+54 294 4445162      Bustillo km 9,5  Bariloche, RN, Argentina, R8402AGP

Desde que se recibió de Ingeniero Nuclear en el Balseiro, en el año 2000, Mariano Cantero ha realizado una extensa carrera en el campo de la simulación computacional. Recientemente, recibió el “Premio AMCA para jóvenes científicos” 2014 a nivel nacional. En esta nota, el docente del Instituto Balseiro cuenta de qué se trata este campo interdisciplinario en el que trabajan ingenieros, matemáticos y físicos a la par, y también explica en qué consiste su especialidad: la fluidodinámica y la simulación computacional de fenómenos vinculados con diversas fuentes de energía.

Fecha de publicación: 21/11/2014

 

En la semana de entrega de los Nobel, el Instituto Balseiro da a conocer la entrevista que le realizó al físico francés Serge Haroche, Premio Nobel de la Física 2012, durante su reciente visita a San Carlos de Bariloche. Fue durante la 98 Reunión de la Asociación Física Argentina (AFA), que tuvo lugar en su mayor parte en el campus del Instituto Balseiro en el Centro Atómico Bariloche a fines de septiembre.

Fecha de publicación: 11/10/2013

 

 

Es un referente mundial de la microscopía y durante su reciente paso por Bariloche el Área de Comunicación del Instituto Balseiro (CNEA-UNCuyo) le hizo esta entrevista. Ondrej Krivanek es un físico checoslovaco-británico y Doctor en Física por la Universidad de Cambridge que vive en los Estados Unidos. En esta nota, cuenta parte de la historia de estos aparatos que ayudan a conocer la materia en escalas pequeñísimas.

Fecha de publicación: 21/12/2017

El científico y tecnólogo Ondrej Krivanek es uno de los pioneros mundiales en el campo de la microscopía electrónica. Gracias a sus desarrollos, mejoró a mejorar la habilidad de analizar la materia a la escala atómica. Es co-fundador de la empresa Nion, compañía líder en instrumentos de microscopía. Y es uno de los científicos que desarrollaron la “corrección de la aberración”, un fenómeno que desveló a los microscopistas por más de medio siglo y que consistía en una especie de miopía de estas poderosas máquinas.

La Royal Society, en donde es fellow, destaca en su sitio web que los microscopios de Krivanek “ahora pueden mapear elementos químicos en muestras sólidas con resolución atómica y con una sensibilidad de un átomo individual”. En esta nota, realizada en el marco del “IV Congreso Argentino de Microscopía” realizado en el Centro Atómico Bariloche y en el Instituto Balseiro, el físico habla sobre la historia de la microscopía, sus aportes a este campo y para qué se utilizan los microscopios en la actualidad.

-¿Qué tanto ha avanzado la microscopía desde sus orígenes?

-El progreso ocurre en olas. El microscopio electrónico se inventó en la década de 1930 en Alemania. En los ‘50 comenzó a ser útil porque se pudo ver “dislocaciones”, es decir, se pudo ver cómo se deforman los materiales. Y en los ‘60 y ‘70, se empezó a resolver planos atómicos. El mundo está hecho en átomos, que están organizados usualmente en  arreglos ordenados. El metal de esta silla (N. de la R.: señala una silla en el aula donde transcurre la entrevista) está hecha de cristales organizados como soldados en un desfile. En los ‘70, se descubrió que un haz de electrones excitaba todo tipo de señales electromagnéticas. Se empezó a desarrollar los microscopios analíticos. Se empezó a ver qué tipo de átomos teníamos.

-¿Y luego?

-En la década del 2000 todo se puso mejor porque los microscopios tienen una visión imperfecta así que desarrollamos “anteojos” para estos microscopios. Hicimos lentes y la visión mejoró. Se realizó lo que llamamos “la corrección de aberración” hace unos 10 años. Otro desarrollo en el que estamos trabajando, y es algo muy reciente, es la espectroscopía vibracional en microscopios electrónicos. Mejoramos la resolución en un factor de 10. Eso nos da una nueva ventana para estudiar los materiales. Si golpeo esta mesa, resuena y eso es porque excité fonones y con esta técnica puedo ver los fonones vibrando. Es una técnica muy poderosa, sobre todo para analizar muestras biológicas. Es muy emocionante y es sólo el inicio.

-¿Cómo ayudó con su equipo en el trabajo de la “corrección de la aberracción”? O en otras palabras: ¿cómo ayudó a resolver la “miopía” de los microscopios?

-Esa es otra historia muy interesante. En 1937 un teórico alemán muy inteligente escribió un paper diciendo que los microscopios electrónicos siempre tendrían un problema con la aberración esférica. Fue como decir “inventamos este hermoso instrumento y no funcionará”. Por ese entonces el límite de lo que se podía ver no era malo pero eso era hace 80 años. En la década de 1950, la gente empezó a trabajar en la corrección de la aberración y no funcionó, tampoco en los ‘60 ni tampoco en los ‘70. En los ‘80, tampoco se veía una solución.

-¿Y qué pasó?

-Había dos equipos en el mundo, nosotros en Cambridge, Inglaterra, y otro en Heidelberg, Alemania, que dijimos: “Quizás esto funcione”. Intentamos y los dos equipos tuvimos éxito. Los alemanes desarrollaron un corrector del haz de los miscroscopios electrónicos y nosotros hicimos un corrector para los microscopios electrónicos de transmisión con barrido. Estos dispositivos cambiaron completamente el modo en el que se hace ahora microscopía. Pero cuando se realiza un primer desarrollo, pasa un tiempo hasta que alguien lo empieza a usar. Esto tardó diez años en nuestro caso. En 1997 tuvimos correctores que funcionaban; hacia 2001 o 2002, se empezó a usar en laboratorios de todo el mundo; y en 2010, ya había alrededor de 500 correctores de aberración en microscopios a nivel global. Así que la cosa despegó.

-¿Cómo se llaman las compañías?

-Hay una compañía que se llama CEOS (las siglas de Correct Electron Optical Systems) y la nuestra se llama NION.

-¿Hoy dónde están los microscopios más poderosos?

-Esa es una pregunta divertida porque es como preguntar cuál es el mejor auto en el mundo. Hay un mejor auto de carrera, uno familiar y así. Así que personas diferentes se especializan en cosas diferentes. En la microscopía biológica, el FBI está haciendo un muy buen trabajo. Por ejemplo, determinaron la estructura del virus Zika, que es algo muy importante. Pero la gente usa los microscopios para temas muy disímiles. Conocer la estructura de un virus ayuda a luchar contra el mismo. Si hablamos del campo de la ciencia de materiales nosotros, en NION, vamos a la cabeza de la espectroscopia de vibraciones. Y si hablamos de mapeos de elementos en una resolución espacial alta lo están haciendo muy bien en Japón. En el campo de la holografía, Hitachi es probablemente el mejor. Pero es como preguntar quién es el mejor cantante: hay alguien que canta mejor Barry Bachman, otro que canta mejor Puccini. Pero hay unas cuatro compañías que empujan la tecnología hacia el futuro.

-¿Son todas empresas privadas?

-Algunos de los desarrollos provienen de la cooperación con universidades. Pero cuando se necesita un gran financiamiento es cuando se tienden a convertir en empresas privadas.

-¿Qué es lo más chico que se puede ver en un microscopio?

-Átomos individuales. Pero no todos los átomos tienen el mismo tamaño. Por ahora no hemos logrado ver un átomo individual de hidrógeno porque es muy movedizo y cuando lo iluminamos con el haz  de electrones se escapa. Eso es algo que llamamos daño por radiación. Del hidrógeno podemos ver su señal vibracional pero es complicado. Creo que por ahora el átomo más chico ha sido el boro.

-¿Cuáles son los principales desafíos de la microscopía?

-Todo está evolucionando: es similar a la construcción de rascacielos, vas por más y más. Así que nuestro desafío actual en realidad consta de dos grandes desafíos. En espectroscopía vibracional, nos gustaría mejorar la resolución de energía. Hay cuestiones que no podemos resolver en la actualidad. Así que estamos trabajando en ello. Y el otro desafío es que, cuando empezás a agregar nuevos campos y empieza a haber todo un mundo de nuevos materiales, hay que trabajar en una atmósfera de gas o en un ambiente húmedo. Algunas de las muestras deben permanecer congeladas. Entonces hay que cambiar el manejo de las muestras en las facilidades de microscopios electrónicos. Hay muestras que deben verse en gases o en líquidos. Así que hay que hacer un nanolaboratorio en el microscopio y esto es un campo desafiante que precisa más flexibilidad y una mayor resolución.

-Para alguien que sabe poco o nada sobre microscopios, ¿podría explicar por qué son tan importantes y en qué campos se pueden utilizar?

-Tomemos como ejemplo tu teléfono celular. En su interior tiene microelectrónica y circuitos integrados. Y esos circuitos no funcionarían si la gente no trabajase con la microscopía electrónica. Todos los fabricantes de semiconductores, como Samsung e IBM, tienen un montón de microscopios electrónicos para que los bits en tu celular funcionen. Eso es nanotecnología, comprimir las cosas mucho y mucho más chicas. También se usan para entender la catálisis y cómo funcionan las baterías. Y si querés entender el modo fundamental en que la naturaleza ha hecho los materiales hay que examinarlos en niveles atómicos con microscopios con resolución atómica.

-Los microscopios también son fundamentales para el campo de la biología.

-Sí, se usan en el campo de la biología, ya mencioné el ejemplo de que con un microscopio se pudo ver la estructura del virus Zika, un problema muy urgente. Si no conocés cómo es el virus, no sabés cómo darle pelea.

-En el coloquio que dio en nuestro instituto, también mencionó que se usan para analizar material extraterrestre, ¿es así?

-Sí, materia del Sistema solar. La gente usa este tipo de cosas para entender cómo nació el universo. Es muy fácil mirar por un telescopio la materia de una estrella. Pero si ese material está flotando en el universo y podemos capturar pequeñas partículas podemos conocer detalles sobre el origen de nuestro universo y sobre cómo se formaron las primeras galaxias. Podemos conocer cómo se formó el sistema solar analizando esos fragmentos de materia. En este campo, los microscopios electrónicos son también muy poderosos.

-¿Qué características o cualidades debe tener alguien que quiera trabajar en microscopía?

-Curiosidad, querés saber de qué está hecho el mundo. Un niño que juega con robots será muy bueno en entender estos instrumentos que miran la materia en resoluciones espectaculares. Son un poco complejos pero es un poco de mecánica y mucho de software. Y si querés trabajar en este campo, podés estudiar ciencia informática, física, biología y tendrás un conocimiento básico. Pero la curiosidad es la clave.  Las personas que se interesan en cómo funcionan las cosas… Ese sentimiento de curiosidad ayuda.

-¿Por qué le gusta trabajar en el campo de la microscopía?

-Porque es divertido y estás aprendiendo cosas nuevas todo el tiempo. Eso por un lado. Y por el otro sentís que estás colaborando con algo. Eso que la ciencia aún no ha resuelto. No decimos “OK, la mecánica cuántica fue inventada en 1930 y no hay nada más que hacer”. Hay mucho por hacer. Lo podés ver. Cada nuevo teléfono celular es mejor que el anterior, incluso ahora hacen reconocimiento de voz. De hecho da un poco de miedo. No se sabe cuánto pasará hasta que las computadoras sean más inteligentes que los humanos. Pienso que falta un largo trecho y mientras tanto está el desafío de descubrir. En 1900 podías caminar por el Polo Sur y podías ser la primera persona en hacerlo. Todo eso ha sido realizado. Pero en la actualidad si hacés un espectro vibracional de un átomo, eso no ha sido hecho antes. Así que hay competencias donde se puede conseguir “ser el primero” y es algo divertido.

-Una última pregunta: ¿por qué la astronomía y los telescopios son más populares que la microscopía y los microscopios?

-Los telescopios son mucho más accesibles y producen imágenes hermosas. Y pienso que la comunidad de astrónomos ha hecho un muy buen trabajo en popularizar lo que están haciendo. Cada uno de nosotros, los científicos, ha comprado en algún momento de su vida un telescopio amateur. Las imágenes que produce el telescopio espacial Hubble son absolutamente espectaculares y en cierto modo es arte. Cualquier persona puede mirar el cielo nocturno con el telescopio y mirar qué pasa allí afuera. Los microscopios de todos modos son la misma cosa. Todos pueden mirar una uña con un microscopio electrónico y mirar cómo está hecha. Pero quizás no hemos hecho tan buen trabajo haciéndole publicidad. Aunque hay programas de puertas abiertas y gente que trabaja con niños que vienen de las escuelas para conocer los microscopios. Deberíamos hacer más de estas actividades. Pero nunca podremos decir que estamos mirando algo a 6 mil millones años luz de distancia (risas). En fin, nuestro universo es interesante en todas las escalas. A mí particularmente me fascinan los descubrimientos astronómicos. Y pienso que el microscopio es como un telescopio usado al revés. 

*Esta entrevista fue publicada dentro de un informe especial publicado originalmente en UNIDIVERSIDAD, y se puede leer en este link.

Links a subnotas:

 

 

 --

Por Laura García Oviedo, responsable del

Área de Comunicación Institucional-

Instituto Balseiro

San Carlos de Bariloche, 21/12/2017

En Facebook: www.facebook.com/InstitutoBalseiro

En Twitter: @IBalseiro / Contacto:  Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

Más noticias: http://www.ib.edu.ar/index.php/comunicacion-y-prensa/noticias.html

 

 

Es un referente mundial de la microscopía y durante su reciente paso por Bariloche el Área de Comunicación del Instituto Balseiro (CNEA-UNCuyo) le hizo esta entrevista. Ondrej Krivanek es un físico checoslovaco-británico y Doctor en Física por la Universidad de Cambridge que vive en los Estados Unidos. En esta nota, cuenta parte de la historia de estos aparatos que ayudan a conocer la materia en escalas pequeñísimas.*

Fecha de publicación: 21/12/2017

El científico y tecnólogo Ondrej Krivanek es uno de los pioneros mundiales en el campo de la microscopía electrónica. Gracias a sus desarrollos, mejoró a mejorar la habilidad de analizar la materia a la escala atómica. Es co-fundador de la empresa Nion, compañía líder en instrumentos de microscopía. Y es uno de los científicos que desarrollaron la “corrección de la aberración”, un fenómeno que desveló a los microscopistas por más de medio siglo y que consistía en una especie de miopía de estas poderosas máquinas.

La Royal Society, en donde es fellow, destaca en su sitio web que los microscopios de Krivanek “ahora pueden mapear elementos químicos en muestras sólidas con resolución atómica y con una sensibilidad de un átomo individual”. En esta nota, realizada en el marco del “IV Congreso Argentino de Microscopía” realizado en el Centro Atómico Bariloche y en el Instituto Balseiro, el físico habla sobre la historia de la microscopía, sus aportes a este campo y para qué se utilizan los microscopios en la actualidad.

-¿Qué tanto ha avanzado la microscopía desde sus orígenes?

-El progreso ocurre en olas. El microscopio electrónico se inventó en la década de 1930 en Alemania. En los ‘50 comenzó a ser útil porque se pudo ver “dislocaciones”, es decir, se pudo ver cómo se deforman los materiales. Y en los ‘60 y ‘70, se empezó a resolver planos atómicos. El mundo está hecho en átomos, que están organizados usualmente en  arreglos ordenados. El metal de esta silla (N. de la R.: señala una silla en el aula donde transcurre la entrevista) está hecha de cristales organizados como soldados en un desfile. En los ‘70, se descubrió que un haz de electrones excitaba todo tipo de señales electromagnéticas. Se empezó a desarrollar los microscopios analíticos. Se empezó a ver qué tipo de átomos teníamos.

-¿Y luego?

-En la década del 2000 todo se puso mejor porque los microscopios tienen una visión imperfecta así que desarrollamos “anteojos” para estos microscopios. Hicimos lentes y la visión mejoró. Se realizó lo que llamamos “la corrección de aberración” hace unos 10 años. Otro desarrollo en el que estamos trabajando, y es algo muy reciente, es la espectroscopía vibracional en microscopios electrónicos. Mejoramos la resolución en un factor de 10. Eso nos da una nueva ventana para estudiar los materiales. Si golpeo esta mesa, resuena y eso es porque excité fonones y con esta técnica puedo ver los fonones vibrando. Es una técnica muy poderosa, sobre todo para analizar muestras biológicas. Es muy emocionante y es sólo el inicio.

-¿Cómo ayudó con su equipo en el trabajo de la “corrección de la aberracción”? O en otras palabras: ¿cómo ayudó a resolver la “miopía” de los microscopios?

-Esa es otra historia muy interesante. En 1937 un teórico alemán muy inteligente escribió un paper diciendo que los microscopios electrónicos siempre tendrían un problema con la aberración esférica. Fue como decir “inventamos este hermoso instrumento y no funcionará”. Por ese entonces el límite de lo que se podía ver no era malo pero eso era hace 80 años. En la década de 1950, la gente empezó a trabajar en la corrección de la aberración y no funcionó, tampoco en los ‘60 ni tampoco en los ‘70. En los ‘80, tampoco se veía una solución.

-¿Y qué pasó?

-Había dos equipos en el mundo, nosotros en Cambridge, Inglaterra, y otro en Heidelberg, Alemania, que dijimos: “Quizás esto funcione”. Intentamos y los dos equipos tuvimos éxito. Los alemanes desarrollaron un corrector del haz de los miscroscopios electrónicos y nosotros hicimos un corrector para los microscopios electrónicos de transmisión con barrido. Estos dispositivos cambiaron completamente el modo en el que se hace ahora microscopía. Pero cuando se realiza un primer desarrollo, pasa un tiempo hasta que alguien lo empieza a usar. Esto tardó diez años en nuestro caso. En 1997 tuvimos correctores que funcionaban; hacia 2001 o 2002, se empezó a usar en laboratorios de todo el mundo; y en 2010, ya había alrededor de 500 correctores de aberración en microscopios a nivel global. Así que la cosa despegó.

-¿Cómo se llaman las compañías?

-Hay una compañía que se llama CEOS (las siglas de Correct Electron Optical Systems) y la nuestra se llama NION.

-¿Hoy dónde están los microscopios más poderosos?

-Esa es una pregunta divertida porque es como preguntar cuál es el mejor auto en el mundo. Hay un mejor auto de carrera, uno familiar y así. Así que personas diferentes se especializan en cosas diferentes. En la microscopía biológica, el FBI está haciendo un muy buen trabajo. Por ejemplo, determinaron la estructura del virus Zika, que es algo muy importante. Pero la gente usa los microscopios para temas muy disímiles. Conocer la estructura de un virus ayuda a luchar contra el mismo. Si hablamos del campo de la ciencia de materiales nosotros, en NION, vamos a la cabeza de la espectroscopia de vibraciones. Y si hablamos de mapeos de elementos en una resolución espacial alta lo están haciendo muy bien en Japón. En el campo de la holografía, Hitachi es probablemente el mejor. Pero es como preguntar quién es el mejor cantante: hay alguien que canta mejor Barry Bachman, otro que canta mejor Puccini. Pero hay unas cuatro compañías que empujan la tecnología hacia el futuro.

-¿Son todas empresas privadas?

-Algunos de los desarrollos provienen de la cooperación con universidades. Pero cuando se necesita un gran financiamiento es cuando se tienden a convertir en empresas privadas.

-¿Qué es lo más chico que se puede ver en un microscopio?

-Átomos individuales. Pero no todos los átomos tienen el mismo tamaño. Por ahora no hemos logrado ver un átomo individual de hidrógeno porque es muy movedizo y cuando lo iluminamos con el haz  de electrones se escapa. Eso es algo que llamamos daño por radiación. Del hidrógeno podemos ver su señal vibracional pero es complicado. Creo que por ahora el átomo más chico ha sido el boro.

-¿Cuáles son los principales desafíos de la microscopía?

-Todo está evolucionando: es similar a la construcción de rascacielos, vas por más y más. Así que nuestro desafío actual en realidad consta de dos grandes desafíos. En espectroscopía vibracional, nos gustaría mejorar la resolución de energía. Hay cuestiones que no podemos resolver en la actualidad. Así que estamos trabajando en ello. Y el otro desafío es que, cuando empezás a agregar nuevos campos y empieza a haber todo un mundo de nuevos materiales, hay que trabajar en una atmósfera de gas o en un ambiente húmedo. Algunas de las muestras deben permanecer congeladas. Entonces hay que cambiar el manejo de las muestras en las facilidades de microscopios electrónicos. Hay muestras que deben verse en gases o en líquidos. Así que hay que hacer un nanolaboratorio en el microscopio y esto es un campo desafiante que precisa más flexibilidad y una mayor resolución.

-Para alguien que sabe poco o nada sobre microscopios, ¿podría explicar por qué son tan importantes y en qué campos se pueden utilizar?

-Tomemos como ejemplo tu teléfono celular. En su interior tiene microelectrónica y circuitos integrados. Y esos circuitos no funcionarían si la gente no trabajase con la microscopía electrónica. Todos los fabricantes de semiconductores, como Samsung e IBM, tienen un montón de microscopios electrónicos para que los bits en tu celular funcionen. Eso es nanotecnología, comprimir las cosas mucho y mucho más chicas. También se usan para entender la catálisis y cómo funcionan las baterías. Y si querés entender el modo fundamental en que la naturaleza ha hecho los materiales hay que examinarlos en niveles atómicos con microscopios con resolución atómica.

-Los microscopios también son fundamentales para el campo de la biología.

-Sí, se usan en el campo de la biología, ya mencioné el ejemplo de que con un microscopio se pudo ver la estructura del virus Zika, un problema muy urgente. Si no conocés cómo es el virus, no sabés cómo darle pelea.

-En el coloquio que dio en nuestro instituto, también mencionó que se usan para analizar material extraterrestre, ¿es así?

-Sí, materia del Sistema solar. La gente usa este tipo de cosas para entender cómo nació el universo. Es muy fácil mirar por un telescopio la materia de una estrella. Pero si ese material está flotando en el universo y podemos capturar pequeñas partículas podemos conocer detalles sobre el origen de nuestro universo y sobre cómo se formaron las primeras galaxias. Podemos conocer cómo se formó el sistema solar analizando esos fragmentos de materia. En este campo, los microscopios electrónicos son también muy poderosos.

-¿Qué características o cualidades debe tener alguien que quiera trabajar en microscopía?

-Curiosidad, querés saber de qué está hecho el mundo. Un niño que juega con robots será muy bueno en entender estos instrumentos que miran la materia en resoluciones espectaculares. Son un poco complejos pero es un poco de mecánica y mucho de software. Y si querés trabajar en este campo, podés estudiar ciencia informática, física, biología y tendrás un conocimiento básico. Pero la curiosidad es la clave.  Las personas que se interesan en cómo funcionan las cosas… Ese sentimiento de curiosidad ayuda.

-¿Por qué le gusta trabajar en el campo de la microscopía?

-Porque es divertido y estás aprendiendo cosas nuevas todo el tiempo. Eso por un lado. Y por el otro sentís que estás colaborando con algo. Eso que la ciencia aún no ha resuelto. No decimos “OK, la mecánica cuántica fue inventada en 1930 y no hay nada más que hacer”. Hay mucho por hacer. Lo podés ver. Cada nuevo teléfono celular es mejor que el anterior, incluso ahora hacen reconocimiento de voz. De hecho da un poco de miedo. No se sabe cuánto pasará hasta que las computadoras sean más inteligentes que los humanos. Pienso que falta un largo trecho y mientras tanto está el desafío de descubrir. En 1900 podías caminar por el Polo Sur y podías ser la primera persona en hacerlo. Todo eso ha sido realizado. Pero en la actualidad si hacés un espectro vibracional de un átomo, eso no ha sido hecho antes. Así que hay competencias donde se puede conseguir “ser el primero” y es algo divertido.

-Una última pregunta: ¿por qué la astronomía y los telescopios son más populares que la microscopía y los microscopios?

-Los telescopios son mucho más accesibles y producen imágenes hermosas. Y pienso que la comunidad de astrónomos ha hecho un muy buen trabajo en popularizar lo que están haciendo. Cada uno de nosotros, los científicos, ha comprado en algún momento de su vida un telescopio amateur. Las imágenes que produce el telescopio espacial Hubble son absolutamente espectaculares y en cierto modo es arte. Cualquier persona puede mirar el cielo nocturno con el telescopio y mirar qué pasa allí afuera. Los microscopios de todos modos son la misma cosa. Todos pueden mirar una uña con un microscopio electrónico y mirar cómo está hecha. Pero quizás no hemos hecho tan buen trabajo haciéndole publicidad. Aunque hay programas de puertas abiertas y gente que trabaja con niños que vienen de las escuelas para conocer los microscopios. Deberíamos hacer más de estas actividades. Pero nunca podremos decir que estamos mirando algo a 6 mil millones años luz de distancia (risas). En fin, nuestro universo es interesante en todas las escalas. A mí particularmente me fascinan los descubrimientos astronómicos. Y pienso que el microscopio es como un telescopio usado al revés. 

*Esta entrevista fue publicada dentro de un informe especial publicado originalmente en UNIDIVERSIDAD, y se puede leer en este link.

Links a subnotas:

 

 --

Por Laura García Oviedo, responsable del

Área de Comunicación Institucional-

Instituto Balseiro

San Carlos de Bariloche, 21/12/2017

En Facebook: www.facebook.com/InstitutoBalseiro

En Twitter: @IBalseiro / Contacto:  Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

Más noticias: http://www.ib.edu.ar/index.php/comunicacion-y-prensa/noticias.html

 

 

Sonriente e inspirador, el científico cordobés visitó el Instituto Balseiro, en la ciudad de Bariloche, para dar un coloquio titulado “La revolución de la inmunoterapia en cáncer”. Después de la charla, que convocó a estudiantes y docentes de física e ingeniería además de investigadores de otras disciplinas, médicos y público general de la ciudad, Gabriel Rabinovich brindó una entrevista al Área de Comunicación Institucional y Prensa de este de este instituto dependiente de la CNEA y la UNCuyo.

En abril de 2017, ingresó como miembro extranjero asociado a la Academia Nacional de Ciencias de los Estados Unidos (NAS), una distinción que tienen en la historia sólo otros siete científicos argentinos. Entre otros múltiples reconocimientos por su trabajo en torno a la proteína llamada “galectina-1”, que juega roles cruciales en la regulación del sistema inmune y en enfermedades como el cáncer, Rabinovich recibió los premios Houssay, Bunge y Born, Konex de Platino y de Honor en Biomedicina y el de la Academia Mundial de las Ciencias (TWAS, por sus siglas en inglés). Su trabajo ya ha generado asimismo nueve patentes.

Licenciado en Bioquímica y Doctor en Inmunología por la Universidad Nacional de Córdoba (UNC), Gabriel Rabinovich es actualmente profesor en la Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires (UBA) e investigador superior del Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet). Es además director del Laboratorio de Inmunopatología y vicedirector del Instituto de Biología y Medicina Experimental (Ibyme), el mismo que dirigió el Premio Nobel Bernardo Houssay.

Ante la consulta de si alguna vez lo confundieron con un Les Luthiers, se ríe y responde que siempre le preguntan si es familiar de Daniel Rabinovich, uno de los integrantes de esa mítica banda de humor. “La verdad que somos muchos los Rabinovich, pero no tengo parentesco, al menos que yo conozca. Hace poquito me hicieron una nota en un programa que se llama A Fuego Lento y, justo de casualidad también estaba la esposa de Daniel Rabinovich. Nos encontramos por primera vez y empezamos a hablar que a ella siempre le preguntan por mí y a mí me preguntan si soy algo de Daniel”, contó.

GALECTINA-1: HÉROE Y VILLANO

-Ya hablando de su trabajo como investigador, ¿cómo fue que pasó de estudiar en su época de estudiante la retina del pollo a tener hoy 30 personas en su laboratorio? ¿Hubo algo de suerte?

-La verdad es que siempre digo que no elegí la ciencia sino que la ciencia me eligió a mí. Siento, de alguna manera, que cuando empecé a hacer investigación pensé que sería sólo un trabajo transitorio. Tenía 23 años y quería saber qué se hacía en un laboratorio de investigación. Me gustaba la inmunología y la vida me fue llevando a investigar sobre esto, al punto que fue, claramente hubo suerte en el medio, un descubrimiento inesperado. Pero también hubo un motor muy fuerte de querer ver algo, porque, la verdad, todos los resultados de experimentos anteriores eran negativos. 

-Usted identificó la galectina-1 a partir de sus primeros estudios con retinas de pollos. ¿Por qué esta proteína es héroe y villano al mismo tiempo?

-La galectina-1 es una proteína que se produce en nuestro organismo. Cuando uno tiene una respuesta inflamatoria, por ejemplo para poder eliminar cualquier peligro que nos acecha, como un virus o una bacteria, inmediatamente se genera una cantidad de linfocitos T. Éstos empiezan a aumentar para eliminar esa amenaza, que puede ser un tumor o puede ser un microbio. Llega un momento en el que esos linfocitos T tienen volver a la normalidad. A eso se llama resolución de la respuesta. Una vez que la respuesta se ejecutó, se resuelve.

-¿Qué les pasa a los linfocitos T cuando ya cumplieron con su trabajo? ¿Se mueren?

-Sí, tienen que empezar a morirse para llegar a sus niveles normales. No podemos tener linfocitos T activados todo el tiempo. Es como tener un ejército dentro de nosotros y todo el tiempo luchando y luchando. Entonces la galectina-1 le dice: “Pará flaco, ya eliminamos el microbio”. Así, la galectina-1 aumenta la cantidad, forma ese dímero y empieza a matar esos linfocitos T que están de más. Eso lo vimos en nuestro laboratorio. En ese caso esta proteína es buena. Porque si a los linfocitos T los dejamos que sigan en su cantidad muy grande van a empezar a producir enfermedades inflamatorias, autoinmunes y a dañar tejidos propios. En ese sentido, galectina-1 es un héroe.

-En el embarazo también es “buena”, contó en el coloquio.

-Sí, en el embarazo también porque protege al feto que está creciendo y también a la mujer de que no haya un aborto no deseado por linfocitos T que están dañando la placenta. Ese bebé que está creciendo es mitad antígenos del papá y mitad antígenos de la mamá. Entonces cómo hacen los linfocitos T de la mamá, que es un gran misterio, para no dañar a la parte del feto que pertenece al papá. Son organismos diferentes con antígenos diferentes. Lo que hemos visto es que los tumores, a medida que van creciendo, producen niveles de esta proteína muchísimo mayores que los que tiene una célula normal. Esto permite que esté en gran cantidad y de ese modo eliminar linfocitos T que están activados.

-Los linfocitos T también se paralizan…

-Sí, son paralizados. Galectina-1 tiene varios mecanismos de acción. Un mecanismo es primero paralizarlos. Cuando ya están paralizados por mucho tiempo, exponen azúcares y esos azúcares permiten la muerte.

-Entonces en el contexto de cáncer la galectina-1 es letal.

-Sí, en ese caso es un villano. Se le acerca al linfocito. El linfocito no tiene galectina-1 cuando está activado y es normal, porque en algunos casos patógenos lo tiene pero no vamos a entrar en este tema. El tumor produce grandes cantidades de galectina-1 y eso  le sirve para matar al linfocito T.

ESTRATEGIAS Y PATENTES

-Viendo todo este panorama que ocurre dentro de nuestros cuerpos, que en coloquio usted describió como compuesto por bandos de aliados y enemigos, y en el que hay traidores también, ¿qué estrategias idearon para poder meterse en el juego y ayudar a sanar?

- Pusimos en juego la función dual, a veces buena y a veces mala de la galectina-1. Cuando es buena, necesitamos más. Cuando es mala, necesitamos bloquearla. Entonces para poder bloquearla hicimos anticuerpos monoclonales, que son proteínas que fueron descubiertas por César Milstein, Premio Nobel, y lo que hacen es neutralizar una determinada proteína. Nosotros los generamos anti-galectina 1, por lo tanto bloquean galectina-1. La idea es que cuando nosotros administramos esto a  un tumor, por ahora sólo con ratones, lo que hacemos es bloquear galectina-1. Al neutralizarla, forman complejos inmunes que se eliminan y esto impide que esa galectina 1 juegue un rol y elimine linfocitos T. Esa es una estrategia en el caso de tumores.

-¿Y la otra estrategia?

-En el caso de enfermedades autoinmunes, necesitamos más galectina-1. Entonces lo que hicimos fue  construir variantes de galectina-1 que son muy resistentes y es como darles más galectina-1 en su forma óptima para poder… Eso no lo podemos contar mucho aun porque estamos con el proceso de la patente.

-¿Cuántas patentes tienen ya?

-Ahora estamos enviando la décima. Pero si uno ve la relación trabajo-patente, tenemos 240 trabajos y diez patentes. Cada patente es muy complicada. Son patentes que pertenecen al CONICET y a la Fundación Sales, que es una fundación que nos ha ayudado durante todos estos años. En el mundo, la ciencia no depende sólo del Estado sino también de fundaciones sin fines de lucro con miles de donantes… Nosotros tuvimos la suerte de contactar, cuando no teníamos la posibilidad de contar con subsidios del Estado, con esta Fundación para el cáncer, que nos fue ayudando mucho. De hecho, estas patentes son caras y hay que pagarlas en cada país.

-Imagino que su trabajo en el campo de la inmunoterapia ha sido un camino con idas y vueltas…

-Cuando apareció el primer resultado positivo, después de tener resultados negativos, ya había empezado a pensar que no servía para hacer ciencia. Ahora, en forma retrospectiva, puedo contarles lo que me pasó a los chicos jóvenes para ayudarlos a superar las crisis. Porque durante las crisis uno cree que las cosas no le salen y baja la autoestima. Y encima eso era acompañado con concursos docentes que perdía y becas que no salían. No entendía cómo era el tema de la investigación. Veía mucho exitismo por un lado, pero a mí no me salía nada. Entonces me frustré durante un tiempo.

-¿Y qué pasó cuando tuvo ese primer resultado positivo?

-Fue el comienzo de mucho… Tuvimos esa curiosidad de decir qué es esto, porque podríamos haberlo dejado en que un anticuerpo reacciona y dejarlo ahí y no saber de qué se trataba. En cada momento podríamos haberlo dejado. Podríamos haberlo dejado en que mata linfocitos T, pero quisimos preguntar cuál era el rol fisiológico. Siempre me gustó profundizar. El lema en nuestro laboratorio, que me gusta mucho y que lo aplicamos todo el tiempo aún en épocas de vacas flacas, es: “Si podemos soñar lo podemos hacer”. A mí me parece que lo más importante es tener ganas. Tenemos una sola vida para hacer todo lo que queremos hacer. Tenemos que salir de la zona de confort y hacer lo máximo que podamos.

-Es un desafío…

- Obviamente, mi zona de confort es hacer investigación básica, escribir trabajos, proponer hipótesis. Pero ahora nos enfrentamos a algo que es casi una responsabilidad social. Muchas veces tuve esa disquisición de decir: si ya tengo un lugar en la comunidad científica… Me pregunto cuál es la necesidad de estar expuesto a tantas presiones de negociar con compañías farmacéuticas y buscar programas de transferencia, si lo puede hacer otra persona en otro lugar del mundo. Y, en realidad, pienso que es algo muy caliente que me está llamando y que si lo dejo pasar… Quizás en pacientes no funcione, no lo sé… Pero, si funciona puede llegar a ser fantástico. Voy a sentir que le encontré un sentido a mi vida. Más allá de la publicación de trabajos y de la formación de recursos humanos, que, ya de por sí, puede ser un excelente sentido de vida.

-Ya es mucho lo que ha logrado.

-Siento que si se corta mi carrera, podría decir que identifiqué la galectina y su funcionalidad, algo que sentó las bases para nuevos trabajos en otros lugares. Y que formé recursos humanos y que generé un grupo. La verdad que la gente que me eligió es fantástica. Valoro muchísimo el grupo de trabajo que tengo porque hay un respeto entre todos. Hay unas ganas de superación. A mí me da mucha satisfacción que gente tan buena me haya elegido.

-Seguramente usted también eligió a cada integrante de su laboratorio…

-Bueno, todos nos elegimos entre todos.

Ir a la segunda parte de la entrevista: en este link.

---

Por Laura García Oviedo

Área de Comunicación Institucional

Instituto Balseiro

San Carlos de Bariloche, 09/08/2017

En Facebook: www.facebook.com/InstitutoBalseiro

En Twitter: @IBalseiro / Contacto: Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

Más noticias: http://www.ib.edu.ar/index.php/comunicacion-y-prensa/noticias.html

 

Ir a la primera parte de la entrevista: en este link.

Hijo de una madre farmacéutica y un padre contador, este bioquímico argentino es en la actualidad es un referente internacional en el campo de la inmunoterapia. En los Estados Unidos y en Europa, esa alternativa terapéutica, que se basa en regular el sistema inmune de cada paciente, está pisando cada vez más fuerte. En países como Argentina, ya hay tres anticuerpos aprobados para determinados tratamientos oncológicos. Y el equipo de Rabinovich busca aportar más alternativas.

Fecha de publicación: 09/08/2017

Ante la consulta de cuál es su campo específico de investigación, responde que es una cuestión un tanto compleja de responder porque trabaja un poco en glicobiología, ya que estudia azúcares que interactúan con la galectina-1. “Pero mi disciplina es la inmunología, porque estudio el sistema inmune. Hay gente que dice que trabajo en oncología porque trabajo con tumores y hay gente que dice que trabajo con reumatología porque trabajo con artritis reumautoidea. Pero estoy formado como bioquímico y en mi laboratorio tengo bioquímicos y físico-químicos”, describe, con una sonrisa.

Sentado en la oficina de dirección del Instituto Balseiro, con silencio de fondo luego de un atardecer agitado, el doctor Rabinovich dice que en un momento de su vida se dio cuenta que era importante salir de una zona de confort. Y se dio cuenta que además de hacer ciencia quería crear fármacos. “Podríamos haber demostrado nuestra hipótesis en torno a la galectina-1 y dejar que los tecnólogos hicieran los fármacos. Pero nos dieron muchas ganas de hacer una gran inversión de tiempo y valió la pena”, reflexiona el científico cordobés.

LA PUNTA DEL ICEBERG

-¿La inmunoterapia puede complementarse con otros tratamientos?
-Esa es una muy buena pregunta porque mucha gente cree, siendo fundamentalista de cada terapia, de que el hecho que aparezca una terapia hace que uno no tenga en cuenta otras. Lo que se ha visto es que la mejor forma es complementar las terapias. Uno podría utilizar la radioterapia o la quimiotergapia en bajas dosis, no en dosis tan tóxicas como muchas veces se dan, a los fines de liberar más antígenos. El tumor produce más antígenos, esos antígenos o proteínas son captados por células dendríticas, se las presentan a los linfocitos T. O sea cuanto más antígenos libere, más posibilidades hay de que sean captados por las células dendríticas, que vayan al ganglio linfático y que allí las presenten a los linfocitos T.

-En el coloquio usted comparó el ganglio linfático con una discoteca, en la que la célula dendrítica presenta al antígeno a un linfocito T. Siguiendo esa analogía, ¿podría explicar qué ocurre con esos antígenos o “pedacitos” de las células tumorales?
-Supongamos que una chica tiene la posibilidad de conocer a un chico. No le gusta, pero si viene con un pelo diferente, ahí bueno, le empieza a gustar un poquito más. Lo ve más extraño, reacciona mejor a él. Y esto es lo que buscamos. Cuantos más antígenos liberados hay, las células dendríticas los presentan al linfocito T. Cuantos más linfocitos T se excitan con ese antígeno que le trae la célula dendrítica, va a haber más diversidad, hablando de la diversidad que es tan importante, alrededor del tumor. Así, habrá más posibilidades de que maten al tumor cuando se les inhiben esas vías de señalización. Entonces es muy importante que se complementen en algunos casos las estrategias. La radioterapia y la quimioterapia liberan antígenos porque rompen el tumor, y éstos son captados con mayor frecuencia por las células dendríticas.

-¿Qué opina sobre el caso de Jimmy Carter, el expresidente de los Estados Unidos que se hizo inmunoterapia con éxito?
-Tuvo muy buenos resultados. Creo que eso hizo que haya un apoyo sostenido. Todos estos casos de famosos ayudan a que haga más conocida.

-¿Es poco conocida la inmunoterapia en la actualidad?
-Como toda terapia nueva, siempre genera alguna resistencia. Todos estos últimos años he ido, contratado por varias compañías para dar charlas, he visitado distintos países de Latinoamérica porque acá recién está entrando la inmunoterapia. En Estados Unidos y en Europa es mucho más fluida.

-¿La inmunoterapia está aún en pañales?
-Creo que lo que se ha visto hasta ahora es el tip del iceberg. Todavía falta muchísimo por descubrir. Hasta ahora funcionan dos tratamientos muy bien, que son contra dos de estos mecanismos de escape, el PD1 y el CTLA-4, pero hay muchísimos más. Son los anticuerpos del Pembrolizumab, de Merck, el Nivolumab, de Bristol-Myers y el Atezolizumab, de Roche. Hay un conjunto nuevo de moléculas, entre ellas la nuestra, que creemos que van a poder complementar o que van a poder ir en otros pacientes para los que no les funcionan los que ya existen.

EL FUTURO PERSONALIZADO

-¿Qué se espera para el futuro?
-Lo que uno espera para el futuro es que el médico oncólogo tenga un arsenal de distintos fármacos de acuerdo a la estrategia de escape que tenga cada tumor. Porque cada tumor aparece con un conjunto de armas diferente. Es como tener tu casa preparada para defenderte de un ladrón que viene con un arma determinada, pero él se dio cuenta y entra con otro tipo de arma…

-Claro, una misma estrategia no funciona para todos los pacientes.
-Por eso es costosa. No es una terapia estandarizada. Si uno tiene dolor de cabeza y se toma una aspirina o ibuprofeno, hay muchas posibilidades que se suprima. En este caso lo que uno hace es bloquear a nivel biológico un mediador que puede o no producirse, que el tumor puede o no tenerlo aumentado. Si el tumor no tiene aumentada la galectina-1, le das anti-galectina-1 y es como si le estuvieses dando agua. Pero si tiene galectina-1 activa y la bloqueás, es fantástico. Por eso lo importante en el futuro es la medicina de precisión.

-¿Podría contar de qué se trata la medicina de precisión?
-Consiste en detectar cuáles son los pacientes que son elegibles para un tratamiento y también, una vez que se inició el tratamiento, detectar si el tumor de ese paciente empezó a generar un mecanismo de escape adicional. Uno puede estar bloqueando por un lado, y que el tumor busque escaparse por otro lado. Entonces si uno pudiese hacerle un seguimiento y descubrir en qué momento ese tumor se hace resistente, podría tener las armas para salvar al paciente de esa resistencia.

AL SERVICIO DE LA SALUD

-En el coloquio habló sobre la vacunación, ¿por qué es tan importante?
-Soy claramente una persona que defiende la vacunación como inmunológo pero también como participante de esta vida social y como ciudadano. Uno de los grandes logros que ha tenido la medicina en todos estos siglos es la vacunación. Se han erradicado patologías que en otras épocas fueron epidemias y pandemias terribles que han devastado poblaciones, como la viruela. La poliomielitis se está erradicando: hay mucha menor incidencia. Con las vacunas la hepatitis se ha reducido. El cáncer de útero también.

-¿Cómo actúa la vacunación?
-Con el mismo mecanismo que vimos recién. Uno genera un fragmento de un determinado virus o un patógeno que no es virulento. Hay vacunas vivas y no vivas. Las células dendríticas van captando esos antígenos, llegan al ganglio linfático, activan esos linfocitos T y de esos linfocitos T algunos se transforman en efectores y la mayoría se transforman en memoria, que va recirculando durante años y años protegiéndonos de cuando ingresa el patógeno vivo, que puede matar o dañar tus tejidos. Cuando ingresa ese patógeno vivo, se encuentran con esos linfocitos T de memoria. Es cierto que todos tenemos linfocitos T vírgenes, que van a recircular, de toda la vida, que son los propios. Pero lo que uno hace es impulsar para que haya una gran cantidad y una gran frecuencia de linfocitos T contra aquellos patógenos prevalentes en la región.

-¿Qué pasa al no vacunar?
-Si yo no estoy vacunando a mi hijo, porque supongamos que soy padre que dice “no creo en la vacunación y hago lo que quiero con mi hijo”, puedo responder por mi hijo pero no puedo responder por los demás. El chiquito puede ir y contagiarse esa enfermedad que no sea grave para él pero sí para un chico con inmunodeficiencia y que no pueda ser vacunado. Estoy cometiendo, de alguna manera, un homicidio indirecto. Para mí el proyecto de ley que se presentó recientemente era un proyecto homicida.

-También quizás es una cuestión de ignorancia…
-Salí muy al frente, inclusive hablé sobre este tema en presidencia porque es importante no dejar que esas cosas surjan y que haya grupos conservadores que se aprovechen con asesoramientos de medicina alternativa para ir en contra del apoyo a la ciencia básica. Y es importante que se considere todo esto que les conté hoy, las terapias antitumorales, la vacunación, todo lo que mejora la vida de los pacientes, se hicieron gracias a la investigación básica. Cuando uno dice investigación básica se refiere a etapa de investigación fundamental y creativa, que debe mantenerse.

-¿Cuál es su mayor desafío u objetivo?
-¿Mi sueño? Me gusta plantearlo en términos de sueño, porque tiene mucho idealismo. Es ver gotear en la cama de los pacientes tanto el anticuerpo como sus variantes. Es ver que algún fármaco que surja del trabajo de tantos años pueda beneficiar la vida de un paciente. Muchas veces hacemos investigación que queremos que tenga impacto… La misma puede tener impacto en la formación de recursos humanos, en la generación de un conocimiento disruptivo que pueda cambiar los rumbos de un campo de investigación o puede tener un impacto en mejorar la vida de los pacientes. Un investigador lo que quiere es tener algún impacto.

-Ya generar un conocimiento disruptivo, generar ciencia, es muy importante…
-Me parece que muchas veces por esta cosa tan utilitaria, a veces menospreciamos el impacto del conocimiento por la irrupción del conocimiento. Me parece que un objetivo o un sueño grande es que todos estos descubrimientos o la identificación de las funciones de la galectina-1 sean disruptivos. Esto es, que puedan generar un paradigma nuevo y que éste pueda ser aplicado a distintos campos. Y mi sueño mayor es que en la cama del paciente le caiga en el suero el anticuerpo u otro fármaco y ver que le mejora la vida. Si eso sucede, ya tengo cerrado el ciclo de mi carrera.

Ir a la primera parte de la entrevista: en este link.

 

---

Por Laura García Oviedo

Área de Comunicación Institucional

Instituto Balseiro

San Carlos de Bariloche, 04/08/2017

En Facebook: www.facebook.com/InstitutoBalseiro

En Twitter: @IBalseiro / Contacto: Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

Más noticias: http://www.ib.edu.ar/index.php/comunicacion-y-prensa/noticias.html