and lower. How long
does it take such receptors on your finger tips to be transmitted to your
brain?

12.18. Show that the conduction speeds as given in the caption of Fig. 12.22
are consistent with the EMGs given in the figure.

12.19. Determine the characteristic time τ for unmyelinated and myelinated
axons.

12.20. Use substitution to show that (12.80) is the solution to (12.79).

12.21. Use substitution to show that (12.83) is the solution to (12.82).

12.22. Show that substituting (12.84) into (12.72) gives (12.85).

12.23. (advanced problem) Use substitution to show that each of the following
is a solution to the voltage along an axon cable in steady state (12.79) for
Vi = 0:

V (x) = A1 exp(x/λ) + A2 exp(−x/λ), (12.96)
V (x) = B1 cosh(x/λ) + B2 sinh(x/λ), (12.97)
V (x) = C1 cosh((x − L)/λ) + C2 sinh((x − L)/λ). (12.98)

12.24. (advanced problem) Use substitution and evaluation at the boundaries
to show that each of the following is a solution to the voltage along an axon
cable (for x ≥ 0) in steady state (12.79) as in Fig. 12.24, for Vi = 0 as the
boundary condition V (x = 0) = V0 and [589]:
(a) An semi-infinitely long cable (Fig. 12.24a):

V (x) = V0 exp(−x/λ), (12.99)

(b) A cable of length L and the boundary condition that V = 0 at x = L
(which means the voltage is clamped at zero at the end of the cable, which is
a short-circuit boundary condition) (Fig. 12.24b2):

V (x) = V0
sinh((L − x)/λ)

sinh(L/λ)
. (12.100)

(c) A cable of length L and the boundary condition that dV/dx = 0 at x = L
(which means zero core current at the end of the cable, which is an open-circuit
boundary condition) (Fig. 12.24c2):

V (x) = V0
cosh((L − x)/λ)

cosh(L/λ)
. (12.101)

(d) A cable of length L and the boundary condition that V = VL at x = L
(which means the voltage is clamped at V = VL at the end of the cable)
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(Fig. 12.24d):

V (x) =
V0 sinh((L − x)/λ) + VL sinh(x/λ)

sinh(L/λ)
. (12.102)

12.25. Sketch V in (12.83) vs. t. (Label t = τ .)

12.26. Sketch V in (12.87) vs. t and also vs. x. (Label t = τ and x =
√

Ddifft,
in the respective sketches.)

EKGs

12.27. By a series of diagrams similar to Fig. 12.29, show that the repolariza-
tion waves traveling to the left and right, respectively, produce signals that
are the negative of each other.

12.28. Find the heart rate from the EKGs in Fig. 12.33. Each big box is 0.2
s wide.

12.29. Show that the integration of the cardiac dipole electric field gives a
potential that is positive at a point the dipole points to, negative at a point
the dipole points away from, and zero at a point where the dipole points in a
transverse direction.

12.30. Assume that in (A)–(D) in Fig. 12.42 the cardiac dipole is initially zero,
increases to the maximum dipole vector shown, and then decreases to zero,
always in the direction shown. (This is not what normally happens. Why?)
Match each dipole in (A)–(D) to the EKGs (a)–(d) for the EKG Type I lead
shown.

12.31. Assume the same dipole dependencies as in Problem 12.30. Sketch the
EKGs for EKG leads II and III for cases (A)–(D) in Fig. 12.42.

Fig. 12.42. Examples of cardiac dipoles and EKG lead I. (Based on [584].) For
Problems 12.30–12.32
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12.32. Explain why the sequence of cardiac dipole evolution is normally (D),
(C), (B), (A) for the dipoles shown in Fig. 12.42.

12.33. (a) Use the normal sequence of cardiac dipole evolution to sketch the
evolution of the EKG signal for EKG leads I, II, and III.
(b) The three lead potentials should always sum to zero. Confirm that your
EKGs do so.

12.34. Compare the EKGs in Fig. 12.37 – taken at two times after a heart
attack – with each other and then with the normal traces in Fig. 12.33.





13

Feedback and Control

We consciously control our thought processes to achieve physical goals, in part
by using our senses to provide response for feedback to control our actions.
For example, when we place an object on a table we control our actions by
using our eyes to provide feedback on the relative positions of the object and
the table as it approaches the table and our sense of touch to provide feedback
as we place it on the table. Such feedback and control is also important in
all manufacturing processes. Our bodies function amazingly well because of
constant feedback and control processes.

One very essential feedback and control system is homeostasis, which tech-
nically is the stability of the chemical and physical conditions of the fluid sur-
rounding the body cells. This extracellular fluid constitutes about one third
of the total body fluid, and includes the blood plasma and interstitial fluid –
the tissue fluid that is in the spaces between the cells. The other two thirds
of the fluid is intracellular. The extracellular fluid is controlled to regulate
(a) body temperature, (b) pressure in blood vessels, (c) oxygen and carbon
dioxide concentrations, (d) pH, (e) the concentrations of ions, such as Na+,
K+, and Ca2+, (f) volume, (g) osmolality (water/dissolved particle ratio), and
(h) the organic nutrient concentrations, such as glucose.

We have many other important control systems. Our eye irises open and
close in response to light levels. The ciliary muscles control the focal length
of the crystalline lenses in our eyes to focus on objects (accommodation, Fig.
11.22). The force we use to grasp objects depends on the normal force feed-
back we get from it (and if the object “gives” we apply less force). Dur-
ing exercise the intercostal and abdominal muscles that control breathing
are regulated by the brain, which receives input from chemical receptors in
the blood, mechanical and metabolic receptors in skeletal muscles, as well as
from receptors in the lungs (Fig. 13.1). Similarly, during exercise the brain
receives input from the heart and muscles and then sends signals to control
the heart and blood vessels to increase cardiac output and blood pressure
(Fig. 13.6). Body heat balance and temperature are also controlled during ex-
ercise (Fig. 13.4). Of course, these control systems are also essential during
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Fig. 13.1. Control of the respiratory (ventilation) system during exercise. The res-
piratory area in the brain gets signals from the brain motor region, central chemore-
ceptors, and other receptors, including carotid artery and aortic chemoreceptors,
lung intercostal muscle and diaphragm receptors, and skeletal muscle mechanical
and metabolic receptors. During exercise this results in increased neural activity to
the intercostal muscles and diaphragm through the phrenic and intercostal nerves.
This increases the rate and depth of breathing, which regulates arterial oxygen,
carbon dioxide, and pH. (From [601]. Used with permission)

resting. For general discussions about such control systems and control in the
body see [598, 601, 602, 604, 605, 607, 608].

13.1 Basics of Feedback and Control

Figure 13.2 is a block diagram depicting feedback and control. There is a sensor
or receptor that measures a quantity (stimulus), such as blood pressure by
baroreceptors. The signal from this receptor is transmitted to an integration



13.1 Basics of Feedback and Control 769

Fig. 13.2. Feedback and control in the body, with an example of controlling high
blood pressure in parenthesis. (Based on [607])

center, such as the transmission of signals from sensory centers to the brain by
nerves. The integration center induces an effect. This response is transmitted
by nerves (motor pathways) to an effector control center. There is some effect
or response of interest, such as changing the heart rate or stroke volume
to change the blood pressure. The success of this control is determined by
measuring the response, the new blood pressure, which provides feedback for
the control.

Negative feedback reverses the direction of the change of a variation, to keep
the measured parameter near the desired set point. This type of feedback is
very common in the body. There is usually an operating range centered about
this set point bounded by allowable values. Figure 13.3a shows that the effector
is activated to correct the parameter when it wanders above the highest value
allowed or below the lowest value allowed. Room thermostats usually operate
in the same manner, with a several degree operating range about the set point;
our bodies also have thermostats.

Positive feedback causes the effector to produce more of a change in the
same direction that the parameter is already changing, as in Fig. 13.3b. This
type of feedback is rare in the body. One example is suckling which leads to
the production of more milk in mothers.

Fig. 13.3. (a) Negative and (b) positive feedback. (Based on [607])
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13.1.1 Control Theory (Advanced Topic)

Feedback is needed to control a parameter P , such as blood pressure or tem-
perature, to keep it near a set point P0. The level of feedback is often propor-
tional to the difference between the current parameter value and the desired
set point [605]. The gain g is the proportionality factor and this determines
the magnitude of the response. This response causes a change dP in time dt
and so

dP = −g(P − P0)dt. (13.1)

This feedback is not instantaneous. It is delayed by a time τd due to delays
associated with sensing, neuronal transmission to the brain, processing in the
brain, neuronal transmission to the effectors, and how fast the effectors can
cause a change. Consequently, a change at time t is due to feedback provided
from sensors at time t − τd, and so (13.1) changes to

dP (t) = −g(P (t − τd) − P0)dt, (13.2)

or defining p = P − P0

dp(t)
dt

= −gp(t − τd). (13.3)

The desired response is a monotonic decrease of the magnitude of p, a
stable oscillation of p about 0 (and therefore of P about P0), or some com-
bination of the two. What values of g and τd can produce this desired stable
negative feedback? Obviously g must be positive and it may seem that the
larger the gain the better, but we will see that large values of the gain are not
always desirable.

Let us try to solve (13.3) by substituting the possible solution p(t) =
p exp(zt) into it. In general, z can be a complex number, with z = x + iy.
The imaginary term y gives oscillatory behavior about the set point, while
x < 0 gives exponential decay to the set point and x > 0 gives an exponential
increase away from the set point, and this last case is undesirable. Equation
(13.3) then becomes

z = −g exp(−zτd). (13.4)

Reasonable solutions can exist for x ≤ 0. Because exp(iq) = cos q + i sin q,
(13.4) becomes separate equations for the real and imaginary parts.

x = −g exp(−xτd) cos yτd, (13.5)

y = g exp(−xτd) sin yτd. (13.6)

These are transcendental equations that in general must be solved numerically.
We will, however, be able to solve it analytically in special regimes.
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The solution with x = 0 is one that oscillates about the set point. Using
x = 0 in (13.5) leads to 0 = −g cos yτd, which gives y = π/2τd. Using x = 0
in (13.6) leads to y = g sin yτd and with y = π/2τd, this becomes π/2τd =
g sin((π/2τd)τd) = g. This means

gτd =
π

2
, (13.7)

and so if the delay time is τd, there is an oscillatory response when the gain
g = π/2τd. This is an acceptable solution.

Now let us say that x has a small magnitude but is not necessarily 0.
Equation (13.5) still gives y � π/2τd and so sin yτd � 1. Because exp(q) ≈
1 + q for | q | � 1, (13.6) becomes y � g(1− xτd) sin yτd � g(1− xτd) and so

x � 1
τd

(
1 − π

2gτd

)
. (13.8)

For gτd < π/2, we see that x < 0 and the parameter P approaches the
set point as an oscillation with a magnitude that decreases with time. For
gτd = π/2, it is clear that x = 0 and the parameter P oscillates about the set
point, as shown above. For gτd > π/2, we see that x > 0 and the parameter
P oscillates about the set point with a magnitude that increases with time
and this is unstable. Therefore, this stability criterion sets an upper limit to
the possible gain for a given delay time, given by

gτd ≤ π

2
. (13.9)

13.2 Regulation of the Body

13.2.1 Regulation of Temperature

The regulation of body temperature is closely tied to the discussion in Chap. 6
of the production of heat by the metabolism and the modes of heat loss from
the body. The normal core body temperature is 37± 2◦C (98.6± 3.6◦F). Large
increases and decreases mean trouble. Far above normal body temperatures, at
41◦C (106◦F) the central nervous system begins to deteriorate and convulsions
occur. At 45◦C (115◦F), proteins denature, followed by death. For lower than
normal temperatures, at 33◦C (91◦F), nervous functions are depressed to the
point that consciousness is lost. At 30◦C (86◦F), the temperature regulation
system fails. At 28◦C (82◦F), there is cardiac fibrillation, leading to death. The
body is quite good at regulating core temperature, as is clear from Fig. 6.18,
but it has its limits and can fail, as is clear from Figs. 6.19–6.21. Figure 13.4
illustrates how the receptors in the skin and in the core sense temperature and
send information to the brain. Temperatures outside the range of normality
lead to conscious acts and automatic activity by the body to correct the
temperatures.
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Fig. 13.4. The thermoregulatory system, including input to the brain from receptors
and output from the brain to effectors. The hypothalamic center relays information
to the effector organs to stimulate the heat production and conservation processes
shown when the core temperature receptors differ from the 37◦C set point. (From
[601]. Used with permission)

Each person has a set point temperature, which varies by � ±0.3◦C
(±0.5◦F) among people [600]. The mean set point for skin temperature is ap-
proximately 33◦C (91.4◦F). (In Chap. 6 we used a skin temperature of 34◦C.)
Skin temperatures above 34.5◦C (94◦F) cause active sweating, while those
below 30◦C (86◦F) lead to the increased metabolic activity associated with
shivering.

Recalling our discussion in Chap. 6, the conservation of energy implies a
conservation of heat creation and loss

(
dQ

dt

)

net

=
(

dQ

dt

)

metabolism

+
(

dQ

dt

)

passive loss

+
(

dQ

dt

)

body controlled

.

(13.10)
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The left side is the net heating rate due to all modes of heat production and
heat loss. The first term on the right-hand side is the heat production from
metabolic activity and physical activity; it is >0. The second term is heat loss
due to passive modes, such as from the skin, radiation, convection, etc., it is
<0. The third term is that due to body-controlled heating (>0) and/or heat
removal (<0) [598].

Our discussion in Chap. 6, as in (6.5) and (6.36), showed us how body
temperature changes with a net flow of heat into or out of the body, according
to

(
dQ

dt

)

net

= C
dT

dt
= (60 kcal/◦C)

dT

dt
, (13.11)

where C is the heat capacity = 60 kcal/◦C for a 70 kg person. The heat ca-
pacity C = mass (= 70 kg) × specific heat c (= 0.83 kcal/◦C-kg). We know
that the minimum heating rate due to the metabolism is the BMR, so it can
be written as

(
dQ

dt

)

metabolism

= f(BMR), (13.12)

where f is the activity factor – a multiplier between 1 and about 20, and
BMR = 70 kcal/h.

If there is no loss of heat (and the last two terms of (13.10) are zero), we
see that

C
dT

dt
= f(BMR) = f 70 kcal/h (13.13)

so

dT

dt
= f

BMR
C

= f
70 kcal/h
60 kcal/◦C

= 1.2f ◦C/h. (13.14)

This is similar to (6.36). Without adequate means of heat loss we would not
survive heavy exercise for long. With f = 20 for heavy exercise, we see that
dT/dt = 24◦C/h.

Now let us consider what happens when there is passive loss of heat only,
due to radiation and convection, with no control. From (13.10), the loss of
heat due to radiation and convection is

(
dQ

dt

)

passive loss

= −(Ahr + Ahc)(Tskin − Troom) = −λ(Tskin − Troom),

(13.15)

where λ = A(hr + hc). For a person with a body area of 1.5 m2, the radi-
ation parameter Ahr ∼ 12 kcal/h-◦C. The convection parameter is Ahc ∼
13 kcal/h-◦C for a nude person in the presence of a 9 m/s wind speed. This
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is much higher than typical values for clothed people. For a nude person in a
15 m/s breeze it is larger by a factor of 5 than the value used here.

Equation (13.15) now becomes

C
dT

dt
= f(BMR) − λ(Tbody − Troom) (13.16)

or

(
60 kcal/◦C

) dT

dt
= f(70 kcal/h) − (25 kcal/h-◦C)(Tbody − Troom), (13.17)

where we have called the body temperature Tbody and are now ignoring the
differences between the skin and core temperatures. These equations can be
solved by substituting the form

Tbody(t) = α + β exp(−t/τr), (13.18)

where τr is the characteristic response time. This substitution gives

Cβ(−1/τr) exp(−t/τr) = f(BMR) − λ(α + β exp(−t/τr) − Troom) (13.19)
= f(BMR) − λ(α − Troom) − λβ exp(−t/τr). (13.20)

Because this must be valid for all time t, we can equate the coefficients of the
exp(−t/τr) terms to get

Cβ(−1/τr) = −λβ, (13.21)

τr =
C

λ
=

60 kcal/◦C
25 kcal/h-◦C

= 2.4 h, (13.22)

and then equate the constant terms to get

f(BMR) = λ(α − Troom), (13.23)

or

α = Troom + f
BMR

λ
= Troom + f

70 kcal/h
25 kcal/h-◦C

= Troom + 2.8f ◦C. (13.24)

At t = 0 we will call Tbody(t = 0) = Tbody,initial (which is the initial condition),
so,

Tbody(0) = Tbody,initial = α + β (13.25)

and therefore

β = Tbody,initial − α = Tbody,initial − Troom − 2.8f ◦C. (13.26)
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The final solution is

Tbody(t) = Troom + 2.8f ◦C + (Tbody,initial − Troom − 2.8f ◦C) exp(−t/τr).
(13.27)

This is an example of open loop (or open cycle) heating, because there is
no feedback and control. The problems in this temperature regulation system
are clear from (13.27). The final steady-state temperature (i.e., that for t �
τr = 2.4 h) is

Tbody,steady state = Troom + f
BMR

λ
= Troom + 2.8f ◦C. (13.28)

If Troom = 21◦C (69.8◦F � 70◦F) and we were resting, so f ∼ 1, our steady-
state body temperature would be ≈24◦C (75◦F), which is much lower than
our desired body temperature. If we were exercising pretty hard, so f = 10,
our steady-state body temperature would be ≈49◦C (120◦F), which is too
high. We could consciously change λ a bit (through hc: by decreasing it by
putting on heavy clothes in the first case or by increasing it by increasing the
wind speed on our nude bodies in the second case), but this would help a bit.
Ideally, we would want to fix

Tbody,steady state − Troom = 37◦C (98.6◦F) − 21◦C (69.8◦F) = 16◦C (28.8◦F)
(13.29)

= f
BMR

λ
= 2.8f ◦C, (13.30)

so, f ∼ 6 with our current λ. We could regulate temperature by changing f or
λ. This means to maintain our body temperature we would have to constantly
engage in moderate activities, such as slow swimming (for the same λ). If we
bundled up a bit (decreased λ), we could lower f a bit, to say f = 4, which
would mean we would have to still engage in activities, such as moderately
fast walking – even while we were asleep (such as constant sleep walking).

Another negative feature of the consequences of (13.27) is that it has a
time constant τr = 2.4 h which is much too long. If we decided to change
our activity level (and therefore change f) it would take about 5 h for our
body temperature to stabilize to the new steady-state temperature; this is
unreasonable. These seemingly ridiculous results cannot be attributed to the
assumptions we have made in the heat gain and loss terms we have used so
far. We have neglected the last term in (13.10) which describes the feedback
and control for closed loop (or closed cycle) temperature regulation. We need
this to maintain body temperature within the normal range.

The last term in (13.10) (dQ/dt)body controlled describes the involuntary
responses by the body to maintain a normal body temperature, which we can
call the set point – the targeted temperature. When an increase in temperature
is needed, this term is positive due to increased metabolic activity and motor
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Fig. 13.5. Rate of heat loss due to sweating, for skin temperatures between 33 and
38◦C. (Based on [598] and [599])

activity, such as shivering (up to the summit metabolic rate, Chap. 6); this
heat goes directly to the core and muscles. When a decrease in temperature is
needed this control term is negative, e.g., due to sweating. The body can lose
1 L/h water by sweating; if all of this sweat evaporates (and is not wiped off),
then with the 540 kcal/L heat of evaporation of water, the heat loss through
sweating can be 540 kcal/h. Through vasomotor control, this control term can
be positive or negative. If blood is directed to vessels closer to the skin, cooling
is more effective and the last term in (13.10) is negative. If blood is diverted
to vessels farther from the skin and closer to the core, cooling is less effective
and the control term is positive. One reason cooling is less effective is the
countercurrent heat exchange mechanism described in Fig. 6.17.

Figure 13.5 shows the rate of heat loss due to sweating as a function of the
body core temperature. This loss is zero when the core is cooler than normal
and increases fairly linearly with temperature as Ksweat(Tbody − 36.85◦C)
where Ksweat ∼ 750 kcal/h-◦C, when the core is higher than normal (for skin
temperature between 33 and 38◦C). Now (13.10) becomes

C
dT

dt
= fP0 − λ(Tbody − Troom) − Ksweat(Tbody − 36.85◦C), (13.31)

or
(
60 kcal/◦C

) dT

dt
= f(70 kcal/h) − (25 kcal/h-◦C)(Tbody − Troom) (13.32)

−(750 kcal/h-◦C)(Tbody − 36.85◦C).

Note that Tbody in the passive heat loss term really refers to the skin temper-
ature, while that in the control term is the core temperature. The solution to
this equation has a form similar to (13.27) with the response time

τr =
C

λ + K
. (13.33)
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Because K/λ = 30, the time constant is now smaller by a factor of 31, giving
2.4 h/31 � 4.7 min, which is much more reasonable.

Note that we have been able to see how the body can increase the gain to
produce a response time that is reasonable on a physiological timescale. We
have ignored the issue of the delay time τd, as discussed in the previous section.
For this process at least τd � τr and so the delay time is not important here.

Our bodies usually have a set point for the core temperature of about
37◦C. Sometimes when we are ill, bacterial toxins called pyrogens increase this
set point. When this set point increases, we feel cold until our voluntary and
involuntary actions cause our temperature to increase to this new level. We can
decrease heat loss by covering ourselves with blankets (which is voluntary) and
decreases blood flow to the skin (involuntary). We can increase our metabolic
rate by shivering (involuntary).

13.2.2 Control of Blood Pressure

The brain continuously receives input from the heart and muscles and then
sends signals to control the heart and blood vessels to control blood pressure
(Fig. 13.6). For example, the carotid sinus baroreceptors (pressure sensors in
the carotid artery) fire a signal that is transmitted by the carotid sinus nerve
that goes to the brain [606]. The frequency of this signal F is roughly propor-
tional to how much the arterial pressure – as sensed by the baroreceptors pb –
exceeds a threshold pressure pt, and this dependence has been modeled as

F + K1
dF

dt
= K2(pb − pt) + K3

dpb

dt
, (13.34)

where K1, K2, and K3 are constants. Note the similarity of this equation
to that describing the Kelvin model (4.68). The frequency is not directly
proportional to the excess pressure because of the two derivative terms. The
dpb/dt term describes the observed overshoot in frequency. The dF/dt term
describes how the rates of receptor firing continue to change even after the
pressure has stabilized.

In the overall feedback system there is a decrease in arterial pressure Δpa

observed in response to a change in the pressure in the baroreceptors Δpb,
which is given by

Δpa = −gΔpb, (13.35)

where g is the gain factor. A more exact expression is

Δpa = −g Δpb − K4
dp+

b

dt
, (13.36)

where the last term denotes the rate of change of pressure only when it is
increasing. The open loop gain factor go has been measured to range from
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Fig. 13.6. Control of the cardiovascular system during exercise, showing control
inputs on the left and outputs on the right. Nerve impulses from the motor region
of the cerebrum in the brain, and the afferent input from the arterial baroreceptors
and skeletal muscle receptors converge on the cardiovascular region of the medulla
in the brain. During exercise this results in reduced parasympathetic activity to the
heart and increased sympathetic activity to the heart, blood vessels, and the adrenal
medulla. (The parasympathetic and sympathetic nervous systems are automatic
regulation systems that, respectively, “relax” and “push” systems, such as organs,
in the body.) The leads to an increase in blood pressure and cardiac output. (From
[601]. Used with permission)

2 to 9 in dogs and humans in isolated systems with no feedback. The factor in
a closed loop system with feedback gc can be smaller; in particular the body
makes it smaller during hemorrhaging.

13.2.3 Regulation During Exercise

Several functions and properties of the body are under active control during
exercise. Arterial baroreceptors and skeletal muscle mechanoceptors are inputs
to the cardiovascular area of the medulla in the brain, along with impulses
from the motor region of the cerebrum, to regulate the cardiovascular system
(Fig. 13.6). This results in sympathetic activity in the heart, blood vessels,
and adrenal medulla, which leads to increases in blood pressure and cardiac
output.
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For this increased blood flow to be useful, there must be a concomitant
increase in air intake and therefore control of the ventilation system is vital
(Fig. 13.1). In addition to the signals used for cardiovascular control are signals
from receptors that control the respiratory components, such as the intercostal
muscles and diaphragm. This results in neural activity to increase the rate and
depth of breathing, which regulates the arterial O2, CO2, and pH. (See [603]
for a model of breathing.) Of course, during exercise the body must control
temperature (Fig. 13.4).

During exercise the metabolism rate increases and the body must actively
lose heat. This occurs through the temperature control system, outlined above
and in Fig. 13.4.

13.3 Summary

Feedback and control are essential to every aspect of normal body function
and regulation, and these processes can be modeled. Models of controlling
body temperature by passive and active processes can be developed by using
the models of heat formation and loss presented in Chap. 6.

Problems

Problem Type

13.1. Use the decision-making boxes as in Fig. 13.2 to devise a feedback and
control system that redirects the flow of blood superficial or deep in the body
for temperature regulation, as in the countercurrent mechanism described in
Chap. 8.

13.2. Someone has a body temperature set point of 37.0◦C. Her tempera-
ture feedback and control system turns on whenever her temperature strays
by ±0.5◦C from this set point, and returns it to the set point in 2 min. Un-
fortunately, when this feedback system is not on, her temperature drifts by
+2◦C/h. How often does her feedback system turn on?

13.3. What is the maximum gain for stable feedback and control if the delay
is alternatively 1 s or 1 ms?

13.4. (a) Your 70 kg body stops generating heat (but somehow functions well
anyway), while you are indoors under normal conditions. Estimate how long
it will take for you to cool from 37 to 28◦C (and death).
(b) As your temperature approaches 28◦C in (a) your metabolism turns on
again and your metabolic rate is your normal BMR (Chap. 6). Estimate how
long it will take for your body temperature to reach 37◦C again.
(c) Repeat (b) if your metabolic rate is at its summit value (Chap. 6).

13.5. Solve (13.33) for an arbitrary activity level.





Appendix A

Symbols and Units

Table A.1 gives many of the physical constants used in this text. The
names of general variables are provided in Table A.2, along with their units.
Table A.3 lists coefficients and parameters. Some more specific parameters
and constants with acronyms, are provided in Table A.4. Most variables and
parameters are defined locally in the chapters, sometimes a bit differently
than in these tables when there is an overlap in the use of symbols. For
example, in most of Chap. 8 the flow or vascular resistance is called Rflow

(Table A.3) to avoid confusion with R used for radius (Table A.2). Else-
where where there can be no confusion it is called R (and is locally defined as
such).

Table A.1. Physical constants

parameter (variable) value (in SI units)

Avogadro’s number (NA) 6.02 × 1023 (per mole)
Boltzmann constant (kB) 1.381 × 10−23 J/K
Coulomb’s Law constant (k = 1/4πε0) 8.99 × 109 N-m2/C2

electric permittivity (ε0) 8.854 × 10−12 F/m
elementary charge (e) 1.602 × 10−19 C
gas constant (R = NAkB) 8.315 J/mole-K
gravitation constant (g) 9.8 m/s2 = 32.2 ft/s2

magnetic permeability (μ0) 4π × 10−7 N/A2

Planck’s constant (h) 6.626 × 10−34 J-s
speed of light (c) 3.0 × 108 m/s
Stefan-Boltzmann constant (σ) 5.67 × 10−8 W/m2-K4
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Table A.2. General variables and units. Also see Fig. D.1

parameter (variable) common units (Definition)

acceleration (a, adecel = −a) m/s2

angular momentum (L) kg-m2/s
area (A, in flow S) m2

body height (H or Hb) ma

body mass (mb) 1 kg = 1,000 g

body weight (Wb) Nb

charge (q) coulombs (C)
charge, number of elementary charges (Z) unitless, q = Ze
current (Ielect, I) amps (A), 1 A = 1 C/s
current density (Jelect, J) A/m2

density (mass) (ρ) 1,000 kg/m3 = 1g/cm3

density (number) (n) #/m3, #/cm3

diameter (d, D) 1 m = 100 cm = 3.28 ft
dipole moment (P ) 1 Debye (D) = 3.33610−30 C-m
distance (L), height (h, y) ma

electric field (E) V/m
energy (E) Jc

flux (particle) (J) #/m2-s
focal length (f) m

force (F, M (for muscle)) Nb

frequency (in space) (k) 1/m
frequency (in time) (f , F , ν) Hz, cycles per second (cps)
frequency (in time) (radial) (ω) radians per second, ω = 2πf
heat flow, amount (Q) Jc

heat flow, rate (dQ/dt) kcal/h, Wd

intensity (acoustic, optical) (I) W/m2

Intensity (acoustic reference) (Iref) 10−12 W/m2

kinetic energy (KE) Jc

loudness (Lp, Ls) phons, (10.64); sones, (10.65)
mass (m) 1 kg = 1,000 g
magnetic field (B) 1 T (T) = 104 gauss (G)
magnification (M) unitless
mobility (μ) m2/V-s

normal force (N) Nb

osmotic pressure (Π) Pae

potential energy (PE) Jc

power (Ppower or P , mechanical, metabolic) Wd

pressure (P ) Pae

radiation flux (R) W/m2

radius (radius of curvature) (r, R) ma

reaction force (R) Nb

reflection coefficient (Rrefl, R) unitless
refractive power (P ) 1/m = 1 D (Diopter)
speed, angular, rotational (Ω) rad/s

(Cont.)
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Table A.2. (Continued)

parameter (variable) common units (Definition)

speed, velocity (v), flow (u, v) m/sf

strain (ε) unitless, mm/mm
stress (σ) Pae

temperature (T ) T (K) = T (◦C) + 273◦

tension (T ) Nb (for force, as in Chap. 5)
tension (T ) (surface tension) N/m (force/length (7.4))
torque (τ) or moment (M) N-m
transmission coefficient (Ttrans, T ) unitless
volume (V or Vflow) 1 L = 1,000 mL = 1,000 cm3

volume flow rate (Q) 1 L/s = 1,000 mL/s = 1,000 cm3/s
voltage, potential difference (Velect, V ) volts (V)
wavelength (λ) m, 1 nm = 10−9 m
work (W ) Jc

vergence (V ) 1/m = 1D (Diopter)

a1m = 100 cm = 3.28 ft, 1 mile = 5,280 ft.
b1 N = 105 dynes = 0.225 lb, (Table 2.5).
c1 J = 0.239 cal = 0.000948 BTU, 1 kcal = 4,184 J.
d1 W = 0.86 kcal/h = 1/746 hp = 0.00134 hp (horsepower) (Table 6.1).
e1Pa = 1N/m2, 1 MPa = 1N/mm2 = 7,600 mmHg = 10,300 cmH2O = 10bar =
9.87 atm. Table 2.6.
f1 m/s = 3.6 km/h = 3.28 f/s (fps, feet per second) = 2.24 mph (miles per hour,
1 mile = 5,280 ft).

Table A.3. General coefficients and parameters, and units. Also see Fig. D.1

parameter (variable) common units (definition)

absorption coefficient (sound, light) (γ) 1/m
activity factor (f) unitless
admittance (Y = 1/Z = G + iB) 1mho = 1/ohm
area moment of inertia (IA) m4, (4.38)
capacitance (Celect or C); per unit length farads (F) = C/V; F/m
capacitance per area (c) F/m2

compliance (Cflow or C) cm3/bar, L/mmHg
conductance (electrical, G) siemens, 1 S = 1/ohm
conductance per unit area (g) 1/ohm-m2

conductivity (σ) 1/(ohm-m), σ = 1/ρ
dashpot constant (c) N-s/m
dielectric constant (κ) unitless
diffusion coefficient (Ddiff) m2/s, cm2/s
distensibility (Dflow) 1/Pa, (8.20)
drag coefficient (CD) unitless
efficiency (ε) 0 ≤ ε ≤ 1
emissivity (ε) 0 ≤ ε ≤ 1, 1 for a black body

(Cont.)
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Table A.3. (Continued)

parameter (variable) common units (definition)

friction coefficient (static, kinetic) (μs, μk) unitless
heat capacity (C) kcal/◦C, 1 MJ/K = 239 kcal/K
heat transfer coefficient (h = K/d = 1/I) W/m2-◦C, kcal/m2-h-◦C
impedance (Z = R + iX) ohm
index of refraction (n) unitless
insulation (I = 1/h = d/K) m2-◦C/W, m2-h-◦C/kcal
lift coefficient (Dlift) unitless
moment of inertia (I) kg-m2, (3.23), (3.24)
Poisson’s ratio (υ) unitless, (4.7)
radius of gyration (ρ) m
reactance (X) ohm
resistance (flow, vascular, Rflow or R) mmHg-s/cm3 a

resistance (electrical, Relect or R) ohm (Ω)
resistance (electrical; per unit length r) ohm/m
resistivity (ρ) ohm-m
scattering coefficient (αlight scattering) 1/m
skin friction coefficient (Csf) unitless

specific heat (c) kcal/kg-◦Cb

specific heat ratio (γ) unitless, = cp/cv

speed of sound (vs) m/s
spring constant (k) N/m
stroke volume (Vstroke) 1 L = 1,000 mL = 1,000 cm3

surface tension (γ) 1N/m = 1,000 dynes/cm
susceptance (B) 1mho = 1/ohm
thermal conductivity (K) W/m-K
total volume flow rate (Qt) 1 L/s = 1,000 mL/s = 1,000 cm3/s
viscosity coefficient (dynamic, absolute) (η) Pa-sc

viscosity coefficient (kinematic) (υ = η/ρ) Pa-s/(kg/m3)
Young’s modulus (Y ), elastic modulus (E) Pa, 1MPa = 1 N/mm2

a1mmHg-s/cm3 = 1 mmHg-s/mL = 1 PRU.
bper mass or volume, kcal/kg-◦C, 1MJ/m3-K = 239 kcal/m3-K.
c1Pa-s (Poiseuille, PI) = 1 (N/m2)s = 1 kg/m-s = 10 poise (P) = 1,000 cP.

Table A.4. Acronyms, including those of parameters, and units

parameter (variable) common units

adenosine triphosphate, diphosphate (ATP, ADP) Fig. 6.3
basal metabolic rate (BMR) kcal/ha

body mass index (BMI = mb/H2), Quételet’s index (Q) kg/m2

center of mass (CM)
chromatic aberration (CA)
coefficient of restitution (COR) unitless; (3.97)
electrocardiogram (EKG, ECG)

(Cont.)
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Table A.4. (Continued)

parameter (variable) common units

electron transfer system (ETS)
focal length, back, effective, front (BFL, EFL, FFL) m
focal point, plane (first: F, F; second: F′, F′)
forced expiratory volume (FEV) L
functional residual capacity (FRC) L
Gadd Severity Index (GSI) s; (3.103)
Head Injury Criterion (HIC) s; (3.105)
inspiratory, expiratory reserve volume (IRV, ERV) L

intraocular pressure (IOP) Pa, mmHgb

left atrium, ventricle (LA, LV)
metabolic equivalent (MET) unitless
metabolic rate (MR) kcal/ha

near point, far point (NP, FP) m
nodal point (first: N; second: N′)
peripheral resistance unit (PRU) mmHg-s/cm3

phosphocreatine (PCr)
physiological cross-sectional area (PCA) 1 cm2 = 0.155 in2

principal point, plane (first: P, P; second: P′, P′)
residual volume (RV) L
respiration exchange ratio (RER) unitless, Table 6.2
Reynolds number (Re) unitless; (7.11)
right atrium, ventricle (RA, RV)

specific stature (S = H/m
1/3
b ), Ponderal index m/kg1/3

spherical aberration (SA)
Strouhal frequency, number (St) unitless; (7.47)
tidal volume (TV) L
total lung capacity (TLC) L
total peripheral vascular resistance (TPVR) mmHg-s/cm3

transient ischemic attack (TIA)

ultimate bending stress (UBS) Pab

ultimate compression stress (UCS) Pab

ultimate strain, ultimate percent elongation (UPE) unitless

ultimate tensile stress (UTS) Pab

visual acuity (VA) unitless
vital capacity, forced vital capacity (VC, FVC) L

a1 kcal/h = 1.162 W, 1W = 0.86 kcal/h = 1/746 hp = 0.00134 hp (horsepower)
(Table 6.1).
b1 MPa = 1N/mm2, 1 Pa = 1 N/m2, 1 MPa = 1 N/mm2 = 7,600 mmHg =
10,300 cmH2O = 10bar = 9.87 atm. Table 2.6.





Appendix B

Locator of Major Anatomical and
Anthropometric Information

This appendix cites the figures (Table B.1) and tables (Table B.2) that de-
scribe the main features of human anatomical and anthropometric informa-
tion, which are used throughout this text.

Table B.1. Figures describing human anatomy and anthropometry

figure content

1.1 Directions, orientations, and planes
1.2 Anatomy of the skeletal system
1.3 The knee synovial joint
1.8 Anterior and posterior view of several large skeletal muscles
1.9 Antagonistic motions allowed by synovial joints
1.10 More antagonistic motions allowed by synovial joints
1.14 Ocular muscles
1.15 Body segment lengths
1.16 Postures for opposing motions
2.7 Bones of the arm, anterior view
2.8 Bones of the arm, posterior view
2.14 Bones of the leg and hip, anterior view
2.15 Bones of the leg and hip, posterior view
2.33 The vertebral column (spine)
2.38 The intermediate layer of back muscles
2.49 Cross section of skin
3.2 Anterior and medial muscles of the thigh
3.3 Posterior thigh and gluteal region muscles
3.4 Lateral views of the right leg
5.26 Extensor muscles of the forearm
5.27 Flexor muscles of the forearm
8.1 Blood circulation system
8.2 Diagram of the heart
8.3 Major arteries in the body

(Cont.)
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Table B.1. (Continued)

figure content

8.4 Major veins in the body
9.1 Diagram of parts of the respiratory system
9.2 The relationship between the lung and heart

10.26 Diagram of the outer, middle, and inner ear
10.27 Diagram of the middle ear and uncoiled chochlea
11.1 Structure of the eye
12.7 Structure of a neuron

Table B.2. Tables describing human anatomy and anthropometry

table content

1.1 Anatomical terms in anterior regions
1.2 Anatomical terms in posterior regions
1.5 The “Standard Man”
1.6 Body segment lengths
1.8 Masses and mass densities of body segments
1.8 Distance of the center of mass from either segment end
1.9 Radius of gyration of a body segment
1.11 Mass and volume of the organs
1.13 Allometric parameters for mammals
1.15 Steven’s Law parameters
5.1 Percent PCA of muscles crossing the hip joint
5.2 Percent PCA of muscles crossing the knee joint
5.3 Percent PCA of muscles crossing the ankle joint
7.4 Approximate flow rates of the alimentary system
8.1 Normal resting values of blood pressures and volumes
8.2 Approximate quantification of individual vessels
8.3 Approximate quantification of total vessel systems
8.4 Tension in blood vessel walls.
9.1 Approximate quantification of the bronchial system



Appendix C

Differential Equations

The same form of simple differential equations is used to model very differ-
ent problems throughout this text. They are presented here along with their
solutions. The solutions can be checked by substituting them in the differen-
tial equation and showing that the equation is satisfied. This appendix is not
meant to serve as a primer on differential equations or their solutions.

Solutions to first- and second-order differential equations, respectively,
have one and two free parameters that are satisfied by the conditions of the
problem. When the independent variable is time, t, these conditions are called
initial conditions, so for the dependent variable q(t), q is specified at a given
time, such as at t = 0 for a first-order differential equation. For a second-order
equation, both q and dq/dt at t = 0 can be given. The dependent variable q
can be a coordinate, such as x and angle θ or something else, such as force
F . When the independent variable is a spatial coordinate, such as x, these
conditions are called boundary conditions.

Unless otherwise specified, F and G are constants.

C.1 Simple First- and Second-Order
Differential Equations

In these differential equations the derivatives of the dependent variable, q,
depend on the independent variable t.

First-Order, Constant Driving

A variable q(t) obeying

dq

dt
= F (C.1)
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has solution

q(t) = Ft + q(t = 0), (C.2)

where q(0) = q(t = 0) is the initial condition.
This type of equation is used to describe the temperature rise of the body

with metabolic heating and no heat loss (6.36).

Second-Order, Constant Driving

A variable q(t) obeying

d2q

dt2
= F (C.3)

has solution

q(t) =
Ft2

2
+

dq(0)
dt

t + q(0), (C.4)

where the initials conditions are q and dq/dt evaluated at t = 0.
This type of equation is used in the model of ball throwing (3.76).

Second-Order, Increasing Driving

A variable q(t) obeying

d2q

dt2
= F + Gt (C.5)

has solution

q(t) =
Ft2

2
+

Gt3

6
+

dq(0)
dt

t + q(0), (C.6)

where the initials conditions are q and dq/dt evaluated at t = 0.
This type of equation is used in the model for bending a cantilever (4.44)

with the position x as the independent variable.

First- and Second-Order, Increasing Driving

A variable q(t) obeying

d(t dq/dt)
dt

= Gt (C.7)
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or equivalently

t
d2q

dt2
+

dq

dt
= Gt (C.8)

has solution

q(t) = q(0) +
Gt2

4
, (C.9)

where the initial condition for q is evaluated at t = 0, and q and dq/dt are
finite at t = 0.

This type of equation is used in determining the viscous flow in a tube
(7.31).

C.2 Exponential Decay and Drag

In these differential equations the first derivative of the dependent variable,
q, depends on q and in some cases on the dependent variable t.

First-Order, Proportional Drag, No Driving

A variable q(t) obeying

dq

dt
+

q

τ
= 0 (C.10)

decays in time t as

q(t) = q(0) exp (−t/τ), (C.11)

where q(0) is the initial condition and τ has units of time (s) and is called a
time constant. The value of q decays exponentially in time with this charac-
teristic time constant. This can be due to a “frictional force” or damping with
a rate 1/τ .

This type of equation is used in the mechanical models of non-Hookean
materials ((4.22) with the strain ε as the independent variable) to describe the
speed when there is Stokes-type drag that is proportional to speed (7.59) and
in describing pulsatile flow in (8.94), (8.105), and Problem 8.49. This equation
is equivalent to the first two terms of (C.30) describing position.

This type of equation is used in the viscoelastic mechanical models of
materials with constant driving terms, including the Maxwell (4.52), Voigt
(4.57), and Kelvin/standard linear (4.68) models, a model of muscles (5.9),
the arterial pulse (Problem 8.49), and temperature regulation (13.18).
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Equation (C.10) can also be phrased as

dq

dt
+ γq = 0, (C.12)

where the damping constant γ = 1/τ is defined. The solution (C.11) becomes

q(t) = q(0) exp (−γt). (C.13)

First-Order, Proportional Drag, Constant Driving

A variation of (C.10),

dq

dt
+

q

τ
= F (C.14)

with constant term F , has solution:

q(t) = (q(0) − Fτ) exp(−t/τ) + Fτ. (C.15)

This type of equation is used in the viscoelastic mechanical models of
materials with constant driving terms, including the Maxwell (4.52), Voigt
(4.57), and Kelvin/standard linear (4.68) models, a model of muscles (5.9),
the arterial pulse (Problem 8.49), and temperature regulation (13.18).

First-Order, Proportional Drag, Increasing Driving

A variation of (C.14) includes a driving term that varies linearly with the
independent variable

dq

dt
+

q

τ
= F + Gt. (C.16)

It has solution

q(t) = (Fτ − Gτ2)(1 − exp(−t/τ)) + q(0) exp(−t/τ) + Gtτ. (C.17)

This type of equation is used in the Kelvin/standard linear viscoelastic
mechanical model with a linearly increasing driving term (4.72).

First-Order, Proportional Drag, Arbitrary Temporal Driving

A variation of (C.12) and (C.14) includes a driving term that varies arbitrarily
on the independent variable

dq

dt
+

q

τ
= F (t). (C.18)
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Substituting q(t) = s(t) exp(−t/τ) into this gives

ds

dt
= exp(t/τ) F (t), (C.19)

so

s(t) = s(0) +
∫ t

0

exp(t′/τ)F (t′)dt′ (C.20)

and

q(t) = exp(−(t/τ))
(

q(0) +
∫ t

0

exp(t′/τ)F (t′)dt′
)

. (C.21)

This type of equation is used for pulsatile flow (8.103).

First-Order, Higher-Order Drag, No Driving

A variable q(t) obeying

dq

dt
+ Aqn = 0 (C.22)

varies as

q(t) =
(
q(0)1−n + (n − 1)At

)1/(1−n)
, (C.23)

for n �= 1, where q(0) is the initial condition. For n = 1, see (C.10) and (C.11).
For n = −4 this describes flow with resistance and compliance (8.26).
For n = 2 this describes the equation of motion for hydrodynamic drag

where q is speed (7.64). Then

q(t) =
q(0)

1 + Aq(0)t
, (C.24)

If q = dp/dt, where p would be the position for this type of drag, then

p(t) = p(0) +
1
A

ln(1 + Aq(0)t). (C.25)

C.3 Harmonic Oscillator

In these differential equations, the second derivative of the dependent variable,
q, depends on q and in some cases on the dependent variable t.
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Harmonic Oscillator: Undamped, Not Driven

A variable q(t) obeying

d2q

dt2
+ ω2

0q = 0 (C.26)

oscillates as

q(t) = A cos(ω0t + φ), (C.27)

where A is the amplitude, ω0 is the resonant frequency of this harmonic os-
cillator (with units rad/s), and φ is the phase. Alternatively, this solution can
be expressed as

q(t) = B cos(ω0t) + C sin(ω0t), (C.28)

where B and C are amplitudes. The frequency, f , is ω/2π, and has units of
Hz (Hertz) or cps (cycles per second), and so (C.27) would be

q(t) = A cos(2πf0t + φ). (C.29)

This type of equation is used in the models of the harmonic motion of a
mass on a spring (3.7), the simple (3.14) and complex pendulums (3.26), and
Euler buckling (4.86).

Harmonic Oscillator: Damped, Not Driven

Adding damping to the harmonic oscillator equation (C.26) with damping
constant γ = 1/τ gives

d2q

dt2
+ γ

dq

dt
+ ω2

0q = 0, (C.30)

with solution

q(t) = A exp(−γt/2) cos(ω0t + φ), (C.31)

where A is the amplitude, ω0 is the resonant frequency of this harmonic os-
cillator (with units rad/s), and φ is the phase. This solution is not exact,
but is valid for ω0 � γ. This harmonic oscillation damps in a time ∼1/γ,
which corresponds to about ω0/(2πγ) cycles; ω0/γ is often called the quality
factor Q of the system, as is discussed in the Chap. 10 discussion of acoustic
resonances and more generally in Appendix D.

This type of equation is used in the models of harmonic oscillators, and
simple and complex pendulums.
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Harmonic Oscillator: Undamped, Driven

The equation

d2q

dt2
+ ω2

0q = F cos(ωt) (C.32)

looks like the equation of motion for a simple harmonic oscillator of frequency
ω0 (C.26) with an extra term (the last one), which drives the oscillator with
a “force” that oscillates at a frequency ω; ω can differ from the resonant
frequency ω0. The particular solution to this equation is

q(t) =
F

ω2
0 − ω2

cos(ωt), (C.33)

to which the solution (C.27), q(t) = A cos(ω0t + φ) (of the homogeneous
equation (C.26)) is added to set the initial conditions by the proper choice of
A and φ. Without the driving term (F = 0), the solution is the usual harmonic
solution (C.27).

This type of equation is used in the models of pulsatile blood flow (8.51)
and the general models in Appendix D (D.2).

Harmonic Oscillator: Damped, Driven

If ω0 were to approach ω, the response for the undamped, driven harmonic
oscillator, (C.33), would approach infinity because of this resonance. There
is always some damping that adds a term γ dq/dt to (C.32) to give the new
equation of motion

d2q

dt2
+ γ

dq

dt
+ ω2

0q = F cos(ωt). (C.34)

This has a particular and steady-state solution

q(t) =

(
ω2

0 − ω2
)
F

(ω2
0 − ω2)2 + (γω)2

cos(ωt). (C.35)

The homogeneous solution (C.31), q(t) = A exp(−γt/2) cos(ω0t+φ) for ω0 �
γ, is added to this to set the initial conditions by the proper choice of A and φ.
Without the driving term (F = 0), the solution is the usual damped harmonic
solution (C.31).

This type of equation is used in the models of pulsatile blood flow (8.53),
acoustic impedance (10.21), and the general models in Appendix D (D.2).

C.4 Partial Differential Equations

Partial differential equations contain derivatives of more than one indepen-
dent variable.
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The Diffusion Equation

The diffusion equation (7.53) in one dimension (x) has the form

D
∂2q

∂x2
=

∂q

∂t
. (C.36)

The formal solution gives q(x, t) from q(x′, t = 0), the distribution for all
x (called x′) at an earlier time (defined as t = 0). It is

q(x, t) =
Q√

4πDt

∫ ∞

−∞
q(x′, 0) exp

(
−(x − x′)2/4Dt

)
dx′, (C.37)

where Q is the integral of q over all x at any time – which means that the
total amount of the entity undergoing diffusion, such as the mass or number
of particles, does not change during diffusion.

The importance of this diffusion is most simply seen when the initial dis-
tribution is gaussian and has an initial spread σ(0),

q(x, 0) =
Q√

2πσ2(0)
exp

(
−x2/2σ2(0)

)
. (C.38)

Then the solution becomes

q(x, t) =
Q√

2πσ2(t)
exp

(
−x2/2σ2(t)

)
, (C.39)

where

σ2(t) = σ2(0) + 2Dt. (C.40)

If the initial spread is not gaussian, the solution is slightly different but ap-
proaches this for large x and/or large t. (Sometimes σ is defined a bit differ-
ently than it is here, as in (7.55).)

This type of equation is used in diffusion (7.53).
The integral over a gaussian probability curve,

erf(x) =
2

π1/2

∫ x

0

exp(−z2)dz, (C.41)

is known as the error function. It increases from 0 to 1 as x increases from 0
to ∞. The error function is used in the statistics describing head injury as in
Fig. 3.59.

The Poisson–Boltzmann Equation

The Poisson–Boltzmann Equation (12.44) is of the form

∇2q = κ2q. (C.42)
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where ∇2 is the Laplacian. In one dimension ∇2q = ∂2q/∂x2, while in Carte-
sian coordinates in three dimensions it is ∇2q = ∂2q/∂x2+∂2q/∂y2+∂2q/∂z2.
In three dimensions it can be expressed as ∇2q = (1/r)(d2(rq)/dr2) when
there is no angular dependence (spherical symmetry), where r is the radial
coordinate. Using this in (C.42) gives

1
r

d2(rq)
dr2

= κ2q. (C.43)

Replacing rq(r) by p(r), this reduces to

d2p

dr2
= κ2p, . (C.44)

with solution p(r) = p(0) exp(−κr) valid for all r, and so

q(r) = q(0)
exp(−κr)

r
. (C.45)

This is used to determine the potential of a charge in a neutral region with
mobile charges, as in (12.44) and Problem 12.8.
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Similar Model Systems

This appendix describes the models used throughout the text to describe
mechanical, fluid flow, electrical, and acoustic systems. Figure D.1 shows the
analog in the driving forces, currents, resistances, capacitance, and inductance
in each of these models.

There are many examples of these models in the text. Chapter 4 covers
the spring model of the elastic properties of materials (Fig. 4.3), the dashpot
model of the viscous properties of materials (Fig. 4.48), the viscoelastic model
of mechanical properties of materials, including the Maxwell (Fig. 4.52), Voigt
(Fig. 4.57), and Kelvin/standard linear (Fig. 4.68) models. In Chap. 5, a me-
chanical model of muscles, with springs and dashpots (Fig. 5.9) is presented.
Models of fluid flow are described in Chaps. 7 and 8. In fact, the Windkessel
models of circulation in Chap. 8 are explicitly expressed in terms of electri-
cal components (Fig. 8.57). The mechanical and flow model of breathing in
Fig. 9.16b includes compliance, resistance, and inertance. Acoustic impedance
(Fig. 10.19) and admittance (Fig. 10.20) are described in Chap. 10 (and in the
problems in that chapter) in relation to mechanical analogs. In Chap. 10 there
also are mechanical models of vibrations in the vocal tract (as vibrations in
pipes and voice filtering theory) and vocal folds (vibrations in strings, (10.41),
and mechanical model with mass, springs, and dashpots (Fig. 10.13) and the
two-tube models of vowel formation (Fig. 10.25). In that chapter there is also
a mechanical model of the outer and inner ears (Fig. 10.28), and the vibrations
of the eardrum (Fig. 10.56), tapered, uncoiled cochlea (Fig. 10.38), and hair
cells (Fig. 10.57). Axon nerve conduction in Chap. 12 involved a distributed
model. (See Sect. D.1)

Equivalent mechanical, electrical, and acoustic models are shown in Fig.
D.2 of a typical system. The electrical model is described by

V = L
dI

dt
+ IR +

q

C
, (D.1)

for a voltage V producing a current I; I = dq/dt where q is the charge.
(The subscripts specific for the electrical model are omitted for simplicity.)
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Fig. D.1. Model symbols are shown for (a) mechanical, (b) fluid flow, (c) electrical,
and (d) acoustic models, along with the parameters and common units for each. The
mechanical model is for linear (rectilinear) motion. Analogous parameters exists for
the rotational mechanical model, such as for a pendulum. Viscosity is also important
in mechanical models. Also see Table D.1 below. (Based on [609] and [610])

The other models are described similarly, simply by changing the parameters.
Equation D.1 also be written as the second-order differential equation

V = L
d2q

dt2
+ R

dq

dt
+

q

C
, (D.2)

as in (C.30) and (C.34).
The general solution for an oscillating voltage V (t) = V0 exp (iωt) is

I(t) =
V0 exp (iωt)

R + iωL + 1/(iωC)
=

V (t)
Z

, (D.3)

Fig. D.2. Equivalent (a) mechanical, (b) electrical, and (c) acoustic models. (Based
on [609] and [610])
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Fig. D.3. Resonant response

with complex impedance

Z = R + iωL +
1

iωC
. (D.4)

The resonant frequency is seen in Fig. D.3 given by

ωres =
1√
LC

(D.5)

in rad/s and fres = 1/(2π
√

LC) in Hz or cps, and the quality factor Q is
given

Q =
ωresL

R
. (D.6)

Using the notation of (C.30) and (C.34)

Q =
ωres

γ
. (D.7)

The full width of the resonance (between the points at half-maximum re-
sponse) is ωres/Q, as is illustrated in Fig. D.3. (This is actually the full width
only for sharp resonances, for which ωres � γ and Q � 1.) This full width is
sometimes called the bandwidth (when expressed as f in Hz), Δf , and so an
alternative definition of Q is Q = f/Δf ; this is an equivalent definition in the
low-loss, high Q limit.

After the excitation is turned off ((C.34) becoming (C.30)), the energy in
the system exponentially decays to 1/e of the initial value in a time t = 1/γ =
Q/ωres, where γ is the damping rate (as in (C.30)), which is R/L is here. This
decay occurs in Q/2π oscillation periods. This is consistent with the definition
of Q as 2π(energy stored)/(energy dissipated per cycle).
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Table D.1. Analog of blood flow and electrical circuits (with units)

blood circulation parameter electrical parameter

volume, Vflow (m3) charge, q (C, coulomb)
blood flow rate, Q (m3/s) current, I (A, ampere)
pressure, ΔP (N/m2) voltage, Velect (V, volt)
vascular resistance, Rflow (N-s/m5) resistance, Relect (Ω, ohm)
inertance, Lflow (kg/m4) inductance, Lelect (H, henry)
compliance, Cflow (m5/N-s) capacitance, Celect (F, farad)

D.1 Distributed vs. Lumped Models: Electrical Analogs
of Blood Flow (Advanced Topic)

So far we have discussed lumped parameter models in this appendix. In (8.2)
and (8.11) flow was analyzed with the vessel as a “lumped” parameter. We
have also examined cases in this text in which the parameters are distributed
per unit length, such as flow resistance per unit length for volumetric flow
along an artery in Chap. 8 ((8.14) and (8.25)) and electrical resistance per
unit length for current flow along an axon in Chap. 12 ((12.60) and (12.67)).
These are “distributed” or “transmission-line” models.

A discretized version of the distributed electrical model is shown in
Fig. 12.17. Let us say that each repeated section has (very short) length Δx.
The changes in electrical voltage (the driving force) and current (the response)
(Table D.1) along this length of an electrical cable are described by [376]

Velect(x + Δx) − Velect(x) =
∂Velect

∂x
Δx = Lelect

∂I

∂t
+ IRelect (D.8)

I(x + Δx) − I(x) =
∂I

∂x
Δx = Celect

∂Velect

∂t
+

Velect

Relect
. (D.9)

Velect and I are functions of x and t. The resistance, inductance, and capac-
itance are those for this length Δx, and can also vary with x. These equa-
tions can be obtained using Kirchhoff’s Laws (the 2nd and 1st laws, respec-
tively). They were derived and then combined in the discussion of electrical
signals along nerves in Chapter 12 (Fig. 12.17) to give the telegraph equa-
tions. Part of the first equation is Ohm’s Law: ΔVelect = (∂Velect/∂x)Δx =
IRelect.

The analogous equations for blood flow along a vessel of length Δx are:

P (x + Δx) − P (x) =
∂P

∂x
Δx = Lflow

∂Q

∂t
+ QRflow (D.10)

Q(x + Δx) − Q(x) =
∂Q

∂x
Δx = Cflow

∂P

∂t
+

P

Rflow
(D.11)
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where now the pressure is the driving force for the blood flow rate Q and Rflow

is the vascular resistance. Without the inertance term, the first equation is just
Poiseuille’s Law (7.25): ΔP = (∂P/∂x)Δx = QRelect. The flow parameters
are

Rflow =
8πηL

A2
(D.12)

Cflow =
3LA(1 + r/w)2

Y (1 + 2r/w)
(D.13)

Lflow =
ρL

A
, (D.14)

where A is the cross-sectional area of the vessel, L is its length (which is Δx
for the discretized model), r is its radius, w is its wall thickness, and ρ is the
blood mass density. These equations are useful for tracking blood flow within
vessels with both resistive and compliant properties.

All models of materials (and systems and processes) can be improved
mathematically by adding more terms, such as in the mechanical model in
Fig. 5.13. The bigger issues are whether the elements in such simple or more
complex models correspond to the physical components of the material. Even
if they do not, it is still important to learn if the model can be used to predict
operation correctly when conditions are changed.
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Biophysics of the Human Body

This appendix places the contents of this text within the field of biophysics.
Biophysics is hard to define well, as is illustrated by the many definitive,

yet different definitions of biophysics provided in [611, 612, 613, 614, 615, 616,
617, 618, 619, 620, 621, 622]. Broadly speaking, biophysics is the applications
of physics and physical principles to biology. In this context, virtually every-
thing presented in this book is biophysics. However, this term is often used
in the more restricted sense of the use of physics at a more molecular and
cellular level. We will use this narrower context for the rest of this appendix,
and in this restricted sense many topics covered here are still biophysics, but
many areas in biophysics have not been covered. Yet another definition of bio-
physics is the study of biology using physical methods. This is distinguished
from biological physics, which is the study of the physical properties of biology.

One topic in biophysics is the molecular structure of biological systems.
This includes the electrostatics of ions in solutions (Chap. 12), the structure of
biomacromolecules, such as proteins and areas such as protein folding, struc-
ture, and properties of interfaces between biological media such as cell mem-
branes (surface tension in Chaps. 7 and 9, nerve cell membranes in Chap. 12),
and ion channels in membranes (which is very briefly touched in nerve con-
duction in Chap. 12).

Statistical mechanics is the examination of systems composed of many
similar objects or systems, each of which is well characterized. The whole
ensemble of systems often is in thermal equilibrium and, after statistical me-
chanical analysis, can be treated by using thermodynamics. The treatment of
ions in solution in Chap. 12 is the result of statistical mechanics. As stated in
Chap. 5, the Hill force–velocity curve of muscles can be derived from statis-
tical mechanical analysis of the many actin–myosin cross bridges (which was
not done here). Many aspects of cell membranes and protein structure – such
as folding – can be examined by using statistical mechanical methods.

Biophysics includes the bioenergetics of the photosynthesis process and the
synthesis of ATP and its use. In Chap. 6 we examined the biophysics of en-
ergy usage in the human body. The movement of organisms, such as bacteria
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motion and muscular movement, are part of molecular and cellular biophysics;
the microscopic basis of muscle operation was explored in Chap. 5. The elec-
trochemical properties of cell membranes and nerve signals, as discussed in
Chap. 12, have always been central topics in biophysics. Some include within
biophysics the higher-level integration and combinations of molecular and cel-
lular systems, such as memory, control of movement, visual integration, and
consciousness and thinking.

The use of physical characterization to biological problems plays a central
role in biophysics, such as the use of X-ray diffraction (XRD) to determine
molecular structure, nuclear magnetic resonance (NMR) to study molecules
in more natural environments than X-ray diffraction can be used, scanning
tunneling microscopy (STM) to examine the atomic structure of surfaces,
atomic force microscopy (AFM) to examine surfaces and to measure forces,
and optical tweezers to manipulate molecules. Both AFM and optical tweezers
have been instrumental in studying the fundamental interactions in muscles,
such as individual actin–myosin cross bridges (Chap. 5).



Solutions to Selected Problems

Problems of Chapter 1

1.3 Medial.

1.13 Head.

1.25 (a) (partial answer) For lower legs 3.72–9.30 kg and 5.53–9.55 kg.

1.30 (b) 0.25 m and 0.50 m.

1.31 (partial answer) Surface area is 20.1 sq ft.

1.44 (a) 92.6 kg (204.2 lb) for Man A and 84.3 kg (185.9 lb) for Man B; (b)
0.4 kg (0.9 lb) for Man A and 8.7 kg (19.2 lb) for Man B.

1.49 (b) 21.1 and 27.0.

1.57 Bigger in cold climate.

Problems of Chapter 2

2.1 Third class lever.

2.2 Triceps brachii, second class lever.

2.3 (a) First; (b) second; (c) third class levers.

2.11 (b) mleg(xextended leg+xbalancing leg) = (mtorso+head+2marm)xupper body.

2.13 (a) −mbx.

2.14 T1 = W1 = 223.6 N, T2 = W2 = 282.8 N, α = 26.6◦.

2.17 (b) 310.6 N.

2.21 (b) T = 131 lb, F = 208 lb, angle of F is 29.8◦.
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2.33 (partial answer) −6 N-m for 20 cm deep.

2.34 (partial answer) −6.9 N-m for upright, −19.25 N-m for bent.

2.35 (partial answer) −21.25 N-m for bent over, with bent knees and the
object far from her body.

Problems of Chapter 3

3.6 0.27, easy to achieve with cleated running shoes.

3.10 1.7127 kg-m2.

3.26 2/3.

3.35 Yes, by −0.07 m, yes.

3.36 For (a) 0.254H; (b) 0.150H; (c) 0.077H; (d) 0.150H; (e) 0.254H; 14 cm.

3.40 Yes, because how fast the body can take off at a given angle depends
on the construction of the body’s feet and legs.

3.64 44.0◦, 31.1 m/s.

3.72 (partial answer) Elastic collisions are likely fatal for collision times
<120 ms.

3.78 (a) 150 ft/s2, 4.7g, (b) 1,150 lb.

3.80 1.44, 1.06, 1.01, and 0.18 m.

3.81 0.50, 0.53, and 0.55.

3.88 48.0 mph before, 24.7 mph after.

3.89 40.5 oz and about 80 mph.

Problems of Chapter 4

4.2 (c) 480 MPa.

4.5 (a) 30 Pa, (b) 67 mm2, (c) 1%.

4.6 (partial answer) 1.6 MPa for nails.

4.7 (partial answer) 0.0031 for nails.

4.8 (partial answer) 8,000 N/m3 for nails.

4.9 (partial answer) 780 N/m3 for nails.

4.15 (a) Tension.

4.20 (a) λ = 2, εsmall = 1, εgeneral = 3/2.
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4.21 (a) λ = 2, εsmall = 1, e = 3/8.

4.22 (a) λ = 2, εsmall = 1, ln λ = 0.69.

4.23 (a) Yes, because the dashpot resistive force increases with speed;
(b) Yes, because the spring supplies the needed restoring force to return it to
its equilibrium position.

4.24 Length is 3.1 cm, dx/dt is 0.05 cm/s.

4.28 (a) 2θ(t + 1) − 2θ(t − 3), with all times in seconds.

4.33 It becomes the Voigt model, the Maxwell model, and a dashpot, respec-
tively.

4.42 (a) 6,900 N.

Problems of Chapter 5

5.8 (a) 0.11, it is larger than the 0.09 listed in the table—but in linear
theory it would be expected to be UTS/Y = 0.22, (b) fY = 135 N/cm2,
(c) the diameter of the tendons is 0.073× that of the muscle, (d) 2,800 N/cm2 =
28 MPa, which is less than the 54 MPa UTS listed in Table 4.2, so it is less
than it, even with linear theory.

5.10 (a) (partial answer) 2,770 W.

5.15 The muscles are fairly near their optimal lengths. However, there are
significant changes in the lengths during bicycling, but less than the maxi-
mum expected for muscles are shown for several reasons: (a) The decreases
in contracted muscle length are actually greater than those shown because
tendon extension will lessen the decrease in the (plotted) total muscle/tendon
length, (b) the bicycle is set to use muscles in their optimal state, both in
muscle length and speed, so the muscles will not be much longer or shorter
than their optimal length.

5.18 (a) (partial answer)
√

3NFfiber/2.

5.23 (a) 40 s.

Problems of Chapter 6

6.1 (partial answer) 0.3◦C.

6.4 (b) 144 BTU.

6.6 (a) (partial answer) 7.1 kcal/g.

6.14 (a) 261 g, compared to 260 g and 280 g; (b) 45%; (c) 18%.
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6.17 90% of the fruit and 40% of the dried fruit is water plus non-
metabolizable matter.

6.24 2,200 kcal.

6.36 (a) 139 kg; (b) This is much more than the body mass of 60 kg; (c) 1,400
cycles/day, 0.95 cycles/min.

6.30 (a) −12.6 kcal/mol; (b) −14.0 kcal/mol.

6.31 66–70%.

6.41 147 moles of ATP.

6.47 6.9.

6.56 (partial answer) 580 kcal/h for 50 kg college-age women, using 40 mL/kg-
min and a calorific equivalent of 4.83 kcal/L O2.

6.57 (a) 89.9 m/min, 1.50 m/s, 3.35 mph, very good agreement; (b) 259 kcal/hr.

6.61 (partial answer) (a) 1048 kcal/h and 3.6 L O2/min for Stage VIII, (b)
35 kcal for Stage VIII.

6.64 (a) 305 J, (b) 36 kcal, (c) no, but it excludes the pushing for 5–10 s
during each play, which obviously accounts for most of the energy expenditure
(although relatively little of the work done).

6.67 12.2 kJ, 11.7 kcal.

6.74 Activity factor is 1.48 (assuming “self-care” walking and also cycling at
5.5 mph), MR is 1920 kcal/day (using 1300 kcal/day BMR).

6.75 (a) 4.9, (b) 4.2.

6.80 15 kg, 33 lb.

6.88 2.2 L/h.

6.95 (a) 70 kcal/h.

6.100 Twc = 35.74 + 0.6215T − 35.75w0.16 + 0.4275Tw0.16.

6.101 (a) A and B; (b) C; (c) A.

6.106 The first term is 40 kcal/day, second term in 220 kcal/day. The second
term is very significant.

Problems of Chapter 7

7.3 2,240 cm3, 2.49 kg, 24.4 N; using a mass density of 1.11 g/cm3.

7.7 No, his density is then 1.01 g/cm3, which is above that of water, using a
fat density of 0.8 g/cm3.
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7.18 (a) Q/N ; (b) The diameter of the small tubes would then be N1/4D,
which is not possible because the diameter of the small tubes would then
exceed that of the larger tubes.

7.25 (partial answer) 0.32 cm in a gas.

7.38 Re = 0.001, viscous/laminar.

Problems of Chapter 8

8.5 You should be concerned, but not about your blood pressure (which is
really 120 mmHg/80 mmHg), but about the person who told you your blood
pressure in absolute pressure instead of the standard gauge pressure.

8.12 (a) 121 mmHg, which is 32% higher than the 92 mmHg base case, (b)
115 mmHg, which is 25% higher.

8.15 (a),(b) They change by a factor of 1/8.

8.19 1 N-s/m5 = 106 (N/m2)/(cm3/s) = 105 dyne-s/cm5 = 1.32× 108 PRU.

8.27 u1/4.

8.34 98.6 mmHg, using a blood density of 1060 kg/m3.

8.39 Type I skeletal muscle, because very fast response is not needed and
endurance is essential.

8.43 0.128 L = 128 cm3.

8.45 (partial answer) 3.6 cm inner radius.

8.53 Heart beat rate: 83/min for the man, 91/min for the woman, 161/min
for the infant.

Problems of Chapter 9

9.6 (partial answer) 4,720 for z = 0 (turbulent), 0.18 for z = 20 (laminar).

9.16 0.0078 cmH2O/(L/s), which is much smaller than the total resistance
of ∼2 cmH2O/(L/s).

9.20 2.7 cmH2O-s/L.

9.26 Larger in a mouse (0.005 L/kg-cm-H2O) than in man (0.003 L/kg-cm-
H2O).

9.33 (partial answer) 570 L of O2 (at 1 atmosphere oxygen pressure) are
consumed per day.

9.37 (partial answer) 225 mmHg total, 42 mmHg oxygen.
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Problems of Chapter 10

10.4 Respectively at 0, 20, and 25◦C, vair is 331, 343, and 346 m/s; ρair is
1.292, 1.204, and 1.184 kg/m3; and Zair is 428, 413, and 410 kg/m2-s.

10.6 0.00002–2000 dyne/cm2.

10.11 70 dB SPL.

10.14 (a) 100 dB SPL, 40 dB SPL.

10.20 (a) 0.27.

10.33 ∼1,000 Hz, which makes sense since the voices of children are higher
pitched than those of adults.

10.38 160 Hz, assuming a mass with the mass of the vocal folds is attached
to a massless spring with the force constant of the vocal folds. This really
requires the analysis of a freely oscillating massive spring, which shows that
oscillation frequency is π/2 × this value [458].

10.40 Lower, because they have higher fundamental buzzing frequencies.

10.47 3 × 10−13 m.

10.49 It is 9 × 106 larger at 3,000 Hz than that at 1 Hz.

10.55 (a) Radii of 0.4 μm for 20 Hz to 400 μm for 20 kHz.

10.60 17,000 Hz would be best because the auditory sensitivity of older people
is very low at this frequency relative to that of younger people, at 250 Hz and
1,000 Hz the auditory sensitivity is not that different for older and younger
people, at 30,000 Hz humans have no auditory sensitivity.

10.61 About 200/s.

10.66 100–8,000 Hz, over 40 dB.

10.67 40–14,000 Hz, over 70 dB.

10.72 The former (60 dB SPL) is a bit louder than the latter (59 dB
SPL).

Problems of Chapter 11

11.7 (a) (partial answer) 2.5% for the first surface, (b) no.

11.14 7.51 mm, −7.51 mm.

11.15 6.04 mm.

11.17 The retina.
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11.22 More damage is done if you look in the direction of the beam because
it will focus on the fovea. Damage to the fovea can hurt sharp vision, leaving
you with fuzzy vision.

11.23 8.8 cm.

11.34 (partial answer) Refractive index is larger at 630 nm by 0.0008 (if
everything else is the same).

11.42 58.62 D (smaller than before), 22.8 mm (longer), mostly due to the
smaller refractive index of the crystalline lens.

11.48 −1.71 D, −1.67 D.

11.53 (c) Myopia. A correction of −2 D would lead to good vision. (The
patient has 4 D of accommodation, which is sufficient with this correction.)

11.59 (b) 7.55 mm = 0.00755 m.

11.68 250 lux assuming 500 lumens/W (Fig. 11.49). It is consistent with the
levels given in Table 11.5.

Problems of Chapter 12

12.2 110,000 ohms.

12.4 (a) 240 mA, (b) shock and possible ventricular fibrilation would result.

12.11 The large net diffusion of K+ outside, the impermeability of the mem-
brane to the proteins, which are negatively charged, and the Na+ pump con-
tribute to the cell being negative relative to the extracellular fluid for a resting
axon. The small net diffusion of Na+ into the cell adds slightly to the positivity
inside the cell.

12.19 (partial answer) 6.20 × 10−4 s for unmyelinated axons.

12.28 ∼80/min.

12.30 The dipole usually rotates also. A(c); B(a); C(d); D(b).

Problems of Chapter 13

13.2 Every 17 min.

13.3 (partial answer) 1.6/s for a 1 s delay.
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Abbreviated Injury Scale, AIS 159

Aberrations in optical imaging 660,
663, 665–669, 671, 677, 698

Absolute pressure 406

Absorption or attenuation of light
594, 629, 635, 651, 652, 687, 692,
693, 759, 760

Absorption or attenuation of sound
562, 563

Acceleration 39, 109, 154

Accommodation 262, 629, 631, 645,
653, 654, 658–660, 667, 674, 675,
681, 682, 684–686, 698, 706, 767

Achilles tendon 11, 43, 64, 97, 128, 207,
246, 258, 284

Acoustic admittance 563, 564, 603–606

Acoustic buzzer 575, 576, 578, 583, 590

Acoustic immittance 563, 603

Acoustic impedance 559, 563–567,
586, 587, 589, 595, 603, 604, 606

Acoustic resistance 563–565, 603

Acoustics 555, 562–564

Actin 279, 280, 293, 306–309

Activity factor, f 344, 351, 352, 354,
355, 773

Adiabatic conditions 605

ADP 306, 323, 329, 330, 332, 388

Aerobic metabolism 330–333, 335,
351, 357, 475

Aerobic respiration 330

Airway resistance 539, 541–545, 547,
548

Alcohol 323–326

Allometric rules 22, 340, 433

Alveoli 410, 526–529, 531–534,
536–543, 545, 548

Anabolism 319, 329

Anaerobic glycolysis 330–335, 337, 338

Anatomical directions 1

Anatomical planes 3

Anatomical regional terms 3

Aneurysms 470, 487–491, 494–497

Angular frequency 40

Angular momentum 40, 124, 152

Anisotropy 213–215

Ankles 17, 62, 94, 103, 122, 146, 152,
272, 273

Antagonist muscles 10, 11, 13, 14, 275,
292, 295

Anterior cruciate ligament, ACL 7,
215–217, 258

Anthropometric data 17

Antinodes 568, 570

Aorta 382, 444, 446, 449, 453, 456–458,
460, 463, 465, 467, 469, 470, 474,
488, 508

Aqueous humor 406, 562, 629–632,
636, 650–654, 656, 668, 687, 706

Archimedes’ Principle 18, 409

Area moment of inertia 224

Arms 17, 19, 43, 45, 299, 300

Arrhythmias, cardiac 451, 752, 753,
756, 771

Arterial pulse 458, 495, 498, 504–508,
617

Arterial wall 497
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Arteries 213, 334, 373–375, 406,
443–447, 449, 454, 457–461, 463–
465, 467, 469, 470, 472–475, 478,
480, 482–484, 488, 490–492, 494,
496–498, 501, 502, 504, 525

Articular joints 19, 40

Articulation 571, 572, 575, 581

Astigmatism 676, 678, 683–685

ATP 283, 291, 306, 307, 309, 310, 323,
324, 329–336, 345

ATP hydrolysis 307, 309, 310, 329

Atria 443–446, 450, 451, 453, 479, 485,
486, 498, 500, 510, 619, 746, 747,
749, 752

Audiogram 593, 594, 606–611

Audiology 564, 604

Auditory nerve 592, 599

Auricle, pinna 591, 594

Auscultation 80, 407, 555, 617

Axons 159, 713, 717, 720–722,
730–743, 757

Back 258

Ballistic model of walking 112, 118

Ballistocardiography 446

Balls 156

Basal metabolic rate, BMR 16, 23,
271, 338–343, 347, 348, 361, 486,
547, 773

Baseball 138, 141, 166, 336, 337, 354

Basilar membrane 592, 599–602

Basketball 185, 337, 345

Beam bending 221

Beer’s Law 562, 563, 652, 759

Bending of back 69

Bending of beam 224

Bending of bones 247

Bernoulli’s equation 413–415, 483,
491, 494, 576

Biarticulate muscles 152, 272, 274

Biceps brachii 3, 11, 43, 44, 48, 139,
142, 275, 282

Bifurcated flow 422, 465, 466, 487–489,
491–494, 517, 519, 526, 529

Binocular vision 14, 660, 676

Biophysics 805

Biot-Savart Law 757

Biting 65

Black body or thermal radiation 320,
361, 364–369, 379, 380, 476, 773

Bladder 21, 406, 430
Blind spot 27, 632, 633
Blood 16, 25, 334, 362, 372, 411, 417,

418, 443–449, 451–457, 462, 470,
472, 473, 525, 559, 562, 719, 745

Blood flow rate 428
Blood plasma 411, 417, 418, 719
Blood pressure 16, 171, 406, 428, 445,

446, 449, 450, 453, 454, 457–460,
462–465, 467–472, 480, 481,
767–770, 777, 778, 802

Blood vessels 21
Body density 18
Body fat 24
Body mass index, BMI 24, 343, 344
Body organs 21
Body segment lengths 17
Body surface area 366
Body temperature 16, 321, 340, 361,

364, 366, 373, 374, 376–383, 476,
767, 771, 779

Bolus flow 472
Bone bending 227
Bone conduction for hearing 608–611
Bones 4, 40, 45, 50, 52, 196, 197,

211–214, 231, 232, 242, 244, 245,
258, 362, 376, 477, 559, 562, 567,
719

Boundary conditions 252, 565,
568–570, 741, 742, 763, 789

Boundary layers 108, 185, 322, 374,
422, 424, 425, 713

Boxing 163
Brachialis 48, 275
Brachioradialis 48, 275, 280
Brain 21, 23, 157, 158, 340, 348, 362,

382, 406, 411, 418, 460, 476, 477,
483, 484, 487, 559, 562, 592, 714,
721, 755, 767

Brain disease 483, 484, 487–489
Breathing 25, 561, 617
Breathing rate 16, 23, 525, 540, 546,

547
Bronchi, bronchioles 526, 528, 537,

539, 543
BTU 385
Bulging disc 72
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Bulk modulus 262, 557
Buoyancy 431

Cable, Telegrapher’s equation 738
Calcaneus 64, 97, 128
Calcium hydroxyappatite 197
Caloric content or value 323, 325–327,

359
Caloric intake 330, 358–360
Calorific equivalent 323, 324, 345, 351
Calorimetry 322, 323, 345, 346
Cantilever beam 227
Capillaries 443, 444, 446, 449, 455, 457,

458, 463–465, 469–474, 480, 487,
501, 507, 508, 527, 528

Carbohydrate 322–329, 333, 335, 345,
351, 360, 361

Cardiac dipole 746–749, 752–754
Cardiac flow 477
Cardiac muscle, myocardium 10, 214,

271, 272, 443, 446, 449, 452, 486,
731, 732, 747, 748, 753, 756

Cardiac output 334, 460, 472–475,
477–482, 501, 509, 525, 767, 778

Cardinal points 645, 646, 649, 654,
655, 658

Cardiovascular system 443
Cartilage 10, 107, 108, 196, 197, 199,

200, 212–214, 217, 231, 234, 258
Catabolism 319, 327, 329, 338
Cataract 631, 686, 687
Cells 21, 22, 196, 329, 334, 348, 722
Center of gravity 96
Center of mass 18, 19, 95, 96, 111, 119,

126, 133, 137
Centripetal force 423, 424, 470
Cerebrospinal fluid 406, 411, 418, 719,

745
Chewing 65
Chromatic aberration 665, 667–669,

677
Circulatory system 443, 444, 501, 502
Climbing stairs 345
Clogged arteries 465, 482, 483, 488,

495
Closed loop, cycle regulation 775, 777,

778
Clothing 322, 361, 366, 371, 374–376,

383, 774, 775

Cochlea 592, 595–603, 607, 744, 745
Coefficient of friction 6, 107, 110, 170
Coefficient of restitution, COR 156
Coefficient of viscosity 195, 229, 411,

415, 417, 418
Collagen 196–198, 200, 213, 217, 219,

457, 631
Collision time 157, 158, 160, 165
Collisions 153, 157
Color blindness 677
Color perception 692–697
Compact, cortical, dense bone 197,

205, 212, 216, 255, 362
Compliance 415, 462, 463, 467, 468,

474, 499–504, 507–509, 539,
542–545, 547, 550, 603, 802

Compliance vessel 462, 463, 465–467,
497, 499, 504, 541, 543, 618

Composite materials 195, 265
Compound fractures 259
Compressible flow 412
Compression 201, 203
Compressional waves 555, 556, 592
Concave, diverging, negative lens 637,

638, 642, 666, 667, 674, 681, 686
Concentric muscle contraction 275,

349, 354
Concussions 160, 163, 256
Conductance 717–719, 734, 737
Cone photoreceptors 629, 632–635,

661–664, 677, 687–689, 692–697,
721

Connective tissue 196
Constitutive relationship 202
Contact lenses 638, 642, 643, 645,

677–686
Continuity equation 413, 414, 474,

483, 491, 492, 576, 579
Control theory 770
Convection 30, 320, 361, 364, 369, 370,

372, 375, 379, 380, 476, 773
Convex, converging, positive lens

636–638, 641, 642, 646–648, 659,
665–667, 675, 682, 686

Core body temperature 373, 374,
377–383, 771, 774, 776, 777

Cornea 629–632, 638, 642, 643,
650–659, 667, 675–681, 683–687,
697, 706
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Corrective lenses 638, 642–645, 650,
659, 674, 677–686, 698

Countercurrent heat exchange
373–375, 776

Crack propagation 247, 254
Creatine, Cr 332
Creep 230, 231, 238, 240, 242, 244
Crossbridges 291, 293, 304, 306–310,

348
Crouching 62
Crystalline (eye) lens 562, 629–631,

638, 642, 643, 650–654, 656–659,
664, 666, 668, 686, 687, 697, 698,
706, 767

Current 416, 713, 716, 718, 726, 731,
735–739, 756, 757

Curved arteries 423, 424, 470, 494
Cyclic loading 230, 252
Cycling 151, 285, 345, 353, 356
Cylindrical lenses 683, 684

Dashpots 229, 235, 284
dB scales 560, 561, 606, 608, 612
Debye–Huckel length 730
Deceleration 109, 154
Deformation 201, 233
Degrees of freedom 3, 94
Deltoids 59, 139, 285
Depolarization 450, 599, 713, 722, 723,

731, 732, 743–749, 753
Depth of field 671, 672
Depth of focus 671
Diastole 446, 450, 453, 456, 458, 477,

478, 498, 500, 501, 509, 510, 619
Diastolic pressure 16, 406, 408, 446,

458, 460, 467, 479, 481, 486, 496,
504, 506, 516

Dielectric constant, function 714, 718,
734

Diffraction of light, optical diffraction
638, 663, 664, 669, 671, 687

Diffraction of sound 563
Diffusion 306, 405, 426–429, 444, 470,

538, 723, 724, 743
Diffusion coefficient 306, 426, 427, 723,

726, 743
Diffusion equation 427, 743
Diopters, D 638, 640
Dirac delta function 235, 238

Dispersion in refractive index 667, 668
Diving 85, 152, 336, 337
Donnan equilibrium, ratio 727, 728
Doppler ultrasonography

echocardiography 446, 555
Drag 351, 416, 419, 424, 425, 431–433,

435
Ductility 211
Dynamic viscosity 411

Ear canal tube, meatus 591, 592, 595,
598, 604–606, 609

Eardrum 592, 594–598, 603, 604, 606
Ears 406, 555, 744, 745
Eccentric muscle contraction 275, 304,

349, 354
Echocardiography 446, 452, 555
Effectivity, optical 642, 643, 649, 682
Efficiency, energy 16, 271, 322, 328,

330, 331, 333, 334, 349–351, 354,
356, 486, 547, 591

Einhoven’s triangle 752
Elastic behavior 194, 201
Elastic collisions 156, 164
Elastic limit 208
Elastin 196, 198, 457
Elbows 8, 9, 11, 20, 43, 49, 139, 142,

146, 257, 275, 297
Electric dipoles 715, 746–749, 752–754,

759
Electric fields 713–715
Electric shock 25, 756, 757
Electrical capacitance 717, 731,

734–737
Electrical resistance 416, 561, 563,

716–718, 731, 734, 735, 737, 741,
747, 756, 757

Electrocardiogram, EKG, ECG 350,
450, 451, 713, 714, 746–755

Electroencephalogram, EEG 714, 755
Electromagnetic waves 713, 759, 760
Electromyogram, EMG 107, 125, 714
Embolus 488, 494, 495
Emissivity 365–367
Emphysema 543–546
Energetics 109, 126
Energy 23, 319
Energy storage 205
Entropy 428, 607
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Epithelial tissue 196
Equilibrium 37, 219
Erector spinae 69–72
Error function 161, 796
Euler buckling 251
Evaporation 320, 361, 362, 364, 376
Exercise 60, 61, 74, 252, 290, 291, 296,

309, 327, 328, 332–336, 339, 345,
350, 352, 353, 356, 358, 375, 377,
379, 381, 472, 475–478, 480, 481,
487, 525, 537, 547, 767, 768, 773,
775, 778, 779

Expiration, exhalation 431, 525, 534,
535, 537, 538, 540, 541, 544, 545,
547, 548, 618

Expiratory muscles 534, 540
Expiratory reserve volume, ERV 537
Extensive property 195, 202, 321
Extensor muscles 10, 11, 14, 97,

104, 124, 139, 273, 274, 276, 292,
297–299, 301

Eye disease, damage 636, 676, 684–687
Eyeglasses, spectacles 638, 642, 643,

645, 677, 681–686, 688
Eyes 12, 21, 406, 629, 714

Fast twitch (FT) muscle fibers 283,
284, 292, 303

Fat 16, 21, 24, 319, 323–329, 332, 334,
335, 345, 358–362, 376, 477, 559,
567, 719

Fatigue of materials 252
Feedback and control 14, 80, 373, 377,

461, 474, 478, 498, 629, 631, 658,
663, 767

Feet 17, 19, 97, 100, 258
Femur 6, 51, 95, 96, 197, 205, 207,

244–246, 249, 256
Fibula 96
Fick’s Laws of Diffusion 426, 427, 723,

726, 743
Fingers 7
Flexor muscles 10, 11, 14, 21, 48, 49,

95–97, 104, 124, 139, 145, 273–276,
292–294, 297, 298, 300, 301

Flow of blood 423
Flow of fluids 405
Flow rate of blood 334, 373, 375, 445,

446, 452, 457–459, 461–464, 469,

472–475, 477, 478, 481, 482, 487,
488, 490–495, 497, 501, 503, 505,
508, 802, 803

Flow, vascular resistance 415, 416,
458, 460, 462–465, 468, 474,
481, 499, 502–504, 507, 508, 539,
541–545, 547, 802, 803

Flying 23

Flying, human flight 434, 435

Focal length, f , f ′ 629, 631, 636, 638,
640–643, 645, 646, 648–650, 656,
658, 659, 664–667, 672, 675, 677,
686

Focal points, F, F′ 638, 645, 647, 649,
653, 654

Football 189, 191, 336, 337

Force vital capacity, FVC 544

Forced breathing, expiration 544, 545,
547, 548

Forced expiratory volume, FEV 545

Forces 37, 80, 100, 202, 596

Forearm 17, 19, 43, 44, 296

Formants 573, 574, 580, 583–587, 589,
590, 800

Fourier analysis 580, 581, 586, 587,
615, 616, 670

Fovea 630, 632–635, 638, 660, 664, 665,
674, 687, 695

Fracture toughness 254

Fractures 160, 194, 210, 244–250, 259

Frank–Starling mechanism 478, 479,
509

Friction 105

Functional residual capacity, FRC
537, 538, 543, 547

Fundamental frequency 568–570,
577–581, 583, 584, 586, 587, 590,
594, 597, 598, 614–616

Fusiform aneurysms 487, 488, 491, 495

Fusiform or parallel muscles 276, 277,
279, 295, 298, 488

Gadd Severity Index, GSI 159, 163

Gastrocnemius 97, 125, 128, 152, 273,
274, 278, 280, 282, 284, 285, 292,
295, 302

Gauge pressure 406, 408, 446, 460, 462,
498, 525, 534, 559, 588, 590, 604
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Gaussian profile 21, 160, 306, 427, 428,
796

Glaucoma 406, 636, 687
Glottis 571, 575–579, 582, 591
Glucose 322–325, 329, 331–335, 347
Glycogen 324, 330–335, 339, 347, 360
Goldman Voltage equation 728
Gymnastics 85, 86, 152, 337, 354

Hair 21, 79, 80, 214, 217, 603, 743, 744
Hair cells 592, 598, 599, 601, 603, 721,

743–745
Hammer throwing 186
Hamstrings 60, 96, 257, 274
Hands 17, 19, 43, 44, 296
Harmonic behavior 194
Harmonic frequencies 568–570, 578,

580, 581, 583, 584, 586, 587, 590,
614–616

Harmonic oscillator 113, 194, 564
Harris–Benedict equations 24, 342,

358
Head 17, 19, 42, 157, 158, 256
Head Injury Criterion, HIC 160
Hearing 25, 555, 567, 591
Hearing loss 595, 596, 606–611
Hearing perception 611
Heart 10, 21, 23, 25, 271, 340, 348,

362, 382, 443–446, 449–454, 458,
460, 463, 473–475, 477–480, 482,
485–487, 497–501, 504, 509, 510,
714, 746–749, 753, 756

Heart (electrical) nodes 449, 451
Heart attack, myocardial infarction

482, 487, 509, 747, 752–754
Heart disease 451, 452, 482, 509, 510,

618, 619, 752–754
Heart murmurs 616, 619
Heart rate, beat 16, 23, 461, 467,

477–480, 501, 752, 769
Heart sounds 450, 454, 618
Heart valves 444, 446, 450, 452–454,

498, 500, 509, 510, 617–619
Heat and heat flow 320–322, 327, 328,

339, 342, 345–347, 351, 354, 356,
361, 362, 364, 365, 369, 370, 372,
374, 376, 379, 380, 382, 383, 475

Heat capacity 321, 361–363, 773
Heat index 371, 377

Heat transfer coefficient 322, 368,
370–372, 374, 383

Heaviness 25

Helmets 259

Hemoglobin 472, 473

Hemorrhage 158, 482, 487, 488

High jump 178

Hill force–velocity curve 298, 299,
301–304, 307

Hip 6, 8, 17, 20, 49, 50, 52, 77, 94, 95,
103, 108, 122, 146, 152, 257, 272

Hip abductor muscles 50

Hip replacement 59

Hitting balls 166

Hollow bones 197, 226

Homeostasis 767

Hooke’s Law 201, 208

Hookean behavior 194

Hopping 132

Humerus 6, 249

Hyperopia, far-sightedness 645, 675,
680, 682, 683, 685, 686

Hyperpolarization 599, 722, 723, 731,
743, 745

Hypoxia 487, 546

Hysteresis 230–233, 261, 537, 547

Ideal gas law 409, 471, 546, 556, 558,
605, 726

Idiopathic respiratory distress
syndrome, RDS 544, 545

Image formation 631, 636–650

Imaging 638

Imaging, multiple lenses 643–645,
647–650

Impedance matching, mismatch 559,
567, 596

Implants 193

Incompressible flow 412, 413, 507

Index of refraction, n 631, 632,
638–643, 645–647, 650–655, 658,
667, 668, 677, 685, 698, 706

Inelastic collisions 156, 164

Infarction 482, 487, 509, 747, 752–754

Initial conditions 142, 143, 238, 240,
242, 466, 774, 789–791, 793, 795

Inner ear 565, 591, 592, 595, 598–603,
607, 609, 611
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Inspiration, inhalation 406, 525, 526,
534–545, 547, 548, 578, 590, 618

Inspiratory muscles 534–536, 540–542,
767

Inspiratory reserve volume, IRV 537
Insulation 372, 375, 376, 383, 384
Intensive properties 225
Intensive property 195, 202, 321
Internal force 220
Internal torque 220
Interstitial fluid 418
Intervertebral disc 66, 72, 214, 258
Intrapleural, pleural pressure 534, 541,

542, 548
Inverted pendulum model 120
Ion concentrations 718, 719, 722–729,

767
Irrotational flow 412–414
Ischemia 483, 484, 487, 488, 494
Isometric conditions for muscles 275,

283, 286, 293, 299, 302, 304

Jaw 65
Joints 3, 77, 122, 152, 272
Jumping 62, 133, 170, 336

K reading or number 679
Kelvin or standard linear model 236,

241, 243, 286
Keratoconus 676, 678, 684, 685, 687
Keratometry, keratometer 679
Kinematic viscosity 412
Kinematics 93
Kinetic energy 109, 114, 115, 126, 131,

134, 137, 156, 157
Kirchhoff’s Laws 716, 718, 736, 752,

802
Kleiber’s Law 23, 340–342, 358
Kneecap 8, 60, 63, 97
Knees 6–9, 20, 60, 77, 94, 96, 103, 108,

122, 146, 152, 258, 272, 273, 297,
302, 617

Korotkoff or K sounds 407, 408
Krebs cycle 330, 333, 334

Laminar, streamline, steady flow
411–414, 421–423, 425, 472, 474,
483, 488, 491, 493, 495, 541, 555,
572, 575, 617, 619

Larynx 526, 571, 572, 575, 579, 580,
590

Law of Laplace 409–411, 430, 431, 466,
469, 490, 491, 494–496, 498, 499,
531–533, 675

Legs 17, 19, 52, 96, 97, 100, 257, 460
Levers 40, 63, 65, 596
Lifetime 23, 25
Lift 424–426, 431, 433–435
Lifting 70, 74
Ligaments 10, 96, 196, 198, 200,

212–214, 219, 231, 233, 658, 659
Line spread function 669–671
Linear momentum 39
Localization in hearing 594, 611, 616
Long jump 179
Loudness 25, 590, 594, 611–615
Lower back 66
Lower back pain 66
LSK cornea surgery 680
Luminosity curve 688–690
Lung compliance 539, 541–545, 547,

550
Lung dead space 16
Lung disease 533, 543–545
Lung surfactant 411
Lungs 16, 21, 23, 334, 362, 376, 406,

410, 443, 444, 472, 473, 525–530,
532–545, 547, 548, 559, 562, 567,
571, 575, 576, 578, 582, 590, 591,
719, 767

Lying 74

Magnetic fields 713, 757, 758
Magnification, optical 637, 641, 667,

686
Magnus force 149, 150
Maintenance (metabolic) 327, 328
Mass 39
Mass densities 17
Masses of body segments 17
Maxwell model 236, 237, 286
Maxwell–Boltzmann distribution 727,

729
Mechanical properties 193
Mechanical work 275, 320, 322, 354,

361, 485, 547, 591
Membrane capacitance 731, 734–737,

741, 742
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Membranes, cell 713, 714, 722–725,
727, 728, 730–737, 739–745, 747,
758

Meniere’s disease 611, 613

Metabolic equivalent, MET 344,
351–354

Metabolic rate, MR 338, 343, 345,
349–352, 773

Metabolism 319

Microstrain 205, 253

Middle ear 406, 565, 591–593, 595–597,
603, 604, 607, 609

Mobility 724, 726

Modulation transfer function 669, 670

Moment arm 49, 58, 63, 69, 141, 142,
273, 274

Moment of inertia 40, 116, 117, 120,
140, 152

Momentum 39, 156

Mouth 429, 525, 526, 537, 539, 570,
571, 581, 582, 584, 585, 588, 589,
591

Multisegment modeling 77, 139, 151,
168

Muscle coordination 292

Muscle fatigue 291, 333

Muscle fibers 276

Muscle length 125, 272, 294, 296

Muscle twitches 331–334

Muscles 3, 10, 14, 15, 21, 23, 40, 49, 55,
70, 94–100, 124, 151, 196, 213, 214,
217, 271, 272, 329–336, 339–342,
347, 348, 354, 358–360, 362, 373,
376, 380, 477, 559, 562, 567, 629,
631, 658–660, 675, 698, 714

Myofilaments 279, 280, 292, 305–307

Myopia, near-sightedness 645, 674,
675, 680–683, 685, 686

Myosin 279, 280, 285, 293, 305–310

Neck 17, 19

Negative feedback 769, 770

Negative work 153, 354

Nernst equation 727, 728

Nernst potential 728

Nernst-Planck equation 726

Nerves 72, 159, 196, 214, 562, 592, 598,
599, 629, 632, 634, 635, 664, 686,

687, 713, 720–722, 731, 734, 740,
769

Neurons 348, 719–721, 731, 770
Newtonian flow, fluid 416, 420–423,

455
Nodal points, N, N′ 645–647, 650, 653,

658
Nodes 568, 570, 588, 589
Nodes of Ranvier 720, 721, 740
Non-Hookean behavior 217, 265, 266,

281
Non-Newtonian flow, fluid 420, 421,

454, 466
Nonviscous flow 412–415, 420
Nose, nasal passages 526, 537, 541,

547, 571, 572, 581, 617, 746

Obstructive lung disorders 543–545
Ocular muscles 14, 15, 629, 631,

658–660, 675, 698
Ohm’s Law 716, 735, 736, 756
One-segment model 139
Open loop, cycle regulation 775
Optic nerve 629, 630, 632, 664, 686,

687
Optical rays, ray tracing 636–638, 640,

642, 643, 645–647, 650, 652, 653,
655, 664–667, 671

Osmotic pressure 470, 471
Ossicles, hammer/malleus, anvil/incus,

stirrup/stapes 592, 595–597, 603
Outer ear 567, 591–595, 603–607, 609
Oxidation 322, 323, 325, 333, 334

Padding 129, 157, 158, 163, 165, 259,
260

Pain 79
Palpation 80
Parabolic flow 420–423, 455, 466, 492,

494
Paraxial rays 638, 647, 650, 653, 665,

666
Pascal’s Principle 409
Patella 8, 60, 63, 97
Patellar tendon, ligament 60, 77, 97
Pelvis 49
Pendulum 114
Pendulum model of walking 112, 118
Percussion 80
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Peristalsis 271, 429, 430, 458

Pharynx 526, 541, 571, 572, 575, 577,
581, 584, 585, 588, 589

Phonemes 572

Phonocardiogram 450, 454, 618

Phosphagen system 331–336, 339

Phosphate groups 323, 329, 330, 332

Phosphocreatine, PCr 332

Photometric units, optics 689–691

Photopic, diurnal, light-adapted vision
661, 688–690, 692

Physiological cross-sectional area of
muscle, PCA 141, 272–274, 278,
281, 285, 290, 293, 341

Pinnate muscles 272, 276, 278, 295,
298, 308

Pitch, tone 577, 590, 593, 606,
611–616, 619

Pitching 138, 145, 146

Planck black body distribution 365

Plastic deformation 194, 210, 211

Pleura 534–536

Point spread function 669

Points of insertion 10, 11, 79, 95–97,
141, 272, 273, 276

Points of origin 3, 10, 11, 79, 95–97,
272, 273, 276

Poiseuille’s Law 416, 417, 419, 420,
463, 465, 469, 494, 539, 803

Poisson’s ratio 204

Poisson–Boltzmann equation 729

Polarization 713, 722, 723, 725, 732,
747

Pole vault 137

Ponderal index 24

Porosity 214

Positive feedback 769

Positive work 153, 354

Potential energy 111, 114, 115, 126,
131, 134, 137, 157, 207, 246

Power 150, 321, 357

Presbycusis 27, 607, 609, 613

Presbyopia 27, 659, 684, 685

Pressure 25, 81, 405, 406, 428, 636

Principal points, P, P′, planes
645–650, 653, 657, 658, 706

PRK, RK cornea surgery 680

Protein 323–329, 334, 359–361

Pulmonary circulation system
443–449, 458, 470, 474, 480, 498,
501, 502, 504, 525, 527, 528, 530

Pulmonary fibrosis 544

Pulsatile flow 412, 495–497, 504–506,
570, 619

Pupil 629, 631, 661, 663, 664, 669, 671,
672, 674, 679, 691, 697, 698, 767

Purkinje images 652, 679

Purkinje shift 689

Quételet’s index 24, 343, 344

Quadriceps 60, 77, 96–98, 272–275, 278

Quadriceps tendon 60

Quality factor, Q 497, 570, 571, 582,
595, 794, 801

Quasistatics 37

Race walking 121

Radiometric units, optics 689, 690

Radius 7, 8, 11, 43, 44, 249

Radius of curvature, in eardrum 597

Radius of curvature, in eyes 631, 654,
658, 659, 667, 676, 678–680, 683,
685, 698

Radius of curvature, in flow in curved
tubes 423, 424, 470

Radius of curvature, in Law of Laplace
409–411, 469, 531–533, 675

Radius of curvature, in loaded beam
223–228, 250, 251

Radius of curvature, in optical refraction
639–641, 666

Radius of curvature, in spine 68, 74,
258

Radius of gyration 18, 118

Rayleigh criterion 664, 703

Reaction force 55, 59–62, 64, 69, 72,
77, 105, 127

Real images 637, 638, 640

Recovery processes in eyes 661, 662

Red blood cells 197

Reduced eye 653–655, 672, 683

Reflection of light 650–652, 673, 679,
692, 693, 697

Reflection of sound 555, 559, 563,
565–567, 586, 587, 589, 595
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Refractive index, n 631, 632, 638–643,
645–647, 650–655, 658, 667, 668,
677, 685, 698, 706

Refractive power, P 640–642, 648, 649,
655–657, 660, 668, 675, 678, 680,
683–685, 698, 706

Repolarization 450, 723, 731, 732,
746–749, 753

Residual volume, RV 537, 538, 543

Resistance vessel 462, 463, 465, 497

Resistivity 716–720, 731, 732, 734

Resonances, resonant cavities, in
acoustics 567–571, 578, 581–584,
588, 594, 598, 601, 603

Respiration 324, 376, 406, 767, 768,
778, 779

Respiratory exchange ratio, RER 323,
324, 346

Respiratory quotient ratio, RQ 324

Restrictive lung disorders 544, 545

Retina 629–634, 638, 642–644, 650,
651, 653, 656, 657, 659–662, 664,
665, 670–672, 674, 675, 678, 683,
684, 686–688, 692, 696

Retina, disease 686, 687

Retinal molecule 635, 636, 661

Retinol 661

Reynolds number, Re 371, 411, 412,
425, 474, 495, 541

Rhodopsin 635, 661, 662, 692

Rod photoreceptors 629, 632–635,
661–664, 687–689, 692, 696, 697,
721

Rotation 150, 151

Running 23, 94, 102, 103, 120, 121, 129,
132, 169, 258, 275, 285, 336, 338,
347, 350, 352, 353, 357, 425, 616,
617

Saccular, berry aneurysms 487–491,
494, 495

Sandy Koufax 145, 146

Sarcomeres 276, 279, 280, 290, 293,
296, 297, 306–308

Scaling 22

Scaling relationships 22, 25, 340

Schematic eye 646, 653–655, 657, 658,
668, 706

Scotopic, twilight, dark-adapted vision
661, 688–690, 692

Semicircular canals 592, 745
Senses 25, 79, 721
Set point 769–771, 777
Shear deformation 203
Shivering 358, 380, 772, 776, 777
Shot putting 186
Shoulders 17, 20, 59, 139, 146, 257, 297
Shoveling 90
Simple harmonic oscillator 113
Sitting 74
Skating 180, 336, 337
Skeletal mass 23
Skeletal muscles 10, 11, 94, 214, 271,

272, 340, 342, 350, 475, 719, 756
Skeletal system 4
Skeleton 21
Skin 21, 79, 80, 199, 213, 214, 217, 340,

348, 362, 364, 366, 369, 372, 373,
377, 379–383, 477, 559, 719, 756,
757

Skipping 120, 132
Skull vibrations 607, 609, 610
Sliding 170
Sliding filament model 304, 305, 307
Slow twitch (ST) muscle fibers 283,

284, 292
Smell 25, 26, 721, 746
Smooth muscles 10, 233, 271, 272, 457
Snell’s Law 638–640, 647, 665
Snellen eye chart 673, 677
Soccer 188, 191, 336, 337
Soleus 97, 125, 128, 274, 278, 280, 282,

284, 292, 302
Somersaulting 152
Sound, acoustic frequency 555, 557,

558, 560, 565, 568–570, 573, 574,
576, 578, 580–584, 586, 587, 590,
594, 600–602, 606, 608–617, 619,
800

Sound, acoustic intensity 558–563,
565–567, 579, 580, 583, 590, 591,
595, 601, 606, 611–613, 616

Sound, acoustic speed 556–559, 565
Sound, acoustic wavelength 558, 565,

568–570, 594, 603
Sound, acoustic waves 555–562, 592
Sounds, human 571
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Speaking 525, 555, 561, 567, 571, 575,
594, 617

Specific heat 321, 361, 373, 377, 385,
557, 773

Specific stature 24
Speed, propagation or conduction, in

axon 721, 738, 740
Spherical aberration 665–667, 669,

671, 698
Spherocylindrical lenses 676, 684
Sphygmomanometer 407
Spinal cord 42, 66, 258, 382, 721
Spinning ball 148
Spirometer 537, 538, 540, 544
Sports injuries 256
Springs 194, 201, 205, 229, 233, 284
ST4 muscle fibers 283
Stability 95
Stairs 59, 62, 74, 76
Standard eye 638, 642, 659, 664, 672,

677, 681, 682
Standard human 16
Standing 50, 54, 56, 73, 74, 95, 96, 100,

345, 347, 352, 355, 406
Statics 37
Step or Heaviside step function 230,

238
Steven’s Law 25, 26, 80, 612, 688, 756
Stokes Law, friction 424, 425, 432
Stomach 214, 348, 382, 429, 430, 477,

616
Strain 202
Strain rates 231, 242
Streamlines 411, 414, 472, 493
Strength 197, 209, 245
Stress 194, 202
Stress fractures 252, 258
Stress relaxation 230, 231, 233, 239,

240, 242
Stress–strain relation 194, 201, 203,

208–211, 213, 215, 216, 231, 259,
281, 579

String, vibrations 556, 567–570, 578,
597, 599, 603

Stroke volume 461, 473, 477–481, 486,
501, 506, 509, 769

Strokes 482, 487, 488, 494
Strouhal frequency, number, St 425
Summit metabolism 380, 776

Surface area 23

Surface tension 411, 531–533, 545, 679

Surfactant 532, 533, 545

Sustained accelerations 170

Sweating 361, 364, 376, 379, 772, 776

Swimming 23, 285, 336, 338, 425,
431–434

Synergistic muscles 275, 292–294

Synovial fluid 6, 21, 108, 418, 422

Synovial joints 6, 8, 10, 13, 59, 96, 108,
195, 231

Systemic circulation system 443–449,
458, 470, 474, 475, 480, 481, 488,
498, 501, 502, 504, 506, 527, 528

Systole 446, 450, 453, 456, 458, 477,
478, 485, 486, 498–501, 505, 509,
510, 618

Systolic pressure 16, 406, 408, 446,
458, 467, 481, 486, 496, 498, 499,
504, 506, 513, 516

Tactile receptors 79

Taste 25, 26, 721, 745

Tears 418, 631, 678, 679, 685, 687

Teeth 21, 65, 211, 214, 217, 572, 589

Temperature 16, 25, 79, 319, 321, 322,
339, 346, 364, 365, 367, 370–372,
374, 379, 380, 383

Tendons 10, 97, 100, 196, 198, 199, 207,
208, 212–214, 217, 231, 233, 276,
277

Tension 201, 203

Tetanized muscles 281, 282, 289, 292,
294, 298

Thermal conduction 320, 361, 364,
369, 373, 374

Thermal conductivity 321, 362, 363,
374, 376

Thick lenses 643, 650

Thigh 17, 95, 96, 98

Thin lenses 641, 643

Throwing 138

Tibia 60, 96, 157, 249, 250

Tidal volume, TV 16, 537, 538, 543,
547

Timbre 590, 611, 615

Time constant 791

Time response of eyes 693
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Toe region in stress–strain relation
211, 218

Tonometer 636

Torques 37, 95, 140, 151, 220, 273, 596

Torsion 204

Total lung capacity, TLC 537, 538

Total peripheral vascular resistance,
TPVR 474, 480, 481

Touch 79, 80, 721, 745

Toughness 209, 245, 254

Trabecular, cancellous, spongy bone
197, 212, 362

Trachea 526–528, 537, 541, 571, 575,
577

Traction 85

Transient ischemic attack, TIA 483,
484, 487

Transmission of light 650–652, 661,
666, 671, 686, 697, 698

Transmission of sound 555, 563,
565–567, 571, 580–584, 586, 587,
589, 592, 595–598, 607, 609

Transpulmonary pressure 534, 537

Treadmill 123, 350

Triceps brachii 3, 11, 43, 139, 282

Trunk 17, 19

Tube, vibrations 568–571, 581, 582,
584–589, 594, 598, 603, 605, 606

Turbulent, unsteady flow 411, 412,
421, 423, 425, 474, 483, 488, 491,
495, 541, 555, 572, 575, 617, 619

Twitches in muscles 281–283, 288

Two-segment model 139

Tympanic membrane 592, 594–598,
603, 604, 606

Typanograms 604

Ulna 7, 8, 11, 43, 249

Ultimate bending stress, UBS 245,
246, 249

Ultimate compressive stress, UCS 24,
158, 197, 205, 212, 214, 246

Ultimate strain or percent elongation,
UPE 210–212

Ultimate tensile stress, UTS 207, 210,
212, 214, 245, 246, 457

Ultrasonography echocardiography,
Doppler 446, 555

Ultrasonography, ultrasonic mapping
555

Veins 334, 373–375, 406, 430, 443–446,
448, 449, 454, 457–461, 463, 465,
467, 469, 472–475, 478, 497, 498,
501, 502

Vena cava 2, 214, 382, 443, 449
Ventricles 382, 443–446, 450–453, 478,

479, 485, 486, 498–502, 505, 507,
509, 510, 618, 619, 746, 747, 749,
752–754, 756, 757

Venturi flow, tube 414, 576
Vergence 640, 641, 683
Vertebra 66
Vertical jump 133
Vibrations 22, 25, 80, 556, 567–572,

575–578, 581, 582, 584–589, 594,
596–607, 609, 610, 616–619, 744

Virtual images 638, 640, 652
Viscoelastic models 236
Viscoelasticity 195, 200, 207, 228, 230,

284, 582
Viscosity 194, 229, 235, 285, 411, 412,

415, 424, 455, 456, 494, 582, 679
Viscous behavior 194, 229, 231, 285,

564
Visual acuity, VA 633–635, 663–665,

669, 670, 673, 674, 676, 696
Visual efficiency, VE 676, 677
Visual perception 688
Vital capacity, VC 16, 537, 538, 544
Vitreous humor 406, 562, 629–631,

642, 650–653, 656, 668, 675, 686,
706

Vocal folds, cords 570–572, 575–580,
583, 584, 586–590

Vocal tract 571, 572, 576, 580–584, 588
Voice 525, 555
Voice-filtering theory 575, 579–589
Voigt model 236, 240

Walking 23, 51, 59, 74, 94, 102, 103,
110, 118, 120, 132, 275, 337, 345,
347, 349–353, 355, 425, 616, 617

Walls of arteries 410, 449, 455–457,
467, 469, 470, 482, 488, 490–492,
494–497, 508

Walls of capillaries 470, 471
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Walls of veins 449, 455–457, 461, 467,
469

Weight gain and loss 357–360
Weight lifting, training 280, 284, 285,

290, 304, 336
Wind chill factor 371, 372
Windkessel Model 507, 508

Work 153, 275, 320, 354
Work of fracture 244
Wrists 8, 146

Yield point 210
Young’s or elastic modulus 202, 212,

214, 457, 468, 488, 557
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